
Department of Computer Science

Hamilton, NewZealand

Correlation-based Feature Selection for

Machine Learning

Mark A. Hall

This thesis is submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy at The University of Waikato.

April 1999

c
�

1999 Mark A. Hall

ii

Abstract

A central problem in machine learning is identifying a representative set of features from

which to construct a classification model for a particular task. This thesis addresses the

problem of feature selection for machine learning through a correlation based approach.

The central hypothesis is that good feature sets contain features that are highly correlated

with the class, yet uncorrelated with each other. A feature evaluation formula, based

on ideas from test theory, provides an operational definition of this hypothesis. CFS

(Correlation based Feature Selection) is an algorithm that couples this evaluation formula

with an appropriate correlation measure and a heuristic search strategy.

CFS was evaluated by experiments on artificial and natural datasets. Three machine learn-

ing algorithms were used: C4.5 (a decision tree learner), IB1 (an instance based learner),

and naive Bayes. Experiments on artificial datasets showed that CFS quickly identifies

and screens irrelevant, redundant, and noisy features, and identifies relevant features as

long as their relevance does not strongly depend on other features. On natural domains,

CFS typically eliminated well over half the features. In most cases, classification accuracy

using the reduced feature set equaled or bettered accuracy using the complete feature set.

Feature selection degraded machine learning performance in cases where some features

were eliminated which were highly predictive of very small areas of the instance space.

Further experiments compared CFS with a wrapper—a well known approach to feature

selection that employs the target learning algorithm to evaluate feature sets. In many cases

CFS gave comparable results to the wrapper, and in general, outperformed the wrapper

on small datasets. CFS executes many times faster than the wrapper, which allows it to

scale to larger datasets.

Two methods of extending CFS to handle feature interaction are presented and exper-

imentally evaluated. The first considers pairs of features and the second incorporates

iii

feature weights calculated by the RELIEF algorithm. Experiments on artificial domains

showed that both methods were able to identify interacting features. On natural domains,

the pairwise method gave more reliable results than using weights provided by RELIEF.

iv

Acknowledgements

First and foremost I would like to acknowledge the tireless and prompt help of my super-

visor, Lloyd Smith. Lloyd has always allowed me complete freedom to define and explore

my own directions in research. While this proved difficult and somewhat bewildering to

begin with, I have come to appreciate the wisdom of his way—it encouraged me to think

for myself, something that is unfortunately all to easy to avoid as an undergraduate.

Lloyd and the Department of Computer Science have provided me with much appreciated

financial support during my degree. They have kindly provided teaching assistantship

positions and travel funds to attend conferences.

I thank Geoff Holmes, Ian Witten and Bill Teahan for providing valuable feedback and

reading parts of this thesis. Stuart Inglis (super-combo!), Len Trigg, and Eibe Frank

deserve thanks for their technical assistance and helpful comments. Len convinced me

(rather emphatically) not to use MS Word for writing a thesis. Thanks go to Richard

Littin and David McWha for kindly providing the University of Waikato thesis style and

assistance with LATEX.

Special thanks must also go to my family and my partner Bernadette. They have provided

unconditional support and encouragement through both the highs and lows of my time in

graduate school.

v

vi

Contents

Abstract iii

Acknowledgements v

List of Figures xv

List of Tables xx

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis statement . 4

1.3 Thesis Overview . 5

2 Supervised Machine Learning: Concepts and Definitions 7

2.1 The Classification Task . 7

2.2 Data Representation . 8

2.3 Learning Algorithms . 9

2.3.1 Naive Bayes . 10

2.3.2 C4.5 Decision Tree Generator 12

2.3.3 IB1-Instance Based Learner . 14

2.4 Performance Evaluation . 16

2.5 Attribute Discretization . 18

2.5.1 Methods of Discretization . 19

3 Feature Selection for Machine Learning 25

3.1 Feature Selection in Statistics and Pattern Recognition 26

3.2 Characteristics of Feature Selection Algorithms 27

3.3 Heuristic Search . 28

vii

3.4 Feature Filters . 32

3.4.1 Consistency Driven Filters . 32

3.4.2 Feature Selection Through Discretization 36

3.4.3 Using One Learning Algorithm as a Filter for Another 36

3.4.4 An Information Theoretic Feature Filter 38

3.4.5 An Instance Based Approach to Feature Selection 39

3.5 Feature Wrappers . 40

3.5.1 Wrappers for Decision Tree Learners 41

3.5.2 Wrappers for Instance Based Learning 42

3.5.3 Wrappers for Bayes Classifiers 45

3.5.4 Methods of Improving the Wrapper 46

3.6 Feature Weighting Algorithms . 47

3.7 Chapter Summary . 49

4 Correlation-based Feature Selection 51

4.1 Rationale . 51

4.2 Correlating Nominal Features . 55

4.2.1 Symmetrical Uncertainty . 56

4.2.2 Relief . 57

4.2.3 MDL . 59

4.3 Bias in Correlation Measures between Nominal Features 61

4.3.1 Experimental Measurement of Bias 62

4.3.2 Varying the Level of Attributes 64

4.3.3 Varying the Sample Size . 66

4.3.4 Discussion . 67

4.4 A Correlation-based Feature Selector . 69

4.5 Chapter Summary . 74

5 Datasets Used in Experiments 75

5.1 Domains . 75

5.2 Experimental Methodology . 80

viii

6 Evaluating CFS with 3 ML Algorithms 85

6.1 Artificial Domains . 85

6.1.1 Irrelevant Attributes . 86

6.1.2 Redundant Attributes . 95

6.1.3 Monk’s problems . 104

6.1.4 Discussion . 106

6.2 Natural Domains . 107

6.3 Chapter Summary . 119

7 Comparing CFS to the Wrapper 121

7.1 Wrapper Feature Selection . 121

7.2 Comparison . 123

7.3 Chapter Summary . 128

8 Extending CFS: Higher Order Dependencies 131

8.1 Related Work . 131

8.2 Joining Features . 133

8.3 Incorporating RELIEF into CFS . 135

8.4 Evaluation . 136

8.5 Discussion . 143

9 Conclusions 145

9.1 Summary . 145

9.2 Conclusions . 147

9.3 Future Work . 147

Appendices

A Graphs for Chapter 4 151

B Curves for Concept A3 with Added Redundant Attributes 153

C Results for CFS-UC, CFS-MDL, and CFS-Relief on 12 Natural Domains 157

D 5 � 2cv Paired t test Results 159

ix

E CFS Merit Versus Accuracy 163

F CFS Applied to 37 UCI Domains 167

Bibliography 171

x

List of Figures

2.1 A decision tree for the “Golf” dataset. Branches correspond to the values

of attributes; leaves indicate classifications. 13

3.1 Filter and wrapper feature selectors. 29

3.2 Feature subset space for the “golf” dataset. 30

4.1 The effects on the correlation between an outside variable and a compos-

ite variable
���������

of the number of components
�
	��

, the inter-correlations

among the components
� �
�����

, and the correlations between the compo-

nents and the outside variable
� �
�����

. 54

4.2 The effects of varying the attribute and class level on symmetrical uncer-

tainty (a & b), symmetrical relief (c & d), and normalized symmetrical

MDL (e & f) when attributes are informative (graphs on the left) and non-

informative (graphs on the right). Curves are shown for � , � , and ��� classes. 65

4.3 The effect of varying the training set size on symmetrical uncertainty (a

& b), symmetrical relief (c & d), and normalized symmetrical MDL (e &

f) when attributes are informative and non-informative. The number of

classes is � ; curves are shown for � , �
� , and ��� valued attributes. 68

4.4 The components of CFS. Training and testing data is reduced to contain

only the features selected by CFS. The dimensionally reduced data can

then be passed to a machine learning algorithm for induction and prediction. 71

5.1 Effect of CFS feature selection on accuracy of naive Bayes classification.

Dots show results that are statistically significant 82

5.2 The learning curve for IB1 on the dataset A � with ��� added irrelevant

attributes. 83

xi

6.1 Number of irrelevant attributes selected on concept A1 (with added irrel-

evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. 87

6.2 Number of relevant attributes selected on concept A1 (with added irrel-

evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. 88

6.3 Learning curves for IB1, CFS-UC-IB1, CFS-MDL-IB1, and CFS-Relief-

IB1 on concept A1 (with added irrelevant features) 90

6.4 Number of irrelevant attributes selected on concept A2 (with added irrel-

evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. Note: CFS-UC and CFS-Relief produce the same result. 90

6.5 Number of relevant attributes selected on concept A � (with added irrel-

evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. 93

6.6 Learning curves for IB1, CFS-UC-IB1, CFS-MDL-IB1, and CFS-Relief-

IB1 on concept A � (with added irrelevant features). 93

6.7 Number of irrelevant attributes selected on concept A
�

(with added irrel-

evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. 94

6.8 Number of relevant attributes selected on concept A
�

(with added irrel-

evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. 94

6.9 Number of irrelevant multi-valued attributes selected on concept A
�

(with

added irrelevant features) by CFS-UC, CFS-MDL, and CFS-Relief as a

function of training set size. 95

6.10 Learning curves for IB1, CFS-UC-IB1, CFS-MDL-IB1, and CFS-Relief-

IB1 on concept A
�

(with added irrelevant features). 96

6.11 Number of redundant attributes selected on concept A � (with added re-

dundant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function

of training set size. 98

xii

6.12 Number of relevant attributes selected on concept A1 (with added redun-

dant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. 99

6.13 Number of multi-valued attributes selected on concept A1 (with added

redundant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function

of training set size. 99

6.14 Number of noisy attributes selected on concept A � (with added redun-

dant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. 100

6.15 Learning curves for nbayes (naive-Bayes), CFS-UC-nbayes, CFS-MDL-

nbayes, and CFS-Relief-nbayes on concept A � (with added redundant

features). 101

6.16 Number of redundant attributes selected on concept A � (with added re-

dundant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function

of training set size. 102

6.17 Number of relevant attributes selected on concept A � (with added redun-

dant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of

training set size. 102

6.18 Learning curves for nbayes (naive Bayes), CFS-UC-nbayes, CFS-MDL-

nbayes, and CFS-Relief-nbayes on concept A � (with added redundant

features). 103

6.19 Learning curves for nbayes (naive Bayes), CFS-UC-nbayes, CFS-MDL-

nbayes, and CFS-Relief-nbayes on concept A
�

(with added redundant

features). 104

6.20 Number of natural domains for which CFS improved accuracy (left) and

degraded accuracy (right) for naive Bayes (a), IB1 (b), and C4.5 (c). . . . 108

6.21 Effect of feature selection on the size of the trees induced by C4.5 on the

natural domains. Bars below the zero line indicate feature selection has

reduced tree size. Dots show statistically significant results. 110

6.22 The original number of features in the natural domains (left), and the

average number of features selected by CFS (right). 113

xiii

6.23 Heuristic merit (CFS-UC) vs actual accuracy (naive Bayes) of randomly

selected feature subsets on chess end-game (a), horse colic (b), audiology

(c), and soybean (d). Each point represents a single feature subset. 114

6.24 Absolute difference in accuracy between CFS-UC with merged subsets

and CFS-UC for naive Bayes (left), IB1 (middle), and C4.5 (right). Dots

show statistically significant results. 116

7.1 The wrapper feature selector. 122

7.2 Comparing CFS with the wrapper using naive Bayes: Average accuracy

of naive Bayes using feature subsets selected by CFS minus the average

accuracy of naive Bayes using feature subsets selected by the wrapper.

Dots show statistically significant results. 125

7.3 Number of features selected by the wrapper using naive Bayes (left) and

CFS (right). Dots show the number of features in the original dataset. . . 126

7.4 Comparing CFS with the wrapper using C4.5: Average accuracy of C4.5

using feature subsets selected by CFS minus the average accuracy of C4.5

using feature subsets selected by the wrapper. Dots show statistically

signifcant results . 128

7.5 Average change in the size of the trees induced by C4.5 when features

are selected by the wrapper (left) and CFS (right). Dots show statistically

significant results. 129

A.1 The effect of varying the training set size on symmetrical uncertainty (a

& b), symmetrical relief (c & d), and normalized symmetrical MDL (e &

f) when attributes are informative and non-informative. The number of

classes is � ; curves are shown for � , ��� , and � � valued attributes. 152

B.1 Number of redundant attributes selected on concept A
�

by CFS-UC, CFS-

MDL, and CFS-Relief as a function of training set size. 153

B.2 Number of relevant attributes selected on concept A
�

by CFS-UC, CFS-

MDL, and CFS-Relief as a function of training set size. 154

B.3 Number of multi-valued attributes selected on concept A
�

by CFS-UC,

CFS-MDL, and CFS-Relief as a function of training set size. 154

xiv

B.4 Number of noisy attributes selected on concept A
�

by CFS-UC, CFS-

MDL, and CFS-Relief as a function of training set size. 155

E.1 Mushroom (mu). 163

E.2 Vote (vo). 163

E.3 Vote1 (v1). 163

E.4 Australian credit screening (cr). 164

E.5 Lymphography (ly). 164

E.6 Primary tumour (pt). 164

E.7 Breast cancer (bc). 164

E.8 Dna-promoter (dna). 165

E.9 Audiology (au). 165

E.10 Soybean-large (sb). 165

E.11 Horse colic (hc). 165

E.12 Chess end-game (kr). 166

F.1 Average number of features selected by CFS on
� � UCI domains. Dots

show the original number of features. 169

F.2 Effect of feature selection on the size of the trees induced by C4.5 on
� �

UCI domains. Bars below the zero line indicate that feature selection has

reduced tree size. 169

xv

xvi

List of Tables

2.1 The “Golf” dataset. 9

2.2 Contingency tables compiled from the “Golf” data. 11

2.3 Computed distance values for the “Golf” data. 15

3.1 Greedy hill climbing search algorithm 30

3.2 Best first search algorithm . 31

3.3 Simple genetic search strategy. 32

4.1 A two-valued non informative attribute
�

(a) and a three valued attribute
���

derived by randomly partitioning
�

into a larger number of values

(b). Attribute
� �

appears more predictive of the class than attribute
�

according to the information gain measure. 62

4.2 Feature correlations calculated from the “Golf” dataset. Relief is used to

calculate correlations. 72

4.3 A forward selection search using the correlations in Table 4.2. The search

starts with the empty set of features [] which has merit ��� � . Subsets in

bold show where a local change to the previous best subset has resulted

in improvement with respect to the evaluation function. 73

5.1 Domain characteristics. Datasets above the horizontal line are natural do-

mains; those below are artificial. The % Missing column shows what

percentage of the data set’s entries (number of features � number of in-

stances) have missing values. Average # Feature Vals and Max/Min #

Feature Vals are calculated from the nominal features present in the data

sets. 76

5.2 Training and test set sizes of the natural domains and the Monk’s problems. 81

6.1 Feature-class correlation assigned to features
�

, � , and � by symmetrical

uncertainty, MDL, and relief on concept A � 89

xvii

6.2 Feature-class correlations assigned by the three measures to all features in

the dataset for A � containing redundant features. The first three columns

under each measure lists the attribute (
�

� � � and � are the original fea-

tures), number of values the attribute has, and the level of redundancy. . . 98

6.3 Average number of features selected by CFS-UC, CFS-MDL, and CFS-

Relief on the Monk’s problems. 105

6.4 Comparison of naive Bayes with and without feature selection on the

Monk’s problems. 105

6.5 Comparison of IB1 with and without feature selection on the Monk’s

problems. 105

6.6 Comparison of C4.5 with and without feature selection on the Monk’s

problems. 106

6.7 Naive Bayes, IB1, and C4.5 with and without feature selection on 12

natural domains. 110

6.8 Comparison of three learning algorithms with and without feature selec-

tion using merged subsets. 115

6.9 Top eight feature-class correlations assigned by CFS-UC and CFS-MDL

on the chess end-game dataset. 116

7.1 Comparison between naive Bayes without feature selection and naive

Bayes with feature selection by the wrapper and CFS. 124

7.2 Time taken (CPU units) by the wrapper and CFS for a single trial on each

dataset. 125

7.3 Comparison between C4.5 without feature selection and C4.5 with feature

selection by the wrapper and CFS. 127

8.1 Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared with

standard CFS-UC on artificial domains when IB1 is used as the induction

algorithm. Figures in braces show the average number of features selected. 138

xviii

8.2 An example of the effect of a redundant attribute on RELIEF’s distance

calculation for domain A � . Table (a) shows instances in domain A � and

Table (b) shows instances in domain A � with an added redundant at-

tribute. The column marked “Dist. from � ” shows how far a particular

instance is from instance # � . 140

8.3 Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared to

standard CFS-UC on artificial doamins when C4.5 is used as the induction

algorithm. 140

8.4 Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared to

standard CFS-UC on artificial doamins when naive Bayes is used as the

induction algorithm. 141

8.5 Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared to

standard CFS-UC on natural domains when IB1 is used as the induction

algorithm. 142

8.6 Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared to

standard CFS-UC on natural domains when C4.5 is used as the induction

algorithm. 142

8.7 Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared with

standard CFS-UC on natural doamins when naive Bayes is used as the

induction algorithm. 143

C.1 Accuracy of naive Bayes with feature selection by CFS-UC compared

with feature selection by CFS-MDL and CFS-Relief. 157

C.2 Accuracy of IB1 with feature selection by CFS-UC compared with feature

selection by CFS-MDL and CFS-Relief. 158

C.3 Accuracy of C4.5 with feature selection by CFS-UC compared with fea-

ture selection by CFS-MDL and CFS-Relief. 158

D.1 Naive Bayes, IB1, and C4.5 with and without feature selection on 12

natural domains. A 5 � 2cv test for significance has been applied. 160

xix

D.2 Comparison between naive Bayes without feature selection and naive

Bayes with feature selection by the wrapper and CFS. A 5 � 2cv test for

significance has been applied. 161

D.3 Comparison between C4.5 without feature selection and C4.5 with feature

selection by the wrapper and CFS. A 5 � 2cv test for significance has been

applied. 161

F.1 Comparison of three learning algorithms with and without feature selec-

tion using CFS-UC. 168

xx

Chapter 1

Introduction

We live in the information-age—accumulating data is easy and storing it inexpensive. In

1991 it was alleged that the amount of stored information doubles every twenty months

[PSF91]. Unfortunately, as the amount of machine readable information increases, the

ability to understand and make use of it does not keep pace with its growth. Machine

learning provides tools by which large quantities of data can be automatically analyzed.

Fundamental to machine learning is feature selection. Feature selection, by identifying

the most salient features for learning, focuses a learning algorithm on those aspects of

the data most useful for analysis and future prediction. The hypothesis explored in this

thesis is that feature selection for supervised classification tasks can be accomplished

on the basis of correlation between features, and that such a feature selection process

can be beneficial to a variety of common machine learning algorithms. A technique for

correlation-based feature selection, based on ideas from test theory, is developed and

evaluated using common machine learning algorithms on a variety of natural and artificial

problems. The feature selector is simple and fast to execute. It eliminates irrelevant and

redundant data and, in many cases, improves the performance of learning algorithms. The

technique also produces results comparable with a state of the art feature selector from

the literature, but requires much less computation.

1.1 Motivation

Machine learning is the study of algorithms that automatically improve their performance

with experience. At the heart of performance is prediction. An algorithm that—when

1

presented with data that exemplifies a task—improves its ability to predict key elements

of the task can be said to have learned. Machine learning algorithms can be broadly

characterized by the language used to represent learned knowledge. Research has shown

that no single learning approach is clearly superior in all cases, and in fact, different

learning algorithms often produce similar results [LS95]. One factor that can have an

enormous impact on the success of a learning algorithm is the nature of the data used

to characterize the task to be learned. If the data fails to exhibit the statistical regularity

that machine learning algorithms exploit, then learning will fail. It is possible that new

data may be constructed from the old in such a way as to exhibit statistical regularity and

facilitate learning, but the complexity of this task is such that a fully automatic method is

intractable [Tho92].

If, however, the data is suitable for machine learning, then the task of discovering regu-

larities can be made easier and less time consuming by removing features of the data that

are irrelevant or redundant with respect to the task to be learned. This process is called

feature selection. Unlike the process of constructing new input data, feature selection is

well defined and has the potential to be a fully automatic, computationally tractable pro-

cess. The benefits of feature selection for learning can include a reduction in the amount

of data needed to achieve learning, improved predictive accuracy, learned knowledge that

is more compact and easily understood, and reduced execution time. The last two factors

are of particular importance in the area of commercial and industrial data mining. Data

mining is a term coined to describe the process of sifting through large databases for inter-

esting patterns and relationships. With the declining cost of disk storage, the size of many

corporate and industrial databases have grown to the point where analysis by anything

but parallelized machine learning algorithms running on special parallel hardware is in-

feasible [JL96]. Two approaches that enable standard machine learning algorithms to be

applied to large databases are feature selection and sampling. Both reduce the size of the

database—feature selection by identifying the most salient features in the data; sampling

by identifying representative examples [JL96]. This thesis focuses on feature selection—a

process that can benefit learning algorithms regardless of the amount of data available to

learn from.

2

Existing feature selection methods for machine learning typically fall into two broad

categories—those which evaluate the worth of features using the learning algorithm that

is to ultimately be applied to the data, and those which evaluate the worth of features by

using heuristics based on general characteristics of the data. The former are referred to

as wrappers and the latter filters [Koh95b, KJ96]. Within both categories, algorithms can

be further differentiated by the exact nature of their evaluation function, and by how the

space of feature subsets is explored.

Wrappers often give better results (in terms of the final predictive accuracy of a learning

algorithm) than filters because feature selection is optimized for the particular learning

algorithm used. However, since a learning algorithm is employed to evaluate each and

every set of features considered, wrappers are prohibitively expensive to run, and can be

intractable for large databases containing many features. Furthermore, since the feature

selection process is tightly coupled with a learning algorithm, wrappers are less general

than filters and must be re-run when switching from one learning algorithm to another.

In the author’s opinion, the advantages of filter approaches to feature selection outweigh

their disadvantages. In general, filters execute many times faster than wrappers, and there-

fore stand a much better chance of scaling to databases with a large number of features

than wrappers do. Filters do not require re-execution for different learning algorithms.

Filters can provide the same benefits for learning as wrappers do. If improved accuracy

for a particular learning algorithm is required, a filter can provide an intelligent starting

feature subset for a wrapper—a process that is likely to result in a shorter, and hence

faster, search for the wrapper. In a related scenario, a wrapper might be applied to search

the filtered feature space—that is, the reduced feature space provided by a filter. Both

methods help scale the wrapper to larger datasets. For these reasons, a filter approach to

feature selection for machine learning is explored in this thesis.

Filter algorithms previously described in the machine learning literature have exhibited a

number of drawbacks. Some algorithms do not handle noise in data, and others require

that the level of noise be roughly specified by the user a-priori. In some cases, a subset

of features is not selected explicitly; instead, features are ranked with the final choice left

to the user. In other cases, the user must specify how many features are required, or must

3

manually set a threshold by which feature selection terminates. Some algorithms require

data to be transformed in a way that actually increases the initial number of features. This

last case can result in a dramatic increase in the size of the search space.

1.2 Thesis statement

This thesis claims that feature selection for supervised machine learning tasks can be

accomplished on the basis of correlation between features. In particular, this thesis inves-

tigates the following hypothesis:

A good feature subset is one that contains features highly correlated with

(predictive of) the class, yet uncorrelated with (not predictive of) each other.

Evaluation of the above hypothesis is accomplished by creating a feature selection algo-

rithm that evaluates the worth of feature sets. An implementation (Correlation based

Feature Selection, or CFS) is described in Chapter
�
. CFS measures correlation be-

tween nominal features, so numeric features are first discretized. However, the general

concept of correlation-based feature selection does not depend on any particular data

transformation—all that must be supplied is a means of measuring the correlation be-

tween any two variables. So, in principle, the technique may be applied to a variety of

supervised classification problems, including those in which the class (the variable to be

predicted) is numeric.

CFS is a fully automatic algorithm—it does not require the user to specify any thresholds

or the number of features to be selected, although both are simple to incorporate if desired.

CFS operates on the original (albeit discretized) feature space, meaning that any knowl-

edge induced by a learning algorithm, using features selected by CFS, can be interpreted

in terms of the original features, not in terms of a transformed space. Most importantly,

CFS is a filter, and, as such, does not incur the high computational cost associated with

repeatedly invoking a learning algorithm.

CFS assumes that features are conditionally independent given the class. Experiments in

4

Chapter
�

show that CFS can identify relevant features when moderate feature dependen-

cies exist. However, when features depend strongly on others given the class, CFS can

fail to select all the relevant features. Chapter � explores methods for detecting feature

dependencies given the class.

1.3 Thesis Overview

Chapter � defines terms and provides an overview of concepts from supervised machine

learning. It also reviews some common machine learning algorithms and techniques

for discretization—the process of converting continuous attributes to nominal attributes.

Many feature selectors (including the implementation of CFS presented here) and ma-

chine learning algorithms are best suited to, or cannot handle problems in which attributes

are nominal.

Chapter
�

surveys feature selection techniques for machine learning. Two broad cat-

egories of algorithms are discussed—those that involve a machine learning scheme to

estimate the worth of features, and those that do not. Advantages and disadvantages of

both approaches are discussed.

Chapter
�

begins by presenting the rationale for correlation based feature selection, with

ideas borrowed from test theory. Three methods of measuring association between nom-

inal variables are reviewed and empirically examined in Section
� � �

. The behaviour of

these measures with respect to attributes with more values and the number of available

training examples is discussed; emphasis is given to their suitability for use in a correla-

tion based feature selector. Section
� � �

describes CFS, an implementation of a correlation

based feature selector based on the rationale of Section
� � � and incorporating the cor-

relation measures discussed in Section
� � � . Operational requirements and assumptions

of the algorithm are discussed, along with its computational expense and some simple

optimizations that can be employed to decrease execution time.

Chapter � describes the datasets used in the experiments discussed in Chapters
�
, � , and

� . It also outlines the experimental method.

5

The first half of Chapter
�

empirically tests three variations of CFS (each employing one

of the correlation measures examined in Chapter
�
) on artificial problems. It is shown

that CFS is effective at eliminating irrelevant and redundant features, and can identify

relevant features as long as they do not strongly depend on other features. One of the

three correlation measures is shown to be inferior to the other two when used with CFS.

The second half of Chapter
�

evaluates CFS with machine learning algorithms applied

to natural learning domains. Results are presented and analyzed in detail for one of the

three variations of CFS. It is shown that, in many cases, CFS improves the performance

and reduces the size of induced knowledge structures for machine learning algorithms. A

shortcoming in CFS is revealed by results on several datasets. In some cases CFS will fail

to select locally predictive features, especially if they are overshadowed by strong, glob-

ally predictive ones. A method of merging feature subsets is shown to partially mitigate

the problem.

Chapter � compares CFS with a well known implementation of the wrapper approach to

feature selection. Results show that, in many cases, CFS gives results comparable to the

wrapper, and, in general, outperforms the wrapper on small datasets. Cases where CFS

is inferior to the wrapper can be attributed to the shortcoming of the algorithm revealed

in Chapter
�
, and to the presence of strong class-conditional feature dependency. CFS is

shown to execute significantly faster than the wrapper.

Chapter � presents two methods of extending CFS to detect class-conditional feature de-

pendency. The first considers pairwise combinations of features; the second incorporates

a feature weighting algorithm that is sensitive to higher order (including higher than pair-

wise) feature dependency. The two methods are compared and results show that both

improve results on some datasets. The second method is shown to be less reliable than

the first.

Chapter
�

presents conclusions and suggests future work.

6

Chapter 2

Supervised Machine Learning:

Concepts and Definitions

The field of artificial intelligence embraces two approaches to artificial learning [Hut93].

The first is motivated by the study of mental processes and says that artificial learning is

the study of algorithms embodied in the human mind. The aim is to discover how these

algorithms can be translated into formal languages and computer programs. The second

approach is motivated from a practical computing standpoint and has less grandiose aims.

It involves developing programs that learn from past data, and, as such, is a branch of data

processing. The sub-field of machine learning has come to epitomize the second approach

to artificial learning and has grown rapidly since its birth in the mid-seventies. Machine

learning is concerned (on the whole) with concept learning and classification learning.

The latter is simply a generalization of the former [Tho92].

2.1 The Classification Task

Learning how to classify objects to one of a pre-specified set of categories or classes is a

characteristic of intelligence that has been of keen interest to researchers in psychology

and computer science. Identifying the common “core” characteristics of a set of objects

that are representative of their class is of enormous use in focusing the attention of a per-

son or computer program. For example, to determine whether an animal is a zebra, people

know to look for stripes rather than examine its tail or ears. Thus, stripes figure strongly

in our concept (generalization) of zebras. Of course stripes alone are not sufficient to form

7

a class description for zebras as tigers have them also, but they are certainly one of the

important characteristics. The ability to perform classification and to be able to learn to

classify gives people and computer programs the power to make decisions. The efficacy

of these decisions is affected by performance on the classification task.

In machine learning, the classification task described above is commonly referred to as

supervised learning. In supervised learning there is a specified set of classes, and example

objects are labeled with the appropriate class (using the example above, the program is

told what is a zebra and what is not). The goal is to generalize (form class descriptions)

from the training objects that will enable novel objects to be identified as belonging to one

of the classes. In contrast to supervised learning is unsupervised learning. In this case

the program is not told which objects are zebras. Often the goal in unsupervised learning

is to decide which objects should be grouped together—in other words, the learner forms

the classes itself. Of course, the success of classification learning is heavily dependent on

the quality of the data provided for training—a learner has only the input to learn from.

If the data is inadequate or irrelevant then the concept descriptions will reflect this and

misclassification will result when they are applied to new data.

2.2 Data Representation

In a typical supervised machine learning task, data is represented as a table of examples

or instances. Each instance is described by a fixed number of measurements, or features,

along with a label that denotes its class. Features (sometimes called attributes) are typ-

ically one of two types: nominal (values are members of an unordered set), or numeric

(values are real numbers). Table 2.1 [Qui86] shows fourteen instances of suitable and

unsuitable days for which to play a game of golf. Each instance is a day described in

terms of the (nominal) attributes Outlook, Humidity, Temperature and Wind, along with

the class label which indicates whether the day is suitable for playing golf or not.

A typical application of a machine learning algorithms requires two sets of examples:

training examples and test examples. The set of training examples are used to produce the

8

Instance # Features Class
Outlook Temperature Humidity Wind

�
sunny hot high false Don’t play

�
sunny hot high true Don’t Play

�
overcast hot high false Play

�
rain mild high false Play

�
rain cool normal false Play

�
rain cool normal true Don’t Play

�
overcast cool normal true Play

�
sunny mild high false Don’t Play

�
sunny cool normal false Play

�
	
rain mild normal false Play

���
sunny mild normal true Play

���
overcast mild high true Play

�
�
overcast hot normal false Play

� �
rain mild high true Don’t Play

Table 2.1: The “Golf” dataset.

learned concept descriptions and a separate set of test examples are needed to evaluate the

accuracy. When testing, the class labels are not presented to the algorithm. The algorithm

takes, as input, a test example and produces, as output, a class label (the predicted class

for that example).

2.3 Learning Algorithms

A learning algorithm, or an induction algorithm, forms concept descriptions from ex-

ample data. Concept descriptions are often referred to as the knowledge or model that

the learning algorithm has induced from the data. Knowledge may be represented differ-

ently from one algorithm to another. For example, C4.5 [Qui93] represents knowledge

as a decision tree; naive Bayes [Mit97] represents knowledge in the form of probabilistic

summaries.

Throughout this thesis, three machine learning algorithms are used as a basis for compar-

ing the effects of feature selection with no feature selection. These are naive Bayes, C4.5,

and IB1—each represents a different approach to learning. These algorithms are well

known in the machine learning community and have proved popular in practice. C4.5 is

the most sophisticated algorithm of the three and induces knowledge that is (arguably)

9

easier to interpret than the other two. IB1 and naive Bayes have proved popular because

they are simple to implement and have been shown to perform competitively with more

complex algorithms such as C4.5 [CN89, CS93, LS94a] . The following three sections

briefly review these algorithms and indicate under what conditions feature selection can

be useful.

2.3.1 Naive Bayes

The naive Bayes algorithm employs a simplified version of Bayes formula to decide which

class a novel instance belongs to. The posterior probability of each class is calculated,

given the feature values present in the instance; the instance is assigned the class with

the highest probability. Equation 2.1 shows the naive Bayes formula, which makes the

assumption that feature values are statistically independent within each class.

� � � ��� ���
�

���
� � � � �

�	� ��
 � �
�
� �
� ���� � � ��� � � � � �

� �����
�

�	�
� � � � �

�	� � (2.1)

The left side of Equation 2.1 is the posterior probability of class �
�

given the feature

values, � ���
�

���
� � � � �

�����
, observed in the instance to be classified. The denominator

of the right side of the equation is often omitted because it is a constant which is easily

computed if one requires that the posterior probabilities of the classes sum to one. Learn-

ing with the naive Bayes classifier is straightforward and involves simply estimating the

probabilities in the right side of Equation 2.1 from the training instances. The result is

a probabilistic summary for each of the possible classes. If there are numeric features it

is common practice to assume a normal distribution—again the necessary parameters are

estimated from the training data.

Tables 2.2(a) through 2.2(d) are contingency tables showing frequency distributions for

the relationships between the features and the class in the golf dataset (Table 2.1). From

these tables is easy to calculate the probabilities necessary to apply Equation 2.1.

Imagine we woke one morning and wished to determine whether the day is suitable for a

game of golf. Noting that the outlook is sunny, the temperature is hot, the humidity is nor-

10

Play Don’t Play
Sunny

� � �

Overcast
� 	 �

Rain
� � �

� � � �

(a) Outlook

Play Don’t Play
Hot

� � �

Mild
� � �

Cool
� � �

� � � �

(b) Temperature

Play Don’t Play
High

� � �

Norm
� � �

� � � �

(c) Humidity

Play Don’t Play
True

� � �

False
� � �

� � � �

(d) Wind

Table 2.2: Contingency tables compiled from the “Golf” data.

mal and there is no wind (wind=false), we apply Equation 2.1 and calculate the posterior

probability for each class, using probabilities derived from Tables 2.2(a) through 2.2(d):

� �
Don’t Play

�
sunny, hot, normal, false

�
 � � Don’t Play
�

� � �
sunny

�
Don’t Play

�
�

� �
hot

�
Don’t Play

�
� � �

normal
�
Don’t Play

�
�

� �
false

�
Don’t Play

�

 ��� � � � � ��� � ��� � � ��� � � ��� �

 ��� ��� � � �

� �
Play

�
sunny, hot, normal, false

�
 � �
Play

�
� � �

sunny
�
Play

�
�

� �
hot

�
Play

�
� � �

normal
�
Play

�
�

� �
false

�
Play

�

 � � � � � ��� � � ��� � � � � � � � � �

 ��� ��� � � �

On this day we would play golf.

Due to the assumption that feature values are independent within the class, the naive

Bayesian classifier’s predictive performance can be adversely affected by the presence

11

of redundant attributes in the training data. For example, if there is a feature
�

that is

perfectly correlated with a second feature � , then treating them as independent means

that
�

(or �) has twice as much affect on Equation 2.1 as it should have. Langley

and Sage [LS94a] have found that naive Bayes performance improves when redundant

features are removed. However, Domingos and Pazzani [DP96] have found that, while

strong correlations between features will degrade performance, naive Bayes can still per-

form very well when moderate dependencies exist in the data. The explanation for this is

that moderate dependencies will result in inaccurate probability estimation, but the prob-

abilities are not so far “wrong” as to result in increased mis-classification.

The version of naive Bayes used for the experiments described in this thesis is that pro-

vided in the ����� ++ utilities [KJL � 94]. In this version, the probabilities for nominal

features are estimated using frequency counts calculated from the training data. The prob-

abilities for numeric features are assumed to come from a normal distribution; again, the

necessary parameters are estimated from training data. Any zero frequencies are replaced

by ��� ���	� as the probability, where � is the number of training examples.

2.3.2 C4.5 Decision Tree Generator

C4.5 [Qui93], and its predecessor, ID3 [Qui86], are algorithms that summarise training

data in the form of a decision tree. Along with systems that induce logical rules, decision

tree algorithms have proved popular in practice. This is due in part to their robustness and

execution speed, and to the fact that explicit concept descriptions are produced, which

users can interpret. Figure 2.1 shows a decision tree that summarises the golf data. Nodes

in the tree correspond to features, and branches to their associated values. The leaves

of the tree correspond to classes. To classify a new instance, one simply examines the

features tested at the nodes of the tree and follows the branches corresponding to their

observed values in the instance. Upon reaching a leaf, the process terminates, and the

class at the leaf is assigned to the instance.

Using the decision tree (Figure 2.1) to classify the example day (sunny, hot, normal,

false) initially involves examining the feature at the root of the tree (Outlook). The value

12

Outlook

sunny rain

PlayHumidity Wind

overcast

Don’t Play Play Don’t Play Play

high normal true false

Figure 2.1: A decision tree for the “Golf” dataset. Branches correspond to the values of
attributes; leaves indicate classifications.

for Outlook in the new instance is “sunny”, so the left branch is followed. Next the value

for Humidity is evaluated—in this case the new instance has the value “normal”, so the

right branch is followed. This brings us to a leaf node and the instance is assigned the

class “Play”.

To build a decision tree from training data, C4.5 and ID3 employ a greedy approach that

uses an information theoretic measure as its guide. Choosing an attribute for the root

of the tree divides the training instances into subsets corresponding to the values of the

attribute. If the entropy of the class labels in these subsets is less than the entropy of the

class labels in the full training set, then information has been gained (see Section 4.2.1 in

Chapter
�
) through splitting on the attribute. C4.5 uses the gain ratio criterion [Qui86] to

select the attribute attribute to be at the root of the tree. The gain ratio criterion selects,

from among those attributes with an average-or-better gain, the attribute that maximsises

the ratio of its gain divided by its entropy. The algorithm is applied recursively to form

sub-trees, terminating when a given subset contains instances of only one class.

The main difference between C4.5 and ID3 is that C4.5 prunes its decision trees.

Pruning simplifies decision trees and reduces the probability of overfitting the training

data [Qui87]. C4.5 prunes by using the upper bound of a confidence interval on the re-

substitution error. A node is replaced by its best leaf when the estimated error of the leaf

is within one standard deviation of the estimated error of the node.

13

C4.5 has proven to be a benchmark against which the performance of machine learning

algorithms are measured. As an algorithm it is robust, accurate, fast, and, as an added

bonus, it produces a comprehensible structure summarising the knowledge it induces.

C4.5 deals remarkably well with irrelevant and redundant information, which is why fea-

ture selection has generally resulted in little if any improvement in its accuracy [JKP94].

However, removing irrelevant and redundant information can reduce the size of the trees

induced by C4.5 [JKP94, KJ96]. Smaller trees are preferred because they are easier to

understand.

