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Abstract. The signal-to-symbol problem is the task of converting raw
sensor data into a set of symbols that Artificial Intelligence systems can
reason about. We have developed a method for directly learning and
combining algorithms that map signals into symbols. This new method
is based on evolutionary computation and imposes little burden on or
bias from the humans involved. Previous papers of ours have focused on
PADO, our learning architecture. We showed how it applies to the general
signal-to-symbol task and in particular the impressive results it brings to
natural image object recognition. The most exciting challenge this work
has received is the idea that PADO’s success in natural image object
recognition may be due to the underlying simplicity of the problems we
posed it. This challenge implicitly assumes that our approach suffers from
many of the same afflictions that traditional computer vision approaches
suffer in natural image object recognition. This paper responds to this
challenge by designing and executing a controlled experiment specifically
designed to solidify PADQO’s claim to success.

1 Introduction

The goal of the PADO (Parallel Algorithm Discovery and Orchestration) project
is the supervised autonomous learning of signal understanding for arbitrary sig-
nal types. PADO accomplishes this goal through a new evolutionary compu-
tation architecture. In previous work, we have argued and demonstrated that
PADO is already able to learn to accomplish difficult signal understanding tasks
[10, 12]. In recent talks given on PADO, and through correspondence with other
researchers, the idea has been expressed that because the end result of the PADO
architecture is so opaque, it may be that PADO is accomplishing little and that
the problems we have posed it may instead actually be quite simple [3].

This worry is analogous to the worry that, while the mechanism of Neural
Networks (NNs) is easy to understand, typical NNs generated are very hard to
understand, and therefore NNs may not really be doing anything of interest. 15
years ago this was a concern for the NN community, but it has been overcome.
One of the main reasons why this worry about the opacity of learned NNs has
been alleviated is that controlled experiments like auto-encoders effectively con-
vinced the research community that the hidden units of the NN were in fact
finding useful, compressed versions of their inputs [1, 2, 6].

While we are confident that the PADO learning architecture, through evolu-
tionary computation, does learn non-trivial algorithms and can be applied to real



world signals, it seems that a tangent is in order. This paper is that tangent. We
will show, through a controlled experiment, using manufactured images, that
PADO can indeed learn abstract, “high-level” features of a signal in order to
accomplish signal classification. These experiments, detailed in Sect. 4 of this
paper, were specifically designed to dispel potential scepticism about PADQO’s
power.

This paper will first give a brief description of PADO and the process in-
volved in the creation of a PADO system: the discovery of algorithms that can
be parallelly executed and the orchestration of these algorithms into a useful sys-
tem. Then, two past experiments [10] will be summarized to situate this paper’s
controlled experiments. The heart of the paper follows, in which two controlled
experiments remove doubt about “secretly simple features” available for signal
classification.

The concept of this paper is simple and should be appealing. PADO has per-
formed well in seemingly difficult object recognition tasks and this performance
has excited many of our colleagues. A few of our colleagues, because the end re-
sult of the PADO architecture is so difficult to decipher, have wondered whether
these tasks were in fact difficult, and therefore, whether PADO is capable of
automatically learning algorithms that achieve reasonable recognition rates in
truly difficult signal domains. Our response, this paper, is “Well, let’s make a
domain that we can all agree is not trivial to learn and see how PADO does.”

2 The PADO Architecture

While we believe PADO does have merit as an original system, that is not the
claim we are trying to substantiate in this paper. For the same reason that a
paper on auto-encoding for NNs need explain the NN process, but need not
justify the existence of NNs as a research tool, the purpose of this section is not
to convince, but to explain. We will first sketch the PADO architecture and its
extension of genetic programming (GP) [4]. Then, the section will detail exactly
what kind of programs PADO is evolving and what access these programs have
to the experimental signals in Sects. 3 and 4.

