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Abstract. This paper provides an analysis of the behavior of separate-and-conquer or covering
rule learning algorithms by visualizing their evaluation metrics and their dynamics in PN-
space, a variant of ROC-space. Our results show that most commonly used search heuristics,
including accuracy, weighted relative accuracy, entropy, and Gini index, are equivalent to one
of two fundamental prototypes: precision, which tries to optimize the area under the ROC
curve for unknown costs, and a cost-weighted difference between covered positive and nega-
tive examples, which tries to find the optimal point under known or assumed costs. We also
show that a straightforward generalization of them-estimate trades off these two prototypes.
Furthermore, our results show that stopping and filtering criteria like CN2’s significance test
focus on identifying significant deviations from random classification, which does not neces-
sarily avoid overfitting. We also identify a problem with Foil’s MDL-based encoding length
restriction, which proves to be largely equivalent to a variable threshold on the recall of the
rule. In general, we interpret these results as evidence that, contrary to common conception,
pre-pruning heuristics are not very well understood and deserve more investigation.

1. Introduction

Most rule learning algorithms for classification problems follow the so-called
separate-and-conqueror coveringstrategy, i.e., they learn one rule at a time,
each of them explaining (covering) a part of the training examples. The ex-
amples covered by the last learned rule are removed from the training set
(separated) before subsequent rules are learned (before the remaining train-
ing examples areconquered). Typically, these algorithms operate in aconcept
learning framework, i.e., they expect positive and negative examples for an
unknown concept. From this training data, they learn a set of rules that de-
scribe the underlying concept, i.e., that explain all (or most) of the positive
examples and (almost) none of the negative examples.

Various approaches that adhere to this framework differ in the way single
rules are learned. Common to all algorithms is that they have to use a metric
or search heuristic for evaluating the quality of a candidate rule. A survey of
the rule learning literature yields a vast number of rule learning metrics that
have been proposed for evaluating the quality of a learned rule. Each of these
metrics has its justification based in statistics, information theory, or related
fields, but their relation to each other is not very well understood.
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2 Johannes F̈urnkranz and Peter Flach

In this paper, we attempt to shed some light upon this issue by investi-
gating commonly used evaluation metrics. Our basic tool for analysis will
be visualization in PN-spaces. PN-space is quite similar to ROC-space, the
two-dimensional plane in which the operating characteristics of classifiers
are visualized. Our analysis will show that most commonly used heuristics,
including accuracy, weighted relative accuracy, entropy, and Gini index, are
equivalent to one of two fundamental prototypes: precision, which tries to op-
timize the area under the ROC curve for unknown costs, and a cost-weighted
difference between covered positive and negative examples, which tries to
find the optimal point under known or assumed costs. We also show that a
straightforward generalization of them-estimate trades off these two proto-
types.

Many rule learning algorithms apply additional criteria for filtering out
uninteresting rules or for stopping the refinement process at an appropriate
point. Stopping and filtering criteria have received considerably less attention
in the literature, mostly because their task is more frequently addressed by
pruning. The few existing proposals, most notably simple thresholding of the
evaluation metric, significance testing, and MDL-based criteria, turn out to
be quite diverse approaches to this problem. Although our analysis will show
some interesting correspondences between some of these techniques, it is also
clear that stopping criteria are far from being well-understood.

The outline of the paper is as follows: We begin with setting up the for-
mal framework of our analysis, most notably the introduction of PN-spaces
and isometrics (Section 2), and a brief review of covering algorithms in this
context (Section 3). In Sections 4 and 5, we analyze some of the most com-
monly used evaluation metrics, and show that those with a linear isometric
landscape all fit into a common framework. Subsequently, we discuss a few
issues related to learning rule sets with the covering algorithm (Section 6). In
Section 7, we will look at the most commonly stopping and filtering criteria.
Finally, we discuss a few open questions (Section 8) and related work (Sec-
tion 9) before we conclude (Section 10). Parts of this paper have previously
appeared in (F̈urnkranz and Flach, 2003).

2. Formal Framework

In the following, we define the formal framework in which we perform our
analysis. In particular, we will define PN-spaces and discuss their relation to
ROC-spaces (Section 2.1) and provide formal definitions of the equivalence
of evaluation metrics and point out the importance of isometrics in PN-space
for identifying such equivalences (Section 2.2).

paper.tex; 5/11/2003; 21:06; p.2
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Note that in the remainder of the paper, we will use the termssearch
heuristicandevaluation metricinterchangeably because most algorithms do
not differentiate between them. This is further discussed in Section 3.3.

2.1. ROC-SPACE ANDPN-SPACE

In the following, we assume some basic knowledge of ROC analysis as it
is typically used for selecting the best classifier for unknown classification
costs (Provost and Fawcett, 2001). In brief, ROC analysis compares differ-
ent classifiers according to their true positive rate (TPR) and false positive
rate (FPR), i.e., the percentage of correctly classified positive examples and
incorrectly classified negative examples. This allows to plot classifiers in a
two-dimensional space, one dimension for each of these two measurements.
The ideal classifier is at the upper left corner, at point(1,0), while the origin
(0,0) and the point(1,1) correspond to the classifiers that classify all exam-
ples as negative and positive respectively. If all classifiers are plotted in this
ROC-space, the best classifier is the one that is closest to(1,0), where the
used distance measure depends on the relative misclassification costs of the
two classes. One can also show that all classifiers that are optimal under some
(linear) cost model lie on the convex hull of these points in ROC-space. Thus,
all classifiers that do not lie on this convex hull, can be ruled out.

In the particular context of rule learning, we believe it is more convenient
to think in terms of absolute numbers of covered examples. Thus, instead
of plotting TPR over FPR, we plot the absolute number of covered positive
examples over the absolute number of covered negative examples. We call
such graphsPN-graphs. Figure 1 shows two examples, one for the case where
the number of positive examplesP exceeds the number of negative examples

Figure 1. PN-curves are ROC-curves based on absolute numbers of covered examples.
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N, and one for the opposite case. In all subsequent figures, we will assume
P≤ N (the left graph of Figure 1), but this does not affect our results.

A PN-graph can be turned into a ROC graph by simply normalizing the
P and N-axes to the scale[0,1]× [0,1]. Consequently, the isometrics of a
function in a PN-graph can be mapped one-to-one to its isometrics in ROC-
space. Nevertheless, PN-graphs have several interesting properties that may
be of interest depending on the purpose of the visualization. Most notably, the
absolute numbers of covered positive and negative examples allow to map
the covering strategy into a sequence of nested PN-graphs. This is further
discussed in Section 6.1. Table I compares some of the properties of PN-
curves to those of ROC-curves.

Table I. PN-spaces vs. ROC-spaces.

property ROC-space PN-space

x-axis FPR =n
N n

y-axis TPR =p
P p

empty theoryR0 (0,0) (0,0)
correct theoryR (0,1) (0,P)
universal theoryR̃ (1,1) (N,P)
resolution ( 1

N , 1
P) (1,1)

slope of diagonal 1 P
N

slope ofp = n line N
P 1

2.2. ISOMETRICS ANDEQUIVALENCE

In the remainder of the paper, we use capital letters to denote the total num-
ber of positive (P) and negative (N) examples in the training set, whereas
p(r) and n(r) are used for the respective number of examples covered by
a rule r. Heuristics are two-dimensional functions of the formh(p,n). We
use subscripts to the letterh to differentiate between different heuristics. For
brevity and readability, we will abridgeh(p(r),n(r)) with h(r), and omit the
argument(r) from functionsp, n, andh when it is clear from the context.
Table II shows a summary of our notational conventions in the form of a
four-field confusion matrix.

DEFINITION 2.1 (compatible).Two search heuristics h1 and h2 are com-
patibleiff for all rules r,s:
h1(r) > h1(s)⇔ h2(r) > h2(s).
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Table II. Notational conventions for a confusion matrix of positive and
negative examples covered or not covered by a rule.

covered by rule not covered by rule

positive example p P− p P

negative example n N−n N

p+n P+N− p−n P+N

DEFINITION 2.2 (antagonistic).Two search heuristics h1 and h2 areantag-
onistic iff for all rules r,s:
h1(r) > h1(s)⇔ h2(r) < h2(s).

Obviously, compatibility and antagonicity are dual concepts:

LEMMA 2.3. h1 and h2 are antagonistic iff h1 and−h2 are compatible.
Proof.Follows immediately fromh2(r) > h2(s)⇔−h2(r) <−h2(s). 2

Note that compatible or antagonistic heuristics have identical regions of equal-
ity:

DEFINITION 2.4 (equality-preserving).Two search heuristics h1 and h2 are
equality-preservingiff for all rules r,s: h1(r) = h1(s)⇔ h2(r) = h2(s).

THEOREM 2.5. Compatible or antagonistic search heuristics are equality-
preserving.

Proof. Assume they would not be equality-preserving. This means there
exist rulesr andswith h1(r) = h2(s) buth2(r) 6= h2(s). Without loss of gener-
ality assumeh2(r) > h2(s). This implies thath1(r) > h1(s) (for compatibility)
or h1(r) < h1(s) (for antagonicity). Both cases contradict the assumption.2

Note that equality-preserving search heuristics are not necessarily compatible
or antagonistic, only if we make some straightforward continuity assump-
tions. Although all subsequently discussed functions are continuous, we note
that this does no have to be the case. For all practical purposes,h(p,n) may
be regarded as a lookup-table that defines a valueh for each integer-valued
pair (n, p).