The version of C4.5 used in experiments throughout this thesis is the original algorithm

implemented by Quinlan [Qui93].

2.3.3 IB1-Instance Based Learner

Instance based learners represent knowledge in the form of specific cases or experiences.

They rely on efficient matching methods to retrieve stored cases so they can be applied

in novel situations. Like the Naive Bayes algorithm, instance based learners are usually

computationally simple, and variations are often considered as models of human learn-

ing [CLW97]. Instance based learners are sometimes called lazy learners because learn-

ing is delayed until classification time, with most of the power residing in the matching

scheme.

IB1 [AKA91] is an implementation of the simplest similarity based learner, known as

nearest neighbour. IB1 simply finds the stored instance closest (according to a Euclidean

distance metric) to the instance to be classified. The new instance is assigned to the

retrieved instance’s class. Equation 2.2 shows the distance metric employed by IB1.

� ���
��� �

����
�
�
� � �
	

��� �
��� � � (2.2)

Equation 2.2 gives the distance between two instances
�

and � ;
� � and � � refer to the � th

feature value of instance
�

and � , respectively. For numeric valued attributes 	 ��� �
��� � �

14

��� � � � � �
�
; for symbolic valued attributes 	 ���

��� �
 � , if the feature values
� � and � � are

the same, and � if they differ.

Table 2.3 shows the distance from the example day (sunny, hot, normal, false) to each of

the instances in the golf data set by Equation 2.2. In this case there are three instances

that are equally close to the example day, so an arbitrary choice would be made between

them. An extension to the nearest neighbour algorithm, called
	

nearest neighbours, uses

the most prevalent class from the
	

closest cases to the novel instance—where
	

is a

parameter set by the user.

Instance # Distance Instance # Distance
� � � �

� � � �

� � � 	 �

� � � � �

� � �
� �

� � � � �

� � � � �

Table 2.3: Computed distance values for the “Golf” data.

The simple nearest neighbour algorithm is known to be adversely affected by the presence

of irrelevant features in its training data. While nearest neighbour can learn in the presence

of irrelevant information, it requires more training data to do so and, in fact, the amount

of training data needed (sample complexity) to reach or maintain a given accuracy level

has been shown to grow exponentially with the number of irrelevant attributes [AKA91,

LS94c, LS94b]. Therefore, it is possible to improve the predictive performance of nearest

neighbour, when training data is limited, by removing irrelevant attributes.

Furthermore, nearest neighbour is slow to execute due to the fact that each example to be

classified must be compared to each of the stored training cases in turn. Feature selection

can reduce the number of training cases because fewer features equates with fewer distinct

instances (especially when features are nominal). Reducing the number of training cases

needed (while maintaining an acceptable error rate) can dramatically increase the speed

of the algorithm.

The version of IB1 used in experiments throughout this thesis is the version implemented

by David Aha [AKA91]. Equation 2.2 is used to compute similarity between instances.

15

Attribute values are linearly normalized to ensure each attribute has the same affect on

the similarity function.

2.4 Performance Evaluation

Evaluating the performance of learning algorithms is a fundamental aspect of machine

learning. Not only is it important in order to compare competing algorithms, but in many

cases is an integral part of the learning algorithm itself. An estimate of classification ac-

curacy on new instances is the most common performance evaluation criterion, although

others based on information theory have been suggested [KB91, CLW96].

In this thesis, classification accuracy is the primary evaluation criterion for experiments

using feature selection with the machine learning algorithms. Feature selection is consid-

ered successful if the dimensionality of the data is reduced and the accuracy of a learning

algorithm improves or remains the same. In the case of C4.5, the size (number of nodes)

of the induced trees is also important—smaller trees are preferred because they are easier

to interpret. Classification accuracy is defined as the percentage of test examples correctly

classified by the algorithm. The error rate (a measure more commonly used in statistics)

of an algorithm is one minus the accuracy. Measuring accuracy on a test set of examples

is better than using the training set because examples in the test set have not been used

to induce concept descriptions. Using the training set to measure accuracy will typically

provide an optimistically biased estimate, especially if the learning algorithm overfits the

training data.

Strictly speaking, the definition of accuracy given above is the sample accuracy of an

algorithm. Sample accuracy is an estimate of the (unmeasurable) true accuracy of the

algorithm, that is, the probability that the algorithm will correctly classify an instance

drawn from the unknown distribution
�

of examples. When data is limited, it is com-

mon practice to resample the data, that is, partition the data into training and test sets

in different ways. A learning algorithm is trained and tested for each partition and the

accuracies averaged. Doing this provides a more reliable estimate of the true accuracy of

16

an algorithm.

Random subsampling and
	
-fold cross-validation are two common methods of resam-

pling [Gei75, Sch93]. In random subsampling, the data is randomly partitioned into dis-

joint training and test sets multiple times. Accuracies obtained from each partition are

averaged. In
	
-fold cross-validation, the data is randomly split into

	
mutually exclusive

subsets of approximately equal size. A learning algorithm is trained and tested
	

times;

each time it is tested on one of the
	

folds and trained using the remaining
	

� � folds.

The cross-validation estimate of accuracy is the overall number of correct classifications,

divided by the number of examples in the data. The random subsampling method has

the advantage that it can be repeated an indefinite number of times. However, it has the

disadvantage that the test sets are not independently drawn with respect to the underlying

distribution of examples
�

. Because of this, using a t-test for paired differences with

random subsampling can lead to increased chance of Type I error—that is, identifying

a significant difference when one does not actually exist [Die88]. Using a t-test on the

accuracies produced on each fold of
	

fold cross-validation has lower chance of Type I

error but may not give a stable estimate of accuracy. It is common practice to repeat
	

fold cross-validation � times in order to provide a stable estimate. However, this of course

renders the test sets non-independent and increases the chance of Type I error. Unfortu-

nately, there is no satisfactory solution to this problem. Alternative tests suggested by

Dietterich [Die88] have low chance of Type I error but high chance of Type II error—that

is, failing to identify a significant difference when one does actually exist.

Stratification is a process often applied during random subsampling and
	

-fold cross-

validation. Stratification ensures that the class distribution from the whole dataset is pre-

served in the training and test sets. Stratification has been shown to help reduce the

variance of the estimated accuracy—especially for datasets with many classes [Koh95b].

Stratified random subsampling with a paired t-test is used herein to evaluate accuracy.

Appendix D reports results for the major experiments using the 5 � 2cv paired t test rec-

ommended by Dietterich [Die88]. As stated above, this test has decreased chance of type

I error, but increased chance of type II error (see the appendix for details).

17

Plotting learning curves are another way that machine learning algorithms can be com-

pared. A learning curve plots the classification accuracy of a learning algorithm as a

function of the size of the training set—it shows how quickly an algorithm’s accuracy im-

proves as it is given access to more training examples. In situations where training data is

limited, it is preferable to use a learning algorithm that achieves high accuracy with small

training sets.

2.5 Attribute Discretization

Most classification tasks in machine learning involve learning to distinguish among nom-

inal class values1, but may involve features that are ordinal or continuous as well as nom-

inal. While many machine learning algorithms have been developed to deal with mixed

data of this sort, recent research [Tin95, DKS95] shows that common machine learning

algorithms such as instance based learners and naive Bayes benefit from treating all fea-

tures in a uniform fashion. One of the most common methods of accomplishing this is

called discretization. Discretization is the process of transforming continuous valued at-

tributes to nominal. In fact, the decision tree algorithm C4.5 [Qui93] accomplishes this

internally by dividing continuous features into discrete ranges during the construction of

a decision tree. Many of the feature selection algorithms described in the next chapter

require continuous features to be discretized, or give superior results if discretization is

performed at the outset [AD91, HNM95, KS96b, LS96]. Discretization is used as a pre-

processing step for the correlation-based approach to feature selection presented in this

thesis, which requires all features to be of the same type.

This section describes some discretization approaches from the machine learning litera-

ture.

1CART [BFOS84], M
� �

[WW97], and K
�

[CT95] are some machine learning algorithms capable of deal-
ing with continuous class data.

18

2.5.1 Methods of Discretization

Dougherty, Kohavi, and Sahami [DKS95] define
�

axes along which discretization meth-

ods can be categorised:

1. Supervised versus. unsupervised;

2. Global versus. local;

3. Static versus. dynamic.

Supervised methods make use of the class label when discretizing features. The dis-

tinction between global and local methods is based on when discretization is performed.

Global methods discretize features prior to induction, whereas local methods carry out

discretization during the induction process. Local methods may produce different dis-

cretizations2 for particular local regions of the instance space. Some discretization meth-

ods require a parameter,
	
, indicating the maximum number of intervals by which to

divide a feature. Static methods perform one discretization pass on the data for each

feature and determine the value of
	

for each feature independently of the others. On

the other hand, dynamic methods search the space of possible
	

values for all features

simultaneously. This allows inter-dependencies in feature discretization to be captured.

Global methods of discretization are most relevant to the feature selection algorithm pre-

sented in this thesis because feature selection is generally a global process (that is, a single

feature subset is chosen for the entire instance space). Kohavi and Sahami [KS96a] have

compared static discretization with dynamic methods using cross-validation to estimate

the accuracy of different values of
	

. They report no significant improvement in employ-

ing dynamic discretization over static methods.

The next two sections discuss several methods for unsupervised and supervised global

discretization of numeric features in common usage.

Unsupervised Methods The simplest discretization method is called equal interval

2For example, C4.5 may split the same continuous feature differently down different branches of a
decision tree

19

width. This approach divides the range of observed values for a feature into
	

equal

sized bins, where
	

is a parameter provided by the user. Dougherty et al. [DKS95] point

out that this method of discretization is sensitive to outliers that may drastically skew the

range. For example, given the observed feature values

� � � � ��� � � � � � � � � � � � � � �

�
�

�
�

�
�

�
�

�

and setting
	
 �

gives a bin width of
� �

� � � � �
 � , resulting in discrete ranges

� � � ��� �

� � � ��� �

� � �

� � �

� �
�

� �

with a reasonably even distribution of examples across the bins. However, suppose there

was an outlying value of �
� � . This would cause the ranges

� � � ����� �

� � � � � ��� �

� ��� � � ��� �

� � � � �
� ���

to be formed. In this case, all the examples except the example with the value �
��� would

fall into the first bin.

Another simple discretization method, equal frequency intervals, requires a feature’s val-

ues to be sorted, and assigns ��� 	 of the values to each bin. Wong and Chiu [WC87]

describe a variation on equal frequency intervals called maximal marginal entropy that

iteratively adjusts the boundaries to minimise the entropy at each interval.

Because unsupervised methods do not make use of the class in setting interval boundaries,

Dougherty et al. [DKS95] note that classification information can be lost as a result of

placing values that are strongly associated with different classes in the same interval.

The next section discusses methods for supervised discretization which overcome this

problem.

Supervised Methods Holte [Hol93] presents a simple supervised discretization method

20

that is incorporated in his one-level decision tree algorithm (� R). The method first sorts

the values of a feature, and then attempts to find interval boundaries such that each interval

has a strong majority of one particular class. The method is constrained to form intervals

of some minimal size in order to avoid having intervals with very few instances.

Setiono and Liu [SL95] present a statistically justified heuristic method for supervised

discretization called Chi2. A numeric feature is initially sorted by placing each observed

value into its own interval. The next step uses a chi-square statistic �
�

to determine

whether the relative frequencies of the classes in adjacent intervals are similar enough to

justify merging. The formula for computing the �
�

value for two adjacent intervals is

�
�

�
�� � �

��
� � �

� � � � ��� � � � �
� � � � (2.3)

where � is the number of classes,
� � � is the number of instances in the � -th interval with

class � , � �
is the number of instances in the � -th interval, � � is the number of instances

of class � in the two intervals, � is the total number of instances in the two intervals, and

� � � is the expected frequency of
� � �
 � �

� � � ��� .

The extent of the merging process is controlled by an automatically set �
�

threshold. The

threshold is determined through attempting to maintain the fidelity of the original data.

Catlett [Cat91] and Fayyad and Irani [FI93] use a minimum entropy heuristic to discretize

numeric features. The algorithm uses the class entropy of candidate partitions to select

a cut point for discretization. The method can then be applied recursively to the two

intervals of the previous split until some stopping conditions are satisfied, thus creating

multiple intervals for the feature. For a set of instances � , a feature
�

, and a cut point 	 ,

the class information entropy of the partition induced by 	 is given by

� � �
� 	�
�� �
 � � � �

� Ent
� � � ��

� � � �
� Ent

� � � � � (2.4)

where � � and � � are two intervals of � bounded by cut point 	 , and Ent
� � �

is the class

21

entropy of a subset � given by

Ent
� � �

�

�� � � � �
�
�
�

� � � ����� � � � �
�
�

� � � �
� (2.5)

For feature
�

, the cut point 	 which minimises Equation 2.5 is selected (conditionally) as

a binary discretization boundary. Catlett [Cat91] employs ad hoc criteria for terminating

the splitting procedure. These include: stopping if the number of instances in a partition

is sufficiently small, stopping if some maximum number of partitions have been created,

and stopping if the entropy induced by all possible cut points for a set is equal. Fayyad

and Irani [FI93] employ a stopping criterion based on the minimum description length

principle [Ris78]. The stopping criterion prescribes accepting a partition induced by 	
if and only if the cost of encoding the partition and the classes of the instances in the

intervals induced by 	 is less than the cost of encoding the classes of the instances before

splitting. The partition induced by cut point 	 is accepted iff

Gain
� �

� 	
 � � � ����� � � � � � �
�

�� � �
� 	�
�� �
� � (2.6)

where � is the number of instances in the set � ,

Gain
� �

� 	
 � �

Ent

� � �
� � � �

� 	
 � �
� (2.7)

and

� � �
� 	�
�� �
 ����� � � �

�
� � � �

�	�
Ent

� � �
�

� �
Ent

� � � � �

� �
Ent

� � � � � � (2.8)

In Equation 2.8,
�
,
� �

, and
� �

are the number of distinct classes present in � , � � , and � �

respectively.

C4.5 [Qui86, Qui93] uses Equation 2.7 locally at the nodes of a decision tree to determine

a binary split for a numeric feature. Kohavi and Sahami [KS96a] use C4.5 to perform

global discretization on numeric features. C4.5 is applied to each numeric feature sepa-

rately to build a tree which contains binary splits that only test a single feature. C4.5’s

internal pruning mechanism is applied to determine an appropriate number of nodes in

the tree and hence the number of discretization intervals.

22

A number of studies [DKS95, KS96a] comparing the effects of using various discretiza-

tion techniques (on common machine learning domains and algorithms) have found the

method of Fayyad and Irani to be superior overall. For that reason, this method of dis-

cretization is used in the experiments described in chapters
�
, � and � .

23

24

Chapter 3

Feature Selection for Machine Learning

Many factors affect the success of machine learning on a given task. The representation

and quality of the example data is first and foremost. Theoretically, having more features

should result in more discriminating power. However, practical experience with machine

learning algorithms has shown that this is not always the case. Many learning algorithms

can be viewed as making a (biased) estimate of the probability of the class label given a set

of features. This is a complex, high dimensional distribution. Unfortunately, induction is

often performed on limited data. This makes estimating the many probabilistic parameters

difficult. In order to avoid overfitting the training data, many algorithms employ the

Occam’s Razor [GL97] bias to build a simple model that still achieves some acceptable

level of performance on the training data. This bias often leads an algorithm to prefer a

small number of predictive attributes over a large number of features that, if used in the

proper combination, are fully predictive of the class label. If there is too much irrelevant

and redundant information present or the data is noisy and unreliable, then learning during

the training phase is more difficult.

Feature subset selection is the process of identifying and removing as much irrelevant and

redundant information as possible. This reduces the dimensionality of the data and may

allow learning algorithms to operate faster and more effectively. In some cases, accuracy

on future classification can be improved; in others, the result is a more compact, easily

interpreted representation of the target concept.

Recent research has shown common machine learning algorithms to be adversely af-

fected by irrelevant and redundant training information. The simple nearest neighbour

algorithm is sensitive to irrelevant attributes—its sample complexity (number of training

25

examples needed to reach a given accuracy level) grows exponentially with the number

of irrelevant attributes [LS94b, LS94c, AKA91]. Sample complexity for decision tree

algorithms can grow exponentially on some concepts (such as parity) as well. The naive

Bayes classifier can be adversely affected by redundant attributes due to its assumption

that attributes are independent given the class [LS94a]. Decision tree algorithms such

as C4.5 [Qui86, Qui93] can sometimes overfit training data, resulting in large trees. In

many cases, removing irrelevant and redundant information can result in C4.5 producing

smaller trees [KJ96].

This chapter begins by highlighting some common links between feature selection in pat-

tern recognition and statistics and feature selection in machine learning. Important aspects

of feature selection algorithms are described in section 3.2. Section 3.3 outlines some

common heuristic search techniques. Sections 3.4 through 3.6 review current approaches

to feature selection from the machine learning literature.

3.1 Feature Selection in Statistics and Pattern Recogni-

tion

Feature subset selection has long been a research area within statistics and pattern recog-

nition [DK82, Mil90]. It is not surprising that feature selection is as much of an issue

for machine learning as it is for pattern recognition, as both fields share the common task

of classification. In pattern recognition, feature selection can have an impact on the eco-

nomics of data acquisition and on the accuracy and complexity of the classifier [DK82].

This is also true of machine learning, which has the added concern of distilling useful

knowledge from data. Fortunately, feature selection has been shown to improve the com-

prehensibility of extracted knowledge [KJ96].

Machine learning has taken inspiration and borrowed from both pattern recognition and

statistics. For example, the heuristic search technique sequential backward elimination

(section 3.3) was first introduced by Marill and Green [MG63]; Kittler [Kit78] intro-

duced different variants, including a forward method and a stepwise method. The use of

26

cross-validation for estimating the accuracy of a feature subset—which has become the

backbone of the wrapper method in machine learning—was suggested by Allen [All74]

and applied to the problem of selecting predictors in linear regression.

Many statistical methods1 for evaluating the worth of feature subsets based on charac-

teristics of the training data are only applicable to numeric features. Furthermore, these

measures are often monotonic (increasing the size of the feature subset can never de-

crease performance)—a condition that does not hold for practical machine learning algo-

rithms2. Because of this, search algorithms such as dynamic programming and branch

and bound [NF77], which rely on monotonicity in order to prune the search space, are not

applicable to feature selection algorithms that use or attempt to match the general bias of

machine learning algorithms.

3.2 Characteristics of Feature Selection Algorithms

Feature selection algorithms (with a few notable exceptions) perform a search through the

space of feature subsets, and, as a consequence, must address four basic issues affecting

the nature of the search [Lan94]:

1. Starting point. Selecting a point in the feature subset space from which to begin the

search can affect the direction of the search. One option is to begin with no features

and successively add attributes. In this case, the search is said to proceed forward

through the search space. Conversely, the search can begin with all features and

successively remove them. In this case, the search proceeds backward through the

search space. Another alternative is to begin somewhere in the middle and move

outwards from this point.

2. Search organisation. An exhaustive search of the feature subspace is prohibitive

for all but a small initial number of features. With � initial features there exist

� � possible subsets. Heuristic search strategies are more feasible than exhaustive

1Measures such as residual sum of squares (RSS), Mallows
���

, and separability measures such as �
Ratio and its generalisations are described in Miller [Mil90] and Parsons [Par87] respectively.

2For example, decision tree algorithms (such as C4.5 [Qui93]) discover regularities in training data by
partitioning the data on the basis of observed feature values. Maintaining statistical reliability and avoiding
overfitting necessitates the use of a small number of strongly predictive attributes.

27

ones and can give good results, although they do not guarantee finding the optimal

subset. Section 2.2.3 discusses some heuristic search strategies that have been used

for feature selection.

3. Evaluation strategy. How feature subsets are evaluated is the single biggest dif-

ferentiating factor among feature selection algorithms for machine learning. One

paradigm, dubbed the filter [Koh95b, KJ96] operates independent of any learning

algorithm—undesirable features are filtered out of the data before learning begins.

These algorithms use heuristics based on general characteristics of the data to eval-

uate the merit of feature subsets. Another school of thought argues that the bias

of a particular induction algorithm should be taken into account when selecting

features. This method, called the wrapper [Koh95b, KJ96], uses an induction al-

gorithm along with a statistical re-sampling technique such as cross-validation to

estimate the final accuracy of feature subsets. Figure 3.1 illustrates the filter and

wrapper approaches to feature selection.

4. Stopping criterion. A feature selector must decide when to stop searching through

the space of feature subsets. Depending on the evaluation strategy, a feature selec-

tor might stop adding or removing features when none of the alternatives improves

upon the merit of a current feature subset. Alternatively, the algorithm might con-

tinue to revise the feature subset as long as the merit does not degrade. A further

option could be to continue generating feature subsets until reaching the opposite

end of the search space and then select the best.

3.3 Heuristic Search

Searching the space of feature subsets within reasonable time constraints is necessary if

a feature selection algorithm is to operate on data with a large number of features. One

simple search strategy, called greedy hill climbing, considers local changes to the current

feature subset. Often, a local change is simply the addition or deletion of a single feature

from the subset. When the algorithm considers only additions to the feature subset it is

28

Search

Feature
evaluation

feature set heuristic
 "merit"

Training data

Testing data

Dimensionality
Reduction

ML Algorithm

Final Evaluation

Training data

Feature set

Training data

Hypothesis

Estimated
accuracy

Search

ML algorithm

Training data

Testing data

Dimensionality
Reduction

ML Algorithm

Final Evaluation

Training data

Feature set

Training data

Hypothesis

Estimated
accuracy

Feature evaluation:
cross validation

feature set
estimated
accuracy

feature set
+CV fold hypothesis

Filter

Wrapper

Figure 3.1: Filter and wrapper feature selectors.

known as forward selection; considering only deletions is known as backward elimina-

tion [Kit78, Mil90]. An alternative approach, called stepwise bi-directional search, uses

both addition and deletion. Within each of these variations, the search algorithm may

consider all possible local changes to the current subset and then select the best, or may

simply choose the first change that improves the merit of the current feature subset. In ei-

ther case, once a change is accepted, it is never reconsidered. Figure 3.2 shows the feature

subset space for the golf data. If scanned from top to bottom, the diagram shows all local

additions to each node; if scanned from bottom to top, the diagram shows all possible

local deletions from each node. Table 3.1 shows the algorithm for greedy hill climbing

search.

Best first search [RK91] is an AI search strategy that allows backtracking along the search

path. Like greedy hill climbing, best first moves through the search space by making local

29

[Outlk, Temp, Hum, Wind]

[]

[Outlk] [Temp] [Hum] [Wind]

[Outlk, Temp] [Outlk, Hum] [Outlk, Wind] [Temp, Hum] [Temp, Wind] [Hum, Wind]

[Outlk, Temp, Hum] [Outlk, Temp, Wind] [Outlk, Hum, Wind] [Temp, Hum, Wind]

Figure 3.2: Feature subset space for the “golf” dataset.

�
. Let ��� start state.
�
. Expand � by making each possible local change.
�
. Evaluate each child � of � .

�
. Let � � � child � with highest evaluation �����	� .
�
. If ��� � � ��
���� � � then �
��� �

, goto 2.
�
. Return � .

Table 3.1: Greedy hill climbing search algorithm

30

changes to the current feature subset. However, unlike hill climbing, if the path being

explored begins to look less promising, the best first search can back-track to a more

promising previous subset and continue the search from there. Given enough time, a best

first search will explore the entire search space, so it is common to use a stopping criterion.

Normally this involves limiting the number of fully expanded3 subsets that result in no

improvement. Table 3.2 shows the best first search algorithm.

�
. Begin with the OPEN list containing the start state, the CLOSED list empty,

and BEST � start state.
�
. Let � � arg max � � � � (get the state from OPEN with the highest evaluation).
�
. Remove � from OPEN and add to CLOSED.

�
. If ��� � �
���� BEST ��� then BEST ��� .
�
. For each child � of � that is not in the OPEN or CLOSED list, evaluate and add to OPEN.
�
. If BEST changed in the last set of expansions, goto

�
.

�
. Return BEST.

Table 3.2: Best first search algorithm

Genetic algorithms are adaptive search techniques based on the principles of natural se-

lection in biology [Hol75]. They employ a population of competing solutions—evolved

over time—to converge to an optimal solution. Effectively, the solution space is searched

in parallel, which helps in avoiding local optima. For feature selection, a solution is typi-

cally a fixed length binary string representing a feature subset—the value of each position

in the string represents the presence or absence of a particular feature. The algorithm is

an iterative process where each successive generation is produced by applying genetic

operators such as crossover and mutation to the members of the current generation. Mu-

tation changes some of the values (thus adding or deleting features) in a subset randomly.

Crossover combines different features from a pair of subsets into a new subset. The ap-

plication of genetic operators to population members is determined by their fitness (how

good a feature subset is with respect to an evaluation strategy). Better feature subsets have

a greater chance of being selected to form a new subset through crossover or mutation.

In this manner, good subsets are “evolved” over time. Table 3.3 shows a simple genetic

search strategy.

3A fully expanded subset is one in which all possible local changes have been considered.

31

�
. Begin by randomly generating an initial population

�
.

�
. Calculate � � � � for each member ���

�
.

�
. Define a probability distribution � over the members of

�
where � � � ��� ��� � � .

�
. Select two population members � and � with respect to � .
�
. Apply crossover to � and � to produce new population members �

�

and �
�

.
�
. Apply mutation to �

�

and �
�

.
�
. Insert �

�

and �
�

into
� �

(the next generation).
�
. If

� � � ��� � � �
, goto

�
.

�
. Let

� � � �

.
� 	

. If there are more generations to process, goto
�
.

� �
. Return �	� � for which ��� � � is highest.

Table 3.3: Simple genetic search strategy.

3.4 Feature Filters

The earliest approaches to feature selection within machine learning were filter methods.

All filter methods use heuristics based on general characteristics of the data rather than

a learning algorithm to evaluate the merit of feature subsets. As a consequence, filter

methods are generally much faster than wrapper methods, and, as such, are more practical

for use on data of high dimensionality.

3.4.1 Consistency Driven Filters

Almuallim and Dieterich [AD91] describe an algorithm originally designed for boolean

domains called FOCUS. FOCUS exhaustively searches the space of feature subsets un-

til it finds the minimum combination of features that divides the training data into pure

classes (that is, where every combination of feature values is associated with a single

class). This is referred to as the “min-features bias”. Following feature selection, the final

feature subset is passed to ID3 [Qui86], which constructs a decision tree. There are two

main difficulties with FOCUS, as pointed out by Caruanna and Freitag [CF94]. Firstly,

since FOCUS is driven to attain consistency on the training data, an exhaustive search

may be intractable if many features are needed to attain consistency. Secondly, a strong

bias towards consistency can be statistically unwarranted and may lead to overfitting the

training data—the algorithm will continue to add features to repair a single inconsistency.

The authors address the first of these problems in their 1992 paper [AD92]. Three

32

algorithms—each consisting of forward selection search coupled with a heuristic to ap-

proximate the min-features bias—are presented as methods to make FOCUS computa-

tionally feasible on domains with many features.

The first algorithm evaluates features using the following information theoretic formula:

� � � ��� � � ��� �

�

��� ���
	
�
�� ��� � �
 �

�
� ��
 � ����� � � � �

� �
 � � � ��� �
� �

� �
 � �

�
�

� �
 �
� ����� �

�
�

� �
 �
��� � (3.1)

For a given feature subset
�

, there are ��� ��� possible truth value assignments to the fea-

tures. A given feature set
�

divides the training data into groups of instances with the

same truth value assignments to the features in
�

. Equation 3.1 measures the overall en-

tropy of the class values in these groups—� � and �
�

denote the number of positive and

negative examples in the � -th group respectively. At each stage, the feature which min-

imises Equation 3.1 is added to the current feature subset.

The second algorithm chooses the most discriminating feature to add to the current subset

at each stage of the search. For a given pair of positive and negative examples, a feature

is discriminating if its value differs between the two. At each stage, the feature is cho-

sen which discriminates the greatest number of positive-negative pairs of examples—that

have not yet been discriminated by any existing feature in the subset.

The third algorithm is like the second except that each positive-negative example pair

contributes a weighted increment to the score of each feature that discriminates it. The

increment depends on the total number of features that discriminate the pair.

Liu and Setiono [LS96] describe an algorithm similar to FOCUS called LVF. Like FO-

CUS, LVF is consistency driven and, unlike FOCUS, can handle noisy domains if the

approximate noise level is known a-priori. LVF generates a random subset � from the

feature subset space during each round of execution. If � contains fewer features than the

current best subset, the inconsistency rate of the dimensionally reduced data described by

� is compared with the inconsistency rate of the best subset. If � is at least as consistent as

the best subset, � replaces the best subset. The inconsistency rate of the training data pre-

scribed by a given feature subset is defined over all groups of matching instances. Within

33

a group of matching instances the inconsistency count is the number of instances in the

group minus the number of instances in the group with the most frequent class value. The

overall inconsistency rate is the sum of the inconsistency counts of all groups of matching

instances divided by the total number of instances.

Liu and Setiono report good results for LVF when applied to some artificial domains and

mixed results when applied to commonly used natural domains. They also applied LVF

to two “large” data sets—the first having
� � � � � � instances described by � �

attributes; the

second having � �

� � �
instances described by ��� attributes. They report that LVF was able

to reduce the number of attributes on both data sets by more than half. They also note that

due to the random nature of LVF, the longer it is allowed to execute, the better the results

(as measured by the inconsistency criterion).

Feature selection based on rough sets theory [Mod93, Paw91] uses notions of consistency

similar to those described above. In rough sets theory an information system is a 4-tuple

�
 � �
�

�
��� � 	 �

, where

�
is the finite universe of instances.�
is the finite set of features.

� is the set of possible feature values.

	 is the information function. Given an instance and a feature, 	 maps it to a value
��� � .

For any subset of features ��� �
, an indiscernibility relation IND

� � �
is defined as:

IND
� � �
 ���

��� ��� � � �
	 	 ���
�
 ��
 	 � � �
 � � (3.2)

for every feature
 � � �
The indiscernibility relation is an equivalence relation over

�
. Hence, it partitions the

instances into equivalence classes—sets of instances indiscernible with respect to the fea-

tures in � . Such a partition (classification) is denoted by
� � IND

� � �
. In supervised

machine learning, the sets of instances indiscernible with respect to the class attribute

34

contain (obviously) the instances of each class.

For any subset of instances
� � � and subset of features � � �

, the lower � , and the

upper, � approximations of
�

are defined as follows:

� � � �
 ��� �
� � � IND

� � � 	 � � ��� (3.3)

� � � ��
 ��� �
� � � IND

� � � 	 ���
� �
	� �

(3.4)

If � � � �
 � � � �
then

�
is an exact set (definable using feature subset �), otherwise

�

is a rough set with respect to � .

The instances in
�

that can be classified to the equivalence classes of
� � IND

� � �
by using

feature set � is called the positive region of � with respect to � , and is defined as follows:

POS

� � �
 �

��
���� IND �����
� � � �

� (3.5)

The degree of consistency afforded by feature subset � with respect to the equivalence

classes of
� � IND

� � �
is given by:

�

� � �
 �

POS

� � � �

� � � � (3.6)

IF �

� � �
 � then � is totally consistent with respect to � .

Feature selection in rough sets theory is achieved by identifying a reduct of a given set of

features. A set � � � is a reduct of � if it is independent and IND
� � �

IND
� � �

. � is

independent if there does not exist a strict subset � � of � such that IND
� � � �
 IND

� � �
.

Each reduct has the property that a feature cannot be removed from it without changing

the indiscernibility relation.

Both rough sets and the LVF algorithm are likely to assign higher consistency to attributes

that have many values. An extreme example is an attribute that has as many values as there

are instances. An attribute such as this has little power to generalize beyond the training

data. If � is such an attribute, and � is the class attribute, then it is easy to show that

35

POS

�
�

�
contains all the instances4 and �

� � �
 � . Similarly, for LVF, the feature �
guarantees that there is no inconsistency in the data.

3.4.2 Feature Selection Through Discretization

Setiono and Liu [SL95] note that discretization has the potential to perform feature se-

lection among numeric features. If a numeric feature can justifiably be discretized to a

single value, then it can safely be removed from the data. The combined discretization

and feature selection algorithm Chi2 (discussed in section 2.5.1), uses a chi-square statis-

tic �
�

to perform discretization. Numeric attributes are initially sorted by placing each

observed value into its own interval. Each numeric attribute is then repeatedly discretized

by using the �
�

test to determine when adjacent intervals should be merged. The ex-

tent of the merging process is controlled by the use of an automatically set �
�

threshold.

The threshold is determined by attempting to maintain the original fidelity of the data—

inconsistency (measured the same way as in the LVF algorithm described above) controls

the process.

The authors report results on three natural domains containing a mixture of numeric and

nominal features, using C4.5 [Qui86, Qui93] before and after discretization. They con-

clude that Chi2 is effective at improving C4.5’s performance and eliminating some fea-

tures. However, it is not clear whether C4.5’s improvement is due entirely to some features

having been removed or whether discretization plays a role as well.

3.4.3 Using One Learning Algorithm as a Filter for Another

Several researchers have explored the possibility of using a particular learning algorithm

as a pre-processor to discover useful feature subsets for a primary learning algorithm.

Cardie [Car95] describes the application of decision tree algorithms to the task of select-

ing feature subsets for use by instance based learners. C4.5 was applied to three natural

language data sets; only the features that appeared in the final decision trees were used

4Each element in
���

IND ��� � is a set containing exactly one unique instance from
�

. Therefore, each
element of

���
IND ��� � is a subset of one of the equivalence classes in

���
IND � � � .

36

with a
	

nearest neighbour classifier. The use of this hybrid system resulted in signif-

icantly better performance than either C4.5 or the
	

nearest neighbour algorithm when

used alone.

In a similar approach, Singh and Provan [SP96] use a greedy oblivious decision tree algo-

rithm to select features from which to construct a Bayesian network. Oblivious decision

trees differ from those constructed by algorithms such as C4.5 in that all nodes at the

same level of an oblivious decision tree test the same attribute. Feature subsets selected

by three oblivious decision tree algorithms—each employing a different information the-

oretic splitting criterion—were evaluated with a Bayesian network classifier on several

machine learning datasets. Results showed that Bayesian networks using features se-

lected by the oblivious decision tree algorithms outperformed Bayesian networks without

feature selection and Bayesian networks with features selected by a wrapper.

Holmes and Nevill-Manning [HNM95] use Holte’s 1R system [Hol93] to estimate the pre-

dictive accuracy of individual features. 1R builds rules based on a single features (called

1-rules5). If the data is split into training and test sets, it is possible to calculate a classifi-

cation accuracy for each rule and hence each feature. From classification scores, a ranked

list of features is obtained. Experiments with choosing a select number of the highest

ranked features and using them with common machine learning algorithms showed that,

on average, the top three or more features are as accurate as using the original set. This

approach is unusual due to the fact that no search is conducted. Instead, it relies on the

user to decide how many features to include from the ranked list in the final subset.

Pfahringer [Pfa95] uses a program for inducing decision table majority classifiers to select

features. DTM (Decision Table Majority) classifiers are a simple type of nearest neigh-

bour classifier where the similarity function is restricted to returning stored instances that

are exact matches with the instance to be classified. If no instances are returned, the most

prevalent class in the training data is used as the predicted class; otherwise, the majority

class of all matching instances is used. DTMs work best when all features are nominal.

Induction of a DTM is achieved by greedily searching the space of possible decision ta-

bles. Since a decision table is defined by the features it includes, induction is simply

51-rules can be thought of as single level decision trees.

37

feature selection. In Pfahringer’s approach, the minimum description length (MDL) prin-

ciple [Ris78] guides the search by estimating the cost of encoding a decision table and

the training examples it misclassifies with respect to a given feature subset. The features

appearing in the final decision table are then used with other learning algorithms. Exper-

iments on a small selection of machine learning datasets showed that feature selection by

DTM induction can improve the accuracy of C4.5 in some cases. DTM classifiers induced

using MDL were also compared with those induced using cross-validation (a wrapper ap-

proach) to estimate the accuracy of tables (and hence feature sets). The MDL approach

was shown to be more efficient than, and perform as well as, as cross-validation.

3.4.4 An Information Theoretic Feature Filter

Koller and Sahami [KS96b] recently introduced a feature selection algorithm based on

ideas from information theory and probabilistic reasoning [Pea88]. The rationale behind

their approach is that, since the goal of an induction algorithm is to estimate the proba-

bility distributions over the class values, given the original feature set, feature subset se-

lection should attempt to remain as close to these original distributions as possible. More

formally, let � be a set of classes, � a set of features,
�

a subset of � ,
�

an assignment

of values
� ���

� � � � �

�	� �
to the features in � , and

� � the projection of the values in
�

onto

the variables in
�

. The goal of the feature selector is to choose
�

so that Pr
�
�
� �
 � � �

is as close as possible to Pr
�
�
� �
 � �

. To achieve this goal, the algorithm begins with all

the original features and employs a backward elimination search to remove, at each stage,

the feature that causes the least change between the two distributions. Because it is not

reliable to estimate high order probability distributions from limited data, an approximate

algorithm is given that uses pair-wise combinations of features. Cross entropy is used to

measure the difference between two distributions and the user must specify how many

features are to be removed by the algorithm. The cross entropy of the class distribution

given a pair of features is:

���
Pr

�
�
� � �
 ���

��� �
 � � �
� Pr

�
�
� � �
 � � ���

��
 � �
� ��� � �
 ���

��� �
 � � � ����� � �
� ��� � �
 ���

��� �
 � � �
� � ��� � �
 � � � � (3.7)

38

For each feature � , the algorithm finds a set
� �

, containing � attributes from those that

remain, that is likely to subsume6 the information feature � has about the class values.
� �

contains � features out of the remaining features for which the value of Equation 3.7 is

smallest. The expected cross entropy between the distribution of the class values, given
� �

, � � , and the distribution of class values given just
� �

, is calculated for each feature

� . The feature for which this quantity is minimal is removed from the set. This process

iterates until the user-specified number of features are removed from the original set.

Experiments on four natural domains and two artificial domains using C4.5 and naive

Bayes as the final induction algorithm, showed that the feature selector gives the best

results when the size � of the conditioning set
�

is set to � . In two domains containing

over �
��� � features the algorithm is able to reduce the number of features by more than

half, while improving accuracy by one or two percent.

One problem with the algorithm is that it requires features with more than two values to be

encoded as binary in order to avoid the bias that entropic measures have toward features

with many values. This can greatly increase the number of features in the original data,

as well as introducing further dependencies. Furthermore, the meaning of the original

attributes is obscured, making the output of algorithms such as C4.5 hard to interpret.