The goal of the PADO architecture is to learn to take signals as input and out-
put correct class labels. When there are C classes to choose from, PADO starts by
learning C different “systems”. System; is responsible for taking a signal as input
and returning a confidence that class 7 is the correct label. System; is built out
of several programs learned by PADQO. Each of these programs does exactly what
the system as a whole does: it takes a signal as input and returns a confidence
value that label 7 is the correct label. The reason for this seeming redundancy
can be found in [10]. PADO performs object recognition by orchestrating the re-
sponses of the C systems. Here is a description of a simple orchestration scheme
that was used in the experiments described in this paper. Systemy is built from
the & programs that best (based on the training results) learned to recognize
the instances of class Z. The & responses that the § programs return on see-
ing a particular image are all weighted and their weighted average of responses



is interpreted as the confidence that System; has that the signal in question
contains an object from class Z. The responses of the C systems are weighted
and combined in a similar way. Figure 1 summarizes the main functionality of
PADO’s evolutionary learning of signal understanding algorithms.

function PADO(population, signals, C, S) returns C groups of S algorithms
inputs: population, a set of P randomly generated algorithms
signals, a set of training signals
C, the number of classes
S, the number of algorithms from each class to return
Repeat
Loop over signals
EvaluateFitness(population,signal;)
Split population into C distinct subpools of size P/C based on fitness
Loop 2 from 1 to C
MatingPool; « Reproduction(SubPool;)
NewSubPop, «— Recombination(MatingPool,)
population «— Y NewSubPop,
Until return requested
return the most fit S algorithms in each of the C subpools

Fig. 1. A top level of view of PADO’s algorithm evolution learning process.

PADO evolves programs in a PADO-specific graph structured language. At
the beginning of a learning session, the main population is filled with P programs
that have been randomly generated using a grammar for the legal syntax of
the language. All programs in this language are constrained by the syntax to
return a number that is interpreted as a confidence value between some minimum
confidence and some maximum confidence. Crossover and mutation in PADO
are more complicated than their standard forms in genetic algorithms or GP.
Both the crossover and mutation operators are “SMART” operators that are
co-evolved with the main population, as we describe in [9, 10].

2.1 PADO Program Representation

Figure 2 sketches the structure of a PADO program. Each program is constructed
as an arbitrary directed graph of nodes. As an arbitrary directed graph of N
nodes, each node can have as many as N arcs outgoing. These arcs indicate
possible flows of control in the program. In a PADO program each node has two
parts: an action and a branch-decision. Each program has a private stack and
an indexed memory. All actions pop their inputs from this stack and push their
result back onto the stack. These actions are the equivalent of GP’s terminals
and non-terminals. The indexed memory is effected in the usual way via READ

and WRITE actions [8].
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Fig. 2. This is the basic structure of a PADO program. There can be one or more Mini
programs for each PADO program. Each Mini program may be referenced from the
Main program, another local Mini program, or a Library program.

After the action at node 7 is executed, an arc transfers control to a new
node. The branch-decision function at the current node makes this decision.
Each node has its own branch-decision function that may use the top of the
stack, the previous state number, the memory, and constants to pick an arc.
There is a separate (i.e., individually evolved) branch-decision function for each
node.

There are several special nodes as illustrated in Fig. 2. Node ¢ is the start
node. It is special in no other way than that it is always the first node to be
executed when a program begins. Node X is the stop node. When this node
is reached, its action is executed and then the program halts. When a program
halts, its response is considered to be the current value residing in some particular
memory location (e.g., response = Memory[0]). If a program halts sooner than
a pre-set time threshold, it is started again at its start node (without erasing its
memory or stack) to give it a chance to revise its confidence value.

Node M executes the private Min: program as its action. The Mini program
associated with each Main program bears similarity to the concept of ADF’s [5].
It may be called at any point in the Main program and it evolves along with
the Main program. The Min: programs may recursively call themselves or the
globally available Library programs, just like a Main program may. The Library
programs (e.g., Loy in Fig. 2) are globally available programs that can be exe-
cuted at any time and from anywhere just like the Mini programs. But unlike
the Mini programs, where each Mini may be run only during the execution of
the MAIN program to which it belongs, the Library programs are available to
the entire population. The method by which these Library programs change can
be seen in [10]. For an example of a learned PADO program, see [10, 12].



We hope that these two subsections have been detailed enough to give a fla-
vor, if not complete details, about the PADQO learning architecture. In particular,
it should be clear that PADO is not simply a genetic algorithm (GA).

2.2 PADO Program Primitives

Here is a brief summary of the language actions and their effects:

Algebraic Primitives: {ADD SUB MULT DIV NOT MAX MIN}

These functions allow basic manipulation of the integers. All values are con-
strained to be in the range 0 to 255. For example, DIV(X,0) results in 255 and
NOT(X) maps the set {1..255} to 0 and {0} to 1.