Based on the above, we can define the equivalence of search heuristics.
The basic idea is that search heuristics are equivalent if they order a set of
candidate rules in an identical way. It should also capture that some learning
systems try to maximize a certain heuristic functions, while others try to min-
imize an equivalent function (e.g., maximizing information gain is equivalent
to minimizing entropy).
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DEFINITION 2.6 (equivalence).Two search heuristics h1 and h2 are equiv-
alent(h1 ∼ h2) if they are either compatible or antagonistic.

This definition also underlines the importance of isometrics for the analy-
sis of search heuristics:

DEFINITION 2.7 (isometric). An isometric of a heuristic h is a line (or
curve) in PN-space that connects, for some value c, all points(n, p) for which
h(p,n) = c.

Equality-preserving search heuristics can be recognized by examining their
isometrics and establishing that for each isometric line forh1 there is a corre-
sponding isometric forh2. Compatible and antagonistic search heuristics can
be recognized by investigating corresponding isometrics and establishing that
their associated heuristic values are in the same (the opposite) order.

3. Covering Rule Learning Algorithms

The most popular strategy for learning classification rules is thecoveringor
separate-and-conquerstrategy. It has its roots in the early days of machine
learning in theAQ family of rule learning algorithms (Michalski, 1969; Kauf-
man and Michalski, 2000). It is fairly popular inpropositional rule learn-
ing (cf. CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991),Ripper
(Cohen, 1995), orCBA (Liu et al., 1998)) as well as ininductive logic pro-
gramming (ILP)(cf. Foil (Quinlan, 1990) and its successors (Džeroski and
Bratko, 1992; F̈urnkranz, 1994; De Raedt and Van Laer, 1995; Quinlan and
Cameron-Jones, 1995) orProgol (Muggleton, 1995)).

In the following, we will briefly recapitulate the key issues of this learning
strategy, with a particular focus on its behavior in PN-space. For a detailed
survey of this large family of algorithms we refer to (Fürnkranz, 1999).

3.1. SEPARATE-AND-CONQUERLEARNING

The defining characteristic of this family of algorithms is that they succes-
sively learn rules that explain part of the available training examples. Ex-
amples that arecoveredby previously learned rules areseparatedfrom the
training set, and the remaining examples areconqueredby recursively call-
ing the learner to find the next rule. This is repeated until all examples are
explained by a rule, or until some other, externalstopping criterionspecifies
that the current rule set is satisfactory.

Most algorithms of this family operate in a concept learning framework,
i.e., they learn the definition of an unknown concept from positive examples
(examples for the concept) and negative examples (counter-examples). Each
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Figure 2. Schematic depiction of the paths through PN-space that are described by (left)
the covering strategy of learning a theory by adding one rule at a time and (right) greedy
specialization of a single rule.

of the learned rules covers some (as many as possible) of the available positive
examples, and possibly some (as few as possible) of the negative examples as
well. Thus, the learned rule set describes the hidden concept. For classifying
new examples, each rule is tried in order. If any of the learned rules fires for
a given example, the example is classified as positive. If none of them fires,
the example is classified as negative. This corresponds to theclosed-world
assumptionin the semantics of rule sets (theories) and rules (clauses) in the
PROLOG programming language.

3.2. COVERING IN PN-SPACE

Adding a rule to a rule set means that more examples are classified as positive,
i.e., it increases the coverage of the rule set. All positive examples that are
uniquely covered by the newly added rule contribute to an increase of the true
positive rate on the training data. Conversely, covering additional negative
examples may be viewed as increasing the false positive rate on the training
data. Therefore, adding ruler i+1 to rule setRi effectively moves from point
Ri = (ni , pi) (corresponding to the number of negative and positive examples
that are covered by previous rules), to a new pointRi+1 = (ni+1, pi+1) (corre-
sponding to the examples covered by the new rule set). Moreover,Ri+1 will
typically be closer to(N,P) and farther away from(0,0) thanRi .

Consequently, learning a rule set one rule at a time may be viewed as a path
through PN-space, where each point on the path corresponds to the addition
of a rule to the theory. Such aPN-pathstarts at(0,0), which corresponds to
the empty theory that does not cover any examples. Adding a rule moves to a
new point in ROC-space, which corresponds to a theory consisting of all rules
that have been learned so far. After the final rule has been learned, one can
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8 Johannes F̈urnkranz and Peter Flach

imagine adding yet another rule with a body that is always true. Adding such
a rule has the effect that the theory now classifiesall examples as positive,
i.e., it will take us to the point̃R= (N,P). Figure 2 shows the PN-path for a
theory with three rules. Each pointRi represents the rule set consisting of the
first i rules.

The final rule set learned by a classifier will typically correspond to the
last point on the curve before it reaches(N,P). Note, however, that this need
not be the case. This will be briefly discussed in section 6.3.

3.3. GREEDY SPECIALIZATION

While the covering loop is essentially the same for all members of the separate-
and-conquer family of rule learning algorithms, the individual members differ
in the way they learn single rules. Algorithms may use stochastic (Mladenić,
1993) or genetic search (Giordana and Sale, 1992), exhaustive search (Webb,
1995; Muggleton, 1995), or employ association rule algorithms for finding a
candidate set of rules (Liu et al., 1998; Jovanoski and Lavrač, 2001). Again,
we refer to (F̈urnkranz, 1999) for a survey.

The vast majority of algorithms uses a heuristic top-down hill-climbing
or beam search strategy, i.e., they search the space of possible rules by suc-
cessively specializing the current best rule. Rules are specialized by greedily
adding the condition which promises the highest gain according to someeval-
uation metric. Like with adding rules to a rule set, this successive refinement
describes a path trough PN-space (see Figure 2, right). However, in this case,
the path starts at the upper right corner (covering all positive and negative
examples), and successively proceeds towards the origin (which would be a
rule that is too specific to cover any example).

Note that rule learning algorithms that are based on iterative refinement
of candidate rules typically use the same metric for evaluating complete and
incomplete rules, i.e., rules that can be added to the theory and rules that
are only interior nodes in the search graph. While the evaluation of complete
rules should measure the rule’s potential of classifying unseen test cases, the
evaluation of an incomplete rule should capture its potential to be refined into
a high-quality complete rule. In this case, the evaluation metric is used as a
search heuristic. We note that, in principle, different types of search heuristics
are possible (cf. also Section 8), but, like all refinement-based rule learning
algorithms, we will not further differentiate between evaluation metrics and
search heuristics, and use the terms interchangeably in this paper.

3.4. OVERFITTING AVOIDANCE

In the simplest case, both for refining a rule set and refining a rule, all points
on its PN-path are evaluated with an evaluation metric, and the rule set or rule
that corresponds to the point with the highest evaluation is selected. However,
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such an approach may often be too simplistic, in particular because of the
danger ofoverfitting. A rule learner typically evaluates a large number of
candidate rules, which makes it quite likely that one of them fits the charac-
teristics of the training set by chance. For example, simply using the fraction
of positive examples covered by the rule suffers from overfitting because one
can always find a rule that covers a single positive example and no negative
example by simply picking a unique positive example and transform it into
a rule. Such a rule has an optimal value 1, but it is unlikely that the learned
rule is useful because the obtained heuristic estimate is not reliable enough to
generalize to unseen data.

A simple way of countering overfitting is to explicitly specify the region
of the PN-space for which it is believed that the provided heuristic evalua-
tions are too weak or too unreliable to be of interest. There are two principal
approaches for dealing with this kind of problem:Pre-pruningalgorithms
employ additional evaluation heuristics for filtering out unpromising rules or
for stopping the refinement process, whereaspost-pruningapproaches delib-
erately learn an overfitting rule or theory and correct it in a post-processing
phase. For a discussion of the two alternatives and some proposals for com-
bining them we refer to (F̈urnkranz, 1997). In this paper, we will confine
ourselves to pre-pruning heuristics (Section 7).

4. Linear Rule Evaluation Metrics

The ultimate goal of learning is to reach point(0,P) in PN-space, i.e., to learn
a correct theory that covers all positive examples, but none of the negative
examples. This will rarely ever be achieved in a single step, but a set of rules
will be needed to meet this objective. The purpose of a rule evaluation metric
is to estimate how close a rule takes you to this ideal point. In the following,
we analyze the most commonly used metrics for evaluating the quality of a
rule in covering algorithms.

4.1. BASIC HEURISTICS

A straightforward strategy for finding a rule that covers some positive and
as few negative examples as possible is to minimize the number of covered
negative examples for each individual rule (or maximize their negation).

hn =−n

This, however, does not capture the intuition that we want to cover as many
positive examples as possible. For this,hp, the number of covered positive
examples, could be used.

hp = p

paper.tex; 5/11/2003; 21:06; p.9
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Figure 3. Isometrics for minimizing false positives and for maximizing true positives.

Figure 3 shows the isometrics forhn andhp, vertical and horizontal lines.
All rules that cover the same number of negative (positive) examples are
evaluated equally, irrespective of the number of positive (negative) examples
they cover.

However, it is trivial to find theories that maximize either of them:hn is
maximal for the empty theoryR0, which does not cover any negative exam-
ples, but also no positive examples, andhp is maximal for the universal theory
R̃, which covers all positive and no negative examples. Ideally, one would like
to achieve both goals simultaneously.