3.4.5 An Instance Based Approach to Feature Selection

Kira and Rendell [KR92] describe an algorithm called RELIEF that uses instance based

learning to assign a relevance weight to each feature. Each feature’s weight reflects its

ability to distinguish among the class values. Features are ranked by weight and those

that exceed a user-specified threshold are selected to form the final subset. The algorithm

works by randomly sampling instances from the training data. For each instance sampled,

the nearest instance of the same class (nearest hit) and opposite class (nearest miss) is

found. An attribute’s weight is updated according to how well its values distinguish the

sampled instance from its nearest hit and nearest miss. An attribute will receive a high

weight if it differentiates between instances from different classes and has the same value

for instances of the same class. Equation 3.8 shows the weight updating formula used by

6 ��� is an approximation of a markov blanket[Pea88] for feature � .

39

RELIEF:
� �
 � � �

diff
� �

� � ���
� �

�

 diff

� �
� � �

� � �

�
� (3.8)

where
� � is the weight for attribute

�
, � is a randomly sampled instance, � is the

nearest hit,
�

is the nearest miss, and � is the number of randomly sampled instances.

The function diff calculates the difference between two instances for a given attribute. For

nominal attributes it is defined as either � (the values are different) or � (the values are the

same), while for continuous attributes the difference is the actual difference normalised

to the interval
� � � � � . Dividing by � guarantees that all weights are in the interval

�
� � � � � .

RELIEF operates on two-class domains. Kononenko [Kon94] describes enhancements to

RELIEF that enable it to cope with multi-class, noisy and incomplete domains. Kira and

Rendell provide experimental evidence that shows RELIEF to be effective at identifying

relevant features even when they interact7 (for example, in parity problems). However,

RELIEF does not handle redundant features. The authors state:

“If most of the given features are relevant to the concept, it (RELIEF) would

select most of the given features even though only a small number of them are

necessary for concept description.”

Scherf and Brauer [SB97] describe a similar instance based approach (EUBAFES) to

assigning feature weights developed independently of RELIEF. Like RELIEF, EUBAFES

strives to reinforce similarities between instances of the same class while simultaneously

decrease similarities between instances of different classes. A gradient descent approach

is employed to optimize feature weights with respect to this goal.

3.5 Feature Wrappers

Wrapper strategies for feature selection use an induction algorithm to estimate the merit

of feature subsets. The rationale for wrapper approaches is that the induction method that

7Interacting features are those whose values are dependent on the values of other features and the class,
and as such, provide further information about the class. On the other hand, redundant features, are those
whose values are dependent on the values of other features irrespective of the class, and as such, provide no
further information about the class.

40

will ultimately use the feature subset should provide a better estimate of accuracy than a

separate measure that has an entirely different inductive bias [Lan94]. Feature wrappers

often achieve better results than filters due to the fact that they are tuned to the specific

interaction between an induction algorithm and its training data. However, they tend to be

much slower than feature filters because they must repeatedly call the induction algorithm

and must be re-run when a different induction algorithm is used. Since the wrapper is a

well defined process, most of the variation in its application are due to the method used

to estimate the off-sample accuracy of a target induction algorithm, the target induction

algorithm itself, and the organisation of the search. This section reviews work that has

focused on the wrapper approach and methods to reduce its computational expense.

3.5.1 Wrappers for Decision Tree Learners

John, Kohavi, and Pfleger [JKP94] were the first to advocate the wrapper [All74] as a

general framework for feature selection in machine learning. They present formal defini-

tions for two degrees of feature relevance, and claim that the wrapper is able to discover

relevant features. A feature
� �

is said to be strongly relevant to the target concept(s) if

the probability distribution of the class values, given the full feature set, changes when
� �

is removed. A feature
� �

is said to be weakly relevant if it is not strongly relevant

and the probability distribution of the class values, given some subset � (containing
� �

)

of the full feature set, changes when
� �

is removed. All features that are not strongly or

weakly relevant are irrelevant. Experiments were conducted on three artificial and three

natural domains using ID3 and C4.5 [Qui86, Qui93] as the induction algorithms. Accu-

racy was estimated by using ��� -fold cross validation on the training data; a disjoint test

set was used for reporting final accuracies. Both forward selection and backward elimi-

nation search were used. With the exception of one artificial domain, results showed that

feature selection did not significantly change ID3 or C4.5’s generalisation performance.

The main effect of feature selection was to reduce the size of the trees.

Like John et al., Caruanna and Freitag [CF94] test a number of greedy search methods

with ID3 on two calendar scheduling domains. As well as backward elimination and for-

41

ward selection they also test two variants of stepwise bi-directional search—one starting

with all features, the other with none. Results showed that although the bi-directional

searches slightly outperformed the forward and backward searches, on the whole there

was very little difference between the various search strategies except with respect to

computation time. Feature selection was able to improve the performance of ID3 on both

calendar scheduling domains.

Vafaie and De Jong [VJ95] and Cherkauer and Shavlik [CS96] have both applied genetic

search strategies in a wrapper framework for improving the performance of decision tree

learners. Vafaie and De Jong [VJ95] describe a system that has two genetic algorithm

driven modules—the first performs feature selection, and the second performs construc-

tive induction8 [Mic83]. Both modules were able to significantly improve the perfor-

mance of ID3 on a texture classification problem. Cherkauer and Shavlik [CS96] present

an algorithm called SET-Gen which strives to improve the comprehesibility of decision

trees as well as their accuracy. To achive this, SET-Gen’s genetic search uses a fitness

function that is a linear combination of an accuracy term and a simplicity term:

Fitness
� � �
 �

�
�
 �

�

�
� �

�
��
� � � (3.9)

where
�

is a feature subset,
�

is the average cross-validation accuracy of C4.5, � is

the average size of the trees produced by C4.5 (normalized by the number of training

examples), and
�

is is the number of features is the subset
�

(normalized by the total

number of available features).

Equation 3.9 ensures that the fittest population members are those feature subsets that

lead C4.5 to induce small but accurate decision trees.

3.5.2 Wrappers for Instance Based Learning

The wrapper approach was proposed at approximately the same time and independently

8Constructive induction is the process of creating new attributes by applying logical and mathematical
operators to the original features.

42

of John et al. by Langley and Sage [LS94c, LS94b] during their investigation of the sim-

ple nearest neighbour algorithm’s sensitivity to irrelevant attributes. Scaling experiments

showed that the nearest neighbour’s sample complexity (the number of training examples

needed to reach a given accuracy) increases exponentially with the number of irrelevant

attributes present in the data [AKA91, LS94c, LS94b]. An algorithm called OBLIVION

is presented which performs backward elimination of features using an oblivious decision

tree9 as the induction algorithm. Experiments with OBLIVION using
	
-fold cross vali-

dation on several artificial domains showed that it was able to remove redundant features

and learn faster than C4.5 on domains where features interact.

Moore and Lee [ML94] take a similar approach to augmenting nearest neighbour algo-

rithms, but their system uses leave-one-out instead of
	
-fold cross-validation and con-

centrates on improving the prediction of numeric rather than discrete classes. Aha and

Blankert [AB94] also use leave-one-out cross validation, but pair it with a beam search10

instead of hill climbing. Their results show that feature selection can improve the per-

formance of IB1 (a nearest neighbour classifier) on a sparse (very few instances) cloud

pattern domain with many features. Moore, Hill, and Johnson [MHJ92] encompass not

only feature selection in the wrapper process, but also the number of nearest neighbours

used in prediction and the space of combination functions. Using leave-one-out cross val-

idation, they achieve significant improvement on several control problems involving the

prediction of continuous classes. In a similar vein, Skalak [Ska94] combines feature se-

lection and prototype selection into a single wrapper process using random mutation hill

climbing as the search strategy. Experimental results showed significant improvement

in accuracy for nearest neighbour on two natural domains and a drastic reduction in the

algorithm’s storage requirement (number of instances retained during training).

Domingos [Dom97] describes a context sensitive wrapper approach to feature selection

for instance based learners. The motivation for the approach is that there may be fea-

tures that are either relevant in only a restricted area of the instance space and irrelevant

9When all the original features are included in the tree and given a number of assumptions at clas-
sification time, Langley and Sage note that the structure is functionally equivalent to the simple nearest
neighbour; in fact, this is how it is implemented in OBLIVION.

10Beam search is a limited version of best first search that only remembers a portion of the search path
for use in backtracking

43

elsewhere, or relevant given only certain values (weakly interacting) of other features and

otherwise irrelevant. In either case, when features are estimated globally (over the en-

tire instance space), the irrelevant aspects of these sorts of features may overwhelm their

useful aspects for instance based learners. This is true even when using backward search

strategies with the wrapper11. Domingos presents an algorithm called RC which can de-

tect and make use of context sensitive features. RC works by selecting a (potentially)

different set of features for each instance in the training set. It does this by using a back-

ward search strategy and cross validation to estimate accuracy. For each instance in the

training set, RC finds its nearest neighbour of the same class and removes those features

in which the two differ. The accuracy of the entire training dataset is then estimated by

cross validation. If the accuracy has not degraded, the modified instance in question is

accepted; otherwise the instance is restored to its original state and deactivated (no fur-

ther feature selection is attempted for it). The feature selection process continues until all

instances are inactive.

Experiments on a selection of machine learning datasets showed that RC outperformed

standard wrapper feature selectors using forward and backward search strategies with

instance based learners. The effectiveness of the context sensitive approach was also

shown on artificial domains engineered to exhibit restricted feature dependency. When

features are globally relevant or irrelevant, RC has no advantage over standard wrapper

feature selection. Furthermore, when few examples are available, or the data is noisy,

standard wrapper approaches can detect globally irrelevant features more easily than RC.

Domingos also noted that wrappers that employ instance based learners (including RC)

are unsuitable for use on databases containing many instances because they are quadratic

in � (the number of instances).

Kohavi [KF94, Koh95a] uses wrapper feature selection to explore the potential of decision

table majority (DTM) classifiers. Appropriate data structures allow the use of fast incre-

mental cross-validation with DTM classifiers. Experiments showed that DTM classifiers

using appropriate feature subsets compared very favourably with sophisticated algorithms

11In the wrapper approach, backward search strategies are generally more effective than forward search
strategies in domains with feature interactions. Because backward search typically begins with all the
features, the removal of a strongly interacting feature is usually detected by decreased accuracy during
cross validation.

44

such as C4.5.

3.5.3 Wrappers for Bayes Classifiers

Due to the naive Bayes classifier’s assumption that, within each class, probability dis-

tributions for attributes are independent of each other, Langley and Sage [LS94a] note

that its performance on domains with redundant features can be improved by removing

such features. A forward search strategy is employed to select features for use with naive

Bayes, as opposed to the backward strategies that are used most often with decision tree

algorithms and instance based learners. The rationale for a forward search is that it should

immediately detect dependencies when harmful redundant attributes are added. Experi-

ments showed overall improvement and increased learning rate on three out of six natural

domains, with no change on the remaining three.

Pazzani [Paz95] combines feature selection and simple constructive induction in a wrap-

per framework for improving the performance of naive Bayes. Forward and backward

hill climbing search strategies are compared. In the former case, the algorithm consid-

ers not only the addition of single features to the current subset, but also creating a new

attribute by joining one of the as yet unselected features with each of the selected fea-

tures in the subset. In the latter case, the algorithm considers both deleting individual

features and replacing pairs of features with a joined feature. Results on a selection of

machine learning datasets show that both approaches improve the performance of naive

Bayes. The forward strategy does a better job at removing redundant attributes than the

backward strategy. Because it starts with the full set of features, and considers all possible

pairwise joined features, the backward strategy is more effective at identifying attribute

interactions than the forward strategy.

Improvement for naive Bayes using wrapper-based feature selection is also reported by

Kohavi and Sommerfield [KS95] and Kohavi and John [KJ96].

Provan and Singh [PS96] have applied the wrapper to select features from which to con-

struct Bayesian networks. Their results showed that while feature selection did not im-

prove accuracy over networks constructed from the full set of features, the networks con-

45

structed after feature selection were considerably smaller and faster to learn.

3.5.4 Methods of Improving the Wrapper

Most criticism of the wrapper approach to feature selection is concerned with its compu-

tational cost. For each feature subset examined, an induction algorithm is invoked
	

times

in an
	
-fold cross validation. This can make the wrapper prohibitively slow for use on

large data sets with many features. This drawback has led some researchers to investigate

ways of mitigating the cost of the evaluation process.

Caruanna and Freitag [CF94] devised a scheme that caches decision trees. This can sub-

stantially reduce the number of trees grown during feature selection and allow larger

spaces to be searched.

Moore and Lee [ML94] present a method to “race” competing models or feature sub-

sets. If at some point during leave-one-out cross-validation, a subset is deemed to be

unlikely to have the lowest estimated error, its evaluation is terminated. This has the ef-

fect of reducing the percentage of training examples used during evaluation and reduces

the computational cost of fully evaluating each subset. The algorithm also “blocks” all

near identical feature subsets—except one—in the race. This prevents having to run fea-

ture subsets with nearly identical predictions right to the end. Both racing and blocking

use Bayesian statistics to maintain a probability distribution on the estimate of the mean

leave-one-out cross validation error for each competing subset. The algorithm uses for-

ward selection, but instead of sequentially trying all local changes to the best subset, these

changes are raced. The race finishes when only one competing subset remains or the cross

validation ends.

Kohavi and John [KS95] introduce the notion of “compound” search space operators in

an attempt to make backward and best first search strategies computationally feasible.

When all local changes (additions or deletions of single features) to a given feature sub-

set have been evaluated, the first compound operator is created, combining the two best

local changes. This operator is then applied to the feature subset, creating a new subset

further away in the search space. If the first compound operator leads to a subset with

46

an improved estimate, a second compound operator is constructed that combines the best

three local changes, and so forth. The use of compound operators propels the search more

quickly toward the strongly relevant features. Experiments using compound operators

with a forward best first search showed no significant change in the accuracy for ID3

and naive Bayes. When compound operators were combined with a backward best first

search, accuracy degraded slightly for ID3 but improved for C4.5. The poor results with

ID3 suggest that the best first search can still get stuck in some local maxima. The im-

provement with C4.5 is due to C4.5’s pruning (again a form of feature selection), which

allows the best first search to overcome the local maxima.

Moore and Lee [ML94] describe another search variant called schemata search that takes

interacting features into account and speeds up the search process. Rather than starting

with an empty or full set of features, the search begins with all features marked as “un-

known”. In each iteration, a feature is chosen and raced between being in the subset or

excluded from it. All combinations of unknown features are used with equal probabil-

ity. Due to the probabilistic nature of the search, a feature that should be in the subset

will win the race, even if it is dependent on another feature. Experiments on artificial

domains showed schemata search to be effective at identifying relevant features (more

so than raced versions of forward and backward selection) and much faster than raced

backward selection.

3.6 Feature Weighting Algorithms

Feature weighting can be viewed as a generalisation of feature selection. In feature se-

lection, feature weights are restricted to � or � (a feature is used or it is not). Feature

weighting allows finer differentiation between features by assigning each a continuous

valued weight. Algorithms such as nearest neighbour (that normally treat each feature

equally) can be easily modified to include feature weighting when calculating similarity

between cases. One thing to note is that, in general, feature weighting algorithms do not

reduce the dimensionality of the data. Unless features with very low weight are removed

from the data initially, it is assumed that each feature is useful for induction; its degree

of usefulness is reflected in the magnitude of its weight. Using continuous weights for

47

features involves searching a much larger space and involves a greater chance of overfit-

ting [KLY97].

Salzberg [Sal91] incorporates incremental feature weighting in an instance based learner

called EACH. For each correct classification made, the weight for each matching feature is

incremented by � � (the global feature adjustment rate). Mismatching features have their

weights decremented by this same amount. For incorrect classifications, the opposite

occurs—mismatching features are incremented while the weights of matching features

are decremented. Salzberg reported that the value of � � needs to be tuned for different

data sets to give best results.

Wettschereck and Aha [WA95] note that EACH’s weighting scheme is insensitive to

skewed concept descriptions. IB4 [Aha92] is an extension of the
	

nearest neighbour

algorithm that addresses this problem by calculating a separate set of feature weights for

each concept. The weight for feature � is computed using

� �
������ � CumulativeWeight
�

WeightNormaliser
� � ��� � � � � � (3.10)

CumulativeWeight is expected to approach one half of WeightNormaliser for apparently

irrelevant attributes. Both CumulativeWeight and WeightNormaliser are incrementally

updated during learning. Let � be the higher of the observed frequencies among the

classes of two instances
�

(the instance to be classified) and � (its most similar neighbour

in the concept description). CumulativeWeight
�
is incremented by

� � diff
��� �

��� � � �
� � � � �

if
�

and � have the same class, (3.11)

diff
��� �

��� ��� �
� � � � �

otherwise.

WeightNormaliser is always incremented by
� � � � �

. Experiments with IB4 showed it to

be more tolerant of irrelevant features than the
	

nearest neighbour algorithm.

RELIEF12 [KR92] is an algorithm that uses an instance based approach to assign weights

to features. Wettschereck and Aha [WA95] use RELIEF to calculate weights for a
	

12RELIEF was originally used for feature selection and is described in section 2.5.5

48

nearest neighbour algorithm—they report significant improvement over standard
	

nearest

neighbour in seven out of ten domains.

Kohavi, Langley, and Yun [KLY97] describe an approach to feature weighting that con-

siders a small set of discrete weights rather than continuous weights. Their approach

uses the wrapper coupled with simple nearest neighbour to estimate the accuracy of fea-

ture weights and a best first search to explore the weight space. In experiments that vary

the number of discrete weights considered by the algorithm, results showed that there is

no advantage to increasing the number of non-zero discrete weights above two; in fact,

with the exception of some carefully crafted artificial domains, using one non-zero weight

(equivalent to feature selection) was difficult to outperform.

The above methods for feature weighting all use feedback from a nearest neighbour al-

gorithm (either incrementally during learning or in a special stage prior to induction) to

adjust weights. Some non-feedback methods for setting weights include: the per cate-

gory feature importance [CMSW92] which sets the weight for a feature to the conditional

probability of the class given the feature, the cross-category feature importance [WA95],

which is like the per category feature importance but averages across classes, and the

mutual information13 [SW48] between the feature and the class. All of these approaches

require numeric features to be discretized.

3.7 Chapter Summary

Practical machine learning algorithms often make assumptions or apply heuristics that

trade some accuracy of the resulting model for speed of execution, and comprehensibility

of the result. While these assumptions and heuristics are reasonable and often yield good

results, the presence of irrelevant and redundant information can often fool them, result-

ing in reduced accuracy and less understandable results. Feature subset selection can help

focus the learning algorithm on the important features for a particular problem. It can also

reduce the dimensionality of the data, allowing learning algorithms to operate faster and

more effectively.

13This is also known as the information gain between the feature and the class. See Chapter 3 for details.

49

There are two main approaches to feature subset selection described in the literature. The

wrapper—which is tuned to the specific interaction between an induction algorithm and

its training data—has been shown to give good results, but in practise may be too slow to

be of practical use on large real-world domains containing many features. Filter methods

are much faster as they do not involve repeatedly invoking a learning algorithm. Existing

filter solutions exhibit a number of drawbacks. Some algorithms are unable to handle

noise (or rely on the user to specify the level of noise for a particular problem). In some

cases, a subset of features is not selected explicitly; instead, features are ranked with the

final choice left to the user. Some algorithms do not handle both redundant and irrelevant

features. Other algorithms require features to be transformed in such a way that actually

increases the initial number of features and hence the search space. This last case can

result in a loss of meaning from the original representation, which in turn can have an

impact on the interpretation of induced models.

Feature weights are easily incorporated into learning algorithms such as nearest neigh-

bour, but the advantage of feature weighting over feature selection is minimal at best, due

to the increased chance of overfitting the data. In general, feature weighting does not

reduce the dimensionality of the original data.

50

Chapter 4

Correlation-based Feature Selection

This thesis claims that feature selection for classification tasks in machine learning can

be accomplished on the basis of correlation1 between features, and that such a feature se-

lection procedure can be beneficial to common machine learning algorithms. This chap-

ter presents a correlation based feature selector (CFS) based on this claim; subsequent

chapters examine the behaviour of CFS under various conditions and show that CFS can

identify useful features for machine learning.

Section 4.1 outlines the rationale and motivation for a correlation-based approach to fea-

ture selection, with ideas borrowed from psychological measurement theory. Various

machine learning approaches to measuring correlation between nominal variables are dis-

cussed in Section 4.2; their respective biases and implications for use with CFS are dis-

cussed in Section 4.3. Section 4.4 presents the CFS algorithm and the variations used for

experimental purposes.

4.1 Rationale

Genari et al. [GLF89] state that

“Features are relevant if their values vary systematically with category mem-

bership.”

1The term correlation is used in its general sense in this thesis. It is not intended to refer specifically
to classical linear correlation; rather it is used to refer to a degree of dependence or predictability of one
variable with another.

51

In other words, a feature is useful if it is correlated with or predictive of the class; other-

wise it is irrelevant. Kohavi and John [KJ96] formalize this definition as

Definition 1: A feature � � is said to be relevant iff there exists some
� �

and
�

for which
� � � �
 � ��� � � such that

� �
�

 ��� � �
 � � � �
 � �
�

 � �
� (4.1)

Empirical evidence from the feature selection literature shows that, along with irrelevant

features, redundant information should be eliminated as well [LS94a, KJ96, KS95]. A

feature is said to be redundant if one or more of the other features are highly correlated

with it. The above definitions for relevance and redundancy lead to the following hypoth-

esis, on which the feature selection method presented in this thesis is based:

A good feature subset is one that contains features highly correlated with

(predictive of) the class, yet uncorrelated with (not predictive of) each other.

In test theory [Ghi64], the same principle is used to design a composite test for predicting

an external variable of interest. In this situation, the “features” are individual tests which

measure traits related to the variable of interest (class). For example, a more accurate

prediction of a person’s success in a mechanics training course can be had from a com-

posite of a number of tests measuring a wide variety of traits (ability to learn, ability to

comprehend written material, manual dexterity and so forth), rather than from any one

individual test which measures a restricted scope of traits. Ghiselli states:

“When we develop a composite which we intend to use as a basis for pre-

dicting an outside variable, it is likely that the components we select to form

the composite will have relatively low inter-correlations. When we seek to

predict some variable from several other variables, we try to select predictor

variables which measure different aspects of the outside variable.”

If the correlation between each of the components in a test and the outside variable is

known, and the inter-correlation between each pair of components is given, then the cor-

52

relation between a composite test consisting of the summed components and the outside

variable can be predicted from

�����
 	 �����
� 	
 	 � 	

� � � � � �
� (4.2)

where
�����

is the correlation between the summed components and the outside variable,
	

is the number of components,
�����

is the average of the correlations between the com-

ponents and the outside variable, and
�
���

is the average inter-correlation between compo-

nents [Ghi64, Hog77, Zaj62].

Equation 4.2 is, in fact, Pearson’s correlation coefficient, where all variables have been

standardized. It shows that the correlation between a composite and an outside variable

is a function of the number of component variables in the composite and the magnitude

of the inter-correlations among them, together with the magnitude of the correlations

between the components and the outside variable. Entering two illustrative values for
�����

in Equation 4.2, and allowing the values of
	

and
�
���

to vary, the formula is solved for
�����

and the values are plotted in Figure 4.1. From this figure the following conclusions can

be drawn:

� The higher the correlations between the components and the outside variable, the

higher the correlation between composite and the outside variable.

� The lower the inter-correlations among the components, the higher the correlation

between the composite and the outside variable.

� As the number of components in the composite increases (assuming the additional

components are the same as the original components in terms of their average inter-

correlation with the other components and with the outside variable), the correlation

between the composite and the outside variable increases.

From Figure 4.1, it can be seen that increasing the number of components substantially

increases the correlation between the composite and the outside variable. However, it

is unlikely that a group of components that are all highly correlated with the outside

53

avg. rzi = 0.8

5
10

15
20

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0

0.5

1

1.5

2

2.5

3

3.5

k

avg. rii

rzc

avg. rzi = 0.2

Figure 4.1: The effects on the correlation between an outside variable and a composite
variable

� �
�����
of the number of components

�
	 �
, the inter-correlations among the compo-

nents
� � �����

, and the correlations between the components and the outside variable
� � ��� �

.

variable will at the same time bear low correlations with each other [Ghi64]. Furthermore,

Hogarth [Hog77] notes that, when addition of an additional component is considered, low

inter-correlation with the already selected components may well predominate over high

correlation with the outside variable.

Equation 4.2 is used in this thesis as a heuristic measure of the “merit” of feature subsets

in supervised classification tasks. In this situation, � (the external variable) becomes �

(the class); the problem remaining is to develop suitable ways of measuring the feature-

class correlation and feature-feature inter-correlation. Supervised learning tasks often

involve different data features, any of which may be continuous, ordinal, nominal, or

binary. In order to have a common basis for computing the correlations in Equation 4.2,

it is desirable to have a uniform way of treating different types of features. Discretization

using the method of Fayyad and Irani [FI93] is applied as a pre-processing step to convert

continuous features to nominal.

For prediction it is clear that redundant attributes should be eliminated—if a given fea-

ture’s predictive ability is covered by another then it can safely be removed. Indeed, some

learning algorithms (such as naive Bayes) require this in order to maximise predictive per-

54

formance [LS94a]. However, for data mining applications where comprehensible results

are of paramount importance, it is not always clear that redundancy should be eliminated.

For example, a rule may make more “sense” to a user if an attribute is replaced with one

highly correlated with it. CFS (described in section 4.4) accommodates this situation by

providing a report generation facility. For any given attribute in the final subset, CFS can

list its close substitutes, either in terms of the overall merit of the final subset if the at-

tribute in question was to be replaced by one of the substitutes, or simply correlation with

the attribute in question.

4.2 Correlating Nominal Features

Once all features and the class are treated in a uniform manner, the feature-class corre-

lation and feature-feature inter-correlations in Equation 4.2 may be calculated. Research

on decision tree induction has provided a number of methods for estimating the quality

of an attribute—that is, how predictive one attribute is of another. Measures of attribute

quality characterize the variability present in the collections of instances corresponding to

the values of a particular attribute. For this reason they are sometimes known as impurity

functions [Bre96b, CB97]. A collection of instances is considered pure if each instance is

the same with respect to the value of a second attribute; the collection of instances is im-

pure (to some degree) if instances differ with respect to the value of the second attribute.

Decision tree induction typically only involves measuring how predictive attributes are of

the class. This corresponds to the feature-class correlations in Equation 4.2. To calculate

the merit of a feature subset using Equation 4.2, feature-feature inter-correlations—the

ability of one feature to predict another (and vice versa)—must be measured as well.

Because decision tree learners perform a greedy simple-to-complex hill climbing search

through the space of possible trees, their general inductive bias is to favour smaller trees

over larger ones [Mit97]. One factor that can impact on both the size of the tree and

how it well it generalizes to new instances is the bias inherent in the attribute quality

measure used to select among attributes to test at the nodes of the tree. Some quality

measures are known to unfairly favour attributes with more values over those with fewer

55

values [Qui86, WL94, Kon95]. This can result in the construction of larger trees that may

overfit the training data and generalize poorly. Similarly, if such measures are used as the

correlations in Equation 4.2, feature subsets containing features with more values may be

preferred—a situation that could lead to inferior performance by a decision tree learner if

it is restricted to using such a subset.

Kononenko [Kon95] examines the biases of eleven measures for estimating the quality of

attributes. Two of these, relief and MDL, with the most acceptable biases with respect to

attribute level (number of values), are described in this section. For the inter-correlation

between two features, a measure is needed that characterizes the predictive ability of one

attribute for another and vice versa. Simple symmetric versions of relief and MDL are

presented for this purpose. A third measure (not tested by Kononenko), symmetrical

uncertainty [PFTV88], with bias similar to relief and MDL, is also presented.

Section 4.3 reconstructs experiments done by Kononenko to analyze the bias of attribute

quality measures. The behaviour of symmetrical uncertainty, MDL, and relief with respect

to attribute level and how this may affect feature selection is discussed. The experimental

scenario is extended to examine the behaviour of the measures with respect to the number

of available training examples; again implications for feature selection are discussed.

Versions of the CFS feature selector using relief, MDL, and symmetric uncertainty are

empirically compared in Chapter
�
.

4.2.1 Symmetrical Uncertainty

A probabilistic model of a nominal valued feature � can be formed by estimating the

individual probabilities of the values � � � from the training data. If this model is used

to estimate the value of � for a novel sample (drawn from the same distribution as the

training data), then the entropy of the model (and hence of the attribute) is the number of

bits it would take, on average, to correct the output of the model. Entropy is a measure of

the uncertainty or unpredictability in a system. The entropy of � is given by

�
�
�

��

�

�
�
��

� � � � � ��� � � � � � � � � (4.3)

56

If the observed values of � in the training data are partitioned according to the values of a

second feature
�

, and the entropy of � with respect to the partitions induced by
�

is less

than the entropy of � prior to partitioning, then there is a relationship between features �

and
�

. Equation 4.4 gives the entropy of � after observing
�

.

�
�
�
� � �

�

�
�
 �

� ��� � �
�
 �

� � � � � � ����� � � � � � � � � � � (4.4)

The amount by which the entropy of � decreases reflects additional information about

� provided by
�

and is called the information gain [Qui86], or, alternatively, mutual

information [SW48]. Information gain is given by

gain

�
�
�

�
� �

�
�
� � �

(4.5)

�
� � �

� �
� � �
�

�

�
�
�

�

�

� � �
� �

� �
� �

�
�

Information gain is a symmetrical measure—that is, the amount of information gained

about � after observing
�

is equal to the amount of information gained about
�

after

observing � . Symmetry is a desirable property for a measure of feature-feature inter-

correlation to have. Unfortunately, information gain is biased in favour of features with

more values. Furthermore, the correlations in Equation 4.2 should be normalized to en-

sure they are comparable and have the same affect. Symmetrical uncertainty [PFTV88]

compensates for information gain’s bias toward attributes with more values and normal-

izes its value to the range
� � � � � :

symmetrical uncertainty coefficient

 � � � �

�
gain

�
�
�

��

�

� � � � � (4.6)

4.2.2 Relief

RELIEF [KR92] is a feature weighting algorithm that is sensitive to feature interactions

(see Chapters
�

and � for details). Kononenko [Kon95] notes that RELIEF attempts to

57

approximate the following difference of probabilities for the weight of a feature
�

:

� �
 � �
different value of

� �
nearest instance of different class

�
(4.7)

� � �
different value of

� �
nearest instance of same class

�
�

By removing the context sensitivity provided by the “nearest instance” condition, at-

tributes are treated as independent of one another; Equation 4.8 then becomes [Kon94,

Kon95]

Relief �

 � �

different value of
� �

different class
�

(4.8)

� � �
different value of

� �
same class

�
�

which can be reformulated as

Relief �

 � � � � � ��� �
 � � ��� � �

� � �

� �
 � � � � � � � � �
 � � � � � � � (4.9)

where � is the class variable and

� � � � �

� ��
 � � � � � � � �

� � � � � � �

�
�
 �
� � ��� � �
� �
 � � ��� � � ��
 � �

� ��� � � � � �

� � ��� � � � � � (4.10)

� � � � � is a modification of another attribute quality measure called the Gini-index2

[Bre96b]. Both
� � � � � and the Gini-index are similar to information gain in that they

are biased in favour of attributes with more values.

To use relief symmetrically for two features, the measure can be calculated twice (each

feature is treated in turn as the “class”), and the results averaged. Whenever relief is

mentioned in subsequent chapters, it is the symmetrical version that is referred to.

2The only difference to Equation 4.10 is that the Gini-index uses � � � � in place of � � � ��� � � � � � ��� .

58

4.2.3 MDL

Roughly speaking, the minimum description length (MDL) principle [Ris78] states that

the “best” theory to infer from training data is the one that minimizes the length (complex-

ity) of the theory and the length of the data encoded with respect to the theory. The MDL

principle can be taken as an operational definition of Occam’s Razor3. More formally, if

	 is a theory inferred from data
�

, then the total description length is given by

DL
� 	 �

� ��

DL

� 	 ��

DL

� � � 	 �
� (4.11)

In Equation 4.11, all description lengths are measured in bits. If the data
� � �

is the

observed values of a feature � , and these values are partitioned according to the values of

a second feature
�

, then the description length of the data given the theory (the second

term in Equation 4.11) can be approximated by multiplying the average entropy of �
given

�
by the number of observed instances.

One problem with just using entropy to measure the quality of a model (and hence an

attribute) is that it is possible to construct a model that predicts the data perfectly, and as

such has zero entropy. Such a model is not necessarily as good as it seems. For example,

consider an attribute
�

that has as many distinct values as there are instances in the data.

If the data is partitioned according to the values of
�

, then there will be exactly one

value of � (with probability 1) in each of these partitions, and the entropy of � with

respect to
�

will be zero. However, a model such as this is unlikely to generalize well

to new data; it has overfitted the training data—that is, it is overly sensitive to statistical

idiosyncrasies of the training data. The first term in Equation 4.11 deals with just this

sort of problem. A model such as the one just described is very complex and would

take many bits to describe. So although the model has reduced the description length of

the data to zero, the value of Equation 4.11 would still be large due to the high cost of

describing the model. The best models (according to the MDL principle) are those which

are predictive of the data and, at the same time, have captured the underlying structure

3The Occam’s Razor principle, commonly attributed to William of Occam (early
� �

th century), states:
“Entities should not be multiplied beyond necessity.” This principle is generally interpreted as: “Given the
choice between theories that are equally consistent with the observed phenomena, prefer the simplest”.

59

in a compact fashion. Quinlan [Qui89] discusses the use of the MDL principle in coding

decision trees; Kononenko [Kon95] defines an MDL measure of attribute quality:

MDL

 �

Prior MDL � Post MDL
�

�
(4.12)

Prior MDL

 ����� � � �

�
�

� � � � �
� � �
 ����� � � �

� � �

� � � � (4.13)

Post MDL

 �

�
����� � � �

�

�
�
� �

� � � � �
� � � �
 �

�
� ��� � � �

�

�
 � � �
� � � � � (4.14)

where � is the number of training instances, � is the number of class values, �
�

�
is the

number of training instances from class �
�
, �

�

� is the number of training instances with

the j-th value of the given attribute, and �
� � is the number of training instances of class �

�

having the j-th value for the given attribute.

Equation 4.12 gives the average compression (per instance) of the class afforded by an

attribute. Prior MDL is the description length of the class labels prior to partitioning

on the values of an attribute. Post MDL performs the same calculation as Prior MDL

for each of the partitions induced by an attribute and sums the result. The first term

of Equation 4.13 and Equation 4.14 encodes the class labels with respect to the model

encoded in the respective second term. The model for Prior MDL is simply a probability

distribution over the class labels (that is, how many instances of each class are present);

the model for Post MDL is the probability distribution of the class labels in each of the

partitions induced by the given attribute.

To obtain a measure that lies between � and � , Equation 4.12 can be normalized by di-

viding by Prior MDL � � . This gives the fraction by which the average description length

of the class labels is reduced through partitioning on the values of an attribute. Equa-

tion 4.12 is a non-symmetric measure; exchanging the roles of the attribute and the class

does not give the same result. To use the measure symmetrically for two features, it can

be calculated twice (treating each feature in turn as the “class”) and the results averaged.

Whenever the MDL measure is mentioned in subsequent chapters, it is the normalized

60

symmetrical version that is referred to.

4.3 Bias in Correlation Measures between Nominal Fea-

tures

This section examines bias in the methods, discussed above, for measuring correlation

between nominal features. Measures such as information gain tend to overestimate the

worth of multi-valued attributes. This problem is well known in the decision tree com-

munity. Quinlan [Qui86] shows that the gain of an attribute
�

(measured with respect

to the class or another feature) is less than or equal to the gain of an attribute
� �

formed

by randomly partitioning
�

into a larger number of values. This means that, in general,

the derived attribute (and by analogy, attributes with more values) will appear to be more

predictive of or correlated with the class than the original one.

For example, suppose there is an attribute
�

with values
 �

�
and there are two possible

classes � �
� (as shown in Table 4.1(a)). Given the eight instances shown in Table 4.1(a),

the entropy of the class is � � � bit, the entropy of the class given attribute
�

is � � � bit,

and the gain (calculated from Equation 4.6) is ��� � (the attribute provides no further in-

formation about the class). If a second attribute
� �

is formed by converting ‘b’ values of

attribute A into the value ‘c’ with probability � ��� , then the examples shown in Table 4.1(b)

may occur. In this case, the entropy of the class with respect to attribute
� �

is ��� �
�

bits and

the gain is � � � �
bits. However, since the the additional partitioning of

� �
was produced

randomly,
� �

cannot be reasonably considered more correlated with the class than
�

.

One approach to eliminating this bias in decision tree induction is to construct only binary

decision trees. This entails dividing the values of an attribute into two mutually exclusive

subsets. Bias is now eliminated by virtue of all features having only two values. How-

ever, Quinlan [Qui86] notes that this process results in large increase in computation—for

a given feature
�

with
 values, at a given node in the tree, there are ��� possible ways

of subsetting the values of
�

, each of which must be evaluated in order to select the

best. Some feature selection algorithms, such as the one described by Koller and Sa-

61

�
Class

� �
� �
� �

� �

�
�

�
�

� �

� �

(a)

� �

Class
� �
� �
� �

� �

�
�

�
�

� �

� �

(b)

Table 4.1: A two-valued non informative attribute
�

(a) and a three valued attribute
� �

de-
rived by randomly partitioning

�
into a larger number of values (b). Attribute

� �
appears

more predictive of the class than attribute
�

according to the information gain measure.

hami [KS96b], avoid bias in favour of multi-valued features by using a boolean encoding.

Each value of an attribute
�

is represented by binary indicator attribute. For a given value

of attribute
�

in a dataset, the appropriate indicator attribute is set to � , and the indicator

attributes corresponding to the other possible values of
�

are set to � . This can greatly

increase the number of features (and hence the size of the search space) and also intro-

duce more dependencies into the data than were originally present. Furthermore, both

subsetting in decision trees and boolean encoding for feature selection can result in less

intelligible decision trees and a loss of meaning from the original attributes.

In the following sections the bias of symmetrical uncertainty, relief, and MDL is exam-

ined. The purpose of exploring bias in the measures is to obtain an indication as to how

each measure will affect the heuristic “merit” calculated from Equation 4.2, and to get

a feel for which measures exhibit bias similar to that employed by common learning al-

gorithms. Each measure’s behaviour with respect to irrelevant attributes is of particular

interest for the feature selection algorithm presented in this thesis.