Memory Primitives: {READ WRITE}

These two functions access the memory of the program. Each program has a
memory which is organized as an array of 256 integers that can take on values
between 0 and 255. READ(X) returns the integer stored in position X of the
memory array. WRITE(X,Y) takes the value X and writes it into position Y
of the indexed memory. WRITE returns the OLD value of position Y (i.e. a
WRITE is a READ with a side-effect). The memory is cleared (all positions set
to zero) at the beginning of a program execution.

Branching Primitives: {IF-THEN-ELSE EITHER}

Calling these “Branching” primitives may be misleading. In both cases the prim-
itive pops X,Y, and Z off the stack and then replaces either Y or Z (not both)
depending on the value of X. For IF-THEN-ELSE the test is (X less than 0).
For EITHER the test is (X less than RandomNumber) where RandomNum-
ber varies between 0 and 255. These primitives can be used as an action or a
branch-decision functions. In the former case, they have no effect on the flow of
control.

Signal Primitives: {PIXEL LEAST MOST AVERAGE VARIANCE DIFFERENCE}
These are the language functions that can access the signals. In order to demon-
strate PADQ’s power and flexibility, these same primitives were used for both
image and sound data [12]. PIXEL returns the intensity value at that point in
the image (or sound). The other five “signal functions” each pop the top four
values off the stack. These four numbers are interpreted as (X1,Y1) and (X2,Y2)
specifying a rectangle in the image. If the points specify a negative area then the
opposite interpretation was taken and the function was applied to the positive
area rectangle. LEAST, MOST, AVERAGE, VARIANCE, and DIFFERENCE
return the respective functions applied to that region in the image. DIFFER-
ENCE is the difference between the average values along the first and second
half of the line (X1,Y1,X2,Y2).

Routine Primitives: {MINI LIBRARYTi]}

These are programs that can be called from the Main program. In addition,
they may be called from each other. Because they are programs, and not simple
functions, the effect they will have on the stack before completion is unknown.



3 Previous Experiments

Several publications already exist about the application of the PADO learning
architecture to image understanding [9, 11, 10]. These papers address signal un-
derstanding issues such as object recognition in real video images of everyday
objects and classification of high-quality sound samples. To illustrate and sum-
marize two of those experiments, Fig. 3 shows some examples from the training
and testing sets of two separate image databases. Each of these two databases
contain 7 classes of images (only 2 classes from each database are shown in

Fig. 3). Each 256x256 image is in 256 shades of grey.

Set T: Sample Train Images Set T: Sample Test Images

Set A: Sample Train Images Set A: Sample Test Images

Fig. 3. 8 randomly chosen images from the experimental image database.

Figure 4 shows the ability of PADO to perform object recognition on these
two sets of image data. The crux of previous papers has been “Does PADO
succeed at the task of object recognition?” It is important to point out that
if we constructed a system that simply guessed at the class of the image by
choosing one of the seven classes at random, it would be right about 14% of
the time (shown as a dotted line in Fig. 4). At generation 80, the percent of
the time that PADO correctly identifies the image class is about 4 to 5 times
random performance. On images as unconstrained as these images are, of objects
as unfriendly as these objects are, this is a real difference.

There is little to which these results can appropriately be compared. The
only other learning architecture for which there are vision results with such an
unbiased, “low-level” starting point are NNs (e.g., [7]). NN cannot currently be
trained on images as rich as these (65536 eight bit inputs). Even if NNs could
be trained on inputs of this size, they are notoriously bad at finding “features”
that are local, non-stationary, and can not be directly “observed” through the
inputs.



The Real Measure of PADO success: Object Recognition % Correct
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Fig.4. PADO object recognition percentage correct on Sets A and T test images.

There are, of course, a large number of computer vision techniques that don’t
involve machine learning. Comparison was not made against any of these for two
reasons. The first is that the type of images shown in Fig. 3 are less constrained
(translation, rotation, foreshortening, lighting, etc.) than most of the computer
vision object recognition domains of today. The second reason is that when
learning is not involved, the choice of any particular set of computer vision tech-
niques to solve a particular object recognition problem (like the discrimination
of the images in Fig. 3) is effective only for that specific domain. In other words,
while traditional computer vision techniques can outperform PADO in almost
any specific domain, they do so at the repeated cost of a researcher’s time and
energy. As computer cycles become increasingly cheap relative to human effort,
the attractiveness of machine learning in computer vision rises.