4.2. ACCURACY, WEIGHTED RELATIVE ACCURACY, GENERAL COSTS

A straightforward way for trading off covering many positives and excluding
many negatives is to simply add uphn andhp:

hacc= p−n

The isometrics for this function are shown in the left graph of Figure 4. Note
that the isometrics all have a 45o angle. Thus this search heuristic basically
optimizes accuracy:

THEOREM 4.1. hacc is equivalent to accuracy.
Proof.The accuracy of a theory (which may be a single rule) is the propor-

tion of correctly explained examples, i.e., positive examples that are covered
(p) and negative examples that are not covered (N−n), in all examples (P+
N). Thus the isometrics are of the formp+(N−n)

P+N = c. As P andN are con-
stant, these can be transformed into the isometrics ofhacc: p−n = cacc=
c(P+N)−N. 2
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Figure 4. Isometrics for accuracy and weighted relative accuracy.

Accuracy has been used as a pruning heuristic in I-REP (Fürnkranz and Wid-
mer, 1994), a modification ofhacc, which also subtracts the length of a rule,
has been used in PROGOL (Muggleton, 1995).

Optimizing accuracy gives equal weight to covering a single positive ex-
ample and excluding a single negative example. There are cases where this
choice is arbitrary, for example when misclassification costs are not known
in advance or when the samples of the two classes are not representative. In
such cases, it may be advisable to normalize with the sample sizes:

hwra =
p
P
− n

N
= TPR−FPR

The isometrics of this heuristic are shown in the right half of Figure 4. The
main difference with accuracy is that the isometrics are parallel to the di-
agonal, which reflects that we now give equal weight to increasing the true
positive rate (TPR) or to decreasing the false positive rate (FPR). Note that
the diagonal encompasses all classifiers that make random predictions.

hwra may be viewed as a simplification ofweighted relative accuracy,
which has been proposed as a rule learning heuristic by Lavrač et al., Todor-
ovski et al. (1999, 2000):

THEOREM 4.2. hwra is equivalent to weighted relative accuracy.
Proof.Weighted relative accuracy is defined ashwra′ =

p+n
P+N( p

p+n−
P

P+N).
Using equivalence-preserving transformations (multiplications with constant
values likeP+N), we obtainhwra′ = 1

P+N(p− p P
P+N − n P

P+N) ∼ p N
P+N −

n P
P+N ∼ pN−nP∼ p

P−
n
N = hwra. 2

The two PN-graphs of Figure 4 are special cases of a function that allows
to incorporate arbitrary cost ratios between false negatives and false positives.
The general form of thislinear cost metricis

hcosts= ap−bn∼ cp− (1−c)n∼ p−dn
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Figure 5. Isometrics for precision.

Obviously, the accuracy isometrics can be obtained witha = b = d = 1 or
c = 1/2, and the isometrics of weighted relative accuracy can be obtained by
settinga = 1/P andb = 1/N or c = N/(P+N) or d = P/N. In general, the
slope of the parallel isometrics in the PN-graph isc−1

c .

4.3. RECALL AND PRECISION, SUPPORT ANDCONFIDENCE

The most commonly used heuristic for evaluating single rules is to look at
the proportion of positive examples in all examples covered by the rule. This
metric is known under many different names, e.g.,confidencein association
rule mining, orprecisionin information retrieval. We will use the latter term:

hpr =
p

p+n

Figure 5 shows the isometrics for this heuristic. Likehp, precision considers
all rules that cover only positive examples to be equally good (theP-axis), and
like hn, it considers all rules that only cover negative examples as equally bad
(theN-axis). All other isometrics are obtained by rotation around the origin
(0,0), for which the heuristic value is undefined.

Uses of the pure precision heuristic in rule learning include (Pagallo and
Haussler, 1990; Weiss and Indurkhya, 1991). However, several other, seem-
ingly more complex heuristics can be shown to be equivalent to precision.
For example, the heuristic that is used for pruning inRipper (Cohen, 1995):

THEOREM 4.3. Ripper’s pruning heuristic hrip = p−n
p+n is equivalent to pre-

cision.
Proof. hrip = p

p+n−
n

p+n = p
p+n− (1− p

p+n) = 2∗hpr−1 2

In subsequent sections, we will see that more complex heuristics, such as
entropy and Gini index, are also essentially equivalent to precision. On the
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Figure 6. Isometrics for entropy (left) and Gini index (right).

other hand, seemingly minor modifications like the Laplace orm-estimates
are not.

Precision and confidence are more frequently used together with their
respective counter-partsrecall andsupport.

hrec =
p
P

= TPR

As P is constant,hrec is obviously equivalent tohp discussed above. Support
is usually defined as the fraction of examples that satisfy both the head and
the body of the rule, i.e.,hsupp= p

P+N ∼ hrec.

4.4. INFORMATION CONTENT, ENTROPY AND GINI INDEX

Some algorithms (e.g., PRISM (Cendrowska, 1987)) measure the information
content

hinfo =− log2
p

p+n

THEOREM 4.4. hinfo and hpr are antagonistic and thus equivalent.

Proof. hinfo =− log2hpr, thushinfo(r) > hinfo(s)⇔ hpr(r) < hpr(s). 2

The use of entropy (in the form of information gain) is very common in
decision tree learning (Quinlan, 1986), but has also been suggested for rule
learning in the original version ofCN2 (Clark and Niblett, 1989).

hent=−(
p

p+n
log2

p
p+n

+
n

p+n
log2

n
p+n

)

Entropy is not equivalent to information content and precision, even though
it seems to have the same isometrics as these heuristics (see Figure 6). The
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14 Johannes F̈urnkranz and Peter Flach

difference is that the isometrics of entropy go through the undefined point
(0,0) and continue on the other side of the 45o diagonal. The motivation for
this is that the original version ofCN2 did not assume a positive class, but
labeled its rules with the majority class among the examples covered. Thus
rulesr = (n, p) and ¯r = (p,n) can be considered to be of equal quality because
one of them will be used for predicting the positive class and the other for
predicting the negative class.

Based on this, we can, however prove the following

THEOREM 4.5. hentand hpr are antagonistic for p≥ n and compatible for
p≤ n.

Proof. hent= −hpr log2hpr− (1− hpr) log2(1−hpr) with hpr ∈ [0,1].
This function has its maximum athpr = 1/2⇔ p = n. From the fact that it is
strictly monotonically increasing forp≤ n follows thathpr(x) < hpr(y)⇒
hent(x) < hent(y) in this region. Analogously,hpr(x) < hpr(y)⇒ hent(x) >
hent(y) for p≥ n, wherehent is monotonically decreasing inhpr. 2

We will say that entropy is aclass-neutralversion of precision. In general, a
class-neutral heuristic has isometrics that are line-mirrored across a symmetry
line, typically the 45o line or the diagonal. A heuristic that is not class-
neutral can be made so by re-scaling to[−1,1] and taking the absolute value.
For instance,| p−n

p+n| is a class-neutral version of precision, and therefore (by
construction) equivalent to entropy.

In decision tree learning, the Gini index is also a very popular heuris-
tic (Breiman et al., 1984). To our knowledge, it has not been used in rule
learning, but we list it for completeness:

hgini = 1−
(

p
p+n

)2

−
(

n
p+n

)2

∼ pn
(p+n)2

As can be seen from Figure 6, the Gini index has the same isometric landscape
as entropy, it only differs in the distribution of the values (hence the lines
of the contour plot are a little denser near the axes and less dense near the
diagonal). This, however, does not change the ordering of the rules.

THEOREM 4.6. hgini and hentare equivalent.
Proof. Like entropy, the Gini index can be formulated in terms ofhpr

(hgini ∼ hpr(1−hpr)) and both functions have essentially the same shape,
i.e., both functions grow or fall withhpr in the same way. 2
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Figure 7. Isometrics for the Laplace andm-estimates.

4.5. LAPLACE, m-ESTIMATE, F - AND g-MEASURE

The Laplace andm-estimates (Cestnik, 1990) are very common modifications
of hpr, which have, e.g., been used in the second version ofCN2 (Clark and
Boswell, 1991),m-Foil (Džeroski and Bratko, 1992), andICL (De Raedt and
Van Laer, 1995).

hlap =
p+1

p+n+2

hm =
p+m P

P+N

p+n+m

The basic idea of these estimates is to assume that each rule covers a certain
number of examplesa priori. They compute a precision estimate, but start
to count covered positive or negative examples at a number> 0. With the
Laplace estimate, both the positive and negative coverage of a rule are initial-
ized with 1 (thus assuming an equal prior distribution), while them-estimate
assumes a prior total coverage ofmexamples which are distributed according
to the distribution of positive and negative examples in the training set.

In the PN-graphs, this modification results in a shift of the origin of the
precision isometrics to the point(−nm,−pm), wherenm = pm = 1 in the case
of the Laplace heuristic, andpm = m∗P/(P+ N) andnm = m− pm for the
m-estimate (see Figure 7). The resulting isometric landscape is symmetric
around the line that goes through(−nm,−pm) and(0,0). Thus, the Laplace
estimate is symmetric around the 45o line, while them-estimate is symmetric
around the diagonal of the PN-graph.

Another noticeable effect of the transformation is that the farther the origin
(−nm,−pm) moves away from(0,0), the more the isometrics in the relevant
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16 Johannes F̈urnkranz and Peter Flach

Figure 8. Isometrics ofhg for increasing values ofg.

window(0,0)−(P,N) approach parallel lines. For example, the isometrics of
them-estimate converge towards the isometrics of weighted relative accuracy
for m→ ∞ (see theorem 4.8 below).