4.3.1 Experimental Measurement of Bias

To test bias in the various measures, the Monte Carlo simulation technique of White

and Liu is adopted [WL94]. The technique approximates the distributions of the various

measures under differing conditions (such as the number of attribute values and/or class

62

values). Estimated parameters derived from these distributions can then be compared to

see what effects (if any) these conditions have on the measures. White and Liu examined

effects of attribute and class level on various measures using random (irrelevant) attributes

generated independently of the class. Kononenko [Kon95] extended this scenario by in-

cluding attributes predictive of the class. Section 4.3.2 examines the bias of symmetrical

uncertainty, normalized symmetrical MDL, and symmetrical relief using the experimen-

tal methodology of Kononenko [Kon95]. Section 4.3.3 explores the effect of varying the

sample size on the behaviour of the measures.

Method The experiments in this section use artificial data generated with the following

properties:

� two, five or ten equiprobable classes;

� two, five, ten, twenty or forty attribute values;

� attributes are either irrelevant (have values drawn from the uniform distribution

independently of the class), or are made informative using Kononenko’s method

[Kon95];

� 1000 training instances are used for the experiments in Section 4.3.2; the number

of training instances is allowed to vary for the experiments in Section 4.3.3.

Multi-valued attributes are made informative by joining the values of the attribute into

two subsets. If an attribute has
 values, then subsets
� � � � � � �

�
 div � � � and
� �
 div �

� � � � � � �
 � are formed. The probability that the attribute’s value is from one of the subsets

depends on the class; the selection of one particular value inside the subset is random

from the uniform distribution. The probability that the attribute’s value is in one of the

subsets is given by

�
�
� �

�
� � � � � �

�

� ��� � � �
 �� � ��� � �
 	

�
� � mod �
 �

� � ��� � �
 	
�

� � mod � �
 � (4.15)

where � is the number of class values, � is an integer indexing the possible class val-

ues
� � �

� � � � �

� � �
, and

	
is a parameter controlling the level of association between the

63

attribute and the class—higher values of
	

make the attribute more informative. From

Equation 4.15 it can be seen that attributes are also more informative for higher numbers

of classes. All experiments presented in this section use
	
 � .

The merit of all features is calculated using symmetrical uncertainty, MDL, and relief.

The results of each measure are averaged over �
� � � trials.

4.3.2 Varying the Level of Attributes

This section explores the effects of varying the number of attribute values on the bias of

the measures, using a fixed number of training instances. Figure 4.2 show the results for

informative and non-informative attributes when there are � , � , and �
� classes.

The estimates of informative attributes by all three measures decrease exponentially with

the number of values. The effect is less extreme for symmetrical uncertainty compared

with the other two. This behaviour is comparable with Occam’s Razor, which states that,

all things being equal, the simplest explanation is usually the best. In practical terms,

feature selection using these measures will prefer features with fewer values to those with

more values; furthermore, since probability estimation is likely to be more reliable for

attributes with fewer values (especially if data is limited), there is less risk of overfitting

the training data and generalizing poorly to novel cases.

For non-informative attributes, the MDL measure is the best of the three. Its estimates

are always less than zero—clearly distinguishing them from the informative attributes.

Symmetrical uncertainty and relief both exhibit a linear bias in favour of non-informative

attributes with more values. Relief’s estimates are lower (relative to the informative at-

tributes) than symmetrical uncertainty. When the curves corresponding to the number of

classes are compared between informative and non-informative attributes for symmetrical

uncertainty and relief, it can be seen from the scale of the graphs that there is a clear sep-

aration between the estimates for informative and non-informative attributes—even when

the informative attributes are least informative, that is, when the number of classes is �
(see Equation 4.15). However, there is a possibility that a non-informative attribute with

64

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40

sy
m

m
et

ric
al

 u
nc

er
t.

co
ef

f.

number of attribute values

informative C=10
informative C=5

informative C= 2

(a)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40

sy
m

m
et

ric
al

 u
nc

er
t.

co
ef

f.

number of attribute values

non-informative C=10
non-informative C=5
non-informative C=2

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40

sy
m

m
et

ric
al

 r
el

ie
f

number of attribute values

informative C=10
informative C=5

informative C= 2

(c)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40

sy
m

m
et

ric
al

 r
el

ie
f

number of attribute values

non-informative C=10
non-informative C=5
non-informative C=2

(d)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40

no
rm

al
iz

ed
 s

ym
m

et
ric

al
 M

D
L

number of attribute values

informative C=10
informative C=5

informative C= 2

(e)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40

no
rm

al
iz

ed
 s

ym
m

et
ric

al
 M

D
L

number of attribute values

non-informative C=10
non-informative C=5
non-informative C=2

(f)

Figure 4.2: The effects of varying the attribute and class level on symmetrical uncertainty
(a & b), symmetrical relief (c & d), and normalized symmetrical MDL (e & f) when
attributes are informative (graphs on the left) and non-informative (graphs on the right).
Curves are shown for � , � , and ��� classes.

65

many values could be estimated as more useful than a slightly informative attribute by

symmetrical uncertainty and relief. The next section—which examines the behaviour of

the measures when the sample size is varied—shows that the danger of this occurring is

greater when there are fewer training examples.

4.3.3 Varying the Sample Size

Experiments described in this section vary the number of training examples and examine

the effect this has on the behaviour of the correlation measures. Training data sets con-

taining between � � and ��� � � � � instances were generated. The results of each measure

were averaged over �
� � � trials for each training set size. In the graphs presented below,

the number of classes is set to �
� and curves are generated for � , �
� , and ��� attribute

values. Curves for � classes show similar (but less extreme) tendencies as those shown

below and can be found in appendix A.

Figure 4.3 shows the results for the three correlation measures. The behaviour of all

three measures is stable for large training set sizes. The estimates of both symmetrical

uncertainty and symmetrical relief show a tendency to increase exponentially with fewer

training examples. The effect is more marked for attributes (both informative and non-

informative) with more values.

Since the number of training examples for a given problem is typically fixed, an increase

in the value of the measure for a smaller training set does not pose a problem for in-

formative attributes, given that the increase is the same for attributes of differing levels.

However, as can be seen from the graphs, the increase is not constant with respect to at-

tribute level and applies to non-informative attributes as well. Symmetrical uncertainty

and relief show greater increase for both informative and non-informative attributes with

greater numbers of values.

In the graph for the symmetrical uncertainty coefficient (Figure 4.3a and Figure 4.3b), the

worth of an informative attribute with ��� values becomes greater than that of an informa-

tive attribute with �
� values for training sets of less than ����� examples. Both informative

attributes with ��� and ��� values “overtake” the informative attribute with � values at �
���
66

and ��� � training examples respectively. Furthermore, the non-informative attribute with

��� values appears to be more useful than the informative attribute with � values for �
� � or

fewer training examples. Relief is slightly better behaved than the symmetrical uncertainty

coefficient—while the estimate of an informative attribute with ��� values does overtake

that of an informative attribute with �
� values, the estimates of irrelevant attributes do not

exceed those of informative attributes.

For informative attributes, the behaviour of the MDL measure (Figure 4.3e and Fig-

ure 4.3f) is the exact opposite to that of symmetrical uncertainty and relief. Whilst stable

for large numbers of training examples, the MDL measure exhibits a tendency to decrease

exponentially with fewer training examples. A similar tendency can be observed for non-

informative attributes. However, when there are fewer than ��� � � training examples, the

trend reverses and the measure begins to increase. Again, the effect is more prominent

for attributes with greater numbers of values. At less than ��� � training examples, non-

informative attributes with �
� and ��� values appear slightly informative (
� �). In general,

the MDL measure is more pessimistic than the other two—it requires more data in order

to ascertain the quality of a feature.

4.3.4 Discussion

The preceding section empirically examined the bias of three attribute quality measures

with respect to attribute level and training sample size.

For informative attributes, all three measures exhibit behaviour in the spirit of Occam’s

Razor by preferring attributes with fewer values when given a choice between equally

informative attributes of varying level. When calculating the heuristic merit of feature

subsets using Equation 4.2, this bias will result in a preference for subsets containing pre-

dictive features with fewer values—a situation that should be conducive to the induction

of smaller models by machine learning schemes that prefer simple hypotheses.

With respect to irrelevant attributes, the MDL measure is the best of the three. Except

when there are very few training examples, the MDL measure clearly identifies an ir-

relevant attribute by returning a negative value. Symmetrical uncertainty and relief are

67

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 100001200014000160001800020000

sy
m

m
et

ric
al

 u
nc

er
t.

co
ef

f.

number of examples

informative C=10 a=2
informative C=10 a=10
informative C=10 a=20

non-informative C=10 a=2
non-informative C=10 a=10
non-informative C=10 a=20

(a)

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450 500

sy
m

m
et

ric
al

 u
nc

er
t.

co
ef

f.

number of examples

informative C=10 a=2
informative C=10 a=10
informative C=10 a=20

non-informative C=10 a=2
non-informative C=10 a=10
non-informative C=10 a=20

(b)

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 100001200014000160001800020000

sy
m

m
et

ric
al

 r
el

ie
f

number of examples

informative C=10 a=2
informative C=10 a=10
informative C=10 a=20

non-informative C=10 a=2
non-informative C=10 a=10
non-informative C=10 a=20

(c)

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300 350 400 450 500

sy
m

m
et

ric
al

 r
el

ie
f

number of examples

informative C=10 a=2
informative C=10 a=10
informative C=10 a=20

non-informative C=10 a=2
non-informative C=10 a=10
non-informative C=10 a=20

(d)

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 100001200014000160001800020000

no
rm

al
iz

ed
 s

ym
m

et
ric

al
 M

D
L

number of examples

informative C=10 a=2
informative C=10 a=10
informative C=10 a=20

non-informative C=10 a=2
non-informative C=10 a=10
non-informative C=10 a=20

(e)

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300 350 400 450 500

no
rm

al
iz

ed
 s

ym
m

et
ric

al
 M

D
L

number of examples

informative C=10 a=2
informative C=10 a=10
informative C=10 a=20

non-informative C=10 a=2
non-informative C=10 a=10
non-informative C=10 a=20

(f)

Figure 4.3: The effect of varying the training set size on symmetrical uncertainty (a & b),
symmetrical relief (c & d), and normalized symmetrical MDL (e & f) when attributes are
informative and non-informative. The number of classes is � ; curves are shown for � , �
� ,
and ��� valued attributes.

68

linearly biased in favour of irrelevant attributes with greater numbers of values. This is

undesirable when measuring an attribute’s ability to predict the class because an irrele-

vant attribute with many values may appear more useful than an informative attribute with

few values. The experiments of Section 4.3.3 show that the danger of this occurring is

greater for small training set sizes. However, this bias towards multi-valued irrelevant

attributes can be advantageous with respect to the feature-feature inter-correlations used

in the denominator of Equation 4.2. In Equation 4.2, a feature is more acceptable if it

has low correlation with the other features—a multi-valued irrelevant feature will appear

more correlated with the others and is less likely to be included in the subset.

Symmetrical uncertainty and relief are optimistic measures when there is little training

data; the MDL measure is pessimistic. When training sets are small, using the MDL

measure in Equation 4.2 may result in a preference for smaller feature subsets containing

only very strong correlations with the class.

The next section introduces CFS, a correlation based feature selection algorithm that uses

the attribute quality measures described above in its heuristic evaluation function.

4.4 A Correlation-based Feature Selector

CFS is a simple filter algorithm that ranks feature subsets according to a correlation based

heuristic evaluation function. The bias of the evaluation function is toward subsets that

contain features that are highly correlated with the class and uncorrelated with each other.

Irrelevant features should be ignored because they will have low correlation with the class.

Redundant features should be screened out as they will be highly correlated with one or

more of the remaining features. The acceptance of a feature will depend on the extent

to which it predicts classes in areas of the instance space not already predicted by other

features. CFS’s feature subset evaluation function (Equation 4.2) is repeated here (with

slightly modified notation) for ease of reference:

�
�

 	 ��� �

� 	�
 	 �
	
� � � � � � (4.16)

69

where
�

� is the heuristic “merit” of a feature subset � containing
	

features,
� � � is

the mean feature-class correlation
� 	 � � �

, and
� � � is the average feature-feature inter-

correlation. The numerator of Equation 4.16 can be thought of as providing an indication

of how predictive of the class a set of features are; the denominator of how much redun-

dancy there is among the features.

Equation 4.16 forms the core of CFS and imposes a ranking on feature subsets in the

search space of all possible feature subsets. This addresses issue
�

(evaluation strategy) in

Langley’s [Lan94] characterization of search based feature selection algorithms (Chapter
�
, Section �). Since exhaustive enumeration of all possible feature subsets is prohibitive

in most cases, issues � , � , and
�
, concerning the organization of the search, start point,

and stopping criterion must be addressed also. The implementation of CFS used in the

experiments described in this thesis allows the user to choose from three heuristic search

strategies: forward selection, backward elimination, and best first. Forward selection

begins with no features and greedily adds one feature at a time until no possible single

feature addition results in a higher evaluation. Backward elimination begins with the

full feature set and greedily removes one feature at a time as long as the evaluation does

not degrade. Best first can start with either no features or all features. In the former, the

search progresses forward through the search space adding single features; in the latter the

search moves backward through the search space deleting single features. To prevent the

best first search from exploring the entire feature subset search space, a stopping criterion

is imposed. The search will terminate if five consecutive fully expanded subsets show no

improvement over the current best subset.

Figure 4.4 shows the stages of the CFS algorithm and how it is used in conjunction with

a machine learning scheme. A copy of the training data is first discretized using the

method of Fayyad and Irani [FI93], then passed to CFS. CFS calculates feature-class and

feature-feature correlations using one of the measures described in section refsec:cnf and

then searches the feature subset space. The subset with the highest merit (as measured

by Equation 4.16) found during the search is used to reduce the dimensionality of both

the original training data and the testing data. Both reduced datasets may then be passed

to a machine learning scheme for training and testing. It is important to note that the

70

general concept of correlation-based feature selection does not depend on any one module

(such as discretizaton). A more sophisticated method of measuring correlation may make

discretization unnecessary. Similarly, any conceivable search strategy may be used with

CFS.

Calculate
feature
correlations

feature-class:
f1 f2 f3 f4

class

f1 f2

f4f3

feature-feature:

Search

Feature
evaluation

feature
set merit

Discretisation

Dimensionality
Reduction

ML algorithm

Final
evaluation

Data pre-processing

CFS

Training data

Testing data

Estimated
accuracy

feature
set

Figure 4.4: The components of CFS. Training and testing data is reduced to contain only
the features selected by CFS. The dimensionally reduced data can then be passed to a
machine learning algorithm for induction and prediction.

Three variations of CFS—each employing one of the attribute quality measures described

in the previous section to estimate correlations in Equation 4.16—are evaluated in the

experiments described in Chapter � . CFS-UC uses symmetrical uncertainty to measure

correlations, CFS-MDL uses normalized symmetrical MDL to measure correlations, and

CFS-Relief uses symmetrical relief to measure correlations. Unknown (missing) data

values are treated as a separate value when calculating correlations. The best way to

deal with unknowns depends on their meaning in the domain. If the unknown has a

special meaning (for example, a blank entry for a particular symptom of a disease may

mean that the patient does not exhibit the symptom), treating it as a separate value is

the best approach. However, if the unknowns represent truly missing information, then a

71

more sophisticated scheme such as distributing the counts associated with missing entries

across the values of an attribute (in proportion to their relative frequencies) may be more

appropriate.

Table 4.2 and Table 4.3 give an example of CFS applied to the “Golf” data set (Table

2.1). Table 4.2 shows the feature correlation matrix for the data set—relief has been used

to calculate the correlations. Table 4.3 illustrates a forward selection search through the

feature subset space along with the merit of each subset, calculated using Equation 4.16.

The search begins with the empty set of features, which has zero merit. Each single

feature addition to the empty set is evaluated; Humidity is added to the subset because it

has the highest score. The next step involves trying each of the remaining features with

Humidity and choosing the best (Outlook). Similarly, in the next stage Wind is added to

the subset. The last step tries the single remaining feature (Temperature) with the current

subset; this does not improve its merit and the search terminates. The best subset found

(Outlook, Humidity, Wind) is returned.

Outlook Temperature Humidity Wind Class

Outlook
�

�

	 	�	 	
�

� �
� 	
�

	�� � 	
�

	�	 � 	
�

� ��	

Temperature
�

�

	 	�	 	
�

� � � 	
�

	�� � 	
�

	����

Humidity
�

�

	 	 	 	
�

	�	 	 	
�

� � �

Wind
�

�

	�	 	 	
�

	�� �

Table 4.2: Feature correlations calculated from the “Golf” dataset. Relief is used to cal-
culate correlations.

Computational Expense The time complexity of CFS is quite low. It requires �
� �

�

�
�

�
� ��� � operations for computing the pairwise feature correlation matrix, where � is the

number of instances and � is the initial number of features. The feature selection search

requires
�

�

�
�

�
� � � operations (worst case) for a forward selection or backward elimi-

nation search. Best first search in its pure form is exhaustive, but the use of a stopping

criterion makes the probability of exploring the entire search space small. In evaluating

Equation 4.16 for a feature subset � containing
	

features,
	

additions are required in

the numerator (feature-class correlations) and
�
	 �

�

	 � � � additions are required in the

denominator (feature-feature inter-correlations). Since the search algorithm imposes a

partial ordering on the search space, the numerator and denominator of Equation 4.16

can be calculated incrementally; this requires only one addition (or subtraction if using a

72

Feature set
� ����� �����

Merit� � 	
N/A N/A

	
�

	

�
Outlook

� � 	
�

�
� 	 �
�

	�	 	 �
	���
 ������ ������������������
 � �
	

�

� ��	

�
Temperature

� � 	
�

	���� �
�

	 	�	 �
	���
 �
���� ������������������
 � �

	
�

	����

�
Humidity

� � 	
�

�
��� �
�

	�	 	 �
	���
 �� �� ������������������
 � �
	

�

� � �

�
Wind

� � 	
�

	�� � �
�

	�	 	 �
	���
 �� ��� ������������������
 � �
	

�

	 � �

�
Outlook Humidity

� � 	
�

�
� � 	
�

	���� �
	���
 � � �

�
�
�
�
�
�!���"�

 �

� �
�

	
�

� � 	

�
Temperature Humidity

� � 	
�

� 	�� 	
�

� � �
�
	���
 ��� ��

�
�
�
�
�
�!���"�

���
�

	
�

� � �

�
Humidity Wind

� � 	
�

� ��� 	
�

	
�
	���
 ������

�
�
�
�
�
�����#��
 � �

	
�

� ���

�
Outlook Temperature Humidity

� � 	
�

���%$� 	
�

� ��� ��	���
 ����&�� �������'���!���"�

 ���
�
�

	
�

� � �

�
Outlook Humidity Wind

� � 	
�

� � � 	
�

	 	�� � ��	���
 ���
�� �������'�(�����#��
 ����)�* �

	
�

� � �

�
Outlook Temperature Humidity Wind

� � 	
�

� 	 � 	
�

	 � �
� +,	���
 ��� �� +��!+
�-+������#��
 ��.��� �
	

�

� � �

Table 4.3: A forward selection search using the correlations in Table 4.2. The search
starts with the empty set of features [] which has merit ��� � . Subsets in bold show where
a local change to the previous best subset has resulted in improvement with respect to the
evaluation function.

backward search) in the numerator and
	

additions/subtractions in the denominator.

If a forward search is used, it is not necessary to pre-compute the entire feature correla-

tion matrix; feature correlations can be calculated as they are needed during the search.

Unfortunately, this can not be applied to a backward search as a backward search begins

with all features.

Independence Assumption Like the naive Bayesian classifier, CFS assumes that features

are conditionally independent given the class. Experiments with naive Bayes on real data

sets has shown that it can perform well even when this assumption is moderately vio-

lated [DP96, DP97]; it is expected that CFS can identify relevant features when moderate

feature dependencies exist. However, when strong feature interactions occur, CFS may

fail to select all the relevant features. An extreme example of this is a parity problem—no

feature in isolation will appear any better than any other feature (relevant or not). Chapter

� explores two additional methods for detecting feature dependencies given the class.

73

4.5 Chapter Summary

This chapter presents a new feature selection technique for discrete-class supervised learn-

ing. The technique, dubbed CFS (Correlation-based Feature Selection) assumes that use-

ful feature subsets contain features that are predictive of the class but uncorrelated with

one another. CFS computes a heuristic measure of the “merit” of a feature subset from

pair-wise feature correlations and a formula adapted from test theory. Heuristic search is

used to traverse the space of feature subsets in reasonable time; the subset with the highest

merit found during the search is reported.

CFS treats features uniformly by discretizing all continuous features in the training data at

the outset. The supervised discretization method of Fayyad and Irani [FI93] is employed

because this method has been found to perform the best when used as a pre-processing

step for machine learning algorithms [DKS95, KS96a].

Three measures of association between nominal variables are reviewed for the task of

quantifying the feature-class and feature-feature correlations necessary to calculate the

merit of a feature subset from Equation 4.16. Symmetrical uncertainty, MDL, and relief

all prefer predictive features with fewer values over those with more values. The bias

of these measures is likely to promote the choice of feature subsets that will give good

results with machine learning algorithms (especially those that prefer compact predictive

theories) than the bias of measures (such as information gain) that favour multi-valued

attributes. All three measures may report irrelevant attributes with many values as being

predictive to some degree. The chance of an irrelevant attribute being preferred to a

predictive one is greatest when there are few training examples.

74

Chapter 5

Datasets Used in Experiments

In order to evaluate the effectiveness of CFS for selecting features for machine learning,

this thesis takes an empirical approach by applying CFS as a pre-processing step for

several common machine learning algorithms.

This chapter reviews the datasets and the general methodology used in the experiments

presented in Chapters
�
, � , and � .

5.1 Domains

Twelve natural domains and six artificial domains were used for evaluating CFS with

machine learning algorithms. The natural domains and the three artificial Monk’s do-

mains [TBB � 91] are drawn from the UCI repository of machine learning databases

[MM98]. These domains were chosen because of (a) their predominance in the liter-

ature, and (b) the prevalence of nominal features, thus reducing the need to discretize

feature values.

In addition, three artificial domains of increasing difficulty were borrowed from Langley

and Sage [LS94c], where they were used to test a wrapper feature selector for nearest

neighbour classification. Artificial domains are useful because they allow complete con-

trol over parameters such as attribute level, predictive ability of attributes, number of

irrelevant/redundant attributes, and noise. Varying parameters allows conjectures to be

tested and the behaviour of algorithms under extreme conditions to be examined.

75

Table 5.1 summarises the characteristics of these domains. The default accuracy is the

accuracy of always predicting the majority class on the whole dataset. For the three

artificial domains (A � , A � , and A
�
), the default accuracy is the default accuracy in the

limit, that is, given that each example is equally likely and an infinite sample is available.

Variations of the three artificial domains with added irrelevant and redundant features are

used to test CFS’s ability to screen out these types of features.

Average # Max/Min # Default
Domain Instances Features % Missing Feature Vals Feature Vals Class Vals Accuracy

mu
� ��� � � � �

�

� �
�

� �
� � � � � �
�

�

vo
� � � � � �

�

� �
�

	 � � � � � �
�

�

v
� � � � �
� �

�

� �
�

	 � � � � � �
�

�

cr
� ��	 �
� 	

�

� �
�

� � � � � � � �
�

�

ly
� � � � � 	

�

	 �
�

� � � � � � �
�

�

pt
� ��� � � �

�

� �
�

� � � � � � � �
�

�

bc
� ��� � 	

�

� �
�

� � � � � � � 	
�

�

dna
� 	�� � � 	

�

	 �
�

	 � ��� � � 	
�

	

au
� � � � � �

�

	 �
�

� � � � � � � �
�

�

sb
� ��� ��� �

�

� �
�

� � � � �
� � �
�

�

hc
� ��� � � � �

�

� � �
�

� � � � � � � ���
�

�

kr
� �
� � � � 	

�

	 �
�

	 � � � � � �
�

�

A
� � 	�	 	 � 	

�

	 �
�

	 � � � � � �
�

�

A
� � 	�	 	 � 	

�

	 �
�

	 � � � � � 	
�

	

A
� � 	�	 	 � 	

�

	 �
�

	 � � � � � �
�

	

M
� � � � � 	

�

	 �
�

� � � � � � 	
�

	

M
� � � � � 	

�

	 �
�

� � � � � � �
�

�

M
� � � � � 	

�

	 �
�

� � � � � � �
�

�

Table 5.1: Domain characteristics. Datasets above the horizontal line are natural domains;
those below are artificial. The % Missing column shows what percentage of the data
set’s entries (number of features � number of instances) have missing values. Average #
Feature Vals and Max/Min # Feature Vals are calculated from the nominal features present
in the data sets.

The following is a brief description of the datasets.

Mushroom (mu) This dataset contains records drawn from The Audubon Society Field

Guide to North American Mushrooms [Lin81]. The task is to distinguish edible from

poisonous mushrooms on the basis of � � nominal attributes describing characteristics of

the mushrooms such as the shape of the cap, odour, and gill spacing. This is a large

dataset containing 8124 instances. C4.5 and IB1 can achieve over
� �

% accuracy on this

dataset, but naive Bayes does not do as well, suggesting that many of the attributes may

be redundant.

76

Vote (vo, v1) In this dataset the party affiliation of U.S House of Representatives Con-

gressmen is characterised by how they voted on 16 key issues such as education spending

and immigration. There are
� � � (� � � democrats, � � � republicans) instances and all fea-

tures are binary. In the original data, there were nine different types of vote a congressman

could make. Some of these have been collapsed into related voting categories. The v �
version of this dataset has the single most predictive attribute (physician-fee-freeze) re-

moved.

Australian credit screening (cr) This dataset contains
� � � instances from an Australian

credit company. The task is to distinguish credit-worthy from non credit-worthy cus-

tomers. There are ��� attributes whose names and values have been converted to meaning-

less symbols to ensure confidentiality of the data. There are six continuous features and

nine nominal. The nominal features range from � to � �
values.

Lymphography (ly) This is a small medical dataset containing � �
� instances. The task

is to distinguish healthy patients from those with metastases or malignant lymphoma.

All � � features are nominal. This is the one of three medical domains (the others being

Primary Tumour and Breast Cancer) provided by the University Medical Centre, Institute

of Oncology, Ljubljana, Yugoslavia.

Primary Tumour (pt) This dataset involves predicting the location of a tumour in the

body of a patient on the basis of ��� nominal features. There are � � classes corresponding

to body locations such as lung, pancreas, liver, and so forth.
� � � instances are provided.

Breast Cancer (bc) The task is to predict whether cancer will recur in patients. There are
�

nominal attributes describing characteristics such as tumour size and location. There

are � � �
instances.

Dna-promoter (dna) A small dataset containing � �
positive examples of E. coli promoter

gene sequences and � �
negative examples. There are ��� nominal attributes representing

the gene sequence. Each attribute is a DNA nucleotide (“base-pair”) having four possible

values (A, G, T, C).

Audiology (au) The task is to diagnose ear dysfunctions. There are 226 instances de-

77

scribed by
� �

nominal features. There are � �
classes. This dataset is provided by Profes-

sor Jergen at the Baylor College of Medicine.

Soybean-large (sb) The task is to diagnose diseases in soybean plants. There are 683

examples described by
� � nominal features. Features measure properties of leaves and

various plant abnormalities. There are � �
classes (diseases).

Horse colic (hc) There are
� � � instances in this dataset, provided by Mary McLeish

and Matt Cecile from the University of Guelph. There are � � attributes, of which � are

continuous. Features include whether a horse is young or old, whether it had surgery,

pulse, respiratory rate, level of abdominal distension, etc. There are a number of attributes

that could serve as the class—the most commonly used is whether a lesion is surgical.

Chess end-game (kr) This dataset contains
� � � �

chess end-game board descriptions.

Each end game is a King + Rook versus King + Pawn on a � (one square away from

queening) and it is the King + Rook’s side (white) to move. The task is to predict if white

can win on the basis of
� �

features that describe the board. There is one feature with three

values; the others are binary.

A1, A2, A3 These three boolean domains are borrowed from Langley and Sage [LS94c].

They exhibit an increasing level of feature interaction. Irrelevant and redundant attributes

are added to these domains to test CFS’s ability to deal with these sorts of features.

A1 is a simple conjunction of three features and exhibits the least amount of feature

interaction. The concept is:
� � � � �

The class is � when
�

, � , and � all have the value � , otherwise the class is � .

A2 is a disjunct of conjuncts (sometimes known as an � -of- � concept). In this case it is

a � -of-
�

concept—that is, the class is � if � or more of bits
�

, � , and � are set to � :

� � � �
��� � � � �

��� �
� � �

�

This problem is more difficult than A � due to the higher degree of interaction among the

78

�
features.

A3 exhibits the highest degree of feature interaction, similar to a parity problem in that

no single feature in isolation will appear useful. The concept is:

� � � � � �
��� � �� � �

� � �

�
�

This last domain is included as an example of a situation when CFS will fail to select the

relevant features due to the fact that its assumption of attribute independence given the

class is completely incorrect.

Monk’s problems The Monk’s problems are three artificial domains, each using the same

representation, that have been used to compare machine learning algorithms [TBB � 91].

Monk’s domains contain instances of robots described by six nominal features:

Head-shape
� �

round, square, octagon
�

Body-shape
� �

round, square, octagon
�

Is-smiling
� �

yes, no
�

Holding
� �

sword, balloon, flag
�

Jacket-colour
� �

red, yellow, green, blue
�

Has-tie
� �

yes, no
�

There are three Monk’s problems, each with
� � � instances in total. For each problem

there is a standard training and test set.

Monk1 (M1) The concept is:

�
head-shape

body-shape

�
or

�
jacket-colour

red

�

This problem is difficult due to the interaction between the first two features. Note that

only one value of the jacket-colour feature is useful.

79

Monk2 (M2) The concept is:

Exactly two of the features have their first value.

This is a hard problem due to the pairwise feature interactions and the fact that only one

value of each feature is useful. Note that all six features are relevant to the concept. C4.5

does no better than predicting the default class on this problem.

Monk3 (M3) The concept is:

�
jacket-colour

green and holding

sword

�
or

�
jacket-colour

�

blue and body-shape

�

octagon

�

The standard training set for this problem has � % class noise added—that is, � % of the

training examples have had their label reversed. This is the only Monk’s problem that

is not noise free. It is possible to achieve approximately
� � % accuracy using only the

(jacket-colour
�

blue and body-shape
�

octagon) disjunct.

5.2 Experimental Methodology

The experiments described in this thesis compare runs of machine learning algorithms

with and without feature selection on the datasets described in the previous section. Ac-

curacy of algorithms is measured using random subsampling, which performs multiple

random splits of a given dataset into disjoint train and test sets. In each trial, an algorithm

is trained on the training dataset and the induced theory is evaluated on the test set. When

algorithms are compared, each is applied to the same training and test sets. The testing ac-

curacy of an algorithm is the percentage of test examples it classifies correctly. Table 5.2

shows the train and test set sizes used with the natural domains and the Monk’s problems.

On the natural domains, a two-thirds training and one-third testing split was used in all

but four cases. A fifty/fifty split was used on the vote datasets, a one-third/two-thirds split

on credit and one-eighth of the instances were used for training on mushroom (the largest

80

dataset). In the case of the Monk’s problems, testing is performed on the full dataset (as

was done originally by Thrun et al. [TBB � 91]). Various different train and test set sizes

are used with the artificial domains A � –
�

(see Chapter 6 for details).

Domain Train size Test size

mu
�
	 	 	 � �
� �

vo
� � � � � �

v
� � � � � � �

cr
��� � � ���

ly
��� � 	

pt
��� � � � �

bc
�
� � � �

dna
��� � �

au
� � � ���

sb
� � 	 ��� �

hc
� � � ��� �

kr
� � � 	 �
	 ���

M
� ��� � � ���

M
� �
� � � ���

M
� ��� � � ���

Table 5.2: Training and test set sizes of the natural domains and the Monk’s problems.

With the exception of learning curve experiments (described below), accuracy is averaged

over 50 train-test trials on a given dataset. Furthermore, each train and test set split is

stratified. Stratification ensures the class distribution from the whole dataset is preserved

in the training and test sets. Stratification has been shown to help reduce the variance of

the estimated accuracy—especially for datasets with many classes [Koh95b].

Since CFS requires datasets to be discretized, the discretization method of Fayyad and

Irani [FI93] is applied to a copy of each training dataset before it is passed to CFS. Be-

cause only the effects of feature selection are of interest, all induction is performed using

the original, undiscretized training datasets. For a test using CFS with dataset
�

, for

example, the dataset is discretized, features are selected, then the machine learning algo-

rithm is run, using the selected features in their original, nondiscrete form.

Two-tailed paired t-tests are used to determine whether the difference between two al-

gorithms is significant or not. Difference in accuracy is considered significant when the

p-value is less than � � � � (confidence level is greater than
� � %). When two or more algo-

rithms are compared, a table of accuracies is given summarising the results. The symbols

“

” (or “ � ”) are used to denote that one algorithm is (statistically) significantly better

81

(or worse) than the other. In discussion of results, if one algorithm is stated to be bet-

ter or worse than another then it is significantly better or worse at the ��� � � level. Often,

a bar graph showing the absolute accuracy difference between two algorithms is given.

For example, Figure 5.1 shows the absolute difference in accuracy between naive Bayes

using CFS for feature selection and naive Bayes without feature selection. A bar above

the zero line indicates that CFS has managed to improve naive Baye’s performance; a

bar below the zero line indicates that CFS has degraded naive Bayes performance. Stars

on the bar graph show where differences are statisically different. For C4.5, tables and

graphs summarising induced tree sizes are reported.

-15

-10

-5

0

5

10

mu vo v1 cr ly pt bc dna au sb hc kr

ac
cu

ra
cy

 d
iff

er
en

ce

dataset

Figure 5.1: Effect of CFS feature selection on accuracy of naive Bayes classification.
Dots show results that are statistically significant

The experiments described in Section � of the next chapter examine CFS’s ability to deal

with irrelevant and redundant attributes. It is interesting to examine learning curves for

algorithms (such as naive Bayes and IB1) that are adversely affected by these kinds of

attributes. A learning curve shows how quickly an algorithm’s performance improves as

it is given access to more training examples. Random subsampling, as described above,

is used to generate training datasets of a given size (� � instances are added at every suc-

cessive iteration). Testing is performed on the remaining instances. Accuracy for each

training set size is averaged over ten trials. For example, Figure 5.2 shows a learning

82

curve for IB1 on the A � artificial domain with ��� added irrelevant attributes. The error

bars represent a 90% confidence interval.

66

68

70

72

74

76

78

20 60 100 140 180 220 260 300 340 380 420 460 500

ac
cu

ra
cy

training set size

Figure 5.2: The learning curve for IB1 on the dataset A � with �
� added irrelevant at-
tributes.

Three variations of CFS, using the attribute correlation measures from the previous chap-

ter, are evaluated in the experiments:

� CFS-UC uses symmetrical uncertainty to measure attribute correlations.

� CFS-MDL uses normalized symmetrical MDL to measure attribute correlations.

� CFS-Relief uses symmetrical relief to measure attribute correlations.

A forward best first search is used with all three variations of CFS; initial experiments

showed this search strategy performed slightly better than forward selection, and the same

as backward elimination. The forward best first search evaluated fewer subsets than back-

ward elimination. The best first search stops when � consecutive fully expanded nodes

showing no improvement (according to the heuristic merit function) have been evaluated.

This stopping criterion is the default used in the ��� � ++ [KJL � 94] implementation of

the wrapper feature selector. Chapter � compares CFS with the wrapper.

83

When execution times for algorithms are mentioned, they are reported in CPU units on a

Sun Sparc server �
� � � .

84

Chapter 6

Evaluating CFS with 3 ML Algorithms

This chapter describes an evaluation of CFS using artificial and natural machine learning

datasets. With artificial domains, the relevant features are known in advance and CFS

performance can be directly ascertained. With natural domains, the relevant features are

often not known in advance, so the performance of CFS must be measured indirectly. One

way to do this is to compare a learning algorithm’s performance with and without feature

selection by CFS.

Section 6.1 examines CFS’s ability to deal with irrelevant and redundant features in ar-

tificial domains. In Section 6.2, CFS is used to select features on natural domains and

the performance of machine learning algorithms, before and after feature selection, is

compared.

6.1 Artificial Domains

The purpose of the experiments described in this section is to empirically test the claim

that CFS’s feature evaluation heuristic (Equation 4.16) can filter irrelevant and redundant

features.

Boolean domains Sections 6.1.1 and 6.1.2 discuss the performance when irrelevant and

redundant features are added to three artificial boolean domains borrowed from Langley

and Sage [LS94c]. The three concepts are:

A1
� � � � �

85

A2
� � � �

��� � � � �
��� �

� � �
�

A3
� � � � � �

��� � �� � �

� � �

�
�

The concepts exhibit an increasing level of feature interaction and therefore provide the

opportunity to test CFS’s behaviour when its assumption of feature independence given

the class is violated.

For each domain, a dataset is randomly generated containing ��� � � examples with irrel-

evant attributes added, and a second dataset is randomly generated containing �
��� � ex-

amples with redundant attributes added. In the experiments presented below, the number

of relevant and irrelevant/redundant attributes selected by CFS is plotted as a function of

the number of training examples shown to CFS. This allows the behaviour of the different

attribute correlation measures used in the
�

variations of CFS (CFS-UC, CFS-MDL, and

CFS-Relief) to be compared. Training sets increasing in size by � � examples per iteration

are selected by the random subsampling method described in the previous chapter. The

number of relevant and irrelevant/redundant attributes is averaged over �
� trials for each

training set size. Because IB1 is sensitive to irrelevant attributes, learning curves illus-

trating the impact of feature selection on IB1’s accuracy are shown for the datasets with

added irrelevant attributes. Similarly, as naive Bayes can be affected by redundant at-

tributes, learning curves are shown for naive Bayes on the datasets with added redundant

attributes.

Monk’s problems The Monk’s problems [TBB � 91] are challenging artificial domains

that have been used to compare the performance of machine learning algorithms. These

domains involve irrelevant features, noise, and high degrees of feature interaction. Sec-

tion 6.1.3 tests CFS on these concepts.

6.1.1 Irrelevant Attributes

These versions of the boolean domains A � , A � , and A
�

each have fifteen uniformly ran-

dom boolean attributes, one uniformly random � -valued attribute, and one uniformly ran-

dom ��� -valued attribute added for a total of twenty attributes, seventeen of which are

86

irrelevant.

Concept A1 Figure 6.1 shows the number of irrelevant attributes selected by the three

variations of CFS on concept A1. The results show that the average number of irrelevant

attributes included by all three versions of CFS decreases rapidly as more training exam-

ples are seen. CFS-MDL decreases faster than either CFS-UC or CFS-Relief. This agrees

with the results of Chapter
�

which showed the MDL measure to be the most effective at

identifying irrelevant attributes.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

20 60 100 140 180 220 260 300 340 380 420 460 500

irr
el

ev
an

t f
ea

tu
re

s

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.1: Number of irrelevant attributes selected on concept A1 (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

CFS-Relief selects fewer irrelevant attributes than CFS-UC at training sets of ��� exam-

ples, but requires more training examples than either of the other two methods before the

number of irrelevant attributes drops to zero. However, given
� � training examples, all

three variations of CFS select, on average, less than � irrelevant attribute of the ��� .

