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Abstract— Feature selection techniques aim at reducing the
number of unnecessary features in classification rules. The
features are measured by their necessity in heuristic feature
selection techniques. Rough set theory has been used to define the
necessity of features in literature. We propose a new rough set
based feature selection approach called Parameterized Average
Support Heuristic (PASH). The PASH considers the overall
quality of the potential set of rules. It selects features causing high
average support of rules over all decision classes. In addition, the
PASH arms with parameters that are used to adjust the level of
approximation.

I. INTRODUCTION

Classification is a main problem in machine learning. It may
be viewed as a supervised learning process. The rules learnt
from this process will be used for prediction. Rules normally
consist of a classifier and a group of attributes or features.
The features will be used to classify unseen instances into
different classes based on the value of the classifier. However,
the time required to generate rules will increase dramatically
with the number of features [1]. Moreover, if the number
of training instances is relatively smaller than the number
of features, it will degrade the accuracy of prediction [13].
Feature selection techniques aim at reducing the number of
unnecessary, irrelevant, or unimportant features. It is common
practice to use a measure to decide the importance and
necessity of features.

Rough set theory is an extension of set theory for study of
the intelligent systems characterized by insufficient and incom-
plete information [12]. An undefinable subset is approximately
represented by two definable subsets, called lower and upper
approximations. Rough set theory is a good candidate for
classification applications [2]. Various efforts have been made
to improve the efficiency and effectiveness of classification
with rough sets [5], [15].

The concepts in rough set theory are used to define the
necessity of features. The measures of necessity are calculated
by the functions of lower and upper approximation. These
measures are employed as heuristics to guide the feature selec-
tion process. There are at least two types of heuristics, namely
significance oriented method and support oriented method,
that have appeared in literature. The heuristic in [5] favors
significant features, i.e., features causing the faster increase
of the positive region. Zhong’s heuristic [15] considers the
positive region as well as the support of rules.

This paper proposes a new heuristic function called Param-
eterized Average Support Heuristic (PASH) based on parame-
terized lower approximation definition in rough sets. The main
advantage of PASH are:

• It considers the overall quality of the set of potential rules.
In other words, it takes into account the average support
of rules for every decision class. As a result, PASH
produces a set of rules with balanced support distribution
over all decision classes.

• It considers the predictive instances that are excluded by
the existing methods. Predictive instances are instances
that may produce predictive rules which hold true with a
high probability but are not necessarily always true.

The organization of this paper is as follows: Section II
introduces fundamentals of rough set theory. Section III gives
background information of feature selection. Section IV ana-
lyzes the limitation of existing methods and proposes a new
heuristic function, PASH. An demonstrative example showing
the advantages of the new heuristic is given in Section V. The
paper ends with a conclusion section.

II. FUNDAMENTALS OF ROUGH SET THEORY

In rough set theory, an information table is defined as a tuple
T = (U,A) where U and A are two finite, non-empty sets, U
the universe of primitive objects and A the set of attributes.
Each attribute or feature a ∈ A is associated with a set Va

of its value, called the domain of a. We may partition the
attribute set A into two subsets C and D, called condition
and decision attributes, respectively.

Let P ⊂ A be a subset of attributes. The indiscernibility
relation, denoted by IND(P ), is an equivalence relation
defined as:

IND(P ) = {(x, y) ∈ U × U : ∀a ∈ P, a(x) = a(y)},

where a(x) denotes the value of feature a of object x. If
(x, y) ∈ IND(P ), x and y are said to be indiscernible with
respect to P .

The family of all equivalence classes of IND(P ) (Partition
of U determined by P ) is denoted by U/IND(P ). Each ele-
ment in U/IND(P ) is a set of indiscernible objects with re-
spect to P . Equivalence classes U/IND(C) and U/IND(D)
are called condition and decision classes.



For any concept X ⊆ U and attribute subset R ⊆ A, X
could be approximated by the R-lower approximation and R-
upper approximation using the knowledge of R. The lower
approximation of X is the set of objects of U that are surely
in X , defined as:

R∗(X) =
⋃
{E ∈ U/IND(R) : E ⊆ X}.

The upper approximation of X is the set of objects of U that
are possibly in X , defined as :

R∗(X) =
⋃
{E ∈ U/IND(R) : E

⋂
X 6= φ}.

The boundary region is defined as:

BNDR(X) = R∗(X)−R∗(X).