Because there is substantial difference between “guessing” and PADO’s ac-
tual performance, a few researchers have suggested that these classification prob-
lems may be secretly “easy.” In other words, how can PADQO, a learning architec-
ture with so little initial world knowledge, create a system that so reliably pre-
dicts the contents of novel images from the same classes? PADQO’s performance
on images like those shown in Fig. 3 is very good. The question is, “Where does
credit belong? With PADO (a successful learning algorithm), or with the im-
ages that have subtle but simple distinguishing characteristics?” The following
section will not explain how PADO performs so well. What the following section
will provide is conclusive evidence that PADO does succeed in difficult (from a
learning perspective) image understanding domains.



4 Doing the Controlled Experiment

In order to create a convincing experiment to satisfy the doubting Thomases in
the audience, we should first know what criteria we (and they) are looking for in
such an experiment. It must be a “good” control to the experiments summarized
in the previous section, and it must be a “hard” experiment in order to qualify
as a convincing one. The criteria for such an experiment could be summarized
as follows:

1. A controlled experiment should be similar to the original one in most details.

2. The classes that we require PADO to “understand” the difference between
should be completely separable. That is, the task should be possible.

3. The distinction between the classes should be readily apparent to human
observers to make the issues clear.

4. The distinction between the image classes should only exist in abstract (high-
level) local features of the imaged objects. By abstract or high-level, we mean
a feature that can not be directly measured using a signal primitive.

5. Most importantly, we should be able to prove the criteria above true.

4.1 Constructing a Simple Controlled Experiment

In order to satisfy criterion 1, our new experiment will be an object recogni-
tion/signal classification problem with a few classes. Let’s pick 5 as the number
of classes. In order to satisfy criterion 5, we will manufacture the images in the
different classes. By manufacturing the images we can guarantee certain prop-
erties of the images. This image fabrication is not an attempt to create a “toy
problem”  but an attempt to eliminate ambiguity in the image feature space. The
classification of these constructed images ¢s a simple problem for hand-coded vi-
sion systems; it is not simple for a learning system (like PADO) that is given
no information specific to the task at hand. However, the real need and goal of
PADO is to attack and conquer problems that frustrate hand-coded solutions
(See Sect. 3).

We chose as the 5 signal classes to manufacture: SQUARE, CIRCLE, GRID,
CROSS, and TRIANGLE. To create an image instance for one of these classes:

— The object occupies between 6% and 24% (chosen randomly) of the image.
The location of the object center in the image is chosen randomly.

— The foreground color is chosen randomly from grey levels {191...255}

The background color is chosen randomly from grey levels {0...63}

If we take care (which we did) to adjust the relative thicknesses of these
object patterns, then no “global” application of the signal primitives (LEAST,
MOST, AVERAGE, VARIANCE, DIFFERENCE) to an image can help in dis-
tinguishing between classes. This is so because the images were manufactured
with that criteria in mind. These images, by the construction just described,
satisfy criterion 4. Figure 5 shows two examples from each class. As we can see,
these objects are trivial for people to discriminate, satisfying criteria 2 and 3.



Fig. 5. 2 randomly chosen images from each of the 5 manufactured classes.

To see how difficult these images are for a learning system to discriminate
among, let’s take a look at a few pairs of classes. The only reliable distinction
between the SQUARE and CIRCLE images is the shape of the brighter area.
Both are continuous borders with background in their centers; their curvature
sets them apart. Exactly the opposite is true of the SQUARE and GRID. An
examination of their external borders shows them to be identical. Internal to
their borders is where their distinction lies. For other examples of the difficulty
of the space, notice that the bottom leg of the triangle is identical to the bottom
of the square, and the top two legs of the triangle are similar to the bottom half
of the Cross. Mid-level features like “dark-in-the-middle” or “straight-lines-at-
right-angles” can be of some use, but still do not fully disambiguate the image
classes (e.g., SQUARE vs. CIRCLE and SQUARE vs. CROSS respectively).
In short, the distinctions between these classes are not only abstract, they are
conjunctions of abstract features.