Figure 6.2 shows the number of relevant attributes selected by the three variations of

CFS on concept A � . The best results are exhibited by CFS-UC, which always selects all
�

relevant features once
� � training examples have been seen. The average number of

relevant features selected by CFS-MDL starts low, but increases rapidly as more training

examples are seen. This is consistent with the results of Chapter
�
, which show that the

87

0

0.5

1

1.5

2

2.5

3

3.5

20 60 100 140 180 220 260 300 340 380 420 460 500

re
le

va
nt

 fe
at

ur
es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.2: Number of relevant attributes selected on concept A1 (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

MDL measure is pessimistic (compared to either gain ratio or relief) in its estimates of

relevant attributes when there are few training examples.

The results for CFS-Relief are worse than those for the other two methods. The average

number of relevant features selected by CFS-Relief increases as more training instances

are seen, but not as rapidly as the other two methods, and there is more variation (the

curve is less stable). CFS-Relief does not reliably include all three relevant features by

the time � � � training examples have been seen1. This is a curious result that bears further

investigation.

Understanding the poor performance of CFS-Relief, relative to the other methods, be-

gins with consideration of the feature-class correlations assigned by the three methods.

Table 6.1 shows the feature-class correlations assigned to the three relevant features by

symmetrical uncertainty, MDL, and relief using the full �
� � � instances in the dataset for

concept A � . The values assigned to the three features by symmetrical uncertainty and

MDL are very close (the estimate for � is slightly lower than
�

or �), which is what one

would expect. In fact, if examples of the concept are drawn from a uniformly random

1The experiment was continued up to
� 	�	

training examples. After
� 	 	

training examples, CFS-Relief
was selecting all three relevant features consistently.

88

distribution, in the limit (as the sample size approaches infinity) the correlation values for

all three features will be equal. However, relief estimates attribute � much lower (relative

to
�

and �) than symmetrical uncertainty or MDL does.

symmetrical
Attribute uncertainty MDL relief

� 	
�

� ����� 	
�

� � 	�� 	
�

� 	 ���

� 	
�

� � ��� 	
�

� � �
� 	
�

� �
	 �

� 	
�

� � �
	 	
�

� ��� � 	
�

	 �����

Table 6.1: Feature-class correlation assigned to features
�

, � , and � by symmetrical
uncertainty, MDL, and relief on concept A � .

Since A � is a conjunctive concept, splitting the instances on the basis of any of the three

relevant attributes will produce a pure subset (all instances are of class �) corresponding

to the value � of the attribute. Using 1R [Hol93] to produce rules for the three relevant

attributes on the full set of �
� � � instances gives:

Rule for
�

:
class

� � � :-
� � � � . (covers

� � �
out of

� � � examples)
class

� � � :-
� � � � . (covers 510 out of 510 examples)

Rule for � :
class

� � � :- �
� � � . (covers

� � � out of
�

� � examples)
class

� � � :- �
� � � . (covers � �
� out of � ��� examples)

Rule for � :
class

� � � :- �
� � � . (covers

� � � out of � ��� examples)
class

� � � :- �
� � � . (covers

�
� �

out of
�

� �
examples)

The proportion of class � examples covered when an attribute has the value � is about � ���

for all three attributes, which indicates that they are being differentiated on the basis of the

size of their respective pure nodes. When the value is � , � covers � ��� examples,
�

covers

� �
� examples, and � covers
�

� �
examples—which is exactly the ranking assigned by the

�
measures in Table 6.1. Relief is a modification of the gini impurity measure2[Bre96b].

Breiman notes that the gini criterion prefers splits that put the largest class into one pure

node. Relief appears to be more sensitive to the size of the pure node than either symmet-

rical uncertainty or MDL.

Figure 6.3 shows the learning curves for IB1 with and without feature selection. The

2See Chapter
�

Section
�

�

�
�

�
.

89

80

82

84

86

88

90

92

94

96

98

100

102

20 60 100 140 180 220 260 300 340 380 420 460 500

ac
cu

ra
cy

training set size

IB1
CFS-UC-IB1

CFS-MDL-IB1
CFS-Relief-IB1

Figure 6.3: Learning curves for IB1, CFS-UC-IB1, CFS-MDL-IB1, and CFS-Relief-IB1
on concept A1 (with added irrelevant features)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

20 60 100 140 180 220 260 300 340 380 420 460 500

irr
el

ev
an

t f
ea

tu
re

s

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.4: Number of irrelevant attributes selected on concept A2 (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size. Note:
CFS-UC and CFS-Relief produce the same result.

90

accuracy of IB1 without feature selection increases slowly as the number of training ex-

amples increases due to the high number of irrelevant features. IB1’s accuracy starts off

at �
� � � �

(below the default accuracy for the concept) and finishes (after ��� � training ex-

amples) at � � � �
In contrast, the accuracy of IB1 after feature selection by CFS-UC and

CFS-MDL increases rapidly—reaching �
� � � after only � � and �
��� training examples re-

spectively. The accuracy of IB1 after feature selection by CFS-Relief is still better than

that of IB1 without feature selection, but does not reach �
� � � due to the fewer relevant

features included by this method. The shape of the learning curves for IB1 with feature

selection correspond very closely to the shape of the curves for the number of relevant

features shown in Figure 6.2.

Concept A2 Figure 6.4 shows the number of irrelevant attributes selected by the three

variations of CFS on concept A � . The results show that all three variations of CFS filter

irrelevant features very quickly on this domain—fewer irrelevant features are included

compared to results for concept A � . Concept A � has a uniform distribution of classes—

unlike concept A � , which has a large majority of class � . Therefore, the differentiation

between informative and non-informative attributes for concept A � is done primarily on

the basis of the small percentage of instances that have class � . Relevant attributes will

always have value � when the class is � ; when there are few training examples, an irrel-

evant attribute may match a relevant attribute for the small percentage of class � cases

by chance, making it seem just as informative. For concept A � , a relevant attribute will

have value � when the class is � for � � � of the cases; similarly, a relevant attribute will

have value � when the class is � for � � � of the cases. In this case, it is less likely that

an irrelevant attribute’s distribution of values given the class will match that of a relevant

attribute’s by chance. As with concept A � , CFS-MDL screens irrelevant features faster

than the other two methods.

Figure 6.5 shows the number of relevant attributes selected by the three variations of CFS

on concept A � . All three variations rapidly identify the three relevant attributes. CFS-UC

and CFS-Relief consistently choose all three relevant attributes once � � � training exam-

ples have been seen; CFS-MDL does the same after
� ��� training examples. Figure 6.6

shows the learning curves for IB1 with and without feature selection on concept A � . As

91

with concept A � , IB1’s accuracy without feature selection improves slowly as more train-

ing examples are seen—from
� �
�

to � � �
after ����� examples. Feature selection allows

IB1 to learn more rapidly and achieve �
� � � accuracy on this concept after only a small

number of training examples. As expected, the shape of the learning curves for IB1 after

feature selection correspond closely to the shape of the curves for the number of relevant

features selected by the three variations of CFS.

Concept A3 This concept has the highest degree of feature interaction of the three, and

it is therefore expected that CFS will be unable to distinguish the relevant features from

the irrelevant features. Figure 6.7 and Figure 6.8 show the number of irrelevant and

relevant features selected by the three variations of CFS, respectively, on this concept.

The graphs show that CFS is indeed unable to distinguish relevant from irrelevant features.

CFS-UC and CFS-Relief select more features (especially irrelevant features) than CFS-

MDL and exhibit a tendency to include more features as more training examples are seen.

Conversely, CFS-MDL appears to favour fewer features as more training examples are

seen.

For this concept CFS’s assumption that features are independent, given the class, means

that—assuming an ideal correlation measure and an infinitely large sample—all feature-

class correlations should be zero, and, by Equation 4.16, the merit of all feature subsets

should also be zero. However, when training examples are limited, features may appear

to be slightly correlated with the class by chance. When there are very few training

instances, a feature may stand out as somewhat better than the others. As the number of

training examples increases, features will become more homogeneous—their correlations

with the class will be more similar to each other (though never becoming exactly zero).

In Chapter
�

it was shown that a feature will be accepted into a subset (that is, increase

the merit of the subset) if its correlation with the class and average inter-correlation with

the features in the subset is the same as the features already in the subset. This explains

why there is a small increasing tendency for features to be included by CFS-UC and CFS-

Relief. CFS-MDL on the other hand, has a small penalty associated with the size of the

model for a feature—decreasing its correlation with the class and often resulting in a value

less than zero. This is shown graphically by Figure 6.9, which plots the average number

92

0.5

1

1.5

2

2.5

3

3.5

20 60 100 140 180 220 260 300 340 380 420 460 500

re
le

va
nt

 fe
at

ur
es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.5: Number of relevant attributes selected on concept A � (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

55

60

65

70

75

80

85

90

95

100

105

20 60 100 140 180 220 260 300 340 380 420 460 500

ac
cu

ra
cy

training set size

IB1
CFS-UC-IB1

CFS-MDL-IB1
CFS-Relief-IB1

Figure 6.6: Learning curves for IB1, CFS-UC-IB1, CFS-MDL-IB1, and CFS-Relief-IB1
on concept A � (with added irrelevant features).

93

-1

0

1

2

3

4

5

6

7

8

20 60 100 140 180 220 260 300 340 380 420 460 500

irr
el

ev
an

t f
ea

tu
re

s

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.7: Number of irrelevant attributes selected on concept A
�

(with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

-0.5

0

0.5

1

1.5

2

20 60 100 140 180 220 260 300 340 380 420 460 500

re
le

va
nt

 fe
at

ur
es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.8: Number of relevant attributes selected on concept A
�

(with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

94

0

0.5

1

1.5

2

2.5

20 60 100 140 180 220 260 300 340 380 420 460 500

irr
el

ev
an

t f
ea

tu
re

s

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.9: Number of irrelevant multi-valued attributes selected on concept A
�

(with
added irrelevant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of train-
ing set size.

of multi-valued irrelevant attributes (there is one � -valued and one ��� -valued irrelevant

attribute) selected by the three variations of CFS. CFS-MDL never selects any multi-

valued irrelevant attributes. The MDL measure’s increased model penalty for features

with more values compensates for any slight “by-chance” correlations with the class.

Figure 6.10 shows the learning curves for IB1, with and without feature selection, on con-

cept A
�
. IB1 without feature selection learns slowly but consistently, unlike IB1 following

feature selection, which shows no clear trend. Interestingly, feature selection using CFS-

MDL results in more consistent performance than using either CFS-UC or CFS-Relief.

CFS-MDL’s performance is roughly � � �
, which is the default accuracy for this version

of the dataset. The tendency of CFS-UC and CFS-Relief to include more irrelevant fea-

tures leads to an erratic performance which is often worse than the default accuracy for

the dataset.

6.1.2 Redundant Attributes

These versions of the boolean domains A � -A
�

each have nine redundant attributes added,

95

64

66

68

70

72

74

76

78

80

82

20 60 100 140 180 220 260 300 340 380 420 460 500

ac
cu

ra
cy

training set size

IB1
CFS-UC-IB1

CFS-MDL-IB1
CFS-Relief-IB1

Figure 6.10: Learning curves for IB1, CFS-UC-IB1, CFS-MDL-IB1, and CFS-Relief-IB1
on concept A

�
(with added irrelevant features).

for a total of twelve attributes. The redundant attributes are copies of attribute
�

in each

of the domains3. There are three boolean redundant attributes, three � -valued redundant

attributes, and three ��� -valued redundant attributes. In each level of redundant attribute

(boolean, � -valued, and ��� -valued) there are two attributes which match attribute
� �
� � �

of the time (exact copies), and one attribute that matches
�

� � � of the time and is uni-

formly random for the remaining ��� � . The multi-valued attributes are made redundant by

joining the values of the attribute into two subsets. If an attribute has
 values, then sub-

sets
� � � � � � �

�
 div � � � and
� �
 div � �
 � � � � � � �
 � � are formed. If attribute

�
’s value is � ,

then the redundant attribute’s value is selected at random from the first subset; otherwise,

its value is selected at random from the second subset.

Since there are six attributes that match attribute
� ��� � � of the time, there are actually

seven subsets that contain exactly three relevant features and no redundant features. The

three attributes that match attribute
�

� � � of the time are treated as relevant but noisy,

adding another three subsets that are not quite as good as the other seven.

Concept A1 Figure 6.11 shows the number of redundant attributes selected by the three

3Other combinations of redundant attributes—for example, some from
�

and some from
�

—were also
tried. Results were similar to those reported here.

96

variations of CFS on concept A � . The average number of redundant attributes decreases

rapidly for CFS-UC and CFS-MDL, with both including less than one redundant attribute

after seeing only
� � training examples. CFS-Relief selects more redundant attributes, on

average, than the other two variations. As with the corresponding dataset for concept

A � (with added irrelevant attributes) the sizes of the pure nodes for the three relevant

attributes vary in this version as well. This time attribute
�

covers
� � �

examples when

it has value � , attribute � covers
�

� � examples, and attribute � covers
�

� � examples.

Table 6.2 shows the feature-class correlations assigned to all the features by symmetrical

uncertainty, MDL, and relief using the full �
� � � instances for this version of concept

A � . All three measures rank attribute
�

and its two binary copies highest. Symmetrical

uncertainty and the MDL measure rank attribute � and � next highest on the list. Relief,

however, ranks the two � -valued attributes which match attribute
� �
��� � of the time

higher than either attribute � or � .

Relief’s sensitivity to the size of an attribute’s pure node in this domain has outweighed

its bias against attributes with more values. Examination of the feature subsets selected by

CFS-Relief shows that attributes � and
�

(the two 5-valued attributes) are often present.

On the full dataset, the correlation between attributes � and
�

assigned by relief is lower

(relative to the other features) than that assigned by symmetrical uncertainty or the MDL

measure, which also helps explain why CFS-Relief often includes these features.

For smaller training set sizes (less than � ��� examples), Figure 6.11 shows that, on av-

erage, CFS-MDL selects slightly more redundant features than CFS-UC. Examining the

feature-feature correlation between either of the two �
� � � redundant boolean features

and attribute
�

, for MDL, reveals a value of � � � � � —not the value of � � � that symmet-

rical uncertainty assigns, which is what one would expect for a correlation between two

features that are exact copies of each other. The explanation for this is again due to the

MDL measure’s extra cost for model complexity. The MDL measure can never achieve

the upper bound of � � � due to the fact that Post MDL, in Equation 4.12, can never be zero.

Figure 6.12 shows the number of relevant attributes selected by the three variations of

CFS on concept A � . As in the case with irrelevant attributes, CFS-UC and CFS-MDL

quickly asymptote to selecting three relevant features while CFS-Relief takes longer.

97

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

20 60 100 140 180 220 260 300 340 380 420 460 500

re
du

nd
an

t f
ea

tu
re

s

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.11: Number of redundant attributes selected on concept A � (with added redun-
dant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

CFS-UC CFS-MDL CFS-Relief
symm.

attr vals red. uncert. attr vals red. MDL attr vals red. relief
� � � 	 	 � 	

�

�
��� � � � � 	 	 � 	
�

�
� ��� � � � 	 	 � 	
�

�
	 � �

� � � 	 	 � 	
�

�
��� � � � � 	 	 � 	
�

�
� ��� � � � 	 	 � 	
�

�
	 � �

� � � 	 	 � 	
�

�
��� � � � � 	 	 � 	
�

�
� ��� � � � 	 	 � 	
�

�
	 � �

� � 	 � 	
�

�
� � � � � 	 � 	
�

�
� � � � � � 	 	 � 	
�

	�� 	 �

� � 	 � 	
�

�
� � 	 � � 	 � 	
�

�
� � � � � � 	 	 � 	
�

	�� � �

� � � 	 � 	
�

��� � 	 � � � 	 	 � 	
�

� � � 	 � � 	 � 	
�

	�� ���

� � � 	 	 � 	
�

�
	 ��� � � � 	 	 � 	
�

� � � � � � 	 � 	
�

	 � ���

� � � 	 	 � 	
�

	�� � � � � � 	 � 	
�

�
� 	 � � � � 	 � 	
�

	 � � �

� � 	 � 	 	 � 	
�

	�� � � � � 	 � 	 	 � 	
�

	�� 	 � � � � 	 � 	
�

	�� � �

� � � 	 � 	
�

	�� � � � � � 	 � 	
�

	�� � � � � 	 � 	 	 � 	
�

	 � � �

� � 	 � 	 	 � 	
�

	�� � � � � 	 � 	 	 � 	
�

	 � � � � � 	 � 	 	 � 	
�

	 � � 	

� � 	 � 	 � 	
�

	 � � � � � 	 � 	 � 	
�

	 � 	�� � � 	 � 	 � 	
�

	�	 � �

Table 6.2: Feature-class correlations assigned by the three measures to all features in the
dataset for A � containing redundant features. The first three columns under each measure
lists the attribute (

�
� � � and � are the original features), number of values the attribute

has, and the level of redundancy.

98

0.5

1

1.5

2

2.5

3

3.5

20 60 100 140 180 220 260 300 340 380 420 460 500

re
le

va
nt

 fe
at

ur
es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.12: Number of relevant attributes selected on concept A1 (with added redundant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

-0.5

0

0.5

1

1.5

2

2.5

3

20 60 100 140 180 220 260 300 340 380 420 460 500

m
ul

ti-
va

lu
ed

 fe
at

ur
es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.13: Number of multi-valued attributes selected on concept A1 (with added re-
dundant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set
size.

99

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 60 100 140 180 220 260 300 340 380 420 460 500

no
is

y
fe

at
ur

es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.14: Number of noisy attributes selected on concept A � (with added redundant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

Figure 6.13 shows the average number of multi-valued features selected by the three vari-

ations of CFS. The results show that CFS-UC and CFS-MDL are effective at filtering

the multi-valued features and preferring the boolean equivalents. CFS-Relief, due to its

higher preference for the two � -valued features, averages between � and � multi-valued

features. The shape of the graph for CFS-Relief in Figure 6.11 is very similar to Fig-

ure 6.13, indicating that the redundant features selected are almost always multi-valued.

Figure 6.14 shows the average number of noisy features selected by the three variations

of CFS (there are three copies of attribute
�

with ��� � noise). The results show that all

three variations of CFS prefer not to include noisy features. Less than one noisy feature is

included on average by all three variations; CFS-UC and CFS-MDL perform better than

CFS-Relief.

Figure 6.15 shows the learning curves for naive Bayes with and without feature selection

on concept A � . For the sake of clarity, 90% confidence intervals have been omitted for

CFS-Relief as they are much wider than for CFS-UC and CFS-MDL. All three variations

of CFS enable naive Bayes to learn much faster than without feature selection. The points

at which CFS-UC-nbayes and CFS-MDL-nbayes dip down slightly from �
� � � accuracy

100

65

70

75

80

85

90

95

100

105

20 60 100 140 180 220 260 300 340 380 420 460 500

ac
cu

ra
cy

training set size

nbayes
CFS-UC-nbayes

CFS-MDL-nbayes
CFS-Relief-nbayes

Figure 6.15: Learning curves for nbayes (naive-Bayes), CFS-UC-nbayes, CFS-MDL-
nbayes, and CFS-Relief-nbayes on concept A � (with added redundant features).

correspond roughly to the peaks of Figure 6.11, where more redundant attributes have

been included in the selected subsets. The larger dips in the curve for CFS-Relief-nbayes

correspond to the points on Figure 6.12, where CFS-Relief, on average, selects fewer than

three relevant attributes.

Concept A2 As in the case with added irrelevant features, all three variations of CFS

perform approximately equally well on concept A � . On average, less than one redundant

feature is included in the subsets chosen by CFS after seeing only
� � training examples

(Figure 6.16). CFS-MDL starts off by including slightly more redundant attributes than

the other two methods. All three variations of CFS perform similarly in identifying the

relevant attributes (Figure 6.17); all three relevant features are consistently identified after
� � � training examples have been seen. This is reflected in the learning curves for naive

Bayes with and without feature selection (Figure 6.18). Without feature selection naive

Bayes does not improve its performance as more training examples are seen. With feature

selection naive Bayes accuracy starts near � � �
and rapidly increases to �
� � � after � ���

training examples. The graphs for multi-valued and noisy attributes are not shown as very

few (zero after �
��� training examples) of these attributes were selected on this concept by

101

-0.5

0

0.5

1

1.5

2

20 60 100 140 180 220 260 300 340 380 420 460 500

re
du

nd
an

t f
ea

tu
re

s

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.16: Number of redundant attributes selected on concept A � (with added redun-
dant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

20 60 100 140 180 220 260 300 340 380 420 460 500

re
le

va
nt

 fe
at

ur
es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure 6.17: Number of relevant attributes selected on concept A � (with added redundant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.

102

70

75

80

85

90

95

100

105

20 60 100 140 180 220 260 300 340 380 420 460 500

ac
cu

ra
cy

training set size

nbayes
CFS-UC-nbayes

CFS-MDL-nbayes
CFS-Relief-nbayes

Figure 6.18: Learning curves for nbayes (naive Bayes), CFS-UC-nbayes, CFS-MDL-
nbayes, and CFS-Relief-nbayes on concept A � (with added redundant features).

all three variations of CFS.

Concept A3 The results for CFS on concept A
�
, with added redundant features, is very

similar to the results for CFS on A
�

with added irrelevant features. CFS is unable to

distinguish between attributes and often fails to include all three relevant features. As

in the case with added irrelevant features, CFS-UC and CFS-Relief show a tendency to

include more features as the sample size increases, while CFS-MDL selects fewer features

(often no features). The full set of graphs can be found in appendix B.

Figure 6.19 shows the learning curves for naive Bayes before and after feature selection.

Naive Bayes cannot improve beyond the default accuracy (� � ��� �) for this version of

concept A
�

due to the extreme feature interaction. The accuracy of naive Bayes after

feature selection by CFS-MDL reaches this maximum faster than the other versions due

to the small number of features (on average) selected. When no features are present, naive

Bayes predicts using the prior probabilities of the class values observed in the training

103

58

60

62

64

66

68

70

72

74

76

20 60 100 140 180 220 260 300 340 380 420 460 500

ac
cu

ra
cy

training set size

nbayes
CFS-UC-nbayes

CFS-MDL-nbayes
CFS-Relief-nbayes

Figure 6.19: Learning curves for nbayes (naive Bayes), CFS-UC-nbayes, CFS-MDL-
nbayes, and CFS-Relief-nbayes on concept A

�
(with added redundant features).

data; since training and test sets are stratified, this will achieve the default accuracy.

6.1.3 Monk’s problems

This section tests CFS on the three Monk’s problems. Each problem uses the same repre-

sentation and has six features. There are three relevant features in M � and M
�
; M � uses

all six features.

There are
� � � examples of each problem and each has a pre-defined training set. The

training sets contain ��� �
, � � �

, and ��� � examples, respectively; the full datasets are used

for testing [TBB � 91]. In the experiments below, training sets of the same size as the

pre-defined sets are generated using the random subsampling method described in the

previous chapter; tesing still uses the full dataset as done by Thrun et. al. [TBB � 91]. The

results are averaged over ��� trials.

Table 6.3 shows the average number of features selected by the three variations of CFS on

the Monk’s problems. All three variations are unable to select all the relevant features for

M � and M � due to the high order feature interactions. The jacket-colour feature is con-

sistently selected for M � and is one of the three relevant features in this concept. All six

104

Domain CFS-UC CFS-MDL CFS-Relief

M
� �

�

	 � 	
�

	 �
�

	 � 	
�

	 �
�

	 � 	
�

	

M
� �

�

� � �
�

� 	
�

� � 	
�

� �
�

� � �
�

�

M
� �

�

	 � 	
�

	 �
�

	 � 	
�

	 �
�

� � 	
�

�

Table 6.3: Average number of features selected by CFS-UC, CFS-MDL, and CFS-Relief
on the Monk’s problems.

features are relevant for M � and all interact. CFS assigns feature-class correlations close

to zero for all features, which results in approximately half the features being selected

by CFS-UC and CFS-Relief. CFS-MDL often assigns feature class-correlations less than

zero, which accounts for it selecting fewer features than the other two. On M
�
, CFS-UC

and CFS-MDL consistently choose body-shape and jacket-colour, which together give

the second conjunction of the concept (jacket-colour
�

blue and body-shape
�

octagon).

CFS-Relief occasionally omits one of these features.

Tables 6.4 – 6.6 show the results of three machine learning algorithms with and without

feature selection on the Monk’s problems.

Domain naive Bayes CFS-UC-nbayes CFS-MDL-nbayes CFS-Relief-nbayes

M
� � �

�

� � � �
�

	 � �
�

	 	 � 	
�

	�� � �
�

	�	 � 	
�

	�� � �
�

	 	 � 	
�

	��

M
� � �

�

� � � �
�

� � �
�

� � � �
�

	�� � �
�

	 � � 	
�

� � � �
�

� � � �
�

���

M
� � �

�

� � � 	
�

� � �
�

� � � 	
�

� � �
�

� � � 	
�

� ���
�

� � � �
�

���
�
�

�
statistically significant improvement or degradation

Table 6.4: Comparison of naive Bayes with and without feature selection on the Monk’s
problems.

Domain IB1 CFS-UC-IB1 CFS-MDL-IB1 CFS-Relief-IB1

M
� � �

�

� � � �
�

� � �
�

	�	 � 	
�

	�� � �
�

	 	 � 	
�

	�� � �
�

	 	 � 	
�

	��

M
� � �

�

	�� � 	
�

� � �
�

� � � 	
�

��� � �
�

� � � 	
�

	�� � �
�

� � � �
�

� �

M
� � �

�

� � � �
�

� � �
�

��� � 	
�

	�� � �
�

� � � 	
�

	�� � �
�

� � � � �
�

� �
�
�

�
statistically significant improvement or degradation

Table 6.5: Comparison of IB1 with and without feature selection on the Monk’s problems.

CFS is able to improve the accuracy of naive Bayes on the first two Monk’s problems by

eliminating all or some of the interacting features in these concepts. On M � , the removal

of the two interacting features (head-shape and body-shape), which together yield the

first conjunct of the concept, allows ��� � accuracy to be achieved with just the jacket-

colour feature. On M � , removing features allows naive Bayes to approach the default

105

Domain C4.5 CFS-UC-C4.5 CFS-MDL-C4.5 CFS-Relief-C4.5

M
� � �

�

� � � �
�

� � �
�

	�	 � 	
�

	�� � �
�

	 	 � 	
�

	�� � �
�

	 	 � 	
�

	��

M
� � �

�

� � � 	
�

� � �
�

	�� � 	
�

��� � �
�

� 	 � 	
�

	�� � �
�

� 	 � 	
�

	��

M
� � �

�

� � � �
�

� � �
�

� � � �
�

��� ���
�

� � � �
�

��� ���
�

� � � �
�

� �
�
�

�
statistically significant improvement or degradation

Table 6.6: Comparison of C4.5 with and without feature selection on the Monk’s prob-
lems.

accuracy for the dataset—CFS-MDL achieves the best result as it removes more features,

on average, than the other two variations. On M
�
, CFS is unable to improve accuracy,

indicating that the holding feature and the first conjunct of this concept is of no use to

naive Bayes.

CFS degrades the performance of IB1 on the first two Monk’s problems. Unlike naive

Bayes, IB1 is able to make use of strongly interacting relevant features; removing these

features results in worse performance. CFS degrades IB1’s accuracy on M � by less than

� � , however, IB1’s performance without feature selection is affected by the three totally

irrelevant features in this concept; if these features are removed, IB1 can achieve close

to ��� � � accuracy. On M � , the more features that are removed by CFS, the closer IB1’s

accuracy is to the default for the dataset. CFS improves the accuracy of IB1 dramatically

on M
�

(from � � � � � � to
� � � � � �). This is due to the removal of the totally irrelevant

features. Accuracy can be improved further by approximately � � if the holding feature

(omitted by CFS) is included as well.

CFS degrades the performance of C4.5 on both M � and M
�
. On M � , C4.5 is able to make

use of the two interacting relevant features. Removing these two features results in � � �

accuracy (the maximum achievable with just the jacket-colour feature). C4.5 is unable to

learn the M � concept and achieves less than the default accuracy of
� � � � � . CFS-MDL

and CFS-Relief are able to increase C4.5’s performance to match the default accuracy.

6.1.4 Discussion

From experiments with CFS on these artificial domains, it can be concluded that feature

selection based on correlation—specifically, the hypothesis proposed in Chapter
�

that

106

good feature subsets contain features correlated with the class and uncorrelated with each

other—can indeed select relevant features, and furthermore, can do so under conditions of

moderate feature interaction, that is, as long as relevant features are individually predictive

of the class at least some of the time. As expected, CFS fails to select relevant features in

cases where there are strong feature interactions (features whose predictive ability is only

apparent in the context of other features). While strong feature interaction is certainly

possible in natural domains, the results presented in the next section and in appendix F

suggest that it is not common—at least for datasets similar to those in the UCI collection.

The results show that CFS handles irrelevant and redundant features, noise, and avoids

attributes with more values—traits that are likely to improve the performance of learning

algorithms that are sensitive to such conditions.

Of the three correlation measures tested with CFS, symmetrical uncertainty and MDL

are superior to relief. In some cases, relief underestimates the worth of relevant attributes

relative to others—a situation that can lead to relevant features being omitted from subsets

selected by CFS. In other cases, attribute estimation by relief causes CFS to include more

noise and redundancy in feature subsets.

The next section presents experiments designed to show if CFS’s performance on artificial

domains carries over to natural domains.

6.2 Natural Domains

This section describes the results of testing CFS on twelve natural domains. Since the

relevant features are often not known in advance for these domains, the performance of

learning algorithms with and without feature selection is taken as an indication of CFS’s

success in selecting useful features.

As with the experiments on artificial domains, stratified random subsampling is used to

create training and test sets and the results reported are an average of 50 trials with each

algorithm on each dataset.

107

0

1

2

3

4

5

6

7

8

CFS-UC CFS-MDL CFS-Relief

nu
m

be
r

of
 d

at
as

et
s

feature selector

(a) naive Bayes

0

1

2

3

4

5

6

7

8

CFS-UC CFS-MDL CFS-Relief

nu
m

be
r

of
 d

at
as

et
s

feature selector

(b) IB1

0

1

2

3

4

5

6

7

8

CFS-UC CFS-MDL CFS-Relief

nu
m

be
r

of
 d

at
as

et
s

feature selector

(c) C4.5

Figure 6.20: Number of natural domains for which CFS improved accuracy (left) and
degraded accuracy (right) for naive Bayes (a), IB1 (b), and C4.5 (c).

For each machine learning algorithm, Figure 6.20 shows on how many natural domains

accuracy was improved and degraded (significantly) by the three variations of CFS. The

graphs show that CFS-UC and CFS-MDL perform better than CFS-Relief. CFS-MDL

improves accuracy on the most datasets, followed by CFS-UC and CFS-Relief. CFS-UC

degrades accuracy on fewer datasets than either CFS-MDL or CFS-Relief.

When the accuracies of the three variations of CFS are compared, CFS-UC is better (on

average) than CFS-Relief for
� � �

datasets and worse (on average) for � � �
datasets. When

compared to CFS-MDL, CFS-UC is better (on average) for
�

datasets and worse (on

average) for � � �
datasets.

As was the case with the artificial domains, CFS-UC and CFS-MDL clearly outperform

CFS-Relief. While the performance of CFS-UC and CFS-MDL was very similar on the

108

artificial domains, CFS-UC is slightly better than CFS-MDL on the natural domains. The

datasets for which CFS-MDL does not do as well as CFS-UC tend to be those with fewer

training instances.

These results suggest that CFS-UC should be the preferred, or standard, version of CFS.

For the remainder of this section, the results for CFS-UC are analyzed and discussed

in detail. Full tabulated results comparing all three variations of CFS can be found in

appendix C.

Table 6.7 shows the performance of naive Bayes, IB1, and C4.5 with and without feature

selection by CFS-UC. Results using the 5 � 2cv test recomended by Dietterich [Die88]

can be found in appendix D. CFS maintains or improves the accuracy of naive Bayes for

nine datasets and degrades its accuracy for three. For IB1 and C4.5, CFS maintains or

improves accuracy for eight datasets and degrades for four. Figure 6.21 shows that CFS

reduces the size of the trees induced by C4.5 on nine of the twelve domains.

CFS appears to have difficulty on domains with the highest number of classes (especially

au and sb). The worst performance is on audiology. CFS reduces the accuracy of naive

Bayes on this dataset from � ��� � ���
to

� � � � � �
—the worst of the results. This domain has

� �
classes and only ��� �

instances; however, CFS’s performance here is much worse than

on the primary tumour domain (pt), which has similar characteristics to audiology. This

indicates that there are possibly other factors, apart from the number of classes and dataset

size, affecting the performance of CFS.

Interestingly, CFS has resulted in worse performance by both IB1 and C4.5 on the chess

end-game domain (kr), in contrast to naive Bayes, for which it improves performance.

A similar situation occurs on the mushroom domain (mu), but to a lesser extent than on

chess end-game. The improvement to naive Bayes indicates that there are some redundant

features in these domains. On the chess end-game domain, CFS finds three features (out

of
� �) that give � � � � accuracy regardless of learning algorithm. However, IB1 and C4.5

are able to achieve � � ���
and � � � �

accuracy, respectively, without feature selection.

Unlike audiology, this domain has only two classes and all but one of the features is

binary. Furthermore, there are more than
� � � � examples in this domain. This adds further

109

Dom naive Bayes CFS-nbayes IB1 CFS-IB1 C4.5 CFS-C4.5

mu
� �

�

� � � 	
�

� ���
�

� � � 	
�

� � ���
�

� � � 	
�

� � �
�

� � � 	
�

� � � �
�

� � � 	
�

� ���
�

� � � 	
�

���

vo
��	

�

� � � �
�

� � �
�

� 	 � �
�

	�� � �
�

� � � �
�

� ���
�

��	 � �
�

	�� ���
�

� � � �
�

� � �
�

� � � �
�

	��

v1
� �

�

� 	 � �
�

� ���
�

	 � � �
�

� � ���
�

��� � �
�

	 � �
�

� � � �
�

� � �
�

� � � �
�

	 ���
�

� � � �
�

�

cr
� �

�

� � � �
�

� � �
�

� 	 � �
�

	�� � �
�

��� � �
�

� ���
�

� � � �
�

	�� � �
�

��� � �
�

� � �
�

� � � �
�

	��

ly
���

�

�
� � �
�

� � �
�

� � � �
�

� � �
�

� � � �
�

� � 	
�

	 � � �
�

� � �
�

��	 � �
�

� � �
�

� � � �
�

�

pt
� �

�

� � � �
�

� � �
�

� � � �
�

� � � �
�

� � � �
�

� � 	
�

� 	 � �
�

� � 	
�

��� � �
�

� � �
�

� � � �
�

�

bc
� �

�

� � � �
�

� � �
�

� � � �
�

� � �
�

	 � � �
�

� � 	
�

� � � �
�

� � �
�

��� � �
�

� � 	
�

� � � �
�

�

dna
���

�

� � � �
�

	 ��	
�

� � � �
�

� ��	
�

� � � �
�

� � �
�

� � � �
�

� � ���
�

� � � �
�

� ���
�

� 	 � �
�

���

au
��	

�

� � � �
�

	 ���
�

� � � �
�

��� � �
�

� � � �
�

� � �
�

��	 � �
�

��� � �
�

� � � �
�

� � �
�

� � � �
�

���

sb
� �

�

� 	 � �
�

� � �
�

� � � �
�

��� ��	
�

� � � �
�

� � �
�

� � � �
�

��� � �
�

�
� � �
�

� � �
�

� � � �
�

���

hc
���

�

� � � �
�

� � �
�

��� � �
�

� � ��	
�

� 	 � �
�

� � �
�

��� � �
�

��� � �
�

	 � � �
�

	 ���
�

	�� � �
�

���

kr
� �

�

� � � �
�

� ��	
�

� 	 � 	
�

��� � �
�

� � � 	
�

� � 	
�

� � � 	
�

� � � �
�

�
� � 	
�

� ��	
�

� � � 	
�

� �
�
�

�
statistically significant improvement or degradation

Table 6.7: Naive Bayes, IB1, and C4.5 with and without feature selection on 12 natural
domains.

-50

-40

-30

-20

-10

0

10

20

30

40

50

mu vo v1 cr ly pt bc dna au sb hc kr

tr
ee

 s
iz

e
di

ffe
re

nc
e

dataset

Figure 6.21: Effect of feature selection on the size of the trees induced by C4.5 on the
natural domains. Bars below the zero line indicate feature selection has reduced tree size.
Dots show statistically significant results.

110

support to the notion that there is some factor other than dataset size and number of classes

affecting CFS’s performance.

One possibility is that the best first search is getting trapped in a local maximum on the

chess end-game domain and, perhaps, on the other domains where CFS has degraded

accuracy. To see if this is the case, CFS was re-run on audiology, soybean, and chess end-

game using a best first search with the stopping condition of the number of consecutive

non-improving subsets increased from � to ����� . Results show no significant improvement

on any of the datasets, indicating that it is unlikely that the algorithm is getting trapped in

local maxima.

A second possibility is that there are interacting features on the chess end-game domain.

Examination of CFS-MDL’s output on this domain show one trial where a fourth feature

was included, resulting in � 94% accuracy for all three learning algorithms including

naive Bayes. While there may still be some interacting features, the fact that naive Bayes

is able make use of it, shows that this fourth feature is not strongly interacting.

A third possibility is that CFS’s heuristic merit function is too heavily biased in favour of

small feature subsets, resulting in feature selection that is overly aggressive for the chess

end-game domain and the other domains where CFS has degraded accuracy. Figure 6.22

shows the number of features in the original datasets and the number of features selected

by CFS. On all but the primary tumour dataset (pt), CFS has reduced the number of

features by more than half. In the case of audiology and chess end-game, the number of

features has been reduced by more than
� � � —a strong indication that feature selection

has been too aggressive on these datasets.

To explore the bias of CFS’s merit function, and to get an idea of how merit corresponds

with actual accuracy of a learning algorithm, merit versus accuracy was plotted for ran-

domly selected feature subsets on the natural domains. ��� subsets of � � � � � � ��� � ��� � etc.

features were randomly selected from a single training split of each dataset (if there were

fewer than � � subsets possible for a given size, all were generated). For each subset, the

heuristic merit was measured by CFS, using the training data, and the actual accuracy was

estimated by first training a learning algorithm using the features in the subset, and then

111

evaluating its performance on the test set4. Figure 6.23 shows plots of CFS-UC’s merit

versus naive Bayes’ accuracy on a selection of datasets (chess end-game, horse colic, au-

diology, and soybean). Plots for the remaining datasets—and for when IB1 and C4.5 are

used to measure accuracy—can be found in appendix E.