This is maybe best illustrated if we setpm = 0, i.e., if we assume the
rotation point to be on theN-axis. We will call this theg-measure:

hg =
p

p+n+g

Figure 8 shows how forg→ ∞, the slopes ofhg’s isometrics becomes flatter
and flatter and converge towards the axis-parallel lines ofhrec. On the other
hand, forg = 0, the measure is obviously equivalent to precision. Thus, the
g-measure may be regarded as a simple way for trading off precision and
recall, or support and confidence. In fact, it was already shown in (Flach,
2003) that forg = P, hg is equivalent to theF-measure, a frequently used
trade-off between recall and precision (van Rijsbergen, 1979).
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Flach (2003) also proposed an equivalent simplification of theF-measure,
which he called theG-measure (hG = p

n+P). This, in turn, is a special case
of a heuristic that was recently proposed for subgroup discovery (Gamberger
and Lavrǎc, 2002), which is equivalent to theg-measure:

THEOREM 4.7. For g≥ 0, hg∼ p
n+g

Proof.We show equivalence via compatibility.

hg(r1) > hg(r2) ⇔
p1

p1 +n1 +g
>

p2

p2 +n2 +g
⇔ p1(p2 +n2 +g) > p2(p1 +n1 +g)
⇔ p1p2 + p1(n2 +g) > p2p1 + p2(n1 +g)
⇔ p1(n2 +g) > p2(n1 +g)

⇔ p1

n1 +g
>

p2

n2 +g

2

4.6. THE GENERALIZED m-ESTIMATE

The above discussion leads us to the following straightforward generalization
of them-estimate, which takes the rotation point of the precision isometrics
as a parameter:

hgm=
p+mc

p+n+m
=

p+a
(p+a)+(n+b)

The second version of the heuristic basically defines the rotation point by
specifying its co-ordinates(−b,−a) in PN-space (a,b∈ [0,∞]). The first ver-
sion usesm as a measure of how far from the origin the rotation point lies
using the sum of the co-ordinates as a distance measure. Hence, all points
with distancem lie on the line that connects(0,−m) with (−m,0), andc
specifies where on this line the rotation point lies. For example,c = 1 means
(−m,0), whereasc = 0 denotes(0,−m), resulting in theg-measure. The line
that connects the rotation point and(0,0) has a slope of1−c

c . Obviously, both
versions ofhgm can be transformed into each other by choosingm= a+ b
andc = a

a+b or a = mcandb = m(1−c).

THEOREM 4.8. For m= 0, hgm is equivalent to hpr, while for m→ ∞, its
isometrics converge to hcosts.

Proof. m= 0: trivial.
m→ ∞: By construction, an isometric ofhgm through the point(n, p) con-
nects this point with the rotation point(−(1− c)m,−cm) and has the slope

p+cm
n+(1−c)m. For m→ ∞, this slope converges toc

1−c for all points(n, p). Thus
all isometrics converge towards parallel lines with the slopec

1−c. 2
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18 Johannes F̈urnkranz and Peter Flach

Theorem 4.8 shows thathgmmay be considered as a general model of heuris-
tic functions with linear isometrics that has two parameters:c ∈ [0,1] for
trading off the misclassification costs between the two classes, andm∈ [0,∞]
for trading off between precisionhpr and the linear cost metrichcosts.

1

Therefore, all heuristics discussed in this section may be viewed as equivalent
to some instantiation of this general model.

5. Non-Linear Rule Evaluation Metrics

All heuristics considered so far have linear isometrics. This is a reasonable
assumption as concepts are typically evaluated with linear cost metrics (e.g.,
accuracy or cost matrices). However, these evaluation metrics are concerned
with evaluating complete rules. As the value of an incomplete rule lies not
in its ability to discriminate between positive and negative examples, but in
its potential of beingrefinableinto a high-quality rule, it might well be the
case that different types of heuristics are useful for evaluating incomplete
candidate rules. One could, e.g., argue that for candidate rules that cover
many positive examples it is less important to exclude negatives than for rules
with low coverage, because high-coverage candidates may still be refined
accordingly. Similarly, overfitting could be countered by penalizing regions
with low coverage. Possibly, these and similar problems could be better ad-
dressed with a non-linear isometric landscape, even though the learned rules
will eventually be used under linear cost models.

In this section, we will look at two non-linear information metrics:Foil’s
information gain, and the correlation heuristic used inFossil.

5.1. FOIL’ S INFORMATION GAIN

Foil’s version of information gain (Quinlan, 1990), unlikeID3’s andC4.5’s
version (Quinlan, 1986), is tailored to rule learning, where one only needs
to optimize one successor branch as opposed to multiple successor nodes in
decision tree learning. It differs from the heuristics mentioned so far in that it
does not evaluate an entire rule, but only the effect of specializing a rule by
adding a condition. More precisely, it computes the difference in information

1 The reader may have noted that form→ ∞, hgm→ c for all p andn. Thus form= ∞,
the function does not have isometrics because all evaluations are constant. However, this is
not a problem for the above construction because we are not concerned with the isometrics of
the functionhgm at the pointm= ∞, but with the convergence of the isometrics ofhgm for
m→ ∞. In other words, the isometrics ofhcostsare not equivalent to the isometrics ofhgm
for m = ∞, but they are equivalent to the limits to which the isometrics ofhgm converge if
m→ ∞.
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Figure 9. Isometrics for information gain as used inFoil. The curves show different valuesc
for the precision of the parent rule.

content of the current rule and its predecessorr ′, weighted by the number of
covered positive examples (as a bias for generality). The exact formula is2

hfoil = p(log2
p

p+n
− log2c)

wherec = hpr(r ′) is the precision of the parent rule. For the following anal-
ysis, we will viewc as a parameter taking values in the interval[0,1].

Figure 9 shows the isometrics ofhfoil for four different settings ofc.
Although the isometrics are non-linear, they appear to be linear in the region
above the isometric that goes through(0,0). Note that this isometric, which
we will call thebase line, has a slope of c

1−c: In the first graph (c = P
P+N ) it is

the diagonal, in the second graph (c= 1/2) it has a 45o slope, and in the lower
two graphs (c = 1 andc = 10−6) it coincides with the vertical and horizontal
axes respectively.

2 This formulation assumes that we are learning in a propositional setting. For relational
learning,Foil does not estimate the precision from the number of covered instances, but from
the number ofproofsfor those instances.
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Note that the base line represents the classification performance of the
parent rule. In the area below the base line are the cases where the precision
of the rule is smaller than the precision of its predecessor. Such a refinement
of a rule is usually not considered to be relevant. In fact, this is also the region
where the information gain is negative, i.e., an information loss. The points on
the base line have information gain 0, and all points above it have a positive
gain.

For this reason, we will focus our analysis on the region above the base
line, which is the area where the refined rule improves upon its parent. In
this region, the isometrics appear to be linear and parallel to the base line,
just like the isometrics ofhcosts. In fact, in (F̈urnkranz and Flach, 2003), we
conjectured that in this part of the ROC space,hfoil is equivalent tohcosts
with cost parameter 1− c. However, closer investigation reveals that this is
not the case. The farther the isometrics move away from the base line, the
steeper they get. Also, they are not exactly linear but slightly bent towards
theP-axis, i.e., purer rules are preferred. Nevertheless, it is obvious that both
heuristics are closely related, and in fact we can show the following:

THEOREM 5.1. Let c= hpr(r ′) be the precision of r′, the predecessor of
rule r. In the relevant region p

p+n > c, hcosts(r) with costs1−c is equivalent
to the first-order Taylor approximation of hfoil(r).

Proof.

hfoil = p(log2
p

p+n
− log2c) =−plog2

c(p+n)
p

∼−pln
c(p+n)

p

The Taylor expansion for ln(1+ x) converges for−1 < x≤ 1, and the first-
degree approximation is ln(1+ x) ≈ x. Recall that the interesting region of
hfoil is where p

p+n ≥ c, i.e., where the precision of the current ruler exceeds
the precision of the parent ruler ′ (otherwise there would be no point in
refiningr ′ to r). In this region, 0< c≤ c/ p

p+n = c(p+n)
p ≤ 1. Thus

hfoil ∼ −pln
c(p+n)

p
=−pln(1+(

c(p+n)
p

−1))≈

≈ −p

(
c(p+n)

p
−1

)
=−p

c(p+n)− p
p

= p−c(p+n) =

= (1−c)p−cn

2

It should be pointed out that Theorem 5.1 should not be interpreted in
the way thathcostsis a good approximation forhfoil . In fact, while the first-
order Taylor approximation of ln1+x is quite good nearx= 0, it can become
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Figure 10. Isometrics for the four-field correlation coefficient.

arbitrarily bad forx→−1. In our case, we can expect a good approximation
if c is close to 1 and a rather bad one ifc approaches 0 because 0< c≤ x+1=
c(p+n)/p≤ 1.

On the other hand, it is not strictly necessary to have a good approximation
for maintaining the isometric landscape of a function, as we have seen on
several examples for equivalent heuristics in the previous section. There is
a difference between one heuristic approximating another, and its isometrics
approximating the other’s. A full analysis ofFoil’s information gain requires a
fuller understanding of what it means to approximate an isometric landscape,
which we leave for future work.

5.2. CORRELATION AND χ2 STATISTIC

The correlation heuristic has been proposed in (Fürnkranz, 1994) for the rule
learnerFossil, a variant ofFoil. It computes the correlation coefficient be-
tween the predictions made by the rule and the true labels from a four-field
confusion matrix. The formula is

hcorr =
p(N−n)− (P− p)n√

PN(p+n)(P− p+N−n)
=

pN−Pn√
PN(p+n)(P− p+N−n)

Recall thatp andN−n denote the fields on the diagonal of the confusion ma-
trix (the true positives and the true negatives), whereasn andP− p denote the
false positives and false negatives respectively. The terms in the denominator
are the sums of the rows and columns of the confusion matrix.