The curve labeled “Without Noise” in Fig. 6 shows how PADO learns to
classify images its has never seen into their correct classes at a much higher rate
(about 60% by generation 100) than random guessing would yield (shown as
the dotted line in Fig. 6). This experiment and the experiment in the following
section were performed using the same methodology as the experiments whose
results on natural images are summarized in Sect. 3. 70 images were used for
training during each generation, 100 images were used for orchestration, and
each testing phase used 100 images. All images were chosen randomly from the
distribution of images described above. Since there are over 2 billion different
pictures in each class, the test images, with very high probability, had never
been seen during the training phase. The lower curve (“With Noise”) will be
discussed in the next section.



The Real Measure of PADO success: Classification % Correct
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Fig. 6. PADO classification percentage correct on manufactured test images.

4.2 Increased Difficulty in the Controlled Experiment

The results in the previous subsection convincingly portray PADO as being able
to construct a system that learns non-trivial, abstract features and uses them to
successfully perform its signal classification task.

There were many possible ways to increase the difficulty of these images.
Among the most traditional (from a computer vision “noise” standpoint) are:
Gaussian noise, rotation, and obstruction. Gaussian noise and obstruction were
chosen as our images complicators simply because they are both trivial to add
to the image construction process. The noise added varies each pixel with a
standard deviation of 16 shades of grey. The obstruction was added in the form
of two grey bars of constant thickness in random orientations. The color of these
bars varies around the central 64 shades of grey. Example images using this new
image manufacturing process are shown in Fig. 7.

The curve labeled “With Noise” in Fig. 6 shows that PADO still manages
to perform significantly better than random even on this harder set of 5 im-
age classes. Given more time PADO’s ability continues to increase. In order to
complete a sufficient number of experiments to provide statistically significant
data, generation 100 was chosen as a cut-off for the experiments. Each run took
about 2.5 days of CPU time on a DECStation5000/20. Both curves in Fig. 6 are
averaged over 5 runs. Each program, is given about 30 milliseconds to examine
the picture and return a confidence. Because an entire PADO system orches-
trates many programs in order utilize a wide variety of learned information,
each classification answer was produced in about 1 second.



Fig.7. 2 randomly chosen images from each of the 5 manufactured classes.

5 Discussion and Conclusions

The purpose of this paper has been to convince the reader that PADO can
find and utilize local, abstract features of a signal in order to perform its signal
classification task. PADO does this by evolving a set of algorithms that can
be orchestrated and run in parallel to “analyze” signals. This discovery and
utilization of “high-level” features of a signal was accomplished using no domain
knowledge.

The goal of the PADO project is the supervised autonomous learning of sig-
nal understanding for arbitrary signal types. In previous work, we have argued
and demonstrated that PADQ is already able to learn to accomplish difficult sig-
nal understanding tasks. Because the PADO programs and orchestration do not
evolve to be understandable by people, a few researchers have wondered whether
PADO is or would be able to achieve the kind of complex understanding neces-
sary to distinguish between everyday objects in natural images. The experiments
detailed in Sect. 5 of this paper were designed to dispel this scepticism.

This paper gave a brief description of PADO and the process involved in the
creation of a PADO system: the discovery of algorithms that can be parallelly
executed and the orchestration of these algorithms into a useful system. Past
experiments were then summarized to situate the following controlled experi-
ments. Because the presentation of PADO as a learning model was not the focus
of the paper, little direct evidence was given for evaluating of the originality of
the PADO architecture.

The first controlled experiment detailed in this paper asked PADO to distin-
guish between 5 classes of manufactured images. The features of these images
that set them apart were purposefully constrained to be high-level features such
as “square” or “circle.” Mid-level features like “dark-in-the-middle” or “straight-
lines-at-right-angles” can be of some use, but still do not fully disambiguate the
classes. On this task, where guessing a class would yield a 20% result, PADO
manages a 60% classification rate by Generation 100.



The second controlled experiment increased the difficult of the task by adding
confusing elements to the images. This confusion was added both through Gaus-
sian noise at every point and through the inclusion of two grey “occluding” bars
that obscure the background and foreground they cross. Even under these cir-
cumstances, PADQ’s ability to correctly identify images it has never seen reaches
almost 2.5 times the rate that random guessing would provide.

The number of applications in need of increased autonomous signal under-
standing is innumerable. Most of these applications don’t know in advance what
form all the signals will take or what aspects of the signals will be of greatest
interest. The creation of a system that can meet the needs of these applications
is one of the most exciting current demands of the information age.
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