If the boundary region is empty, that is, R∗(X) = R∗(X),
concept X is said to be R-definable. Otherwise X is a rough
set with respect to R.

The positive region of decision classes U/IND(D)
with respect to condition attributes C is denoted by
POSc(D) =

⋃
R∗(X). It is a set of objects of U that can

be classified with certainty to classes U/IND(D) employing
attributes of C. A subset R ⊆ C is said to be a D-reduct of
C if POSR(D) = POSC(D) and there is no R′ ⊂ R such
that POS′

R(D) = POSC(D). In other words, a reduct is the
minimal set of attributes preserving the positive region. There
may exist many reducts in an information table.

III. FEATURE SELECTION

Feature selection and feature extraction are two kinds of
methods of dimensionality reduction for classification [7].
Feature extraction creates new features by irreversibly trans-
forming the original features such that the created features
contain most useful information for the target concept. In
contrast, feature selection only removes the features that are
unnecessary or unimportant to the target concept and the
remaining features are kept intact. The process of feature
extraction is more complicated. It is difficult to compare the
effectiveness of the two methods as they are employed under
different circumstances.

Features selection is a process to find the optimal subset of
features that satisfy certain criteria. In this paper, we consider
two parameters: the size of the selected feature subset, and
the accuracy of the classifier induced using only the selected
features. We have to define an evaluation measure that is
able to reflect both of the parameters. In this context, feature
selection problem can be viewed as a search problem. The
optimal feature subset is the one that maximizes the value of
evaluation measure.

A. Feature Selection Methods

The most intuitive method for feature selection is to enumer-
ate all the candidate subsets and apply the evaluation measure
to them. Unfortunately, the exhaustive search is infeasible
under most circumstances as there are 2n subsets for a feature
set of size n. The exhaustive search could only be used in

domain where n is relatively small. Large n will make the
search intractable in many real world applications.

An alternative way is to use a random search method
where the candidate feature subset is generated randomly [11].
Each time, the evaluation measure is applied to the generated
feature subset to check whether it satisfies certain criteria. This
process repeats until one subset that satisfies the given criteria
is found. The process will also end when a predefined time
period has elapsed or a predefined number of subsets have
been tested.

The third and most commonly used method is called the
heuristic search [9], [8], where a heuristic function is employed
to guide the search. The search is performed towards the
direction that maximizes the value of a heuristic function.

The exhaustive search is infeasible due to its high time
complexity. The random and heuristic search reduce compu-
tational complexity by compromising performance. They are
not complete search under most circumstances. In other words,
they do not guarantee to produce an optimal result. Heuristic
search is an important search method used by the feature
selection community.

B. Characteristic of Features

The aim of feature selection is to remove unnecessary
features to the target concept. Unnecessary features can be
classified into irrelevant features and redundant features [3].
Irrelevant features are those that do not affect the target
concept in any way. Redundant features do not add anything
new to the target concept. Hall [4] argued that a good feature
subset is one that contains features highly correlated with the
class, yet uncorrelated with each other. If two features are
functional dependent, one of them could be removed without
the loss of predication accuracy.

A simple heuristic is to define a measure that evaluates
the necessity of a feature. However, it is difficult to define
a heuristic function on these qualitative descriptions of irrele-
vance and redundance. John et al. [6] defined strong relevance
and weak relevance of a feature in terms of the probability of
the occurrence of the target concept given this feature. Strong
relevant features are indispensable in the sense that it cannot
be removed without loss of prediction accuracy. Weak relevant
features can sometimes contribute to prediction accuracy.

Strong relevance and weak relevance provide a good foun-
dation upon which we can define the heuristic function. The
set of strong relevant features is equivalent to relative CORE
in the rough set theory. The relative reduct is a combination of
all strong relevant features and some weak relevant features.
In rough sets theory, a subset R ⊆ C is said to be a D-reduct
of C if POSR(D) = POSC(D) and there is no R′ ⊂ R
such that POS′

R(D) = POSC(D). In other words, reduct is
the minimal set of attributes preserving the positive region.
There may exist many reducts in a information table. The
CORE is the set of attributes that are contained by all reducts,
defined as: CORED(C) =

⋂
REDD(C) where REDD(C)

is the D-reduct of C. In other words, the CORE is the set of
attributes that cannot be removed without changing the positive



region. This means that all attributes present in the CORE are
indispensable.