The first thing that is apparent from Figure 6.23 is that a correspondence between merit

and actual accuracy does exist—even for domains on which feature selection by CFS de-

grades accuracy (audiology and soybean). Another thing that is apparent is that there are

indeed a number of feature subsets for naive Bayes that result in close to
� � � accuracy

on the chess end-game domain (Figure 6.23a). Examining the size of the feature subsets

represented by the points on these graphs reveals CFS’s bias towards subsets with fewer

features. For example, on the horse colic dataset (Figure 6.23b) this bias is effective—the

rightmost (highest merit) point on the graph for horse colic represents a subset containing

� features which together give an accuracy of � � � � �
�

on the test set. There are three sub-

sets that have close to this accuracy, two of which contain �
� features and one � features;

both are assigned a much lower merit than the � feature subset. On the other hand, for

audiology (Figure 6.23c) and soybean (Figure 6.23d) CFS favours smaller, moderately

accurate subsets over larger subsets with higher accuracy. From the graphs for audiology

and soybean, it is clear that there are many subsets with high accuracy that have merit

close to the rightmost (highest merit) points.

From the above analysis it can be concluded that CFS’s poor performance on some

datasets can be traced to the merit formulation rather than the search. Its aggressive bias

favouring small feature subsets may result in some loss of accuracy.

To see if performance could be improved on the datasets that cause CFS difficulty, a

method of merging subsets was introduced, with the aim of increasing feature set size by

incorporating those subsets whose merit is close to the best subset. The method works as

follows: instead of simply returning the best subset at the end of the search, the top 50

subsets (sorted in order of merit) discovered during the search are recorded. At the end of

4Averaging runs on multiple training and testing splits would give more reliable estimates of merit
and accuracy for feature subsets, but is time consuming. Using a single training and test set provides a
rough idea of the merit and accuracy, but may generate outliers, that is, feature subsets that, by chance, are
predictive of the test set, or have high merit with respect to the training set.

112

0

10

20

30

40

50

60

70

80

mu vo v1 cr ly pt bc dna au sb hc kr

fe

at
ur

es

dataset

Figure 6.22: The original number of features in the natural domains (left), and the average
number of features selected by CFS (right).

the search the second best subset is merged with the best subset and the merit of this new

composite subset is recalculated. If the merit is within 10% of the merit of the best subset,

the composite is accepted. The third best subset is then merged with the composite from

the previous step, and so forth. This continues as long as the merit of the new composite

is within 10% of the best subset.

Table 6.8 shows the accuracy of naive Bayes, IB1, and C4.5 with and without feature

selection by CFS-UC using this subset-merging scheme. For naive Bayes there are now

eleven datasets for which accuracy is maintained or significantly improved and only one

dataset for which accuracy is significantly degraded. Merging feature subsets has made

the result for lymphography better (where before there was no significant difference) and

the results for soybean and primary tumour no different (where before both worse). For

IB1, merging feature subsets has changed the result on the audiology domain—there is

now no significant difference in accuracy on this domain (where before it was worse).

For C4.5, merging subsets has degraded performance. The main difference is on the

horse colic domain, which has gone from being improved to degraded. This is surprising,

as merging subsets improves CFS’s performance for naive Bayes on this dataset.

113

50

55

60

65

70

75

80

85

90

95

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a)

50

55

60

65

70

75

80

85

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(b)

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(c)

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(d)

Figure 6.23: Heuristic merit (CFS-UC) vs actual accuracy (naive Bayes) of randomly
selected feature subsets on chess end-game (a), horse colic (b), audiology (c), and soybean
(d). Each point represents a single feature subset.

It turns out that C4.5’s attribute selection heuristic is responsible for the degraded perfor-

mance. C4.5 chooses an attribute to split on by selecting from among those attributes with

an average-or-better information gain, the attribute that maximises the gain ratio. When

presented with the full feature set, C4.5 chooses the attribute “surgery” to split on at the

root of the tree as this attribute has above average gain and the highest gain ratio (informa-

tion gain normalised by the entropy of the attribute). CFS chooses this attribute and one

other (“type of lesion 1”) which also has a high gain ratio. Merging subsets often adds

“HospitalID” which has a large number of distinct values and a reasonably high gain ratio

but in actuality is a poor predictor. This last attribute has by far the highest information

gain due to its many values. When all features are present, the average information gain

is low enough (due to there being many poor attributes with low gain) for “surgery” to

114

have above average information gain and thus be preferred over “HostpitalID”. In the case

of the reduced subset provided by merging, the average information gain is much higher,

making “HostpitalID” the only attribute with above average information gain. Conse-

quently, “HostpitalID” is chosen for the root of the tree and a low accuracy results.

Dom naive Bayes CFS-nbayes IB1 CFS-IB1 C4.5 CFS-C4.5

mu
� �

�

� � � 	
�

� � �
�

� � � 	
�

��� � �
�

� � � 	
�

� � �
�

��� � 	
�

��� ���
�

� � � 	
�

� ���
�

� � � 	
�

���

vo
� 	

�

� � � �
�

� ���
�

� � � �
�

	�� ���
�

�
� � �
�

� � �
�

� � � �
�

��� � �
�

� � � �
�

� � �
�

� � � �
�

	��

v1
� �

�

� 	 � �
�

� � �
�

� � � �
�

��� � �
�

� � � �
�

	 � �
�

� � � �
�

	 ���
�

� � � �
�

	 ���
�

� � � �
�

	

cr
� �

�

� � � �
�

� ���
�

� � � �
�

	�� � �
�

� � � �
�

� � �
�

� 	 � �
�

	�� ���
�

� � � �
�

� � �
�

� � � �
�

	��

ly
���

�

��� � �
�

� � �
�

� � � �
�

� � � �
�

��� � �
�

� ��	
�

� 	 � �
�

� � �
�

� 	 � �
�

� � �
�

� 	 � �
�

�

pt
� �

�

� � � �
�

� � �
�

� � � �
�

� � �
�

��� � �
�

� ���
�

� � � �
�

� � 	
�

� � � �
�

� � 	
�

� � � �
�

�

bc
� �

�

� � � �
�

� � �
�

� � � �
�

� � �
�

	�� � �
�

� � 	
�

� � � �
�

� � �
�

� � � �
�

� � �
�

� 	 � �
�

�

dna
� �

�

� � � �
�

	 � �
�

� � � �
�

	 � 	
�

� � � �
�

� � �
�

��� � �
�

��� � �
�

� � � �
�

� � �
�

	�� � �
�

� �

au
� 	

�

� � � �
�

	 � �
�

� � � �
�

� � � �
�

� � � �
�

� ���
�

� � � �
�

� � �
�

� � � �
�

� ���
�

� � � �
�

���

sb
� �

�

� 	 � �
�

� � �
�

� � � �
�

� � 	
�

� � � �
�

� � �
�

� � � �
�

��� ���
�

� � � �
�

� ���
�

� 	 � �
�

���

hc
� �

�

� � � �
�

� � �
�

� � � �
�

��� � 	
�

��	 � �
�

� ���
�

� � � �
�

��� � �
�

	�� � �
�

	 � �
�

� � � � 	
�

���

kr
� �

�

� � � �
�

� � 	
�

� 	 � �
�

	�� � �
�

� � � 	
�

� � �
�

�
	 � 	
�

��� ���
�

� � � 	
�

� � �
�

� � � 	
�

� �
�
�

�
statistically significant improvement or degradation

Table 6.8: Comparison of three learning algorithms with and without feature selection
using merged subsets.

Figure 6.24 shows the difference in accuracy between CFS with merged subsets and CFS

without merged subsets for the three learning algorithms. Large improvements in accu-

racy can clearly be seen on the lymphography, audiology, soybean, and chess end-game

datasets. However, it is also apparent that merging feature subsets degraded results on

some datasets as well (most notably on vote, vote � , dna, and horse colic). This is most

apparent for naive Bayes, which has the most significant degradations5 (mushroom, vote,

and vote � shown in Figure 6.24). These results suggest that, while more useful features

are being included through merging subsets, some harmful redundancy is also being in-

cluded.

One question that immediately springs to mind is: why is merging feature subsets neces-

sary? If other subsets contain features that are useful, and can increase the accuracy of

the best subset found during the search, then why are these features not included in the

best subset? To shed some light on this question, the chess end-game dataset is exam-

ined. Recall that there are three features selected by CFS that give � � � � accuracy for all

5Although significantly degraded by merging subsets, these results are still significantly better than naive
Bayes without feature selection (see Table 6.8)

115

-8

-6

-4

-2

0

2

4

6

8

10

mu vo v1 cr ly pt bc dna au sb hc kr

ac
cu

ra
cy

 d
iff

er
en

ce

dataset

Figure 6.24: Absolute difference in accuracy between CFS-UC with merged subsets and
CFS-UC for naive Bayes (left), IB1 (middle), and C4.5 (right). Dots show statistically
significant results.

three learning algorithms, and there was one trial out of ��� in which CFS-MDL included

a fourth feature that gives � � ���
accuracy. This indicates that this fourth feature may be

very close to the borderline for acceptance into the best subset and, in fact, it is included

on all trials by CFS-UC and CFS-MDL using merged subsets.

CFS-UC CFS-MDL
symmetrical

attribute uncertainty attribute MDL
� � 	

�

� � � � � � 	
�

� � ���

� � 	
�

� � � � � � 	
�

� � � �

� � 	
�

� 	�	 � � � 	
�

	 � � �

� � 	
�

	 � � � � � 	
�

	 � ��	

� 	
�

	 � � � � 	 	
�

	 � �
�

� � 	
�

	 ��� 	 � 	
�

	 � � �

� � 	
�

	 ��	 � � � 	
�

	 � ���

� 	 	
�

	�� � � � � 	
�

	 ��� �

Table 6.9: Top eight feature-class correlations assigned by CFS-UC and CFS-MDL on
the chess end-game dataset.

Table 6.9 shows the top eight feature-class correlations calculated by symmetrical uncer-

tainty and MDL on the entire chess end-game dataset. The first three features (� � , � � ,

and
� �

) are consistently selected by CFS. They have the highest correlation with the class

116

and have very low inter-correlation (��� � � � , ��� � ��� , and ��� ��� between features � � and � � ,

� � and
� �

, and ��� and
� �

respectively). Feature
� �

is the feature that, when added to

� � , � � , and
� �

, gives
� ���

accuracy. As can be seen from the table, CFS-MDL assigns a

higher correlation (comparative to the other features) to this feature than CFS-UC, which

might explain why this feature was actually included in one trial by CFS-MDL and not

by CFS-UC. Using 1R to produce a rule for attribute
� �

on the full dataset gives:

Rule for attribute-33:
class(NoWin) :- attribute-33(t). (covers 155 out of 175 examples)
class(Won) :- attribute-33(f). (covers 1649 out of 3021 examples)

The first clause of this rule is highly predictive of a small number of examples—it achieves

� ��� � � accuracy over �
� � examples. The ����� examples it gets correct account for
� � �

�

of the dataset. It is possible that the first clause of this rule—when attribute
� �

has value

“true”—is responsible for the
���

improvement in the learning schemes’ accuracy on this

dataset. To see if this is indeed the case, the predictions of naive Bayes using the feature

subset
� ��� � � � �

� � �
and feature subset

� � � � � � �

� �
�

� � �
are compared using a random train-

ing and testing split of the dataset. Results show a
� � � � improvement that corresponds

entirely to the instances where attribute
� �

has the value “true”. Furthermore, there are no

new errors introduced through the inclusion of attribute
� �

. The correlations between at-

tribute
� �

and attributes ��� , � � , and
� �

are very low, indicating that very little redundancy

is introduced with this feature.

Analyzing attribute
� � reveals a similar pattern. The 1R rule for this feature shows that

it has one value that covers
� � out of

� � examples—again a very small percentage of the

instance space. Examining the predictions of naive Bayes with and without this feature

included (in the same manner as above) shows a � � ���
improvement in accuracy that is

solely attributable to this single value of the attribute; again, no new errors are introduced

and the correlations between attribute
� � and � � , � � , and

� �
are very low. Attribute

�
is a

different story. Including this attribute results in accuracy degrading
� �

. Analyzing this

feature in the same manner as the previous two shows that it has one value that covers
�

� �

out of
� � �

examples. This value is responsible for � � � of the test set that was originally

misclassified to be classified correctly, but, unfortunately, it causes � � � of the test set

to be misclassified. The correlations between attributes
�

and � � , � � , and
� �

are much

117

higher than those of attribute
� �

and
� � , indicating that too much redundancy has been

introduced, which in turn affects the accuracy of naive Bayes.

The above analysis indicates that some datasets may contain features that have a few val-

ues that are strongly predictive locally (in a small area of the instance space), while their

remaining values may have low predictive power, or be irrelevant, or partially correlated

with other features. Since CFS measures a feature’s merit globally (over the entire train-

ing instance space), its bias toward small feature subsets may prevent these features from

being included—especially if they are overshadowed by other strong, globally predictive

features. A number of features such as this could cumulatively cover a significant propor-

tion of a dataset6. CFS’s large improvement on the audiology dataset through the use of

merged feature sets supports this conjecture. Inspection of the 1R rules produced for the

audiology dataset reveals a number of features with values that are highly predictive of a

small number of instances. While not all of these features may be useful, it is likely that

some of them cover instances not covered by the stronger features.

The experiments presented in this section show that CFS’s ability to select useful features

does carry over from artificial to natural domains. Out of the three learning algorithms,

CFS improves naive Bayes the most. This is most likely due to the fact that CFS deals

effectively with redundant attributes, and, like naive Bayes, treats features as independent

of one another given the class.

Analysis of the results on the natural domains has revealed a weakness with CFS. At-

tributes that are locally predictive in small areas of the instance space may not be

selected—especially if they are overshadowed by other strongly predictive features. From

this it can be concluded that subsets selected by CFS should not be treated as definitive—

instead, they represent a good indication of the most important features in a dataset.

Appendix F presents results for CFS-UC applied to the suite of UCI domains used for

evaluation as part of the WEKA (Waikato Environment for Knowledge Analysis) work-

bench [HDW94]. These results show a similar pattern as those for the smaller set of

domains analyzed here.

6Because C4.5 subdivides the training instance space as it constructs a decision tree, it has a greater
chance of identifying these features, which explains its superior performance on the chess end-game dataset.

118

6.3 Chapter Summary

This chapter presents experiments which test the claim that CFS is a method by which

redundant and irrelevant features can be removed from learning data, and that CFS can be

of use to common machine learning algorithms.

Experiments on artificial domains show CFS to be effective at screening both irrelevant

and redundant features and, as long as there are no extreme feature interactions, CFS is

able to quickly identify relevant features. Furthermore, the results of section 6.1.2 show

CFS to prefer relevant features with fewer values and less noise. Learning curves show

how ML algorithms that increase in accuracy slowly on these artificial domains, in the

presence of irrelevant and redundant information, can have their accuracy dramatically

improved by using CFS to select features.

Experiments on a selection of natural domains show that CFS can be of use to ML algo-

rithms in terms of improving accuracy and, in the case of C4.5, improving the compre-

hensibility of the induced model. Since the dimensionality of the data is reduced, all three

learning algorithms execute noticeably faster. Examination of cases where using CFS to

select features results in worse performance reveals a shortcoming in the the approach.

Because correlations are estimated globally (over all training instances), CFS tends to

select a “core” subset of features that is highly predictive of the class, but may fail to

include subsidiary features that are locally predictive in a small area of the instance space.

Experiments show that a version of CFS that merges subsets to include features from

subsets with merit close to the best subset is able to incorporate some of these subsidiary

features. However, merging feature subsets may also allow some harmful redundancy to

be included.

Of the three versions of CFS tested, the versions using the symmetrical uncertainty co-

efficient and the MDL measure perform the best overall. By selecting fewer features,

CFS-MDL tends to be more cautious than CFS-UC when there are few training instances.

This is why CFS-UC performs slightly better than CFS-MDL. For larger datasets CFS-

MDL performs as well, if not slightly better, than CFS-UC.

119

120

Chapter 7

Comparing CFS to the Wrapper

This chapter compares CFS’s performance with that of the wrapper approach to feature

selection. The wrapper is one of the simplest feature selectors conceptually (though not

computationally) and has been found to generally out-perform filter methods [JKP94,

CF94, AB94]. Comparing CFS to the wrapper is a challenging test because the wrapper

is driven by the estimated performance of a target learning algorithm and is tuned to its

inductive bias.

7.1 Wrapper Feature Selection

The rationale behind wrapper feature selectors is that the induction method that will ulti-

mately use the feature subset should provide a better estimate of accuracy than a separate

measure that has a different inductive bias. It is possible that the “optimal” feature subset

for a given induction algorithm does not contain all the relevant features1, and advocates

of the wrapper approach claim that using the target learning algorithm as the feature eval-

uation function is the easiest way to discover this [Koh95b, KJ96]. It is undoubtedly true

that, short of designing a feature evaluation measure that mimics the behaviour of a par-

ticular induction algorithm, using the induction algorithm itself as the measure stands the

best chance of identifying the “optimal” feature subset. However, wrapper feature selec-

tors are not without fault—cross-validation accuracy estimates are highly variable when

the number of instances is small (indicative of overfitting) [Koh95b], and cross-validation

is prohibitively slow on large datasets [CF94, ML94].

1Kohavi [Koh95b] gives an example where withholding a relevant attribute from naive Bayes on a � -
of- � concept results in better performance than including it.

121

The ��� � ++ machine learning library [KJL � 94] was used to provide results for the

wrapper, as this library was used in Kohavi’s feature selection experiments reported in

the literature. The version of ����� ++ utilities used has an implementation of the naive

Bayes learner2 built in and provides support for C4.5 through scripts. Unfortunately, the

built in version of IB1 does not support nominal features, which makes it unsuitable for

use on the datasets chosen for evaluating CFS, nor is there easy support for calling an

external learning algorithm (apart from C4.5). For that reason, IB1 was not used in the

experiments described in this chapter. Nevertheless, C4.5 and naive Bayes represent two

diverse approaches to learning, and results with these algorithms provide an indication as

to how the feature selection methods will generalize to other algorithms.

In order to allow a fair comparison between CFS and the wrapper, the same training and

testing splits used to generate the results shown in in chapter
�

are presented to ��� � ++.

Furthermore, the same search strategy and stopping condition are used. Accuracy esti-

mation for the wrapper is achieved though �
� -fold cross validation of the training set.

Figure 7.1 shows the stages of the wrapper feature selector.

Feature evaluation:
cross validation

ML algorithm

feature set

Search

estimated
accuracy

feature set
+CV fold

hypothesis

Dimensionality
Reduction

Estimated
accuracy

ML algorithm

Final evaluation

Training data Training data

feature set

Testing data

Training data

Wrapper

Figure 7.1: The wrapper feature selector.

2The version of naive Bayes in
�����

++ is the implementation that is used in all the experiments de-
scribed in Chapter

�

122

7.2 Comparison

Table 7.1 shows the accuracy of naive Bayes without feature selection and naive Bayes

with feature selection by the wrapper and CFS-UC on all the domains. Training set

sizes for the artificial datasets, with added irrelevant and redundant features (A � i–A
�
i

and A � r–A
�
r respectively), were chosen by examining the learning curves in Chapter

�
.

For concepts A � and A � , the point at which both all the relevant and none of the irrele-

vant/redundant features are selected by CFS was noted and training sets of this size are

used (�
��� ,
� � � ,

� ��� , and
� ��� instances for A � i, A � i, A � r, and A � r respectively). As CFS

is unable to select the relevant features on A
�
, the training set size for A

�
i and A

�
r is set

to ��� � (exactly half of the dataset).

From the table it can be seen that the wrapper improves naive Bayes on thirteen datasets

and degrades on six. CFS improves naive Bayes on fourteen datasets and degrades on

three.

It is clear that the wrapper has difficulty on those datasets with fewer training instances

(lymphography, primary tumour, breast cancer, dna-promoter, and A � i). This is espe-

cially noticeable on the artificial domains with added irrelevant features where it actually

degrades naive Bayes performance. On the equivalent domains with added redundant

attributes its performance is much better. On these datasets all features are relevant, sug-

gesting that the combination of few training instances and irrelevant features is to blame

for the wrapper’s performance on A � i and A � i. The wrapper tends to outperform CFS on

datasets with more training examples (mushroom, soybean, and chess end-game) and on

those domains with features that are locally predictive in small areas of the instance space

(chess end-game and audiology). Where the wrapper does better it always selects more

features than CFS. The features in common between CFS and the wrapper are fairly sta-

ble between trials on these datasets. This also suggests that the wrapper is able to detect

additional locally predictive features where CFS can not.

Unlike the wrapper, CFS does not need to reserve part of the training data for evaluation

purposes and, in general, tends to do better on the smaller datasets than the wrapper.

123

Figure 7.2 shows the difference in accuracy between CFS and the wrapper. Bars above the

zero line show where naive Baye’s average accuracy using feature subsets selected by CFS

is higher than its average accuracy using feature subsets selected by the wrapper. CFS is

better than the wrapper for eight domains and is worse for seven domains. The wrapper

outperforms CFS on the M � domain because it discovers that the best performance for

naive Bayes is given by eliminating all the features. Chapter
�

showed that CFS with the

MDL measure (CFS-MDL) achieves this result also.

Dom naive Bayes wrapper CFS

mu
� �

�

� � � 	
�

� � �
�

� � � 	
�

� � � �
�

� � � 	
�

� �

vo
� 	

�

� � � �
�

� ���
�

� � � �
�

��� ���
�

��	 � �
�

	��

v
� � �

�

� 	 � �
�

� � �
�

� � � �
�

��� ���
�

	 � � �
�

� �

cr
� �

�

� � � �
�

� ���
�

�
� � �
�

��� � �
�

� 	 � �
�

	��

ly
���

�

��� � �
�

� � �
�

	�	 � �
�

	�� � �
�

� � � �
�

�

pt
� �

�

� � � �
�

� � �
�

� � � �
�

��� � �
�

� � � �
�

���

bc
� �

�

� � � �
�

� � 	
�

� � � �
�

� � � �
�

��� � �
�

�

dna
� �

�

� � � �
�

	 ���
�

	�� � �
�

� � � 	
�

� � � �
�

�

au
� 	

�

� � � �
�

	 � �
�

� � � �
�

� � �
�

�
� � �
�

���

sb
� �

�

� 	 � �
�

� ���
�

� � � �
�

��� � �
�

��� � �
�

���

hc
� �

�

� � � �
�

� � �
�

� 	 � �
�

��� � �
�

� � � �
�

� �

kr
� �

�

� � � �
�

� � �
�

� � � 	
�

��� � 	
�

� 	 � 	
�

���

A
�
i

� �
�

� � � 	
�

� � �
�

��� � 	
�

	�� ���
�

� � � �
�

���

A
�
i

� �
�

��� � �
�

� � �
�

� � � �
�
�

��� �
	 	
�

	 	 � 	
�

	��

A
�
i

� �
�

� 	 � �
�

� � �
�

� � � 	
�

��� � �
�

	 � � �
�

���

A
�
r

� �
�

� � � �
�

	 � 	�	
�

	 	 � 	
�

	�� �
	 	
�

	 	 � 	
�

	��

A
�
r

� �
�

� � � �
�

	 � �
�

��� � 	
�

��� �
	 	
�

	 	 � 	
�

	��

A
�
r

� �
�

��� � �
�

� ���
�

� � � �
�

��� � �
�

� � � �
�

���

M
� � �

�

��� � �
�

	 ���
�

� � � �
�

��� � �
�

	 	 � 	
�

	��

M
� ���

�

� � � �
�

� � �
�

	 � � 	
�

��� � �
�

� � � �
�

	��

M
� � �

�

� � � 	
�

� � �
�

� � � 	
�

� � �
�

� � � 	
�

�

�
�

�
statistically significant improvement or degradation

Table 7.1: Comparison between naive Bayes without feature selection and naive Bayes
with feature selection by the wrapper and CFS.

Table 7.2 shows the CPU time taken (as measured on a Sparc server 1000) to complete

one trial on each dataset by the wrapper and CFS3. As can be seen, CFS is much faster

than the wrapper.

Figure 7.3 shows the number of features selected by the wrapper and CFS. CFS generally

selects a similar sized feature set as the wrapper. In many cases the number of features is

reduced by more than half by both methods.

3CPU times reported for CFS are for a non-optimized version (Chapter
�

suggests some simple methods
of optimization).

124

-20

-15

-10

-5

0

5

10

15

mu vo v1 cr ly pt bc dna au sb hc kr A1i A2i A3i A1r A2r A3r M1 M2 M3

ac
cu

ra
cy

 d
iff

er
en

ce

dataset

Figure 7.2: Comparing CFS with the wrapper using naive Bayes: Average accuracy of
naive Bayes using feature subsets selected by CFS minus the average accuracy of naive
Bayes using feature subsets selected by the wrapper. Dots show statistically significant
results.

Domain wrapper CFS

mu
� ��� �

�

	 �
�

	

vo
� ���

�

	 � �
�

	

v
� ��� �

�

	 � �
�

	

cr
� � �

�

	 � �
�

	

ly
�
� �

�

� � �
�

	

pt
��	 � �

�

	 � �
�

	

bc
�
� � � �

�

	

dna
� � � �

�

	 � �
�

	

au
� �����

�

	 �
�

	

sb
� ��	 �

�

	 �
�

	

hc
� � � 	

�

	 �
�

	

kr
� � � �

�

	 �
�

	

A
�
i

���
�

	 � �
�

	

A
�
i

� � �
�

	 �
�

	

A
�
i

� � �
�

	 �
�

	

A
�
r

� � �
�

	 � �
�

	

A
�
r

� � �
�

	 � �
�

	

A
�
r

� ���
�

	 � �
�

	

M
� ���

�

	 � �
�

	

M
� � �

�

	 � �
�

	

M
� � �

�

	 � �
�

	

Table 7.2: Time taken (CPU units) by the wrapper and CFS for a single trial on each
dataset.

125

0

10

20

30

40

50

60

70

80

mu vo v1 cr ly pt bc dna au sb hc kr A1i A2i A3i A1r A2r A3r M1 M2 M3

fe

at
ur

es

dataset

Figure 7.3: Number of features selected by the wrapper using naive Bayes (left) and CFS
(right). Dots show the number of features in the original dataset.

Table 7.3 shows the accuracy of C4.5 without feature selection and C4.5 with feature

selection by the wrapper and CFS-UC. The wrapper improves C4.5 on six datasets and

degrades on seven. CFS improves C4.5 on five datasets and degrades on seven.

The wrapper is more successful than CFS on those artificial datasets that have interacting

features. It is able to improve C4.5’s performance on A
�
r and M � , where CFS cannot.

It is interesting to note that, while the wrapper does better than CFS on the chess end-

game dataset, it still degrades C4.5’s performance. One possible explanation for this

is that there are high order—perhaps higher than pairwise—feature interactions in this

dataset. While the wrapper using a forward best first search stands a good chance of

discovering pairwise interactions, backward searches are needed to discover higher than

pairwise feature interactions [LS94b].

Figure 7.4 shows the difference in accuracy between CFS and the wrapper. Bars above

the zero line show where C4.5’s average accuracy using feature subsets selected by CFS

is higher than its average accuracy using feature subsets selected by the wrapper. CFS is

better than the wrapper for six domains and is worse for eight domains. As was the case

with naive Bayes, CFS is superior to the wrapper on those artificial domains with added

126

Dom C4.5 wrapper CFS

mu
���

�

� � � 	
�

� � �
�

	�� � 	
�

��� ���
�

� � � 	
�

���

vo
� �

�

� � � �
�

� ���
�

��� � �
�

� � �
�

� � � �
�

	��

v
� ���

�

� � � �
�

	 � �
�

� � � �
�

� � ���
�

� � � �
�

�

cr
���

�

� � � �
�

� � �
�

� � � �
�

��� � �
�

� � � �
�

	��

ly
� �

�

� 	 � �
�

� � 	
�

��� � �
�

� � � �
�

� � � �
�

�

pt
� 	

�

� � � �
�

� � �
�

� � � �
�

� � � �
�

� � � �
�

�

bc
� �

�

� � � �
�

� � �
�

��� � �
�

� � 	
�

� � � �
�

�

dna
� �

�

� � � �
�

� ���
�

� � � �
�

	 ���
�

� 	 � �
�

���

au
� �

�

� � � �
�

� � �
�

� 	 � �
�

��� � �
�

� � � �
�

���

sb
���

�

� � � �
�

� � �
�

� � � �
�

� � �
�

� � � �
�

���

hc
� �

�

	�� � �
�

	 ���
�

� � � �
�

� � ���
�

	�� � �
�

���

kr
���

�

� � � 	
�

� � �
�

�
� � �
�

� � ��	
�

� � � 	
�

� �

A
�
i

�
	 	
�

	�	 � 	
�

	 � �
�

� 	 � 	
�

	�� �
	 	
�

	�	 � 	
�

	

A
�
i

�
	 	
�

	�	 � 	
�

	 � �
�

� � � � 	
�

� � �
	 	
�

	�	 � 	
�

	

A
�
i

� �
�

� � � �
�

� � �
�

	�	 � 	
�

	 � �
�

� 	 � �
�

�

A
�
r

�
	 	
�

	�	 � 	
�

	 � �
�

� � � �
�

� �
	 	
�

	�	 � 	
�

	

A
�
r

�
	 	
�

	�	 � 	
�

	 � �
�

� 	 � �
�

� �
	 	
�

	�	 � 	
�

	

A
�
r

� �
�

��� � �
�

	 � 	�	
�

	 	 � 	
�

	�� � �
�

� � � �
�

� �

M
� ���

�

� � � �
�

� � �
�

� � � �
�

	�� � �
�

	 	 � 	
�

	��

M
� ���

�

� � � 	
�

� � �
�

�
	 � 	
�

	�� � �
�

	 � � 	
�

���

M
� � �

�

� � � �
�

� � �
�

� � � �
�

� ���
�

� � � �
�

���
�
�

�
statistically significant improvement or degradation

Table 7.3: Comparison between C4.5 without feature selection and C4.5 with feature
selection by the wrapper and CFS.

irrelevant features. The wrapper consistently identifies the three interacting features in

the A
�
r domain and the two interacting features in the M � domain most of the time—

resulting in superior performance over CFS on these domains. However, the wrapper

still fails on A
�
i because of the small sample size combined with the presence of many

irrelevant features.

CPU times for the wrapper with C4.5 are similar to those for naive Bayes. The soybean

dataset took the longest at just over four hours to complete one trial; M � took the least

amount of CPU time at around one and half minutes. As CFS is independent of the

learning algorithm, its execution time remains the same.

Figure 7.5 shows how feature selection by the wrapper and CFS affects the size of the

trees induced by C4.5. Bars below the zero line indicate that feature selection has reduced

the size of the trees. The graph shows that both feature selectors reduce the size of the

trees induced by C4.5 more often than not. CFS affords similar reductions in tree size

as the wrapper. The wrapper was particularly successful on the lymphography domain—

127

-30

-25

-20

-15

-10

-5

0

5

10

15

mu vo v1 cr ly pt bc dna au sb hc kr A1i A2i A3i A1r A2r A3r M1 M2 M3

ac
cu

ra
cy

 d
iff

er
en

ce

dataset

Figure 7.4: Comparing CFS with the wrapper using C4.5: Average accuracy of C4.5 using
feature subsets selected by CFS minus the average accuracy of C4.5 using feature subsets
selected by the wrapper. Dots show statistically signifcant results

not only did it increase C4.5’s accuracy and outperform subsets chosen by CFS, but it

also resulted in the smallest average tree size (interestingly, the wrapper was the poorest

performer on this dataset for naive Bayes).

The wrapper tends to select slightly smaller feature subsets when used with C4.5 than

CFS (CFS’s subsets are, of course, the same for C4.5 as they are for naive Bayes).

7.3 Chapter Summary

This chapter compares CFS with the wrapper feature selector. Although CFS and the

implementation of the wrapper used herein share the same search strategy, they repre-

sent two completely different paradigms for feature selection—wrappers evaluate feature

subsets by statistical estimation of their accuracy with respect to a learning algorithm,

while CFS (a filter) evaluates feature subsets by a heuristic measure based on correlation.

Wrappers are generally considered to be superior to filters as they are tuned to the specific

interaction between a learning algorithm and its training data and stand the best chance of

128

-80

-60

-40

-20

0

20

40

60

mu vo v1 cr ly pt bc dna au sb hc kr A1i A2i A3i A1r A2r A3r M1 M2 M3

tr
ee

 s
iz

e
di

ffe
re

nc
e

dataset

Figure 7.5: Average change in the size of the trees induced by C4.5 when features are
selected by the wrapper (left) and CFS (right). Dots show statistically significant results.

finding the “optimal” feature subset.

Experiments in this chapter show CFS to be competitive with wrapper in many cases. The

cases for which the wrapper out-performs CFS are generally those for which CFS’s as-

sumption of attribute independence given the class is grossly violated, or contain features

that are locally predictive in small areas of the instance space (as shown in Chapter
�
).

Because CFS makes use of all the training data at once, it can give better results than the

wrapper on small datasets—especially if there are many irrelevant features present. Re-

sults show that both methods select similar sized feature subsets and both reduce C4.5’s

trees in a similar manner.

Some might argue that using a backward search would give better results for the wrap-

per. While this could be true, backward searches are very slow for wrappers. Ko-

havi [Koh95b, KJ96] discusses the use of “compound” search space operators that pro-

pel the search more quickly toward the relevant features and make backward searches

possible—however, his experiments show little improvement over forward searches ex-

cept for artificial domains with high order feature interactions. Although compound op-

erators do reduce the execution time of the wrapper, CFS is still many times faster.

129

130

Chapter 8

Extending CFS: Higher Order

Dependencies

The experiments on artificial domains in Chapter
�

showed that CFS is able to detect

relevant features under moderate levels of interaction—that is, when the relevant features

are individually predictive of the class at least some of the time. However, features whose

ability to predict the class is always dependent on others will appear irrelevant to CFS

because it assumes feature independence given the class.

Detecting high order feature dependencies is difficult because the probabilities in ques-

tion are apt to be very small. There is also a risk of overfitting because these probabilities

may not be reliably represented when data is limited. Furthermore, research in the area of

Bayesian networks has shown that inducing an optimal Bayesian classifier is NP-hard—

even when each feature (node in the network) is constrained to to be dependent on at most

two other features [Sah96]. For these reasons, a limited “pairwise” approach to detecting

feature interactions is one method explored in this chapter. As a second approach, the

instance based attribute estimation method RELIEF (see Chapter
�
) is used as a replace-

ment for the entropy-based feature-class correlation measure used in CFS-UC. RELIEF

has the potential (given sufficient data) to detect higher than pairwise feature interactions.

8.1 Related Work

The feature selection method of Koller and Sahami [KS96b] greedily eliminates features

one by one so as to least disrupt the original conditional class distribution. Because it

131

is not reliable to estimate high order probability distributions from limited data, their

approach assumes that features involved in high order dependencies will also exhibit some

pairwise dependency (see Chapter
�

for details).

Like CFS, the naive Bayesian classifier assumes features are independent given the class.

This assumption makes it a very efficient and simple learning algorithm. Furthermore,

naive Bayes classification performance has been found to be very competitive with more

sophisticated learning schemes [DP96]. These qualities have prompted a number of at-

tempts to reduce the “naivety” of the algorithm to further improve performance on do-

mains with class conditional feature dependencies. Four methods (described below) for

improving naive Bayes have taken a pairwise approach (for computational reasons) to

detecting and incorporating feature dependencies.

Pazzani [Paz95] combines dependence detection and feature selection in a wrapper ap-

proach for improving naive Bayes. Forward and backward hill climbing searches are

used—at each stage the search considers adding/subtracting a feature or joining a pair of

features. In this manner, the algorithm can join more than two features but has to do so in

multiple steps. Joining more than two features will not occur unless the first two result in

an increase in accuracy.

Instead of joining whole attributes—that is, where every possible combination of values

for two attributes is considered jointly—Kononenko [Kon91] argues that allowing just

some combinations of attributes’ values to be considered jointly (while others remain in-

dependent) is more flexible. His semi-naive Bayesian classifier uses an exhaustive search

to determine which pairs of attribute values are worth considering jointly (a probabilistic

reliability measure is used to screen joined values); again more than two values can be

joined by this algorithm, but doing so requires multiple iterations.

KDB [Sah96, KS97] is an algorithm for constructing limited Bayesian networks that al-

lows
	
-order feature dependencies. The dependencies are specified in the network in a

greedy fashion: for each feature
�

, network arcs are added to the � other features that
�

is most dependent on, where dependency is measured in a pairwise fashion using a

metric of class conditional mutual information
� � �
 � �

�
�
. KDB requires that all features

132

be binary; best results are had when KDB is used with a mutual information threshold

which prevents “spurious” dependencies from being included in the network.

The TAN (Tree Augmented Naive Bayes) algorithm [FG96] also constructs a Bayesian

network but restricts each node (feature) in the network to have at most one additional

parent (other than the class). This allows an optimal classifier to be found in quadratic

time. Like KDB, TAN uses class conditional mutual information to measure dependency

between attributes.

8.2 Joining Features

A straightforward and computationally feasible extension to CFS for detecting higher

order dependencies is to consider pairs of features. Joining two features
�

and � results

in a derived attribute with one possible value corresponding to each combination of values

of
�

and � . For example, if attribute
�

has values
�
 �

�
�

� �
and attribute � has values

� � �
�
�

then the joined attribute
� � will have values

�
 � �
 �
�

� � �

�
�

�

� � �

�
�
�
. An algorithm

that considers all possible pairwise combinations of features in this manner is quadratic

in the original number of features.

Once new attributes are created, corresponding to each possible pairwise combination

of features, the feature-class correlations can be calculated in the normal fashion using

any of the measures described in Chapter
�
. A derived feature is a candidate for feature

selection if its correlation with the class is higher than both of its constituent features,

otherwise it is discarded. After all the derived features have been screened in this fashion,

the feature-feature inter-correlations are calculated for the new feature space and feature

selection proceeds as in the original algorithm. It is important to note that this extension

to CFS does not perform constructive induction—that is, it does not alter the input space

for a machine learning algorithm in any fashion other than discarding some number of

the original features. If the best feature subset found by CFS contains derived features,

then what is passed on to a learning algorithm are the individual features that comprise

the derived features.

133

Initial experiments with this enhancement to CFS (dubbed CFS-P) showed that more

derived features became candidates for feature selection when the number of training

instances was small, often leading to larger final feature subsets with inferior performance

compared with those chosen by standard CFS. Experiments in Chapter
�

showed how

correlation measures tended to increase as the number of training examples decreased—

more so for attributes with with a greater number of values than those with fewer values.

