
Types Summer School 2007

Coq-lab

Verification of a Mini-Compiler

The purpose of this exercise is to use Coq to verify the correctness of a mini-compiler.
The source language is a single expression involving integer constants, variables and
additions. The target language is a assembly-like language with a single accumulator and
an infinite set of registers. A template file for this exercise is available at

www.lri.fr/∼filliatr/types-summer-school-2007/compiler.v

where the occurrences of the comment (* TO BE COMPLETED *) must be replaced by
Coq definitions, statements or proofs.

1 Source Language

1.1 Syntax

The abstract syntax of the input language is the following:

e ::= n literal constant
| x variable
| e + e addition

Q1. Define an inductive type expr:Set for the abstract syntax of the source language.
Literal constants will have type nat. Variable names will be represented by an abstract
type string:Set.

1.2 Semantics

Given a state s assigning values to variables, the semantics E of an expression is imme-
diate. It is recursively defined as follows:

E(n) = n

E(x) = s(x)

E(e1 + e2) = E(e1) + E(e2)

Q2. The type of states is defined as state:=string->nat. Define the semantics of the
source language as a function E of type state->expr->nat.

2 Target Language

The target language is an assembly-like language with an accumulator and an infinite set
of registers.

1



2.1 Syntax

The syntax of the target language is simply a list of instruction. The abstract syntax of
instructions is the following:

i ::= LI n
| LOAD r
| STO r
| ADD r

where n is a literal constant and r a register name.

Q3. Define an inductive type instr:Set for the abstract syntax of the target language.
Register names will be represented by natural numbers (type nat).

2.2 Semantics

The semantics of the four instructions is the following:

• LI n loads the immediate value n in the accumulator;

• LOAD r loads the contents of register r in the accumulator;

• STO r stores the contents of the accumulator in register r;

• ADD r adds the contents of register r to the accumulator.

Q4. Define an inductive type cell:Set to represent either the accumulator or some
register. A state of the assembly machine is called a store. The type of stores is simply
defined as store := cell -> nat i.e. a store is a mapping from cells to values.

Q5. Define a function update : store -> cell -> nat -> store which updates
some given store by assigning a value to a cell. Hint: You need a decidable equality over
cells to define this function. So you have to prove first the following lemma:

Lemma cell_eq_dec : forall c1 c2 : cell, {c1 = c2} + {c1 <> c2}.

Q6. Define the semantics of a single instruction as a store transformer Si : store

-> instr -> store. Then define the semantics of a list of instructions as another store
transformer Sl : store -> list instr -> store.

3 Compilation

The compilation schema is simple: different variables are mapped to different registers
and, since there is a finite number of variables, the infinitely many remaining registers
can be used to perform the evaluation of the expression.

2



3.1 The Compiler

Let e be an expression and m an assignment from its variables to registers. Let r be a
register greater than those used in m for the variables of e. Then the compilation of e is
a list of instructions Cr(e) defined as follows:

C(n) = LI n

C(x) = LOAD m(x)

C(e1 + e2) = Cr(e1) ++ STO r ++ Cr+1(e2) ++ ADD r

where ++ denotes the catenation of lists. When this list of instructions is executed, it
stops with the value of e in the accumulator.

Q7. The assignment m is simply defined as a function of type symt := string ->

nat. Define the compiler as a recursive function C : symt -> nat -> expr -> list

instr.

3.2 Correctness

We are now going to prove the correctness of this compiler. The correctness statement is
the following:

Let e be an expression, s a state, m an assignment from variables to registers,
s′ a store and r a register. If for any variable x we have

• m(x) < r;

• x has the same value in s than m(x) in s′

then the list of instructions l = Cr(e) is such that

• the execution of l in store s′ ends up with an accumulator containing the
value of e in s;

• any register smaller than r is untouched by the execution of l.

Q8. State this theorem above in Coq.

Q9. Prove this theorem. Here are some hints:

• It is useful to prove that Sl s (l1 ++l2) = Sl (Sl s l1) l2 and to use this lemma to
simplify some statements (using repeat rewrite for instance).

• It may be useful to prove the second part of the theorem first i.e. that registers
smaller than r are untouched by the execution. It is indeed independent of the first
part of the theorem and needed to prove the first part.

3