C. Basic Issues of Heuristic Feature Selection

The feature selection process is a search process where the
whole search space covers all 2n subsets of the n features, and
with each state specifying a candidate subset. A partial order
could be imposed on this search space, making each child
having exactly one more feature than its parents. The structure
of this space determines the basic issues of the heuristic feature
selection process [10].

The first step is to decide from which state in the search
space that the search starts. We may adopt forward selection
that starts with an empty feature set and successively adds
features. Another approach is to employ backward elimina-
tion that starts with all features and successively removes
unnecessary ones. It is also possible to start from somewhere
in the middle of the search space, that is, start with a
subset that contains some indispensable features and search
outwards from this point. In rough set based feature selection
approaches, the CORE can be used as the starting point.

The second issue is how the search is carried out. The
simplest way is the greedy method which traverses the search
space without backtrack. At each step, only one feature is
added or removed. Once a feature is added, it can not be
removed in later steps. Likewise, once a feature is removed,
it can not be added. Another method, known as stepwise
selection or elimination, allows adding (removing) a feature
that was removed (added) in the previous step.

In our rough sets based feature selection, we adopt the
forward selection approach since all the features in CORE
cannot be removed. We successively add features until the stop
criterion is satisfied. We use a measure, or heuristic function,
to evaluate alternative feature subsets. The measure decides the
next candidate subset. Filter and wrapper are two classes of
commonly used measures [6]. The filter method is independent
of the induction algorithm that will use the selected features
as it relies only on the characteristics of the features. The
wrapper method uses the induction algorithm as the evaluation
measure. The rough sets based heuristic functions discussed
in this paper belong to the filter measure.

The last basic issue of heuristic search is the stop criteria.
A stop criterion is used to halt the search process. In the
rough sets based method, the size of the positive region could
be used as stop criteria. In particular, the algorithm stops
when the positive region of the selected features reaches the
original positive region, i.e., POSR(D) = POSC(D).

IV. ROUGH SET BASED FEATURE SELECTION

This section focuses on rough set based heuristic functions.
These heuristic functions are used to decide which attribute
is relevant to the target concept. The concepts in the rough
set theory can manifest the property of strong and weak
relevance as defined in [6]. For example, the relative reduct
is a combination of all strong relevant features and some

weak relevant features. The set of strong relevant features
is equivalent to relative CORE, which includes attributes
contained by all reducts. The rough set concepts could be
employed to define the heuristic functions as in [5] and [15].
We analyze some existing heuristic functions in this section. A
new rough set based heuristic function, which remedies some
limitations of previous functions, is proposed.

A. Significance Oriented Methods

The significance of features was used as the heuristic in
one of the pioneer research on feature selection with rough
sets [5]. Each time the most significant feature from the
unselected features is added to generate the next candidate
feature subset. Significance of a feature a, denoted as SIG(a),
is the increase of dependency between condition attributes and
decision attribute as a result of the addition of a. Therefore, the
heuristic is to select with higher preference features causing
the dependency to increase faster. The dependency between
condition attributes and decision attribute is defined as

g(R,D) = card(POSR(D))/card(U),

where card(POSR(D)) is the cardinality of the positive
region and card(U) the cardinality of the universe. The depen-
dency g(R,D) reflects the importance of R in classifying the
objects into the classes of U/IND(D). The formal heuristic
function is defined as follows:

SIG(a) = g(R+ a,D)− g(R,D),

where R is the set of currently selected features and D is the
decision attribute.

This heuristic function is simple and with low time com-
plexity. However, this method only considers the dependency
of the selected features. The other important information is
ignored. As the ultimate goal of feature selection is to reduce
the number of features used to generate classification rules, we
have to consider the quality of the potential rules. The quality
of the rules can be evaluated by two parameters: 1) the number
of instances covered by the potential rules, that is, the size of
consistent instances; and 2) the number of instances covered
by each rule, called support of each rule.

Significance oriented methods only consider the first pa-
rameter. It attempts to increase faster the size of consistent
instances but ignoring the second parameter(the support of
individual rules). However, rules with very low support are
usually of little use. For example, the patients’ identification
number may be picked as the only feature needed in medi-
cal diagnosis since every patient has a unique identification
number [15].