In this situation, probability estimates are less reliable for attributes with more values, and

they may appear more useful than would be warranted by the amount of available data.

To counter this trend toward overfitting small training sets, a reliability constraint often

applied to chi-square tests for independence is used. Equation 8.1 shows a statistic based

on the chi-square distribution:

�
�
 � � �

�
� � � � �

� � � �
� � � � (8.1)

where
� � � is the observed number of training instances from class �

�
having the � -th value

of the given attribute, and � � � is the expected number of instances if the null hypothesis

(of no association between the two attributes) is true:

� � �
 �
�

� �
�

�

�
� (8.2)

In Equation 8.2, �
�

� is the number of training instances with the � -th value of the given

attribute, �
�

�
is the number of training instances of class �

�
, and � is the total number of

training instances.

Equation 8.1 is unreliable and becomes over-optimistic in detecting association when

expected frequencies are small. It is recommended that the chi-square test not be used if

more than ��� � of the expected frequencies are less than � [Sie56, WW77]. For CFS, a

derived feature is screened by subjecting the expected frequencies for each of its values

in each of the possible classes to this constraint—if more than ��� � are less than � , then

the derived feature does not become a candidate for selection because its association with

the class (with respect to a particular correlation measure) is likely to be overestimated.

134

8.3 Incorporating RELIEF into CFS

One drawback to considering pairs of features is that the feature subset space can be en-

larged considerably and, in turn, can take longer to explore. A second approach to detect-

ing feature interactions—one that does not expand the feature subset space (but of course

does incur further computational expense)—is to incorporate the RELIEF [KR92, Kon94]

algorithm for estimating feature relevance. The feature estimates provided by RELIEF are

used to replace the feature-class correlations in CFS-UC; feature-feature inter-correlations

are still calculated as normal using the symmetrical uncertainty coefficient. This version

of CFS is called CFS-RELIEF (as opposed to CFS-Relief which used a context insensitive

simplification of RELIEF to calculate feature correlations, as described in Chapters
�

and

�).

RELIEF is an instance-based algorithm that imposes a ranking on features by assigning

each a weight. The weight for a particular feature reflects its relevance in distinguishing

the classes. RELIEF can be used for feature selection in its own right, but, because it does

not explicitly select a subset, a relevance threshold must be set (on a domain by domain

basis) by which some number of the features can be discarded. Furthermore, RELIEF

makes no attempt to deal with redundant features.

One advantage of RELIEF is that it is sensitive to feature interactions and can detect

higher than pairwise interactions, given enough data. Kononenko [Kon94] notes than

RELIEF assigns a weight to a feature
�

by approximating the following difference of

probabilities

� �
 � �
different value of

� �
nearest instance of different class

�
(8.3)

� � �
different value of

� �
nearest instance of same class

�

RELIEF incrementally updates the weights for features by repeatedly sampling instances

from the training data. Instance-based similarity metrics are used to find the “nearest”

instances to the one sampled, and, because these metrics take all the features into account,

the weight for a given feature is estimated in context of the other features. The following

135

is the original RELIEF algorithm [KR92], which operates on two-class domains.

RELIEF:

set all feature weights
� � � �
 �

for �
 � to �
randomly select an instance �
find � ’s nearest hit � (same class) and nearest miss

�
(different class)

for each attribute
�

do� � � �
 � � � � � diff
� �

� � � �
� � �
 diff

� �
� � �

� � � �

The function diff calculates the difference between the values of attribute
�

for two in-

stances. For nominal attributes the difference is either � (the attribute has the same value

in both instances) or � (the value of the attribute differs between the two instances). For

continuous attributes the difference is the squared arithmetic difference normalized to the

interval
� � � � � . Diff is also used to calculate the difference between instances when finding

nearest hits and misses. The difference between two instances is simply the sum of the

attribute differences.

The version of RELIEF incorporated into CFS is an extended version (RELIEF-F) de-

scribed by Kononenko [Kon94], which generalizes RELIEF to multiple classes and han-

dles noise. To increase the reliability of RELIEF’s weight estimation, RELIEF-F finds the
	

nearest hits and misses for a given instance (
	
 � is used here). For multiple class prob-

lems, RELIEF-F finds nearest misses from each different class (with respect to the given

instance) and averages their contribution for updating
� � � � . The average is weighted

by the prior probability of each class. The version of RELIEF-F used herein runs the

outer loop of the RELIEF algorithm over all the available training instances rather than

randomly sampling some number � of them. This results in less variation in RELIEF’s

estimation of feature weights at the cost of increased computation.

8.4 Evaluation

This section evaluates the performance of the two extended forms of CFS (CFS-P and

CFS-RELIEF) described above. Of particular interest is performance on those artificial

domains with strong feature interactions, that is, A
�
, M � , and M � . The results of feature

136

selection for IB1 are presented first as this algorithm is sensitive to interacting features

and can achieve higher accuracy on the artificial domains (given the correct feature set)

than either naive Bayes or C4.5.

Table 8.1 compares the performance of enhanced CFS (CFS-P and CFS-RELIEF) with

standard CFS-UC on artificial domains using IB1 as the induction algorithm. The results

show that CFS-P consistently identifies all three relevant features in A
�
i and A

�
r, selects

the three relevant features for the M � domain, and averages � � �
out of the

�
relevant

features for the M � domain. Incorporating derived features into CFS has not resulted

in worse performance on any of the artificial domains. For the A � –A
�

domains with

added redundant features, CFS-P selects, on average, less than one redundant feature.

Examination of the subsets selected by CFS-P show that it sometimes selects a joined

feature that correctly captures one of the dependencies but, when converted back to its

constituent features, results in the inclusion of a redundant feature. For example, the

feature set (
� � , � � , � �) correctly captures the pairwise dependencies in the A � r dataset,

but resolves to the feature set
� �

� � � � �
� �

where feature � is a copy of feature
�

. The

difficulty is that the derived feature
� � is equivalent to � � —both represent the same

dependency but the algorithm cannot tell that one is more appropriate than the other (only

that one of the two is necessary). However, the inclusion of the occasional redundant

feature on these domains has no affect on the accuracy of IB1. Although CFS-P selects the

correct subsets for domains A � i–A
�
i, it often accepts more derived features as candidates

for selection than are necessary. Chapter
�

showed how symmetrical uncertainty and relief

correlation favour non-informative attributes with more values over those with few values.

A derived attribute comprised of two non-informative attributes therefore appears more

predictive to symmetrical uncertainty and relief than either of its constituent attributes.

This does not happen if the MDL measure is used because it assigns a value less than zero

to non-informative attributes (given sufficient data).

The results for CFS-RELIEF show it to be less effective than CFS-P. Although it im-

proves over standard CFS-UC on the same datasets as CFS-P does, it degrades on two

datasets, while CFS-P does not degrade on any. Some irrelevant features are included by

CFS-RELIEF on the A � i domain, resulting lower accuracy than either CFS-P or standard

137

IB1
Domain CFS-UC CFS-P CFS-RELIEF

A
�
i

�
	 	
�

	 	 � 	
�

	 � �
�

��� � 	 	
�

	�	 � 	
�

	 � �
�

��� � �
�

��� � �
�

��� � �
�

���

A
�
i

�
	 	
�

	 	 � �
�

� � �
�

	�� � 	 	
�

	�	 � 	
�

	 � �
�

	�� � 	�	
�

	 	 � 	
�

	 � �
�

	��

A
�
i

� �
�

	 � � �
�
�

� � �
�

��� � 	 	
�

	�	 � 	
�

	�� � �
�

	�� � 	�	
�

	 	 � 	
�

	�� � �
�

	��

A
�
r

�
	 	
�

	 	 � 	
�

	 � �
�

	�� � 	 	
�

	�	 � 	
�

	 � �
�

��� � 	 	
�

	�	 � 	
�

	 � �
�

���

A
�
r

�
	 	
�

	 	 � 	
�

	 � �
�

	�� � 	 	
�

	�	 � 	
�

	 � �
�

��� � �
�

	 � � �
�

� � � �
�

	��

A
�
r

� �
�

� � � � �
�

	 � �
�

	�� � 	 	
�

	�	 � 	
�

	�� � �
�

� � � �
�

� � � �
�

��� � �
�

	��

M
� � �

�

	 	 � 	
�

	 � �
�

	�� � �
�

� � � �
�

��� � �
�

	�� � �
�

��� � �
�

��� � �
�

���

M
� ���

�

� � � 	
�

� � �
�

��� ���
�

� � � �
�

��� � �
�

� � � �
�

��� � �
�

� � � �
�

	��

M
� � �

�

� � � 	
�

	 � �
�

	�� � �
�

� � � 	
�

	 � �
�

	�� � �
�

��� � 	
�

	 � �
�

	��
�
�

�
statistically significant improvement or degradation

Table 8.1: Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared with stan-
dard CFS-UC on artificial domains when IB1 is used as the induction algorithm. Figures
in braces show the average number of features selected.

CFS-UC. On M � and M � , CFS-RELIEF selects fewer relevant features on average than

CFS-P, resulting in lower accuracy on these domains. It is interesting, given RELIEF’s

ability to detect high order interactions, that CFS-RELIEF does not do as well as CFS-P—

especially on M � which has the most feature interaction. Kira and Rendell [KR92] note

that as the amount of feature interaction increases, the amount of training data must also

increase in order for RELIEF to reliably estimate feature relevance. This was tested with

CFS-RELIEF by increasing the number of instances in the M � dataset. After quadrupling

the size of the dataset CFS-RELIEF was able to reliably select all 6 relevant features.

CFS-RELIEF is effective on A
�
i, but fails to select all three relevant features on A

�
r

and A � r. The problem lies with the RELIEF algorithm—examination of the feature

relevances assigned by RELIEF on these datasets show that feature
�

(and its exact

copies in each domain) are consistently assigned relevance � . The selection of near-

est neighbours is very important to RELIEF as it attempts to find nearest neighbours

with respect to “important” attributes. Averaging the contribution of
	

nearest neigh-

bours improves RELIEF’s attribute estimates by helping counteract the effect of irrele-

vant attributes, redundant attributes, and noise on nearest neighbour selection. However,

this has not helped in the case of A � r and A
�
r . To see why, consider the weight up-

date for attribute
�

from the A � domain
� � � � �

� � � � � �
� � �

� � �
� �

, given the

instance
� �
 � � �

 � � �

 � � . Furthermore, assume that there are at least two

copies of each instance in the dataset (as there would be in any but very small sam-

138

ples). Table 8.2(a) shows all possible instances in this domain, along with their distance

from instance
� �
 � � �

 � � �

 � � . The nearest neighbour of the same class as

� �
 � � �

 � � �

 � � is another copy of itself. Since the value of
�

is the same

here for both instances, there is no change to the weight for
�

. There are three nearest

instances—each differing by two feature values—equally close to
� �
 � � �

 � � �

 � �

from the opposite class:
� �
 � � �

 � � �

 � � �

� �
 � � �

 � � �

 � � � and
� �
 � � �

 � � �

 � � . Out of the three,

�
’s value differs for the latter two, which results

in the weight for
�

being incremented (on average) two out of three times the instance
� �
 � � �

 � � �

 � � is sampled from the training data. If, however, there is a fourth

feature
�

(see Table 8.2(b)), which is an exact copy of
�

, then the nearest neighbour of

the opposite class to
� �
 � � �

 � � �

 � �

�
 � � is
� �
 � � �

 � � �

 � �

�
 � � .
This instance has the same value for

�
, which results in no change to the weight for

�
.

This situation (the nearest instance of the opposite class having the same value for feature
�

) occurs for every instance in domain A � when there is a copy of feature
�

present. The

result is that the weight for
�

(and its copy
�

) are never changed from the initial value of

� . In this example
	
 � has been used for simplicity. Increasing the value of

	
can help,

but, in this case,
	

would have to be increased in proportion to the number of training

instances1. Another remedy would be to restrict an instance to appearing only once in the

list of nearest neighbours.

Tables 8.3 and 8.4 compare the performance of enhanced CFS (CFS-P and CFS-RELIEF)

with standard CFS-UC on the artificial domains when C4.5 and naive Bayes are used as

the induction algorithms.

In the case of C4.5, CFS-P improves over standard CFS-UC on A
�

and on M � . CFS-P

does not result in worse performance on any dataset when compared to CFS-UC. CFS-

RELIEF improves over standard CFS on A
�
i and M � , but does not do as well as CFS-P

on A � r and A
�
r because it does not select all three relevant features.

In the case of naive Bayes, both enhancements to CFS result in some degraded results

compared to standard CFS-UC, although the effect is less dramatic for CFS-P. The in-

1There are
� 	 	

training instances for A
�
r. Assuming instances are uniformly distributed,

�
would have

to be set in excess of
� 	�	 � �

�
� 	

in order to start detecting the relevance of attribute
�

.

139

Inst. class
� � �

Dist. from
�

� 	 	 	 	 	

� 	 	 	 � �

� 	 	 � 	 �

� � 	 � � �

� 	 � 	 	 �

� � � 	 � �

� � � � 	 �

� � � � � �

(a)

Inst. class
� � � �

Dist. from
�

� 	 	 	 	 	 	

� 	 	 	 � 	 �

� 	 	 � 	 	 �

� � 	 � � 	 �

� 	 � 	 	 � �

� � � 	 � � �

� � � � 	 � �

� � � � � � �

(b)

Table 8.2: An example of the effect of a redundant attribute on RELIEF’s distance cal-
culation for domain A � . Table (a) shows instances in domain A � and Table (b) shows
instances in domain A � with an added redundant attribute. The column marked “Dist.
from � ” shows how far a particular instance is from instance # � .

clusion of the occasional redundant feature on
� � r and

� � r is responsible for the slight

decrease in the performance of CFS-P on these domains. On M � , the inclusion of the two

interacting features by CFS-P and CFS-RELIEF results in slightly worse performace than

leaving them out.

C4.5
Domain CFS-UC CFS-P CFS-RELIEF

A
�
i

� 	�	
�

	 	 � 	
�

	 �
	 	
�

	�	 � 	
�

	 � �
�

� 	 � �
�

�

A
�
i

� 	�	
�

	 	 � 	
�

	 �
	 	
�

	�	 � 	
�

	 � 	�	
�

	 	 � 	
�

	

A
�
i

���
�

� 	 � �
�

� �
	 	
�

	�	 � 	
�

	�� � 	�	
�

	 	 � 	
�

	��

A
�
r

� 	�	
�

	 	 � 	
�

	 �
	 	
�

	�	 � 	
�

	 � 	�	
�

	 	 � 	
�

	

A
�
r

� 	�	
�

	 	 � 	
�

	 �
	 	
�

	�	 � 	
�

	 � �
�

��� � �
�

� �

A
�
r

� �
�

�
� � �
�

� �
	 	
�

	�	 � 	
�

	�� � �
�

� � � �
�

�

M
� � �

�

	�	 � 	
�

	 ���
�

� � � �
�

��� � �
�

� � � �
�

���

M
� � �

�

	�� � 	
�

� � �
�

	 � � 	
�

� � �
�

	 � � 	
�

�

M
� � �

�

� � � �
�

� ���
�

	 � � �
�

� � �
�

	�� � �
�

�

�
�

�
statistically significant improvement or degradation

Table 8.3: Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared to stan-
dard CFS-UC on artificial doamins when C4.5 is used as the induction algorithm.

CFS-P and CFS-RELIEF were also trialed on the natural domains. Tables 8.5 through 8.7

compare the performance of CFS-P and CFS-RELIEF with standard CFS-UC on the nat-

ural domains when IB1, C4.5 and naive Bayes are used as the induction algorithms.

Subsets selected by CFS-P are practically identical to those selected by standard CFS-

UC for all datasets with the exception of mushroom. As a result, there is no significant

140

naive Bayes
Domain CFS-UC CFS-P CFS-RELIEF

A
�
i

� �
�

� � � �
�

� ���
�

� � � �
�

� � �
�

� � � �
�

� �

A
�
i

� 	 	
�

	�	 � 	
�

	 �
	 	
�

	 	 � 	
�

	 �
	 	
�

	�	 � 	
�

	

A
�
i

� �
�

	 � � �
�

� � �
�

	 	 � 	
�

	�� � �
�

	 	 � 	
�

	��

A
�
r

� 	 	
�

	�	 � 	
�

	 ���
�

� � � 	
�

��� �
	 	
�

	 	 � 	
�

	

A
�
r

� 	 	
�

	�	 � 	
�

	 � �
�

	 � � �
�

��� � �
�

� � � �
�

���

A
�
r

� �
�

� � � �
�

� � �
�

� � � 	
�

	�� � �
�

� � � 	
�

	��

M
� � �

�

	 	 � 	
�

	 � �
�

� � � �
�

��� � �
�

	 	 � �
�

� �

M
� � �

�

� � � �
�

	 � �
�

� 	 � �
�

	 � �
�

� � � �
�

�

M
� � �

�

� � � 	
�

� � �
�

� � � 	
�

� � �
�

� � � 	
�

�

�
�

�
statistically significant improvement or degradation

Table 8.4: Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared to stan-
dard CFS-UC on artificial doamins when naive Bayes is used as the induction algorithm.

accuracy difference on any but the mushroom dataset for any of the induction algorithms

when using subsets selected by CFS-P. Very few derived features were considered by

CFS-P on the natural domains, from which it can be concluded that either there is little

pairwise dependency in these datasets, or that, in many cases, there is not enough training

data from which to make reliable estimations. The one exception to this was the chess

end-game dataset, where over one hundred derived features were considered, on average.

However, many of these derived features were clearly irrelevant2. The strongest pairwise

dependencies were between the three features selected by standard CFS on this dataset.

It is possible that these strong dependencies overshadow some that are useful in only a

small area of the instance space (the same problem that occured with normal features for

standard CFS in chapter
�
).

CFS-RELIEF is better than standard CFS and CFS-P on the mushroom domain for IB1

and C4.5 but not for naive Bayes. This suggests that it has detected more feature inter-

action than CFS-P on this dataset. The result for audiology is better than standard CFS

for IB1 and naive Bayes but not for C4.5. Using subsets provided by CFS-RELIEF has

resulted in worse performance than standard CFS on three datasets for C4.5 and on four

datasets for both naive Bayes and IB1. The datasets for which CFS-RELIEF has degraded

accuracy are among those with fewer instances. This suggests that RELIEF’s attribute es-

timation is less reliable for small datasets.

2In comparison, CFS-P using the MDL measure considered on average less than
� 	

derived attributes
on the chess end-game dataset.

141

IB1
Domain CFS-UC CFS-P CFS-RELIEF

mu
���

�

� � � 	
�

� ���
�

� � � 	
�

��� � �
�

� � � 	
�

���

vo
� �

�

� 	 � �
�

	 � �
�

� 	 � �
�

	 ���
�

�
� � �
�

� �

v
� ���

�

��� � �
�

� � �
�

��� � �
�

� � �
�

� � � �
�

�

cr
� �

�

� � � �
�

	 ���
�

� � � �
�

	 ���
�

� � � �
�

	

ly
��	

�

	 � � �
�

� � 	
�

	 � � �
�

� � �
�

��� � �
�

	

pt
� 	

�

� 	 � �
�

� � 	
�

� 	 � �
�

� � �
�

� � � �
�

�

bc
� 	

�

� � � �
�

� � 	
�

� � � �
�

� � �
�

� � � �
�

�

dna
���

�

� � � �
�

� ���
�

� � � �
�

� ���
�

� � � �
�

���

au
� �

�

� 	 � �
�

� � �
�

� 	 � �
�

� � �
�

� � � �
�

���

sb
� �

�

� � � �
�

� � �
�

� � � �
�

� ���
�

	 � � �
�

� �

hc
���

�

� � � �
�

� ���
�

� � � �
�

� � �
�

� � � �
�

� �

kr
��	

�

� � � 	
�

� ��	
�

� � � 	
�

� � 	
�

� � � 	
�

�

�
�

�
statistically significant improvement or degradation

Table 8.5: Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared to stan-
dard CFS-UC on natural domains when IB1 is used as the induction algorithm.

C4.5
Domain CFS-UC CFS-P CFS-RELIEF

mu
���

�

� � � 	
�

� ���
�

� � � 	
�

��� � �
�

� � � 	
�

���

vo
� �

�

� � � �
�

	 � �
�

� � � �
�

	 ���
�

� � � �
�

���

v
� ���

�

� � � �
�

� � �
�

� � � �
�

� � �
�

��	 � �
�

	��

cr
� �

�

� � � �
�

	 ���
�

� � � �
�

	 ���
�

� � � �
�

	

ly
� �

�

� � � �
�

� � �
�

� � � �
�

� � �
�

� � � �
�

�

pt
� �

�

� � � �
�

� � �
�

� � � �
�

� � �
�

� � � �
�

�

bc
� 	

�

� � � �
�

� � �
�

� � � �
�

� � 	
�

� � � �
�

�

dna
���

�

� 	 � �
�

� ���
�

� 	 � �
�

� � �
�

� � � �
�

�

au
� �

�

� � � �
�

� � �
�

� � � �
�

� � �
�

� � � �
�

	��

sb
� �

�

� � � �
�

� � �
�

� � � �
�

� � �
�

� � � �
�

	

hc
���

�

	�� � �
�

� ���
�

	�� � �
�

� � �
�

� � � �
�

�

kr
��	

�

� � � 	
�

� ��	
�

� � � 	
�

� � 	
�

� � � 	
�

�

�
�

�
statistically significant improvement or degradation

Table 8.6: Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared to stan-
dard CFS-UC on natural domains when C4.5 is used as the induction algorithm.

142

naive Bayes
Domain CFS-UC CFS-P CFS-RELIEF

mu
� �

�

� � � 	
�

� � �
�

��	 � 	
�

��� � �
�

� � � 	
�

���

vo
���

�

� 	 � �
�

	 ���
�

��	 � �
�

	 ���
�

� � � �
�

	

v
� � �

�

	 � � �
�

� � �
�

	 � � �
�

� ���
�

��� � �
�

�

cr
���

�

��	 � �
�

	 ���
�

��	 � �
�

	 � �
�

� 	 � �
�

	

ly
���

�

�
� � �
�

� ���
�

�
� � �
�

� � �
�

� � � �
�

� �

pt
� �

�

��� � �
�

� � �
�

��� � �
�

� � �
�

� � � �
�

�

bc
� �

�

� � � �
�

� � �
�

� � � �
�

� � 	
�

� � � �
�

���

dna
� 	

�

� � � �
�

� � 	
�

� � � �
�

� � �
�

� � � �
�

�

au
� �

�

� � � �
�

� � �
�

�
� � �
�

� � �
�

� � � �
�

	��

sb
� �

�

� � � �
�

� � �
�

��� � �
�

� � �
�

� � � �
�

� �

hc
� �

�

��� � �
�

� � �
�

� � � �
�

� � �
�

��� � �
�

�

kr
� 	

�

� 	 � 	
�

� � 	
�

� 	 � 	
�

� � 	
�

� 	 � 	
�

�

�
�

�
statistically significant improvement or degradation

Table 8.7: Performance of enhanced CFS (CFS-P and CFS-RELIEF) compared with stan-
dard CFS-UC on natural doamins when naive Bayes is used as the induction algorithm.

8.5 Discussion

This chapter presents two methods of extending CFS to detect feature interaction: CFS-P

considers pairs of features and CFS-RELIEF replaces standard CFS’s feature-class cor-

relation with attribute estimates provided by the RELIEF algorithm. From experiments

comparing these enhancements to standard CFS the following conclusions can be drawn:

� Both CFS-P and CFS-RELIEF can improve accuracy over standard CFS on do-

mains where there are pairwise feature interactions.

� In general, CFS-P does not degrade accuracy compared to standard CFS.

� CFS-RELIEF does not perform as well as CFS-P. RELIEF’s estimates for attributes

are less reliable when there are fewer training instances and in some cases are af-

fected by the presence of redundant attributes. Both of these factors have an impact

on the feature subsets selected by CFS-RELIEF.

Since considering pairs of features does not degrade the performance of CFS, CFS-P is

preferred over CFS-RELIEF if it is suspected that a dataset contains feature interactions.

For larger datasets, the MDL measure is the preferred correlation measure to use with

CFS-P, because its ability to clearly identify non-informative attributes will result in fewer

143

“spurious” derived features being considered for selection.

It should be noted, however, that CFS-P will not detect interaction of a higher order than

pairwise. RELIEF, on the other hand, has been shown (on parity concepts) to be able to

detect higher than pairwise interactions, given sufficient training data [KR92].

Both CFS-P and CFS-RELIEF are more computationally expensive than standard CFS.

In the worst case CFS-P may square the number features under consideration if every

pairwise combination of original features is accepted as a candidate for selection (this

is unlikely to happen in practice). Because it finds the nearest neighbours of each train-

ing instance, the version of RELIEF used in CFS-RELIEF is quadratic in the number of

training instances. However, both enhanced versions of CFS are still much faster than the

wrapper. For example, a single trial on the mushroom dataset took � units of CPU time

for CFS-P (
� � derived features were considered as candidates) and

� �
units of CPU time

for CFS-RELIEF; the same trial took � ��� �
units of cpu time for the wrapper.

144

Chapter 9

Conclusions

9.1 Summary

The central claim of this thesis is that feature selection for supervised machine learning

can be accomplished on the basis of correlation between features. A feature selection

algorithm has been implemented and empirically tested to support this claim.

Chapter
�

outlined the rationale for a correlation-based approach to feature selection,

with ideas and an evaluation formula adapted from test theory. The evaluation formula

awards high merit to feature subsets that contain features predictive of the class (mea-

sured by the average of the correlations between the individual features and the class),

and a low level of redundancy (as measured by the average inter-correlation between

features). An implementation of a correlation-based feature selection algorithm (CFS)

incorporating this evaluation function was described. Three methods of measuring asso-

ciation between nominal features were reviewed as candidates for the feature correlations

required in the evaluation function. Experiments on artificial data showed that all three

measures prefer predictive features with fewer values—a bias that is compatible with that

of decision tree algorithms such as C4.5 that prefer smaller trees over larger ones. Two

of the measures (relief and symmetrical uncertainty) give optimistic estimates and may

over-estimate multi-valued attributes when data is limited. The MDL measure gives pes-

simistic estimates when data is limited—a situation that may result in a preference for

smaller feature subsets when used in the evaluation function.

CFS was empirically tested using artificial and natural machine learning datasets. Exper-

iments on artificial datasets showed that CFS can effectively screen irrelevant, redundant,

145

and noisy features. CFS selects relevant features as long as they do not strongly interact

with other features. Of the three correlation measures reviewed in Chapter
�
, symmetrical

uncertainty and the MDL measure were superior to relief, when used in CFS. In cases

where attributes divide training data into pure subsets, relief was shown to be more sensi-

tive to the size of a pure subset than either symmetrical uncertainty or MDL—a situation

that can lead to the underestimation and omission of relevant features. Experiments with

common machine learning algorithms on natural domains showed that, in many cases,

CFS improves performance and reduces the size of induced knowledge structures. Again,

the symmetrical uncertainty and MDL correlation measures were found to give better re-

sults than relief. Symmetrical uncertainty was chosen as the preferred correlation measure

for CFS because it gave slightly better results, on small datasets, than the more cautious

MDL. Results on several datasets showed that CFS is sometimes overly aggressive in fea-

ture selection. In particular, CFS may fail to select features that are locally predictive in

small areas of the instance space—especially if they are overshadowed by other strong,

globally predictive features. A method of merging top ranked feature subsets partially

mitigates this problem; the method is not completely satisfactory, however, because it

allows redundant features to be re-included in the final feature set.

Further tests compared CFS with a wrapper approach to feature selection. In many cases,

CFS gives results comparable to the wrapper, and generally outperforms the wrapper on

small datasets. Datasets on which the wrapper clearly outperforms CFS are those that

contain strong feature interactions or have features that are locally predictive for small

numbers of instances. CFS is faster than the wrapper—often by more than � orders of

magnitude.

Chapter � investigated two methods of extending CFS to detect feature interaction. Both

improved results on some datasets. The first method (CFS-P), which considers pair-

wise combinations of features, gives more reliable results than the second method (CFS-

RELIEF), which uses weights estimated by the RELIEF algorithm as correlations be-

tween features and classes. However, CFS-RELIEF has the potential (given enough data)

to detect higher than pairwise feature interactions.

146

9.2 Conclusions

No single learning algorithm is superior to all others for all problems. Research in ma-

chine learning attempts to provide insight into the strengths and limitations of different

algorithms. Armed with such insight, and background knowledge for a particular prob-

lem, practitioners can choose which algorithms to apply. Such is the case with CFS—in

many cases CFS can enhance (or not degrade) the performance of machine learning al-

gorithms, while at the same time achieving a reduction in the number of features used in

learning. CFS may fail to select relevant features, however, when data contains strongly

interacting features or features with values predictive of a small area of the instance space.

CFS is a component of the WEKA workbench [HDW94], which itself is part of ongoing

research at the University of Waikato to produce a high quality process model for machine

learning. CFS has been applied to a number of problems, most notably to select features

for a musical compression system [BI98].

9.3 Future Work

The greatest limitation of CFS is its failure to select features that have locally predictive

values when they are overshadowed by strong, globally predictive features. While a single

feature such as this may account for only a very small proportion of a dataset, a number

of such features may cumulatively cover a significant proportion of the dataset. Merging

feature subsets allows redundancy to be re-introduced. While redundancy is less likely to

affect algorithms such as C4.5 and IB1, it can have a detrimental effect on naive Bayes.

An ideal solution (with naive Bayes in mind) would identify those attributes that are both

locally predictive of instances not covered by already selected attributes, and have low

correlation with already selected attributes. Of course, attributes such as these (locally

predictive and low correlation with others) are likely to have some irrelevant values—a

number of such features are likely to degrade the performance of instance based learners.

Domingos [Dom97] addresses the problem (specifically for instance based learners) by

using a wrapper to select a different feature set for each instance. For CFS (and global

147

filters in general) it is a case of being able to “please some of the people some of the time,

but not all of the people all of the time”.

It would be interesting to apply a “boosting” technique to the problem of detecting locally

predictive features. Boosting methods [FS96, SFBL97, Bre96a] improve classification

performance by combining the predictions of knowledge induced from multiple runs of

a learning algorithm. In each iteration, a learning algorithm is focused on those areas

of the training instance space that the learner from the previous iteration found difficult

to predict. Such an approach necessitates the use of a particular learning algorithm and,

when combined with CFS, would result in a hybrid system (wrapper + filter). To begin

with, standard CFS would select an initial set of features. A learning algorithm (using the

selected features) could then be applied to predict and hence weight the training instances.

CFS would then be applied to the weighted training instances to select a secondary set of

features, and so forth. Any locally predictive features that are genuinely useful will help

in predicting instances that the learner from the previous iteration had difficulty with.

Features selected by CFS generally represent a good “core” subset of features. It would

be interesting to see how a wrapper feature selector would fare when started using a

feature subset selected by CFS. In this case, a bidirectional search that considers both

additions and deletions of features would be more appropriate for the wrapper than either

a forward or backward search. Since the search would be initiated from an intelligent

start point, the computational expense of the wrapper should be reduced because fewer

subsets would be evaluated. This approach may also improve the wrapper’s performance

on smaller datasets where less reliable accuracy estimates cause it to become trapped in

local maxima.

Another area for future work is in trying (or developing) other measures of correlation for

use with CFS. Measures of correlation that operate on nominal variables were explored

in this thesis. The justification for this was that (a) it is desirable to treat different types

of features in a uniform manner in order to provide a common basis for computing corre-

lation, and (b) discretization has been shown to improve (or at least not significantly de-

grade) the performance of learning algorithms [DKS95]. Ting [Tin95] describes a method

of converting nominal attributes to numeric attributes—the opposite of discretization. The

148

method replaces each nominal value of an attribute with its estimated prior probability

from the training data. When all attributes (including the class) are numeric, Pearson’s

linear correlation can be used with CFS. Future experiments will evaluate CFS on do-

mains where all attributes are numeric with learning algorithms such as K* [CT95] and

M � � [WW97] that are capable of predicting continuous class variables.

149

150

Appendix A

Graphs for Chapter 4

Figure A.1 shows the behaviour of symmetrical uncertainty, relief, and MDL as the num-

ber of training instances vary when there are � classes.

151

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 100001200014000160001800020000

sy
m

m
et

ric
al

 u
nc

er
t.

co
ef

f.

number of examples

informative C=2 a=2
informative C=2 a=10
informative C=2 a=20

non-informative C=2 a=2
non-informative C=2 a=10
non-informative C=2 a=20

(a)

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450 500

sy
m

m
et

ric
al

 u
nc

er
t.

co
ef

f.

number of examples

informative C=2 a=2
informative C=2 a=10
informative C=2 a=20

non-informative C=2 a=2
non-informative C=2 a=10
non-informative C=2 a=20

(b)

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 100001200014000160001800020000

sy
m

m
et

ric
al

 r
el

ie
f

number of examples

informative C=2 a=2
informative C=2 a=10
informative C=2 a=20

non-informative C=2 a=2
non-informative C=2 a=10
non-informative C=2 a=20

(c)

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300 350 400 450 500

sy
m

m
et

ric
al

 r
el

ie
f

number of examples

informative C=2 a=2
informative C=2 a=10
informative C=2 a=20

non-informative C=2 a=2
non-informative C=2 a=10
non-informative C=2 a=20

(d)

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 100001200014000160001800020000

no
rm

al
iz

ed
 s

ym
m

et
ric

al
 M

D
L

number of examples

informative C=2 a=2
informative C=2 a=10
informative C=2 a=20

non-informative C=2 a=2
non-informative C=2 a=10
non-informative C=2 a=20

(e)

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300 350 400 450 500

no
rm

al
iz

ed
 s

ym
m

et
ric

al
 M

D
L

number of examples

informative C=2 a=2
informative C=2 a=10
informative C=2 a=20

non-informative C=2 a=2
non-informative C=2 a=10
non-informative C=2 a=20

(f)

Figure A.1: The effect of varying the training set size on symmetrical uncertainty (a & b),
symmetrical relief (c & d), and normalized symmetrical MDL (e & f) when attributes are
informative and non-informative. The number of classes is � ; curves are shown for � , �
� ,
and ��� valued attributes.

152

Appendix B

Curves for Concept A3 with Added

Redundant Attributes

Figures B.1 through B.4 show curves for CFS-UC, CFS-MDL, and CFS-Relief on concept

A
�

with added redundant attributes.

-0.5

0

0.5

1

1.5

2

2.5

3

20 60 100 140 180 220 260 300 340 380 420 460 500

re
du

nd
an

t f
ea

tu
re

s

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure B.1: Number of redundant attributes selected on concept A
�

by CFS-UC, CFS-
MDL, and CFS-Relief as a function of training set size.

153

-0.5

0

0.5

1

1.5

2

2.5

3

20 60 100 140 180 220 260 300 340 380 420 460 500

re
le

va
nt

 fe
at

ur
es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure B.2: Number of relevant attributes selected on concept A
�

by CFS-UC, CFS-MDL,
and CFS-Relief as a function of training set size.

0

0.5

1

1.5

2

2.5

3

3.5

4

20 60 100 140 180 220 260 300 340 380 420 460 500

m
ul

ti-
va

lu
ed

 fe
at

ur
es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure B.3: Number of multi-valued attributes selected on concept A
�

by CFS-UC, CFS-
MDL, and CFS-Relief as a function of training set size.

154

-0.5

0

0.5

1

1.5

2

2.5

20 60 100 140 180 220 260 300 340 380 420 460 500

no
is

y
fe

at
ur

es

training set size

CFS-UC
CFS-MDL

CFS-Relief

Figure B.4: Number of noisy attributes selected on concept A
�

by CFS-UC, CFS-MDL,
and CFS-Relief as a function of training set size.

155

156

Appendix C

Results for CFS-UC, CFS-MDL, and

CFS-Relief on 12 Natural Domains

Domain CFS-UC-nbayes CFS-MDL-nbayes CFS-Relief-nbayes

mu
���

�

� � � 	
�

� � �
�

� � � 	
�

� ���
�

� � � 	
�

�

vo
� �

�

� 	 � �
�

	 ���
�

� � � �
�

� � �
�

� � � �
�

�

v
� ���

�

	 � � �
�

� ���
�

� � � �
�

� � �
�

� � � �
�

���

cr
� �

�

� 	 � �
�

	 � �
�

� 	 � �
�

	 ���
�

� 	 � �
�

	

ly
� �

�

� � � �
�

� ���
�

� � � �
�

	�� � �
�

� � � �
�

� �

pt
� �

�

� � � �
�

� � 	
�

� � � �
�

��� � �
�

� � � �
�

� �

bc
� �

�

� � � �
�

� � �
�

	�� � �
�

��� � �
�

	�� � �
�

�

dna
��	

�

� � � �
�

� � 	
�

��� � �
�

� ���
�

� � � �
�

� �

au
���

�

� � � �
�

� ���
�

��� � �
�

� � �
�

� 	 � �
�

���

sb
� �

�

� � � �
�

� � �
�

� � � �
�

� � ���
�

� � � �
�

�

hc
� �

�

��� � �
�

� � �
�

��� � �
�

� � �
�

��� � �
�

	��

kr
��	

�

� 	 � 	
�

� � 	
�

�
� � �
�

� ��	
�

� 	 � 	
�

�

�
�

�
statistically significant result—better or worse

Table C.1: Accuracy of naive Bayes with feature selection by CFS-UC compared with
feature selection by CFS-MDL and CFS-Relief.

157

Domain CFS-UC-IB1 CFS-MDL-IB1 CFS-Relief-IB1

mu
� �

�

� � � 	
�

� � �
�

� � � 	
�

� ���
�

	 � � 	
�

� �

vo
���

�

� 	 � �
�

	 ���
�

� � � �
�

� � �
�

� � � �
�

	

v1
� �

�

��� � �
�

� � �
�

��� � �
�

� ���
�

� � � �
�

�

cr
���

�

� � � �
�

	 � �
�

� � � �
�

	 ���
�

� � � �
�

	

ly
� 	

�

	 � � �
�

� ���
�

� � � �
�

	�� � �
�

� � � �
�

���

pt
� 	

�

� 	 � �
�

� ���
�

� � � �
�

� � � �
�

� � � �
�

���

bc
� 	

�

� � � �
�

� � �
�

��� � �
�

��� � �
�

� � � �
�

���

dna
� �

�

� � � �
�

� � �
�

� � � �
�

� � �
�

� � � �
�

���

au
� �

�

� 	 � �
�

� ���
�

��� � �
�

��� � �
�

� � � �
�

� �

sb
� �

�

� � � �
�

� � �
�

� � � �
�

��� � �
�

�
� � �
�

���

hc
� �

�

� � � �
�

� � �
�

� � � �
�

��� � �
�

��� � �
�

	��

kr
� 	

�

� � � 	
�

� � 	
�

�
� � �
�

� ��	
�

� � � 	
�

�

�
�

�
statistically significant result—better or worse

Table C.2: Accuracy of IB1 with feature selection by CFS-UC compared with feature
selection by CFS-MDL and CFS-Relief.