Figure 10 shows the isometric plot of the correlation heuristic. The isomet-
rics are clearly non-linear and symmetric around the base line on the diagonal
(rules that have correlation 0). This symmetry around the diagonal is also
characteristic for the linear weighted relative accuracy heuristichwra, so it is
interesting to compare the properties of these two metrics.
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Above that base line, the isometrics are bent towards the P and N axes
respectively. Thus,hcorr has a tendency to prefer purer rules (covering fewer
negative examples) and more complete rules (covering more positive exam-
ples).

Moreover, the linear isometrics that result from connecting the points
where the isometrics intersect with then = 0 axis (on the left) and thep = P
axis (on the top), arenot parallel to the diagonal (as they are forhwra). In
fact, it can be shown that the slope of these lines is1−p̄/N

1−p̄/P where(0, p̄) is
the intersection of the isometric with theP-axis. Obviously, these lines are
only parallel for a class balanced problem (P = N). For P < N, the slope of
the isometrics will increase for increasing ¯p and approach infinity for ¯p→ P.
Thus, the closer a rule gets to the target point(0,P), the more important it
will become to exclude remaining covered negative examples, and the less
important to cover additional positive examples.

For example, the rule(0,P−1) that covers all but one positive examples
and no negatives and the rule(1,P) that covers all positive examples have
identical evaluations. On the other hand, the rule(0,1) covering one posi-
tive and no negatives has an evaluation proportional to 1/P and is therefore
preferred over the rule(N−1,P) that covers all positives but excludes only
a single negative example (the rule has an evaluation proportional to 1/N).
Keep in mind that we assumedP < N here; the opposite preference would be
the case forP > N.

In summary, the correlation heuristic has a tendency to prefer purer or
more complete rules. Moreover, for rules that are far from the target(0,P),
it gives higher preference to handling the minority class (i.e., cover positive
examples forP < N and exclude negative examples forN < P), whereas the
priorities for these two objectives become more and more equal the closer a
rule is to the target.3

Note that the four-field correlation coefficient is basically a normalized
version of theχ2 statistic over the four events in the table (see, e.g., Mitte-
necker, 1983, or other textbooks on applied statistics).

THEOREM 5.2. hchi2 = (P+N) h2
corr.

Proof.Theχ2 statistic for a four-field confusion matrix (cf. Table II) is the
sum of the squared differences between the expected and the observed values
of the four fields in the matrix, divided by the expected values.

The expected values for the four fields in the 2x2 confusion matrix are:(
P(p+n)

P+N
N(p+n)

P+N
P(P+N−p−n)

P+N
N(P+N−p−n)

P+N

)
3 The preferences would even reverse if fractional examples (i.e., coverage counts smaller

than 1) are possible. We do not consider this case here.
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Subtracting this from the actual values (Table II):(
p− P(p+n)

P+N n− N(p+n)
P+N

P− p− P(P+N−p−n)
P+N N−n− N(P+N−p−n)

P+N

)
=

=

(
p(P+N)−P(p+n)

P+N
n(P+N)−N(p+n)

P+N
(P−p)(P+N)−P(P+N−p−n)

P+N
(N−n)(P+N)−N(P+N−p−n)

P+N

)

=
1

P+N

(
pN−nP nP− pN
nP− pN pN−nP

)
=

pN−Pn
P+N

(
1 −1

−1 1

)
Squaring these differences, dividing them by the expected values, and

summing up the four fields yields:

hchi2 =

=
(pN−Pn)2

(P+N)2

(
P+N

P(p+n)
+

P+N
N(p+n)

+
P+N

P(P+N− p−n)
+

P+N
N(P+N− p−n)

)
=

=
(pN−Pn)2

P+N
N(P+N− p−n)+P(P+N− p−n)+N(p+n)+P(p+n)

PN(p+n)(P+N− p−n)
=

=
(pN−Pn)2

P+N
(P+N)2

PN(p+n)(P+N− p−n)
= (P+N)h2

corr

2

Thus,hchi2 may be viewed as a class-neutral version ofhcorr. Its behavior
has been previously analyzed in ROC space. Bradley (1996) argued that the
non-linear isometrics of theχ2-statistic helps to discriminate classifiers that
do “little work” from classifiers that achieve the same accuracy (or cost line)
but are preferable in terms of other metrics like sensitivity and specificity. The
above-mentioned paper also shows howhchi2 can be modified to incorporate
other cost models.

Finally, we draw attention to the fact that the Gini splitting criterion, de-
fined as impurity decrease from parent to children where impurity is defined
by the Gini index (see Section 4.4), is equivalent toχ2. Here, we restrict
attention to binary splits and two classes: in this case,(P,N) can be interpreted
as the coverage of the unsplit parent, and(p,n) and(P− p,N−n) denote the
coverage of the two children. Gini-split is then defined as

hgini-split =
PN

(P+N)2 −
p+n
P+N

pn
(p+n)2 −

P− p+N−n
P+N

(P− p)(N−n)
(P− p+N−n)2
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where the first term is the Gini index of the parent, and the second and third
terms are the Gini index of the children, weighted with their coverage. This
expression can be simplified to

hgini-split =
1

P+N

[
PN

P+N
− pn

p+n
− (P− p)(N−n)

P− p+N−n

]
(1)

THEOREM 5.3. hgini-split∼ hchi2.
Proof.The expression inside the brackets in Equation (1) can be rewritten

as a fraction with denominator(P+N)(p+n)(P− p+N−n) and enumerator

PN(p+n)(P− p+N−n)− pn(P+N)(P− p+N−n)− (P− p)(N−n)(P+N)(p+n)

= P2Np−PNp2 +PN2p−PNpn+P2Nn−PNpn+PN2n−PNn2

−P2pn+Pp2n−PNpn+Ppn2−PNpn+Np2n−N2pn+Npn2

−P2Np−P2Nn−PN2p−PN2n+P2pn+P2n2 +PNpn+PNn2

+PNp2 +PNpn+N2p2 +N2pn−Pp2n−Ppn2−Np2n−Npn2

All terms but the underlined ones vanish, so we have

hgini-split =
1

P+N
(pN−Pn)2

(P+N)(p+n)(P− p+N−n)

=
PN

(P+N)2

(pN−Pn)2

PN(p+n)(P− p+N−n)
=

PN
(P+N)3hchi2

2

We conjecture that this result can be generalised to non-binary splits and more
than two classes, but this is currently left as an open problem.

6. Evaluation of Rule Sets

So far, we have been considering heuristics for evaluating single rules, which
map to points in PN-space. In this section we look at evaluation of sets of
rules. We show that the sequence of training sets and intermediate hypotheses
can be viewed as a trajectory through PN-space, resulting in a set of nested
PN-spaces (Section 6.1). We then proceed by investigating the behavior of
precision and the linear cost metric in this context, and show that precision
aims at (locally) optimizing the area under the curve (ignoring costs), while
the cost metric tries to directly find a (global) optimum under known or
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Figure 11. Isometrics for accuracy and precision in nested PN-spaces.

assumed costs (Section 6.2). Finally, we will briefly discuss the effect of
re-ordering the rules in a rule set (Section 6.3).

6.1. COVERING AND NESTEDPN-SPACES

Of particular interest for the covering approach is the property that PN-graphs
reflect a change in the total number or proportion of positive (P) and negative
(N) training examples via a corresponding change in the relative sizes of
the P andN-axes. ROC analysis, on the other hand, would rescale the new
dimensions to the range[0,1], which has the effect of changing the slope
of all lines that depend on the relative sizes ofp andn. As a consequence,
the PN-graph for a subset of a training set can be drawn directly into the
PN-graph of the entire set. In particular, the sequence of training sets that
are produced by the recursive calls of the covering strategy—after each new
rule all training examples that are covered by this rule are removed from the
training set and the learner calls itself on the remaining examples—can be
visualized by a nested sequence of PN-graphs.

This is illustrated in Figure 11, which shows a nested sequence of PN-
spaces. Each spacePNi has its origin in the pointRi = (ni , pi), which corre-
sponds to the theory learned so far. Thus, its learning task consists of learning
a theory for the remainingP− pi positive andN−ni negative examples that
are not yet covered by theoryRi . Each new rule will cover a few additional
examples and thus reduce the corresponding PN-space.

Note that some separate-and-conquer algorithms only remove the cov-
ered positive examples, but not the covered negative examples. This situation
corresponds to reducing only the height of the PN-graph, but not its width.
Obviously, this breaks the nesting property because rules are locally evaluated
in a PN-graph with full width (all negative examples), but for getting their
global evaluation in the context of previously learned rules, all previously
covered negative examples have to be removed. While we do not expect a big
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practical difference between both approaches, removing all examples seems
to be the conceptually cleaner solution.

6.2. GLOBAL AND LOCAL OPTIMA

The nesting property implies that evaluating a single rule in the reduced
dataset(N−ni ,P− pi) amounts to evaluating the point in the subspacePNi

that has the point(ni , pi) as its origin. Moreover, the rule that maximizes the
chosen evaluation function inPNi is also a maximum point in the full PN-
space if the the evaluation metric does not depend on the size or the shape of
the PN-graph.