B. Support Oriented Methods

Zhong, et al. [15] proposed a heuristic function that consid-
ers both parameters. The heuristic selects feature a such that,
by adding a to the current set, the size of consistent instances
increase faster and the support of the most significant rule is
larger than by adding any other features. The most significant



rule is the one with the largest support. This function is a
product of two factors, defined as follows,

F (R, a) = Card(POSR+{a}(D))×

MAXSize(POSR+{a}(D)/IND(R+ {a})).

The first factor, Card(POSR+{a}(D)), indicates
the size of consistent instances. The second factor,
MAXSize(POSR+{a}(D)/IND(R + {a})), denotes
the maximal size out of indiscernibility classes included in
the positive region, i.e., the support of the most significant
rule. In the remaining part of the paper, we refer to this
heuristic as Maximum Support Heuristic.

The limitation of Maximum Support Heuristic is that it
selects with high preference features causing the highest
support of the most significant rule rather than the highest
overall quality of the potential rules. In other words, it only
considers a local optimum instead of a global optimum of the
potential rules. The training instances may belong to many
classes. Maximum Support Heuristic favors one of the classes.
It will produce a set of rules with a biased support distribution.
Moreover, sometimes Maximum Support Heuristic fails to
make a choice between two sets of features when they cause
the same size of positive region and support of the most
significant rule.

C. Average Support Heuristic

Based on the above discussion, we propose a new heuristic
function, called Average Support Heuristic. The Average Sup-
port Heuristic considers the overall quality of the potential set
of rules rather than the support of the most significant rule.
The overall quality of the potential set of rules, denoted by Q,
is the average support of the most significant rules for every
decision classes. Unlike the Maximum Support Heuristic,
Average Support Heuristic considers all the decision classes.
It selects with high preference features causing the highest
average support of rules over all decision classes.

The overall quality of the potential set of rules Q(R, a) is
defined as follows:

Q(R, a) = 1
n

∑n

i=1 S(R, a, di), (1)

where

S(R, a, di) = MAXSize(POSR+{a}(D = di)/IND(R + {a}))

is the support of the most significant rule for decision class
{D = di} and D is the decision attribute. The domain of D
is {d1, d2, . . . , dn}.

Average Support Heuristic function is defined as the product
of Card(POSR+{a}(D)) and Q(R, a):

F (R, a) = Card(POSR+{a}(D))×Q(R, a). (2)

It is important to note that Average Support Heuristic has the
same order of magnitude in time complexity as Maximum
Support Heuristic. Both of them could be computed by one
scan of the decision classes.

TABLE I
PART OF AN INFORMATION TABLE

Size S1 S2 S3 D

E3 40 0 1 2 2

E10 5 2 2 2 1

E11 100 2 2 2 2

D. Parameterized Average Support Heuristic

The heuristic functions discussed above only consider the
positive region in the traditional rough sets model. These
functions ignore the information provided by inconsistent
instances, or the boundary region. However, this information
becomes important to the target concept when the number of
inconsistent instances increases.

Table I shows part of a information table of the demonstra-
tive example in Section V, where S1, S2 and S3 are condition
attributes and D is decision attribute. In the traditional rough
set model, E10 and E11 will never be included in the positive
region. The information contained in E10 and E11 will never
be considered in the feature selection process with Average
Support Heuristic. However, the potential rule “S1 = 2

∧
S2 =

2
∧

S3 = 2 =⇒ D = 2” obtained from E11 has support = 100
and it holds true with probability of 95.2%. It is unsafe to
say that this rule is less useful than the rule “S1 = 0

∧
S2 =

1
∧

S3 = 2 =⇒ D = 2” from E3 (E3 belongs to the positive
region) with support = 40.

Since the heuristic functions are defined on the positive
region which is the union of lower approximations, we may
redefine the lower approximation. We need to broaden the
concept of lower approximation and make it to include pre-
dictive instances that are excluded by the traditional lower
approximation. Predictive instances refer to instances that may
produce predictive rules, which hold true with high probability
but are not necessarily 100%. In this section, we propose
a new definition of lower approximation, based on which
we improve the Average Support Heuristic to Parameterized
Average Support Heuristic (PASH). PASH also uses a prod-
uct of two factors: Card(POSR+{a}(D)) × Q(R, a), where
Card(POSR+{a}(D)) is cardinality of the positive region and
Q(R, a) the overall quality of potential rules. However, they
have been modified in the new heuristic function.