Domain CFS-UC-C4.5 CFS-MDL-C4.5 CFS-Relief-C4.5

mu
���

�

� � � 	
�

� � �
�

� � � 	
�

� � �
�

� � � 	
�

� �

vo
� �

�

� � � �
�

	 ���
�

� � � �
�

	 ���
�

� � � �
�

	

v1
���

�

� � � �
�

� � �
�

� 	 � �
�

� � �
�

� � � �
�

�

cr
� �

�

� � � �
�

	 ���
�

� � � �
�

	 ���
�

� � � �
�

	

ly
� �

�

� � � �
�

� � �
�

� � � �
�

��� � �
�

� � � �
�

�

pt
� �

�

� � � �
�

� � �
�

� � � �
�

� � � �
�

� � � �
�

���

bc
� 	

�

� � � �
�

� � �
�

� � � �
�

��� � 	
�

� � � �
�

�

dna
���

�

� 	 � �
�

� � �
�

� 	 � �
�

� � �
�

� � � �
�

�

au
� �

�

� � � �
�

� ���
�

� � � �
�

��� � �
�

� � � �
�

���

sb
� �

�

� � � �
�

� � �
�

� � � �
�

� � � �
�

	�� � �
�

	��

hc
���

�

	�� � �
�

� � �
�

� � � �
�

��� � �
�

� � � �
�

	��

kr
��	

�

� � � 	
�

� � 	
�

� � � �
�

� � 	
�

� � � 	
�

�

�
�

�
statistically significant result—better or worse

Table C.3: Accuracy of C4.5 with feature selection by CFS-UC compared with feature
selection by CFS-MDL and CFS-Relief.

158

Appendix D

5 � 2cv Paired t test Results

Dietterich [Die88] has shown that the common approach of using a paired-differences

t-test based on random subsampling has an elevated chance of Type I error—that is in-

correctly detecting a difference when no difference exists. He recommends using the

“5 � 2cv” test instead, although warns that this test has an increased chance of type II

error—that is failing to detect a difference when one actually does exist. This test, based

on 5 iterations of 2-fold cross validation, uses a modified t-statistic to overcome the Type

I problem. The 5 � 2cv t-statistic is

��
 � �
�
��

� �
� �

�� � ���
�� (D.1)

where � �
�
�� is the difference in accuracy from the first fold of the first replication of 2-fold

cross validation and
� ��

is the variance computed from the � -th replication.

Table D.1 shows results for naive Bayes, IB1 and C4.5 before and after feature selec-

tion by CFS-UC. The 5 � 2cv test has been applied. These results are similar in pattern

to those presented in Chapter
�

in that CFS improves the performance of naive Bayes for

more datasets than it does for either IB1 or C4.5. It can be seen that there are fewer signif-

icant results than before indicating that CFS safely removes attributes with out adversely

affecting the accuracy of learning algorithms.

Table D.2 shows the accuracy of naive Bayes without feature selection and naive Bayes

with feature selection by the wrapper and CFS-UC on all the domains. The 5 � 2cv test has

been applied. Similarly, Table D.3 shows the accuracy of C4.5 with and without feature

159

Dom naive Bayes CFS-nbayes IB1 CFS-IB1 C4.5 CFS-C4.5

mu
���

�

� � � 	
�

� � �
�

��� � 	
�

	�� �
	 	
�

	 � 	
�

	 � �
�

� � � 	
�

	�� � 	�	
�

	 � 	
�

	 � �
�

��� � 	
�

	��

vo
��	

�

� � � 	
�

� � ���
�

�
� � �
�

	 � � �
�

� � � 	
�

� ���
�

� � � 	
�

	 ���
�

� � � 	
�

� ���
�

� � � 	
�

	

v1
� �

�

� � � 	
�

� � � �
�

� � � 	
�

� � ���
�

� � � �
�

� � �
�

� 	 � 	
�

� � �
�

� 	 � 	
�

� � �
�

� � � 	
�

�

cr
� �

�

	 	 � 	
�

� � � �
�

� � � 	
�

	�	�� � �
�

� � � 	
�

� ���
�

� 	 � 	
�

	 � �
�

�
� � �
�

	 ���
�

� 	 � 	
�

	

ly
���

�

� � � 	
�

� � ���
�

� � � �
�

� � � � �
�

	�� � �
�

� � �
�

� � � �
�

� ���
�

��	 � �
�

� � �
�

� � � �
�

	

pt
� �

�

��� � �
�

� � ���
�

� � � �
�

�
	 � �
�

� 	 � �
�

� � �
�

� � � 	
�

� � �
�

	 � � �
�

� � 	
�

� � � �
�

�

bc
� �

�

	 � � �
�

	 � � �
�

�
� � �
�

� � � �
�

� � � �
�

� � �
�

� � � �
�

� � �
�

� � � �
�

� � 	
�

� � � �
�

	

dna
���

�

� � � �
�

� � � �
�

��	 � �
�

� ��� � �
�

� 	 � �
�

� � �
�

� � � �
�

	 ���
�

� � � �
�

� ���
�

��� � �
�

���

au
���

�

� � � �
�

� 	 � �
�

��� � �
�

� � � �
�

� � � �
�

� � �
�

	�� � �
�

� ���
�

��	 � �
�

� � 	
�

� � � 	
�

�

sb
��	

�

� 	 � 	
�

��� � �
�

� � � 	
�

� � ���
�

� � � 	
�

� � �
�

� � � �
�

� � �
�

�
� � 	
�

� � �
�

� � � �
�

�

hc
� �

�

��� � �
�

	 � � �
�

� � � 	
�

��� ��	
�

� � � 	
�

� ���
�

� � � �
�

� � �
�

� � � �
�

� � �
�

� � 	
�

	

kr
� �

�

	�� � 	
�

��� � �
�

��	 � �
�

� � ���
�

	 � � 	
�

� � �
�

� 	 � �
�

� � �
�

� � � 	
�

� � �
�

��	 � �
�

�

�
�

�
statistically significant improvement or degradation

Table D.1: Naive Bayes, IB1, and C4.5 with and without feature selection on 12 natural
domains. A 5 � 2cv test for significance has been applied.

selection by the wrapper and CFS-UC. These results follow a pattern similar to those

presented in Chapter � in that CFS does a better job for naive Bayes than the wrapper

does, and that the wrapper does a better job for C4.5 than CFS does. For C4.5, three of

the four datasets that CFS degrades accuracy on have strong attribute interactions; worse

results than the wrapper are to be expected in such cases.

160

Dom naive Bayes wrapper CFS

mu
���

�

� � � 	
�

� � �
�

��� � 	
�

� � ���
�

� � � 	
�

	��

vo
��	

�

� � � 	
�

� � �
�

��	 � 	
�

� � �
�

� � � �
�

	

v
� � �

�

� � � 	
�

� � �
�

��� � �
�

��� ���
�

� � � 	
�

�

cr
� �

�

	 	 � 	
�

� � ���
�

� � � 	
�

� � � �
�

� � � 	
�

	��

ly
� �

�

� � � 	
�

� � � �
�

� � � �
�

	�� ���
�

� � � �
�

	��

pt
� �

�

��� � �
�

� � �
�

� � � �
�

� � ���
�

� � � �
�

�

bc
� �

�

	 � � �
�

	 � �
�

� � � �
�

� � �
�

� � � �
�

�

dna
���

�

� � � �
�

� � �
�

� 	 � 	
�

� ���
�

� 	 � �
�

���

au
���

�

� � � �
�

� ���
�

	�� � �
�

� ���
�

� � � �
�

	

sb
��	

�

� 	 � 	
�

� ���
�

�
� � 	
�

� � �
�

��� � 	
�

�

hc
� �

�

��� � �
�

	 ���
�

��	 � �
�

� � �
�

� � � 	
�

�

kr
� �

�

	�� � 	
�

� � �
�

� � � 	
�

	�� ���
�

� 	 � �
�

�

A
�
i

���
�

� � � 	
�

� � �
�

� 	 � 	
�

	�� �
	 	
�

	 � 	
�

���

A
�
i

���
�

� � � �
�

� ���
�

	�	 � � 	
�

��� �
	 	
�

	 � 	
�

	��

A
�
i

� �
�

� � � 	
�

� � �
�

� � � 	
�

� � �
�

��� � 	
�

�

A
�
r

� �
�

� � � 	
�

� � �
�

� � � 	
�

� � �
	 	
�

	 � 	
�

	��

A
�
r

� �
�

� 	 � 	
�

	 � 	�	
�

	 � 	
�

	�� �
	 	
�

	 � 	
�

	��

A
�
r

� �
�

� 	 � �
�

� � �
�

� � � �
�

� � �
�

� � � 	
�

�

M
� � �

�

� � � �
�

	 ���
�

� � � �
�

� � � �
�

	 	 � 	
�

	��

M
� � �

�

� � � �
�

� � �
�

�
� � 	
�

	 � �
�

� � � �
�

�

M
� � �

�

� � � 	
�

� � �
�

� � � 	
�

� � �
�

� � � 	
�

�

�
�

�
statistically significant improvement or degradation

Table D.2: Comparison between naive Bayes without feature selection and naive Bayes
with feature selection by the wrapper and CFS. A 5 � 2cv test for significance has been
applied.

Dom C4.5 wrapper CFS

mu
�
	 	

�

	 � 	
�

	 � �
�

� � � 	
�

� ���
�

� � � 	
�

	��

vo
� �

�

� � � 	
�

� ���
�

� � � 	
�

� � �
�

� � � 	
�

	

v
� ���

�

� 	 � 	
�

� � �
�

��� � 	
�

� ���
�

��� � 	
�

�

cr
� �

�

� � � �
�

	 � �
�

� 	 � 	
�

� � �
�

� � 	
�

	

ly
� �

�

� 	 � �
�

� ���
�

��� � �
�

� � �
�

��� � �
�

	

pt
���

�

	 � � �
�

� � �
�

� � � �
�

� � 	
�

� � � �
�

�

bc
� �

�

� � � �
�

� � �
�

� � � �
�

� � 	
�

� � � �
�

	

dna
� �

�

� � � �
�

� � �
�

	 � � �
�

� � �
�

� � � �
�

���

au
� �

�

� 	 � �
�

� � 	
�

��� � �
�

� � 	
�

� � � 	
�

�

sb
� �

�

� � � 	
�

� � �
�

��� � �
�

	 � �
�

� � � �
�

�

hc
� �

�

� � � �
�

� � �
�

��� � �
�

� � �
�

� � � 	
�

	

kr
���

�

� � � 	
�

� � � �
�

� � � 	
�

��� ���
�

� 	 � �
�

�

A
�
i

�
	 	
�

	 � 	
�

	 � 	�	
�

	 � 	
�

	 �
	 	
�

	�	 � 	
�

	

A
�
i

�
	 	
�

	 � 	
�

	 ���
�

	 � � � 	
�

��� �
	 	
�

	�	 � 	
�

	

A
�
i

���
�

� 	 � �
�

� � �
�

	�	 � 	
�

	 � �
�

� � � �
�

�

A
�
r

�
	 	
�

	 � 	
�

	 � 	�	
�

	 � 	
�

	 �
	 	
�

	�	 � 	
�

	

A
�
r

�
	 	
�

	 � 	
�

	 � 	�	
�

	 � 	
�

	 �
	 	
�

	�	 � 	
�

	

A
�
r

� �
�

� � � �
�

� � 	�	
�

	 	 � 	
�

	 � �
�

� � � �
�

� �

M
� � �

�

� � � �
�

� � 	�	
�

	 � 	
�

	�� � �
�

	 	 � 	
�

	��

M
� � �

�

� 	 � 	
�

	 � �
�

�
	 � 	
�

	 � �
�

� 	 � 	
�

	

M
� ���

�

� � � �
�

� � �
�

� � � �
�

� ���
�

� � � �
�

	��
�
�

�
statistically significant improvement or degradation

Table D.3: Comparison between C4.5 without feature selection and C4.5 with feature
selection by the wrapper and CFS. A 5 � 2cv test for significance has been applied.

161

162

Appendix E

CFS Merit Versus Accuracy

50

55

60

65

70

75

80

85

90

95

100

0 0.1 0.2 0.3 0.4 0.5 0.6

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

50

55

60

65

70

75

80

85

90

95

100

0 0.1 0.2 0.3 0.4 0.5 0.6

IB
1

ac
cu

ra
cy

merit

(b) IB1

50

55

60

65

70

75

80

85

90

95

100

0 0.1 0.2 0.3 0.4 0.5 0.6

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.1: Mushroom (mu).

60

65

70

75

80

85

90

95

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

60

65

70

75

80

85

90

95

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

IB
1

ac
cu

ra
cy

merit

(b) IB1

60

65

70

75

80

85

90

95

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.2: Vote (vo).

60

65

70

75

80

85

90

95

0 0.1 0.2 0.3 0.4 0.5 0.6

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

60

65

70

75

80

85

90

95

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

IB
1

ac
cu

ra
cy

merit

(b) IB1

60

65

70

75

80

85

90

95

0 0.1 0.2 0.3 0.4 0.5 0.6

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.3: Vote1 (v1).

163

50

55

60

65

70

75

80

85

90

0 0.1 0.2 0.3 0.4 0.5 0.6

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

50

55

60

65

70

75

80

85

0 0.1 0.2 0.3 0.4 0.5 0.6

IB
1

ac
cu

ra
cy

merit

(b) IB1

50

55

60

65

70

75

80

85

90

0 0.1 0.2 0.3 0.4 0.5 0.6

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.4: Australian credit screening (cr).

45

50

55

60

65

70

75

80

85

90

95

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

45

50

55

60

65

70

75

80

85

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

IB
1

ac
cu

ra
cy

merit

(b) IB1

45

50

55

60

65

70

75

80

85

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.5: Lymphography (ly).

15

20

25

30

35

40

45

50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

15

20

25

30

35

40

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

IB
1

ac
cu

ra
cy

merit

(b) IB1

15

20

25

30

35

40

45

50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.6: Primary tumour (pt).

64

66

68

70

72

74

76

78

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

60

62

64

66

68

70

72

74

76

78

80

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

IB
1

ac
cu

ra
cy

merit

(b) IB1

68

69

70

71

72

73

74

75

76

77

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.7: Breast cancer (bc).

164

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3
na

iv
e

B
ay

es
 a

cc
ur

ac
y

merit

(a) naive Bayes

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3

IB
1

ac
cu

ra
cy

merit

(b) IB1

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.8: Dna-promoter (dna).

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

IB
1

ac
cu

ra
cy

merit

(b) IB1

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.9: Audiology (au).

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

IB
1

ac
cu

ra
cy

merit

(b) IB1

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.10: Soybean-large (sb).

50

55

60

65

70

75

80

85

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

45

50

55

60

65

70

75

80

85

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

IB
1

ac
cu

ra
cy

merit

(b) IB1

55

60

65

70

75

80

85

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.11: Horse colic (hc).

165

50

55

60

65

70

75

80

85

90

95

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

na
iv

e
B

ay
es

 a
cc

ur
ac

y

merit

(a) naive Bayes

50

55

60

65

70

75

80

85

90

95

100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

IB
1

ac
cu

ra
cy

merit

(b) IB1

50

55

60

65

70

75

80

85

90

95

100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

C
4.

5
ac

cu
ra

cy

merit

(c) C4.5

Figure E.12: Chess end-game (kr).

166

Appendix F

CFS Applied to 37 UCI Domains

Table F.1 shows results for three machine learning algorithms with and without feature

selection by CFS-UC on
� � UCI domains. These domains make up a test suite used for

experiments with the WEKA workbench [HDW94], and are representative of those avail-

able from the UCI repository. Each accuracy in the table is the average of ��� train and test

trials using a ��� �
training and ��� �

testing split of the data. Colic, colic.ORIG and hc are

all versions of the horse colic dataset. Colic and hc have � � and ��� attributes respectively

and “surgical lesion” as the class. Colic.ORIG has � � attributes and “pathology cp data”

as the class. The version of naive Bayes used in these experiments is part of the WEKA

workbench.

Figure F.1 shows the average number of features selected by CFS-UC on these domains.

Figure F.2 shows the effect of feature selection by CFS-UC on the size of the trees induced

by C4.5.

167

Domain naive Bayes CFS-UC IB1 CFS-UC C4.5 CFS-UC
�

anneal
� �

�

��� � �
�

	 � � � �
�

� � � �
�

� � � �
�

��� � �
�

� ���
�

audiology
� �

�

��� � �
�

� � � ���
�

� � � �
�

� � � � �
�

� � � 	
�

	�	��
�

autos
� 	

�

� � � �
�

��	�� � �
�

��� � �
�

� � � � 	
�

� � � �
�

� �

�
balance-scale

���
�

� � ���
�

� � ���
�

� � ���
�

� � � �
�

� � � �
�

� �

�
breast-cancer

� �
�

��� � �
�

� � ���
�

� � � 	
�

� � � �
�

� � � �
�

� �

�
breast-w

���
�

� � ���
�

� � ���
�

��� ���
�

� � � �
�

� � � �
�

���

�
colic

� �
�

� � � �
�

� ��� � �
�

��� � �
�

����� � �
�

� � � �
�

� � �
�

colic.ORIG
� �

�

� � � �
�

� ��� � �
�

� � � 	
�

� ��� � �
�

� 	 � �
�

� 	

�
hc

� �
�

��� � �
�

��� � � 	
�

� � � �
�

	���� � �
�

� � � �
�

� �

�
	
credit-a

� �
�

� 	 � �
�

	�	�� � �
�

� � � �
�

	�	�� � �
�

��� � �
�

	�	��
���

credit-g
� �

�

	 � � �
�

� ��� � 	
�

��� � �
�

	 � � � 	
�

� � � �
�

� � �
���

diabetes
���

�

��� � �
�

����� � �
�

� � � �
�

��� � �
�

� � � �
�

� �

�
�
glass

� �
�

	 � � �
�

�
	�� � 	
�

� � � �
�

����� � �
�

� � ���
�

� �

� �
heart-c

���
�

��� ���
�

� � � �
�

� � � �
�

��� � � �
�

��� � �
�

�
	��
���

heart-h
� �

�

��� � �
�

	�	 � �
�

� � � 	
�

��	�� � �
�

� 	 � 	
�

� 	��
�
�

heart-statlog
� �

�

� � � �
�

� ��� � �
�

	 	 � �
�

	 ��� � �
�

� � � �
�

��	��
� �

hepatitis
� �

�

��� ���
�

� � � � 	
�

� � � 	
�

� � � �
�

��� � 	
�

� �

�
�
hypothyroid

� �
�

� � � �
�

� � � ��	
�

� � ���
�

	 ��� � �
�

� 	 � �
�

� ���
�
�

ionosphere
���

�

� � ���
�

� � � � �
�

� � � �
�

�
��� � �
�

��� � �
�

� �

� 	
iris

� �
�

	�� ���
�

� � � � �
�

� � ���
�

� � � � �
�

� � � �
�

� �

� �
kr-vs-kp

� �
�

��� � 	
�

����� � �
�

� � � 	
�

� � � � �
�

� � � 	
�

� � �
���

letter
� �

�

��� � �
�

����� � �
�

� � � �
�

� � � � �
�

��� � �
�

� �

� �
lymph

� �
�

� � � 	
�

� � � � �
�

��� � 	
�

� � � �
�

�
� � �
�

	����
� �

mushroom
� �

�

� � � �
�

� � � � 	 	
�

	�	 � �
�

� � � � 	�	
�

	 	 � �
�

� � �
���

primary-tumor
� �

�

� 	 ���
�

� � ���
�

� 	 ���
�

� � � � �
�

� � � 	
�

� �

� �
promoters

� �
�

��� � �
�

� � � ���
�

� � � �
�

� ��� � �
�

� � � �
�

� ���
� �

segment
� �

�

� � � �
�

� � � � �
�

��� � �
�

� � ���
�

� � ���
�

���

� �
sick

� �
�

� 	 � �
�

� � � ���
�

� � � �
�

����� ���
�

� � ���
�

	 ���
� �

sonar
� �

�

��� � 	
�

� � � �
�

� � � �
�

� � � � �
�

��� � �
�

�
���
��	

soybean
� �

�

� � � 	
�

� � � � 	
�

� � � �
�

��� � � �
�

��� � �
�

	 � �
� �

splice
���

�

�
� � �
�

� ��� � �
�

��� � �
�

� 	�� ���
�

� � ���
�

� 	��
� �

vehicle
� �

�

� � � �
�

	�	 � �
�

��	 ���
�

� � � � 	
�

��	 � �
�

� ���
���

vote
� 	

�

� � ���
�

� 	�� ���
�

��	 ���
�

� � � � �
�

� � � �
�

� ���
� �

vote
� � �

�

� � � �
�

� � � � �
�

� � � �
�

� � ���
�

� � ���
�

� �

� �
vowel

� �
�

��� � �
�

��� � � �
�

� � ���
�

����� � �
�

	�� � 	
�

��� �
���

waveform-
� 	 	�	 ���

�

�
� ���
�

� 	�� � �
�

� � � �
�

� � � ���
�

� � � �
�

� ���
� �

zoo
� �

�

	�� � �
�

� � � ���
�

� � ���
�

	 � ���
�

� � � �
�

� � �

Average:
� �

�

��� � 	
�

�
� � �
�

��� � �
�

��� ���
�

	 � � �
�

	 �

�
�

�
statistically significant improvement or degradation

Table F.1: Comparison of three learning algorithms with and without feature selection
using CFS-UC.

168

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35

fe

at
ur

es

dataset

Figure F.1: Average number of features selected by CFS on
� � UCI domains. Dots show

the original number of features.

-80

-60

-40

-20

0

20

40

60

0 5 10 15 20 25 30 35

tr
ee

 s
iz

e
di

ffe
re

nc
e

dataset

Figure F.2: Effect of feature selection on the size of the trees induced by C4.5 on
� � UCI

domains. Bars below the zero line indicate that feature selection has reduced tree size.

169

170

Bibliography

[AB94] D. W. Aha and R. L. Blankert. Feature selection for case-based classification
of cloud types. In Working Notes of th AAAI-94 Workshop on Case-Based
Reasoning, pages 106–112, 1994.

[AD91] H. Almuallim and T. G. Dietterich. Learning with many irrelevant features.
In Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 547–542. MIT Press, 1991.

[AD92] H. Almuallim and T. G. Dietterich. Efficient algorithms for identifying rele-
vant features. In Proceedings of the Ninth Canadian Conference on Artificial
Intelligence, pages 38–45. Morgan Kaufmann, 1992.

[Aha92] D. Aha. Tolerating noisy, irrelevant and novel attributes in instance-
based learning algorithms. International Journal of Man-Machine Studies,
36:267–287, 1992.

[AKA91] D. W. Aha, D. Kibler, and M. K. Albert. Instance based learning algorithms.
Machine Learning, 6:37–66, 1991.

[All74] D. Allen. The relationship between variable selection and data augmentation
and a method for prediction. Technometrics, 16:125–127, 1974.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth International Group, 1984.

[BI98] D. Bainbridge and S. Inglis. Musical image compression. In Proceedings of
the IEEE Data Compression Conference, pages 209–218, 1998.

[Bre96a] L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460,
University of California, Berkeley, CA., 1996.

[Bre96b] L. Breiman. Techical note: Some properties of splitting criteria. Machine
Learning, 24:41–47, 1996.

[Car95] C. Cardie. Using decision trees to improve cased-based learning. In Pro-
ceedings of the First International Conference on Knowledge Discovery and
Data Mining. AAAI Press, 1995.

[Cat91] J. Catlett. On changing continuous attributes into ordered discrete attributes.
In Proceedings of the European Working Session on Learning, pages 164–
178, Berlin, 1991. Springer-Verlag.

171

[CB97] C. W. Codrington and C. E. Brodley. On the qualitative behavour of
impurity-based splitting rules: The minima-free property. Technical report,
Electrical and Computer Engineering, Purdue University, IN, 1997.

[CF94] R. Caruana and D. Freitag. Greedy attribute selection. In Machine Learning:
Proceedings of the Eleventh International Conference. Morgan Kaufmann,
1994.

[CLW96] J. G. Cleary, S. Legg, and I. H. Witten. An MDL estimate of the significance
of rules. In Proceedings of ISIS: Information, Statistics, and Induction in
Science, 1996.

[CLW97] S. J. Cunningham, J. Littin, and I. H. Witten. Applications of machine learn-
ing in information retrieval. Technical Report 97/6, University of Waikato,
1997.

[CMSW92] R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz. Trading mips and
memory for knowledge engineering. Communications of the ACM, 35:48–
64, 1992.

[CN89] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning,
3:261–283, 1989.

[CS93] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning
with symbolic features. Machine Learning, 10:57–78, 1993.

[CS96] K. J. Cherkauer and J. W. Shavlik. Growing simpler decision trees to fa-
cilitate knowledge discovery. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996.

[CT95] J. G. Cleary and L. E. Trigg. K
�

: An instance-based learner using an en-
tropic distance measure. In Machine Learning: Proceedings of the Twelvth
International Conference. Morgan Kaufmann, 1995.

[Die88] T.G. Dietterich. Approximate statistical tests for comparing supervised
classification learnign algorithms. Neural Computation, 10(7):1895–1924,
1988.

[DK82] P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach.
Prentice/Hall International, 1982.

[DKS95] D. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised
discretisation of continuous features. In Machine Learning: Proceedings of
the Twelvth International Conference. Morgan Kaufmann, 1995.

[Dom97] P. Domingos. Context-sensitive feature selection for lazy learners. Artificial
Intelligence Review, (11):227–253, 1997.

172

[DP96] P. Domingos and M. Pazzani. Beyond independence: Conditions for the
optimality of the simple Bayesian classifier. In Machine Learning: Pro-
ceedings of the Thirteenth International Conference on Machine Learning.
Morgan Kaufmann, 1996.

[DP97] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian
classifier under zero-one loss. Machine Learning, 29:103–130, 1997.

[FG96] N. Friedman and M. Goldszmidt. Building classifiers using Bayesian net-
works. In Proceedings of the National Conference on Artificial Intelligence,
pages 1277–1284, 1996.

[FI93] U. M. Fayyad and K. B. Irani. Multi-interval discretisation of continuous-
valued attributes for classification learning. In Proceedings of the Thirteenth
International Join Conference on Artificial Intelligence. Morgan Kaufmann,
1993.

[FS96] Y. Freund and R. R. Schapire. Experiments with a new boosting algorithm.
In Machine Learning: Proceedings of the Thirteenth International Confer-
ence on Machine Learning. Morgan Kaufmann, 1996.

[Gei75] S. Geisser. The predictive sample reuse method with applications. Journal
of the American Statistical Association, 70(350):320–328, 1975.

[Ghi64] E. E. Ghiselli. Theory of Psychological Measurement. McGrawHill, New
York, 1964.

[GL97] D. Gamberger and N. Lavrac. Conditions for Occam’s Razor applicability
and noise elimination. In Proccedings of the Ninth European Conference on
Machine Learning, 1997.

[GLF89] J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept
formation. Artificial Intelligence, (40):11–61, 1989.

[HDW94] G. Holmes, A. Donkin, and I.H. Witten. Weka: A machine learning work-
bench. In Proceedings of the Second Australia and New Zealand Conference
on Intelligent Information Systems, 1994.

[HNM95] G. Holmes and C. G. Nevill-Manning. Feature selection via the discovery of
simple classification rules. In Proceedings of the Symposium on Intelligent
Data Analysis, Baden-Baden, Germany, 1995.

[Hog77] R. M. Hogarth. Methods for aggregating opinions. In H. Jungermann and
G. de Zeeuw, editors, Decision Making and Change in Human Affairs. D.
Reidel Publishing, Dordrecht-Holland, 1977.

[Hol75] J. H. Holland. Adaption in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI, 1975.

173

[Hol93] R. C. Holte. Very simple classification rules perform well on most commonly
used datasets. Machine Learning, 11:63–91, 1993.

[Hut93] A. Hutchinson. Algorithmic Learning. Clarendon Press, Oxford, 1993.

[JKP94] G. H. John, R. Kohavi, and P. Pfleger. Irrelevant features and the subset
selection problem. In Machine Learning: Proceedings of the Eleventh Inter-
national Conference. Morgan Kaufmann, 1994.

[JL96] G. H. John and P. Langley. Static versus dynamic sampling for data min-
ing. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. AAAI Press, 1996.

[KB91] I. Kononenko and I. Bratko. Information-based evaluation criterion for clas-
sifier’s performance. Machine Learning, 6:67–80, 1991.

[KF94] R. Kohavi and B. Frasca. Useful feature subsets and rough sets reducts. In
Proceedings of the Third International Workshop on Rough Sets and Soft
Computing, 1994.

[Kit78] J. Kittler. Feature set search algorithms. In C. H. Chen, editor, Pattern
Recognition and Signal Processing. Sijhoff an Noordhoff, the Netherlands,
1978.

[KJ96] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial
Intelligence, special issue on relevance, 97(1–2):273–324, 1996.

[KJL � 94] R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger. ��� � ++: A ma-
chine learning library in C++. In Tools with Artificial Intelligence, pages
740–743. IEEE Computer Scociety Press, 1994.

[KLY97] R. Kohavi, P. Langley, and Y. Yun. The utility of feature weighting in
nearest-neighbor algorithms. In Proceedings of the Ninth European Con-
ference on Machine Learning, Prague, 1997. Springer-Verlag.

[Koh95a] R. Kohavi. The power of decision tables. In European Conference on Ma-
chine Learning, 1995.

[Koh95b] R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision
Graphs. PhD thesis, Stanford University, 1995.

[Kon91] I. Kononenko. Semi-naive Bayesian classifier. In Proceedings of the Sixth
European Working Session on Learning, pages 206–219, 1991.

[Kon94] I. Kononenko. Estimating attributes: Analysis and extensions of relief. In
Proceedings of the European Conference on Machine Learning, 1994.

[Kon95] I. Kononenko. On biases in estimating multi-valued attributes. In IJCAI95,
pages 1034–1040, 1995.

174

[KR92] K. Kira and L. A. Rendell. A practical approach to feature selection. In Ma-
chine Learning: Proceedings of the Ninth International Conference, 1992.

[KS95] R. Kohavi and D. Sommerfield. Feature subset selection using the wrapper
method: Overfitting and dynamic search space topology. In Proceedings
of the First International Conference on Knowledge Discovery and Data
Mining. AAAI Press, 1995.

[KS96a] R. Kohavi and M. Sahami. Error-based and entropy-based discretisation of
continuous features. In Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining. AAAI Press, 1996.

[KS96b] D. Koller and M. Sahami. Towards optimal feature selection. In Machine
Learning: Proceedings of the Thirteenth International Conference on Ma-
chine Learning. Morgan Kaufmann, 1996.

[KS97] D. Koller and M. Sahami. Hierachically classifying documents using very
few words. In Machine Learning: Proceedings of the Fourteenth Interna-
tional Conference. Morgan Kaufmann, 1997.

[Lan94] P. Langley. Selection of relevant features in machine learning. In Proceed-
ings of the AAAI Fall Symposium on Relevance. AAAI Press, 1994.

[Lin81] G. H. Lincoff. The Audubon Society Field Guide to North American Mush-
rooms. Alfred A. Knopf, New York, 1981.

[LS94a] P. Langley and S. Sage. Induction of selective Bayesian classifiers. In Pro-
ceedings of the Tenth Conference on Uncertainty in Artificial Intelligence,
Seattle, W.A, 1994. Morgan Kaufmann.

[LS94b] P. Langley and S. Sage. Oblivious decision trees and abstract cases. In
Working Notes of the AAAI-94 Workshop on Case-Based Reasoning, Seattle,
W.A, 1994. AAAI Press.

[LS94c] P. Langley and S. Sage. Scaling to domains with irrelevant features. In
R. Greiner, editor, Computational Learning Theory and Natural Learning
Systems, volume 4. MIT Press, 1994.

[LS95] P. Langley and H. A. Simon. Applications of machine learning and rule
induction. Comunications of the ACM, 38(11):55–64, 1995.

[LS96] H. Liu and R. Setiono. A probabilistic approach to feature selection: A filter
solution. In Machine Learning: Proceedings of the Thirteenth International
Conference on Machine Learning. Morgan Kaufmann, 1996.

[MG63] T. Marill and D. M. Green. On the effectiveness of receptors in recognition
systems. IEEE Transactions on Information Theory, 9:11–17, 1963.

175

[MHJ92] A. W. Moore, D. J. Hill, and M. P. Johnson. An empirical investigation of
brute force to choose features, smoothers and function approximators. In
S. Hanson, S. Judd, and T. Petsche, editors, Computational Learning Theory
and Natural Learning Systems, volume 3. MIT Press, 1992.

[Mic83] R. S. Michalski. A theory and methodology of inductive learning. Artificial
Intelligence, 20(2):111–161, 1983.

[Mil90] A. J. Miller. Subset Selection in Regression. Chapman and Hall, New York,
1990.

[Mit97] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[ML94] A. W. Moore and M. S. Lee. Efficient algorithms for minimizing cross val-
idation error. In Machine Learning: Proceedings of the Eleventh Interna-
tional Conference. Morgan Kaufmann, 1994.

[MM98] C. J. Merz and P. M. Murphy. UCI Repository of machine learning
databases. http://www.ics.uci.edu/˜mlearn/MLRepository.html, 1998.

[Mod93] M. Modrzejewski. Feature selection using rough sets theory. In Proceedings
of the European Conference on Machine Learning, pages 213–226, 1993.

[NF77] P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature
subset selection. IEEE Transactions on Computers, C-26(9), 1977.

[Par87] T. Parsons. Voice and Speech Processing. McGraw-Hill, 1987.

[Paw91] Z. Pawlak. Rough Sets, Theoretical Aspects of Reasoning About Data.
Kluwer, 1991.

[Paz95] M. Pazzani. Searching for dependencies in Bayesian classifiers. In Proceed-
ings of the Fifth International Workshop on AI and Statistics, 1995.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo, California, 1988.

[Pfa95] B. Pfahringer. Compression-based feature subset selection. In Proceed-
ings of the IJCAI-95 Workshop on Data Engineering for Inductive Learning,
pages 109–119, 1995.

[PFTV88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C. Cambridge University Press, Cambridge, 1988.

[PS96] G. M. Provan and M. Singh. Learning Bayesian networks using feature
selection. In D. Fisher and H. Lenz, editors, Learning from Data, Lecture
Notes in Statistics, pages 291–300. Springer-Verlag, New York, 1996.

[PSF91] G. Piatetsky-Shapiro and W. J. E. Frawley. Knowledge Discovery in
Databases. MIT Press, Cambridge, Mass., 1991.

176

[Qui86] R. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986.

[Qui87] J. R. Quinlan. Simplifying decision trees. International Journal of Man-
Machine Studies, 27:221–234, 1987.

[Qui89] J. R. Quinlan. Inferring decision trees using the minimum description length
principle. Information and Computation, 80:227–248, 1989.

[Qui93] J.R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann,
Los Altos, California, 1993.

[Ris78] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–
471, 1978.

[RK91] E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, 1991.

[Sah96] M. Sahami. Learning limited dependence Bayesian classifiers. In Proceed-
ings of the Second International Conference on Knowledge Discovery and
Data Mining. AAAI Press, 1996.

[Sal91] S. Salzberg. A nearest hyperrectangle learning method. Machine Learning,
6:251–276, 1991.

[SB97] M. Scherf and W. Brauer. Feature selection by means of a feature weighting
approach. Technical Report FKI-221-97, Technische Universität München,
1997.

[Sch93] C. Schaffer. Selecting a classification method by cross-validation. Machine
Learning, 13:135–143, 1993.

[SFBL97] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the mar-
gin: A new explanation for the effectiveness of voting methods. In Machine
Learning: Proceedings of the Fourteenth International Conference. Morgan
Kaufmann, 1997.

[Sie56] S. Siegel. Nonparametric Statistics. McGraw-Hill, New York, 1956.

[Ska94] D. B. Skalak. Prototype and feature selection by sampling and random mu-
tation hill climbing algorithms. In Machine Learning: Proceedings of the
Eleventh International Conference. Morgan Kaufmann, 1994.

[SL95] R. Setiono and H. Liu. Chi2: Feature selection and discretization of numeric
attributes. In Proceedings of the Seventh IEEE International Conference on
Tools with Artificial Intelligence, 1995.

[SP96] M. Singh and G. M. Provan. Efficient learning of selective Bayesian net-
work classifiers. In Machine Learning: Proceedings of the Thirteenth Inter-
national Conference on Machine Learning. Morgan Kaufmann, 1996.

177

[SW48] C. E. Shannon and W. Weaver. The Mathematical Theory of Comunication.
University of Illinois Press, Urbana, Ill, 1948.

[TBB � 91] S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De
Jonng, S. Dzeroski, S.E Fahlman, D. Fisher, R. Hamann, K. Kaufman,
S. Keller, I. Kononenko, J. Kreuziger, R. S. Michalski, T. Mitchell, P. Pa-
chowicz, Y. Reich, H. Vafaie, W. Van de Welde, W. Wenzel, J. Wnek, and
J. Zhang. The MONK’s problems: A performance comparison of different
learning algorithms. Technical Report CMU-CS-91-197, Carnegie Mellon
University, 1991.

[Tho92] C. J. Thornton. Techniques In Computational Learning. Chapman and Hall,
London, 1992.

[Tin95] K. M. Ting. Common Issues in Instance Based and Naive Bayesian Classi-
fiers. PhD thesis, University of Sydney, NSW 2006, Australia, 1995.

[VJ95] H. Vafaie and K. De Jong. Genetic algorithms as a tool for restructuring fea-
ture space representations. In Proceedings of the International Conference
on Tools with A.I. IEEE Computer Society Press, 1995.

[WA95] D. Wettschereck and D. W. Aha. Weighting features. In First International
Conference on Cased-Based Reasoning, Portugal, 1995. Springer.

[WC87] A. K. C Wong and D. K. Y Chiu. Synthesizing statistical knowledge from
incomplete mixed-mode data. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 9(6), 1987.

[WL94] A. P. White and W. Z. Liu. Bias in information-based measures in decision
tree induction. Machine Learning, 15:321–329, 1994.

[WW77] T. H. Wonnacott and R. J. Wonnacott. Introductory Statistics. Wiley, 1977.

[WW97] Y. Wang and I. H. Witten. Inducing model trees for continuous classes.
In Proceedings of Poster Papers, Ninth European Conference on Machine
Learning, 1997.

[Zaj62] R. B. Zajonic. A note on group judgements and group size. Human Rela-
tions, 15:177–180, 1962.

178