The linear cost metrichcostsis such a heuristic: a local optimum in the
subspacePNi is also optimal in the global PN-space because all isometrics
are parallel lines with the same angle, and nested PN-spaces (unlike nested
ROC-spaces) leave angles invariant. Precision, on the other hand, cannot be
nested in this way. The evaluation of a given rule depends on its location
relative to the origin of the current subspacePNi .

This is illustrated in Figure 11. The subspacesPNi correspond to the situ-
ation after removing all examples covered by the rule setRi . The left graph of
Figure 11 shows the case for accuracy: the accuracy isometrics are all parallel
lines with a 45o slope. The right graph shows the situation for precision: each
subspacePNi evaluates the rules relative to its origin, i.e.,hpr always rotates
around(ni , pi) in the full PN-space, which is (0,0) in the local space.

Note that global optimization for precision (or forhgm in general) could
be realized by making the generalizedm-measurehgm adaptive by choosing
a = pi andb = ni in subspacePNi .

However, local optimization is not necessarily bad. At each point(n, p),
the slope of the line connecting(0,0) with (n, p) is 1−c

c = p/n.4 hpr picks the
rule that promises the steepest ascent from the origin. Thus, if we assume that
the origin of the current subspace is a point of a ROC-curve (or a PN-path),
we may interprethpr as making a locally optimal choice for continuing a
ROC-curve. The choice is optimal in the sense that picking the rule with the
steepest ascent locally maximizes the area under the ROC-curve.

Note, however, that if we know the cost model, this choice may not neces-
sarily be globally optimal. For example, if the pointR2 in Figure 11 could be
reached in one step,hacc would directly go there because it has the better
global value under the chosen cost model (accuracy), whereashpr would
nevertheless first learnR1 because it promises a greater area under the ROC
curve.

4 One may say thathpr assumes a different cost model for each point in the space, de-
pending on the relative frequencies of the covered positive and negative examples. Such local
changes of cost models are investigated in more detail by Flach (2003).

paper.tex; 5/11/2003; 21:06; p.26



ROC ’n’ Rule Learning 27

Figure 12. A concavity in the path of a rule learner (left), and the result of a successful fix by
swapping the order of the second and third rule (right).

In brief we may say thathpr aims at optimizing under unknown costs by
(locally) maximizing the area under the ROC curve, whereashcoststries to
directly find a (global) optimum under known (or assumed) costs.

6.3. REORDERINGRULE SETS

In the previous sections we have seen that learning a set of rules is a path
through PN-space starting at the pointR0 = (0,0) (the theory covering no
examples) and ending atR̃= (N,P) (the theory covering all examples). Each
intermediate rule setRi is a potential classifier, and one of them has to be
selected as the final classifier. However, the curve described by the learner
will frequently not be convex. The left graph of Figure 12 shows a case where
the rule setR2 consisting of rules{r1, r2} is not on the convex hull of the
classifiers. Thus, onlyR1 = {r1} andR2 = {r1, r2, r3} are potential candidates
for the final classifier.

Interestingly, in some cases it may be quite easy to obtain better classifiers
by simply re-ordering the rules. The right graph of Figure 12 shows the best
result that can be obtained by swapping the order of rulesr2 andr3 resulting in
the classifierR′2 = {r1, r3}. Note, however, that this graph is drawn under the
assumption that rulesr2 andr3 cover disjoint sets of examples, in which case
the quadrangleR1−R2−R3−R′2 is a parallelogram. In general, however,r3

may cover some of the examples that were previously already covered byr2,
which may change the shape of the quadrangle considerably, depending on
whether the majority of the overlap are positive or negative examples. Thus,
it is not guaranteed that swapping of the rules will indeed increase the area
under the ROC-curve or make the curve convex.

In this context it is interesting to make a connection to the work by Ferri
et al. (2002). They proposed a method to relabel decision trees in the fol-
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lowing way. First, allk leaves (or branches) are sorted in decreasing order
according tohpr. Then, a valid labelling is obtained by splitting the ordering
in two, and labelling all leaves before the split point positive and the rest
negative. This results ink+1 labelings, and the corresponding ROC curve is
necessarily convex. An optimal point can be chosen in the usual way, once
the cost model is known. In our context, ordering branches corresponds to
ordering rules, and relabeling corresponds to picking the right subset of the
learned rules: labeling a rule as positive corresponds to including the rule
in the theory, while labeling a rule as negative effectively deletes the rule
because it will be subsumed by the final default rule that always predicts the
negative class. However, the chosen subset is only guaranteed to be optimal if
the rules are mutually exclusive. Ferri et al. (2002) use this technique to derive
a novel splitting criterion for decision tree learning. Presumably, a similar
criterion could be derived for rule learning, which we regard as a promising
topic for future work.

Finally, we note that Flach and Wu (2003) have addressed the problem
of repairing concavities in ROC curves in the context of the naive Bayesian
classifier. We are currently investigating whether similar techniques are ap-
plicable to rule learners.

7. Stopping and Filtering Criteria

In addition to their regular evaluation metric, many rule learning algorithms
employ separate criteria to filter out uninteresting candidates and/or to fight
overfitting. There are two slightly different approaches:stopping criteriade-
termine when the refinement process should stop and the current best can-
didate should be returned, whereasfiltering criteria determine regions of
acceptable performance.

Both concepts are closely related. In particular, filtering criteria are of-
ten also used as stopping criteria: If no further rule can be found within the
acceptable region of a filtering criterion, the learned theory is considered to
be complete. Basically the same technique is also used for refining single
rules: if no refinement is in the acceptable region, the rule is considered to be
complete, and the specialization process stops. For this reason, we will often
use the term stopping criterion instead of filtering criterion because this is the
more established terminology.

The most popular approach is to impose a threshold upon one or more
evaluation metrics. Thus this type of filtering criterion consists of a heuristic
function, possibly but not necessarily the same one that is used as a search
heuristic, and a threshold value that specifies that only rules that have an
evaluation above this value are of interest. The threshold may be chosen by
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Figure 13. Thresholds on minimum coverage of positive examples (left) and total number of
examples (right).

the user or be automatically adapted to certain characteristics of the rule (e.g.,
its encoding length).

In the following, we analyze a few popular filtering and stopping cri-
teria for greedy specialization: minimum coverage constraints, support and
confidence, significance tests, encoding length restrictions, andFossil’s cor-
relation cutoff. We use PN-space to analyze stopping criteria, by visualizing
regions of acceptable hypotheses.

7.1. MINIMUM COVERAGE CONSTRAINTS

The simplest form of overfitting avoidance is to disregard rules with low cov-
erage. For example, one could require that a rule covers a certain minimum
number of examples or a minimum number of positive examples. These two
cases are illustrated in Figure 13. The graph on the left shows the requirement
that a minimum fraction (here 20%) of the positive examples in the training
set are covered by the rule. All rules in the gray area are thus excluded from
consideration. The right graph illustrates the case where a minimum fraction
(here 20%) of examples needs to be covered by the rule, regardless of whether
they are positive or negative. Changing the size of the fraction will cut out
different slices of the PN-space, each delimited with a coverage isometric (-45
degrees lines). Clearly, in both cases the goal is to fight overfitting by filtering
out rules whose quality cannot reliably estimated because of the small number
of training examples they cover. Notice that we can include a cost model in
calculating the coverage of positive and negative examples, thereby changing
the slope of the coverage isometrics. The two cases in Figure 13 are then
special cases of this general cost-based coverage metric.
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Figure 14. Filtering rules with minimum support and minimum confidence.

7.2. SUPPORT ANDCONFIDENCE

There is no reason why a single measure should be used for filtering out
unpromising rules. The most prominent example for combining multiple es-
timates are the thresholds on support and confidence that are used mostly in
association rule mining algorithms, but also in classification algorithms that
obtain the candidate rules for the covering loop in an association rule learning
framework (Liu et al., 1998; Liu et al., 2000; Jovanoski and Lavrač, 2001).

Figure 14 illustrates the effect of thresholds on support and confidence in
PN-space. Together, they specify an area for valid rules around the(0,P)-
point in ROC-space. Rules in the grey areas will be filtered out. The dark
grey region shows a less restrictive combination of the two thresholds, the
light grey region a more restrictive setting. In effect, confidence constrains
the quality of the rules, whereas support aims at ensuring a minimum reli-
ability by filtering out rules whose confidence estimate originates from too
few positive examples. The combined effect is quite similar to a threshold on
theg- or F-measures. (Section 4.5), but it allows for more rules in the region
near the intersection of the two threshold lines.

7.3. CN2’ S SIGNIFICANCE TEST

CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991) filters rules for
which the distribution of the covered examples is not statistically significantly
different from the distribution of examples in the full data set. To this end, it
computes thelikelihood ratio statistic:

hlrs = 2(plog
p
ep

+nlog
n
en

)
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Figure 15. Illustration ofCN2’s significance test. Shown are the regions that would not pass
a 95% (dark grey) and a 99% (light grey) significant test.

whereep = (p+n) P
P+N anden = (p+n) N

P+N = (p+n)−ep are the number
of positive and negative examples one could expect if thep+ n examples
covered by the rule were distributed in the same way as theP+N examples
in the full data set.

Figure 15 illustratesCN2’s filtering criterion. The dark grey area shows
the location of the rules that will be filtered out because it can not be es-
tablished with 95% confidence that their distribution is different from the
distribution in the full dataset. The light grey area shows the set of rules that
will be filtered out if 99% confidence in the difference is required. Conse-
quently, the area is symmetric around the diagonal, which corresponds to
random guessing.