Some research on non-traditional lower approximation
could be found in literature. Decision-theoretic rough set
model [14] and variable precision rough set model [16] are
two examples. The new lower approximations are based on
the following assumption: class X has prior probability P (X),
and two lower and upper limit certainty threshold parameters
l and u such that 0 ≤ l < P (X) < u ≤ 1. The lower
approximation of X is defined as

R∗(X) =
⋃
{Ei ∈ U/IND(R) : P (X|Ei) > u},

where P (X|Ei) denotes the probability of X given Ei. This
definition is broader than the traditional one. However, prior
probability of X required by this model is usually unknown



in the real world application. Moreover, one pair of (l, u)
confines this model to information tables with only a binary-
valued decision attribute. What we need is a definition of
lower approximation that is applicable to multi-valued decision
attribute.

Suppose that we have an information table T , in which
the domain of decision attribute D, denoted by VD, contains
n values, such that VD = {d1, d2, . . . , dn}. Assume each
value of the decision attribute has equal prior probability,
i.e., P (D = d1) = P (D = d2) = · · ·P (D = dn). This
assumption is reasonable when the prior probabilities are
unknown. In this case, we define the lower approximation of
class {D = di} as follows:

R∗(D = di) =
⋃
{Ej ∈ U/IND(R) :

P (D = di|Ej) > P (D 6= di|Ej)},
(3)

where P (D 6= di|Ej) =
∑n

k=1,k 6=i P (D = dk|Ej). The lower
approximation of class {D = di} is the set of such objects Ej

in U that, given Ej , the probability of D = di is greater than
the probability of D 6= di. In other words, Ej is predictive of
concept D = di from D 6= di.

Since P (D 6= di|Ej) = 1−P (D = di|Ej), we can rewrite
(3) to (4):

R∗(D = di) =⋃
{Ej ∈ U/IND(R) : P (D = di|Ej) > 0.5},

(4)

where P (D = di|Ej) could be estimated by taking the ratio
Card(D = di

⋂
Ej)/Card(Ej).

When the decision attribute has few number of values, in the
extreme case, the decision attribute is binary, that is, |VD| = 2,
(3) may be too broad and degrade the performance. We can
introduce a parameter k(k ≥ 1) to (3) as follows:

R∗(D = di) =
⋃
{Ej ∈ U/IND(R) :

P (D = di|Ej) > k × P (D 6= di|Ej)}.
(5)

Equation (5) reflects that, given Ej , the concept D = di is k
times more probable than the concept D 6= di.

By replacing P (D 6= di|Ej) with 1 − P (D = di|Ej), (5)
becomes

R∗(D = di) =⋃
{Ej ∈ U/IND(R) : P (D = di|Ej) >

k
k+1}.

(6)

As k ≥ 1 =⇒ k
k+1 ≥ 0.5, we can simplify (6) as:

R∗(D = di) =
⋃
{Ej ∈ U/IND(R) :

P (D = di|Ej) > t(t ≥ 0.5)}.
(7)

Clearly, Equation (4) is a special case of (7). Equation (7)
guarantees that each object E ∈ U is contained in at most
one lower approximation, that is,

R∗(D = di)
⋂

R∗(D = dj) = φ, (i 6= j).

In the case that the prior probabilities of decision classes
are known, (7) is too simple to be effective. Assume that the
information table obtained from the training data can reflect
the distribution of decision classes. The prior probability of

TABLE II
AN EXAMPLE INFORMATION TABLE

Size S1 S2 S3 D

E1 150 2 0 1 1

E2 150 0 1 0 2

E3 40 0 1 2 2

E4 50 2 1 0 1

E5 50 0 1 3 1

E6 170 0 0 2 1

E7 300 0 2 1 1

E8 10 1 1 0 2

E9 250 3 1 1 1

E10 5 2 2 2 1

E11 100 2 2 2 2

class (D = di) could be estimated by P (D = di) =
Card(D=d1)

Card(U) . We can modify (7) to (8):

R∗(D = di) =
⋃
{Ej ∈ U/IND(R) :

P (D=di|Ej)
P (D=di)

= MAX{
P (D=dk|Ej)

P (D=dk) , 1 ≤ k ≤ n}

and P (D = di|Ej) > t(t ≥ 0.5)}.

(8)

Equation (8) ensures that the lower approximation of class
{D = di} contains such objects Ej ∈ U that, given Ej , the
probability of class {D = di} increases faster than any other
class+-. Equation (8) also guarantees R∗(D = di)

⋂
R∗(D =

dj) = φ, (i 6= j). Equation (7) is a special case of (8).
The newly proposed Average Support Heuristic has been

improved to PASH by defining a new lower approximation.
There are two cases to be considered when using PASH:

• When the prior probabilities of decision classes are
unknown, we assume they have equal prior probability
and use (7).

• When the prior probabilities of decision classes are
known, we use (8).

Average Support Heuristic and Parameterized Average
Support Heuristic can be viewed as extensions to Maximum
Support Heuristic.

V. DEMONSTRATIVE EXAMPLE

In this section, we use a demonstrative example in Table II
to show the advantages of PASH. Suppose that Table II is an
information table for medical diagnosis, where S1, S2, S3 are
symptoms and D disease prediction. {D = 1} and {D = 2}
predict disease one and disease two, respectively.

We first apply Maximum Support Heuristic to the informa-
tion table. In the first step, R = φ, we have F (R,S3) >
F (R,S1) and F (R,S3) > F (R,S2). Hence, symptom S3

is the first feature to be selected. In the second step, R =
S3, we have F (R,S1) = F (R,S2) which means it fails
to make choice between symptoms {S1, S3} and {S2, S3}.
Symptom S1 and S2 are regarded as equally important and
can be randomly selected. However, we find that {S1, S3} is
more useful than {S2, S3} for the following reason. Since the



information table is used to predict two diseases {D = 1} and
{D = 2}, we have to consider the support of rules for both
diseases. Table III and Table IV show the positive region of
{S1, S3} and {S2, S3}, respectively. In Table III, the support
of the most significant rule for {D = 2} is 150 and the
support of the most significant rule for {D = 1} is 300. In
Table IV, the support of most significant rule for {D = 1}
is also 300, but the support of the most significant rule for
{D = 2} is only 40. In other words, the classification rule
for decision class {D = 2} obtained from Table IV does not
have enough supporting instances. Thus, {S1, S3} is preferred
over {S2, S3}. However, Maximum Support Heuristic cannot
tell the difference between {S1, S3} and {S2, S3}. Moreover,
Maximum Support Heuristic is based on traditional rough set
model and does not consider E11.

TABLE III
POSITIVE REGION OF {S1 ,S3}

Size S1 S3 D

E1 150 2 1 1

E2 150 0 0 2

E4 50 2 0 1

E5 50 0 3 1

E7 300 0 1 1

E8 10 1 0 2

E9 250 3 1 1

TABLE IV
POSITIVE REGION OF { S2 , S3}

Size S2 S3 D

E1 150 0 1 1

E3 40 1 2 2

E5 50 1 3 1

E6 170 0 2 1

E7 300 2 1 1

E9 250 1 1 1

We next apply PASH with t = 90% which ensures that E11

is included in positive region. In both situations (use (7) or
(8) ), we have

Q(S3, S1) = (|E7|+ |E2|)/2 = (300 + 150)/2 = 225,

and Q(S3, S2) = (|E7|+ |E11|)/2 = (300 + 100)/2 = 200,

so that, Q(S3, S1) > Q(S3, S2).

In other words, the overall quality of the potential set of rules
obtained from {S1, S3} is better than those from {S2, S3}. By
using (2),

F (S3, S1) = Card(POS{S3,S1}(d))×Q(S3, S1) = 1060× 225,

F (S3, S2) = Card(POS{S3,S2}(d))×Q(S3, S2) = 1060× 200,

so that, F (S3, S1) > F (S3, S2).

PASH chooses symptoms {S3, S1} since {S3, S1} produces
higher average support of the rules for both {D = 1} and
{D = 2}.

VI. CONCLUSION

This paper proposes two new rough set based feature
selection heuristics, Average Support Heuristic and Parameter-
ized Average Support Heuristic (PASH). Unlike the existing
methods, PASH is based on a special lower approximation
which is defined to include all predictive instances. Predictive
instances may produce predictive rules, which hold true with
high probability (higher than a user specified threshold) but
are not necessarily one hundred percent true. However, the
traditional model excludes the predictive instances that may
produce not-100%-true rules.

The main advantage of PASH is that 1) it considers the
overall quality of the potential rules, thus produce a set of rules
with balanced support distribution over all decision classes; 2)
it arms with a parameter to adjust the level of approximation
and keeps the predictive rules that are ignored by the existing
methods.
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