Other significance tests than the likelihood ratio could be used. For in-
stance, we have already discussedhchi2 in Section 5.2. In the case of a

two-by-two contingency table, bothhchi2 andhlrs are distributed asχ2 with
one degree of freedom, but that doesn’t mean that they are equivalent as
heuristics. In fact, there are some interesting differences between the isomet-
ric landscapes in Figures 10 and 15. More specifically, the likelihood ratio
isometrics in Figure 15 do not depend on the size of the training set. Any
graph corresponding to a bigger training set with the same class distribution
(a proportion ofP/(P+ N) positive examples) will contain this graph in its
lower left corner. In other words, whether a rule coveringp positive andn
negative examples is significant according tohlrs does not depend on the size
of the training set, but only on the class distribution of the examples it covers.

In contrast,hchi2 always fits the same isometric landscape into PN-space.
As a result, the evaluation of a point(n, p) depends on its relative location
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Figure 16. Illustration ofFoil’s encoding length restriction for domains withP < N (left) and
P > N (right). Lighter shades of gray correspond to larger encoding lengths for the rule.

(n/N, p/P). In this case, the same rule will always be evaluated in the same
way, as long as it covers the same fraction of the training data. Only the
location of the significance cutoff isometric (e.g. 95%) depends onP andN
in the case ofhchi2.

7.4. FOIL’ S ENCODING LENGTH RESTRICTION

Foil (Quinlan, 1990) uses a criterion based on minimum description length
(MDL) for deciding when to stop refining the current rule. For explicitly
indicating thep positive examples covered by the rule, one needshMDL bits:

hMDL = log2(P+N)+ log2

(
P+N

p

)
This number is then compared to the number of bits needed to encode the
rule, denoted byl(r). If hMDL(r) < l(r), i.e., if the encoding of the rule is
longer than the encoding of the examples themselves, the rule is rejected. As
l(r) depends solely on the encoding length (in bits) of the current rule,Foil’s
stopping criterion—likeCN2’s significance test—also depends on the size of
the training set: the same rule that is too long for a smaller training set might
be good enough for a larger training set, in which it covers more examples.

For the purposes of our analysis, we can neglect the rule length as a pa-
rameter, and interpret thathMDL as a heuristic that is compared to a variable
threshold the size of which depends on the length of the rule. Figure 16 shows
the behavior ofhMDL in PN-space. The isometric landscape is equivalent to
one for the minimum coverage criterion, namely parallel lines to theN-axis.
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This is not surprising, considering thathMDL is independent ofn, the number
of covered negative examples.

ForP < N, hMDL is monotonically increasing withp. As a consequence,
for every rule encoding lengthl(r) there exists a thresholdp(l(r)) such that
for all rulesr: hMDL(r) > l(r)⇔ hp(r) > p(l(r)). Thus, in this case,hMDL
andhp are essentially equivalent. The more complicated formulation in the
MDL-framework basically serves the purpose of automatically mapping a
rule to an appropriate threshold. It remains an open question, whether there
is a simpler mappingr → p(r) that allows to obtain equivalent (or similar)
thresholds without the expensive computation ofl(r).

Particularly interesting is the caseP > N (right graph of Figure 16): the
isometric landscape is still the same, but the labels are no longer monotoni-
cally increasing. In fact,hMDL has a maximum at the pointp = (P+N)/2.
Below this line (shown dashed in Figure 16), the function is monotonically
increasing (as above), but above this line it starts to decrease again. Thus, we
can formulate the following

THEOREM 7.1. hMDL is compatible with hp iff p ≤ (P+ N)/2 and it is
antagonistic to hp for p > (P+N)/2.

Proof.a) p≤ P+N
2 :

hMDL = log2(P+N)+ log2

(
P+N

p

)
∼ log2

∏p
i=1(P+N+1− i)

∏p
i=1 i

=
p

∑
i=1

log2(P+N+1− i)−
p

∑
i=1

log2 i

=
p

∑
i=1

(log2(P+N+1− i)− log2 i)

The terms inside the sum are all constant. Thus, for two rulesr1 andr2 with
0≤ hp(r1) < hp(r2)≤ P+N

2 , the corresponding sums only differ in the number
of terms. As all terms are> 0, hp(r1) < hp(r2)⇔ hMDL(r1) < hMDL(r2)

b) p > P+N
2 :

hMDL ∼ log2

(
P+N

p

)
= log2

(
P+N

P+N− p

)
Therefore, each ruler with coveragep has the same evaluation as some ruler ′

with coverageP+N− p < (P+N)/2. As the transformationp→ P+N− p
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Figure 17. Illustration ofFossil’s cutoff criterion.

is monotonically decreasing,

hMDL(r1) > hMDL(r2) ⇔ hMDL(r ′1) > hMDL(r ′2)⇔
⇔ hp(r ′1) > hp(r ′2)⇔ hp(r1) < hp(r2)

2

COROLLARY 7.2. hMDL is equivalent with hp iff P≤ N.
Proof. hMDL reaches its maximum atp = P+N

2 , which is inside PN-space
only iff P > N. 2

Thus, for skewed class distributions with many positive examples, there
might be cases where a ruler is acceptable, while a ruler ′ that has the same
encoding length (l(r ′) = l(r)), covers the same number or fewer negative
examples (n(r ′) ≤ n(r)), but more positive examples (p(r ′) > p(r)) is not
acceptable. For example, in the example shown on the right of Figure 16,
for a certain rule lengthl , only rules that cover between 65% and 80% of
the positive examples are acceptable. A rule of the same length that cov-
ers all positive and no negative examples would not be acceptable. This is
very counter-intuitive and sheds some doubts upon the suitability ofFoil’s
encoding length restriction for such domains.

7.5. FOSSIL’ S CORRELATION CUTOFF

Fossil (Fürnkranz, 1994) imposes a threshold upon its correlation heuristic
(Section 5.2). Only rules that evaluate above this threshold are admitted. Fig-
ure 17 shows the effect of this threshold for the stopping value 0.3 which
appears to perform fairly well over a variety of domains (Fürnkranz, 1997).
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It can be clearly seen that, like withCN2, the main focus of this approach
is to filter out uninteresting rules, i.e., rules whose example distribution does
not deviate much from the example distribution in the full training set. As
discussed in Section 5.2, rules that cover few negative examples and rules
that cover many positive example are preferred as witnessed by the bended
shape of the isometric lines.

Note thatFossil applies this filtering criterion also toincompleterules,
i.e., to rules that could still be refined into a better rule. This differs from the
approach taken byCN2, where only candidates that appear to be better than
the current best rule are tested for significance, but it behaves likeFoil, where
the encoding length of each candidate rule is tested. LikeFoil, Fossil also
does not return the rule with the highest evaluation, but it continues to add
conditions until the stopping criterion fires. Thus, the cutoff line shown in
Figure 17 may be viewed as a minimum quality line: learning stops as soon
as the path of the learner crosses this line (from the acceptable region to the
non-acceptable region), and the last rule above this line is returned.

In this context, it should be noted that the correlation heuristic as proposed
in (Fürnkranz, 1994) is only used for local optimization. The correlation is not
computed on the entire training set, but only on the set of examples covered
by the predecessor of the rule. As a consequence,Fossil cannot return the
rule with the largest correlation (because the correlations for different rules
may be computed on different example sets), but it will always return the last
rule searched. Thus, as inFoil, the heuristic is only used for determining the
best refinement of the currently searched rule, and not for finding an optimum
among all candidate rules. For this type of algorithms, the stopping criterion is
particularly crucial. Later versions ofFossil switched to a global evaluation,
but no strict empirical comparison of the approaches was performed.

8. Discussion and Open Questions

In this section we discuss various issues that are brought up by the pre-
vious analysis, including the relative merits of calculating coverage as an
absolute or a relative frequency, overfitting avoidance, and the evaluation of
incomplete rules.

8.1. ABSOLUTE VS. RELATIVE COVERAGE

Evaluation metrics differ in their response to changes in the shape of the PN-
space, i.e., to changes in sample size or sample distribution. For example,
weighted relative accuracy always assumes cost lines that are parallel to the
diagonal of the PN-space. Thus, the relative location of a rule covering a
certain number of positive and negative examples may change with changes
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of the sample distribution, even if the rule’s coverage remains the same. It
is particularly important to be aware of this property when working with
separate-and-conquer algorithms because the covering algorithm constantly
modifies the sample distribution by removing the covered examples after each
learned rule. Typically, this process will lead to increasingly skewed example
distributions because the rules will cover predominantly positive examples,
so that their lot in the remaining examples will decrease.

On the other hand, iso-accuracy lines always have a slope of 1, indepen-
dent of the actual distribution of negative and positive examples. Thus, the
relative costs of rules covering the same number of positive and negative
examples will remain the same, irrespective of the sample distribution. This
is the property that allows global optimization in nested PN-spaces. Note,
however, that a change in the example distribution may also cause a cor-
responding change in the coverage of the rule. In this case, the location of
the rules relative to the isometrics will change with a different sample, even
though the isometrics themselves remain in place.

The difference between these two approaches is particularly important
when designing stopping criteria: In the first approach (exemplified byFossil’s
cutoff criterion) the filtering criterion depends only on the relative coverage of
a rule, whereas in the second approach (exemplified byCN2’s significance
test) it depends on its absolute coverage. Which of the two approaches is
preferable depends on whether the number of training examples covered by
a rule in the target concept is proportional to the size of the training set or
remains approximately the same, independent of the size of the training set. If
we assume the existence of an underlying target theory with a fixed number of
rules, the former assumption appears to be more logical. However, empirical
evidence shows that the number of found rules is typically increasing with
the size of the training set (see, e.g., Oates and Jensen, 1998), which could be
interpreted as evidence for the latter approach. More work is needed to give
a definite answer on that.

8.2. OVERFITTING AVOIDANCE

The reader should keep in mind that a learning algorithm typically evaluates a
large number of candidate rules, which makes it quite likely that one of them
fits the characteristics of the training set by chance. The evaluation of such
a rule (and thus its location in PN-space) may change when evaluated on an
independent test set. It will be an interesting task for further work to study
the differences in the PN-paths of a metric on the training and test sets. Such
a study could be helpful in understanding overfitting and possibly in devising
heuristics for countering this effect.

In fact, one of the main reasons why the Laplace andm-estimates are
favored over precision is because they are less sensitive to noise in the data
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and more effective in avoiding overfitting (Džeroski and Bratko, 1992). Our
interpretation of these estimates as ways of trading off between precisionhpr
and the linear cost metrichcostssupports this view: For large training sets,
hcostscan be expected to be less prone to overfitting thanhpr because it will
typically be easy to find a general rule that has a higher evaluation than a rule
that fits a single example. For example, there will usually be many rules that
havehacc= p−n > 1, while a rule withhpr = 1 will be hard to beat, even
if it only covers a single example. However, for small example sets, each rule
will only cover a few examples, causing the same type of problems. As small
training sets are typically bound to happen at the end of the covering phase,
hcostswill eventually also overfit.

It is also subject to further study whether and how to incorporate a bias
against PN-regions that are prone to overfitting into search heuristics. Cur-
rently used algorithms handle the overfitting problem exclusively with stop-
ping criteria or with pruning. Our analysis, however, has also shown that
criteria such asCN2’s significance test orFossil’s correlation cutoff are
biasedtowardsrules with low coverage. The reason is that these approaches
are targeted towards identifying statistically valid deviations from random
classification. Our results show that this is not necessarily a good approach
for avoiding overfitting.

8.3. EVALUATION OF INCOMPLETERULES

In accordance with most rule learning algorithms, we also tacitly made the
assumption that incomplete rules (or incomplete rule sets) should be eval-
uated in the same way as complete rules (or complete theories). However,
it should be noted that this is not necessarily the case: the value of an in-
complete rule does not lie in its ability to discriminate between positive and
negative examples, but in its potential of being refined into a high-quality
rule. For example, Gamberger and Lavrač (2002) argued that for incomplete
rules, it is more important to cover many positives (hence a flatter slope is
acceptable), while for complete rules it is more important to cover as few
negatives as possible (hence a steeper slope). A similar argument has been
made by Bradley (1996) who argued that the non-linear isometrics of theχ2

statistic should be used in order to discriminate classifiers that do “little work”
from classifiers that achieve the same accuracy but are preferable in terms of
other metrics like sensitivity and specificity. A thorough investigation of the
potential of using different heuristics for searching than for evaluating rules
is a promising direction for future work.
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9. Related Work

Rule learning has a long history, but the investigation of search and pruning
heuristics has not yet gone beyond its explorative phase. Numerous heuris-
tics have been tried by various authors but independent comparative reviews
are very scarce. F̈urnkranz (1999) provides a broad survey of heuristics that
can be found in the literature but does not attempt to compare them. Lavrač
et al., Lavrǎc et al. (1992a, 1992b) offer a limited review for classification
rule learning in inductive logic programming, and provide some empirical
results and tentative conclusions. A first step towards a theoretical framework
for analysis has been made by Lavrač et al. (1999).

Visualization in ROC-like spaces is primarily used as a tool for finding a
suitable set of classifiers under unknown costs (Swets et al., 2000; Provost
and Fawcett, 2001), but its importance for analyzing evaluation metrics has
been previously recognized as well. We refer to Flach (2003) for a systematic
treatment of visualization of evaluation metrics and their isometrics in ROC-
space.

Bradley (1996) analyzed theχ2-test on a confusion matrix and concluded
that its isometrics are more suitable for comparising classifiers than the iso-
metrics of accuracy. PN-spaces were—under the name of TP/FP space—
already used by Gamberger and Lavrač (2002) for motivating the introduction
of an equivalent form of theg-measure (Theorem 4.7). Highly related to our
work is the work of Vilalta and Oblinger (2000) who analyzed evaluation
metrics by proposing a bias similarity measure based on the area between
isometric lines through a fixed point in ROC-space, and tried to relate the
similarity between metrics to the performance of classifiers that use these
metrics. The main difference to our work is that they focused on decision-tree
metrics, where the average impurity over all successor nodes is measured,
whereas we focus on a rule learning scenario where only the impurity of a
single node (the rule) is of interest.

10. Conclusions

In this paper, we analyzed the most common evaluation metrics for separate-
and-conquer rule learning algorithms. We looked at heuristics for evaluating
rules as well as filtering and stopping criteria, and covered learning of single
rules as well as learning of rule sets. Our main tool of analysis, visualization
in PN-space (a variant of ROC-space) proved to be particularly suitable for
understanding both the behavior of heuristic functions and the dynamics of
the covering algorithm.

Our results show that there is a surprising number of equivalences and sim-
ilarities among commonly used evaluation metrics. For example, we found
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that the relevant regions ofFoil’s information gain metric can be reasonably
well approximated by a conceptually simpler cost-weighted difference be-
tween positive and negative examples, if the precision of the parent clause is
used as the cost ratio. In fact, we identified two basic prototype heuristics,
precision and the above-mentioned linear cost metric, and showed that they
follow complementary strategies: precision tries to optimize the area under
ROC curve for unknown misclassification costs, whereas the cost-metric tries
to directly find the best theory under known costs. We also showed that a
straightforward generalization of the well-knownm-estimate may be regarded
as a means for trading off between these two prototypes.

Stopping and filtering criteria are more diverse and less explored. For ex-
ample, even thoughCN2’s significance test andFossil’s search heuristic and
stopping criterion use aχ2-distribution, their isometric landscapes are differ-
ent and they are not equivalent. In any case, both criteria focus on statically
valid deviations from random guessing (the diagonal of PN-space). While
this is certainly a reasonable thing to do in general, our results show that it
is questionable whether this is a suitable technique for avoiding overfitting
because it does not seem to penalize regions with low rule coverage. On the
other hand, simple approaches like thresholding the coverage of a rule, may
be quite appropriate for this purpose. In fact,Foil’s MDL-based encoding
length restriction is equivalent to a variable threshold on the coverage of the
positive examples. However, the threshold, which depends on the encoding
length of the rule, seems to be problematic for example distributions with
predominantly positive examples, where it may prefer a rule with partial
coverage over a perfect rule of the same length that covers all positive and no
negative examples. Overall, we believe that our analysis has shown that we
are still far from a systematic understanding of stopping criteria. The fact that,
unlike decision-tree algorithms, most state-of-the-art rule learning algorithms
use pruning for noise-handling may not necessarily be a strong indicator for
the superiority of this approach, but may also be interpreted as an indicator
of the inadequacy of currently used stopping criteria.

In conclusion, we are confident that the analytic technique used in this
paper can effectively be turned around for designing new criteria from the
drawing board (quite literally).
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Džeroski, S. and I. Bratko: 1992, ‘Handling Noise in Inductive Logic Programming’. In: S. H.
Muggleton and K. Furukawa (eds.):Proceedings of the 2nd International Workshop on
Inductive Logic Programming (ILP-92). Tokyo, Japan, pp. 109–125.

Ferri, C., P. Flach, and J. Hernández: 2002, ‘Learning Decision Trees Using the Area under
the ROC Curve’. In: C. Sammut and A. Hoffmann (eds.):Proceedings of the 19th Inter-
national Conference on Machine Learning (ICML-02). Sydney, Australia, pp. 139–146,
Morgan Kaufmann.

Flach, P. A.: 2003, ‘The Geometry of ROC Space: Using ROC isometrics to Understand
Machine Learning Metrics’. In: T. Fawcett and N. Mishra (eds.):Proceedings of the
20th International Conference on Machine Learning (ICML-03). Washington, DC, pp.
194–201, AAAI Press.

Flach, P. A. and S. Wu: 2003, ‘Repairing Concavities in ROC Curves’. In:Proceedings of the
2003 UK Workshop on Computational Intelligence. pp. 38–44, University of Bristol.

Fürnkranz, J.: 1994, ‘FOSSIL: A Robust Relational Learner’. In: F. Bergadano and L. De Raedt
(eds.):Proceedings of the 7th European Conference on Machine Learning (ECML-94),
Vol. 784 ofLecture Notes in Artificial Intelligence. Catania, Italy, pp. 122–137, Springer-
Verlag.

Fürnkranz, J.: 1997, ‘Pruning Algorithms for Rule Learning’.Machine Learning27(2), 139–
171.

Fürnkranz, J.: 1999, ‘Separate-and-Conquer Rule Learning’.Artificial Intelligence Review
13(1), 3–54.

Fürnkranz, J. and P. Flach: 2003, ‘An Analysis of Rule Evaluation Metrics’. In: T. Fawcett and
N. Mishra (eds.):Proceedings of the 20th International Conference on Machine Learning
(ICML-03). Washington, DC, pp. 202–209, AAAI Press.

Fürnkranz, J. and G. Widmer: 1994, ‘Incremental Reduced Error Pruning’. In: W. Cohen and
H. Hirsh (eds.):Proceedings of the 11th International Conference on Machine Learning
(ML-94). New Brunswick, NJ, pp. 70–77, Morgan Kaufmann.
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