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Abstract

The coverage of a learning algorithm is the number of concepts that can be learned
by that algorithm from samples of a given size. This paper asks whether good learning
algorithms can be designed by maximizing their coverage. The paper extends a previous
upper bound on the coverage of any Boolean concept learning algorithm and describes
two algorithms—Multi-Balls and Large-Ball—whose coverage approaches this upper
bound. Experimental measurement of the coverage of the ID3 and FRINGE algorithms
shows that their coverage is far below this bound. Further analysis of Large-Ball
shows that although it learns many concepts, these do not seem to be very interesting
concepts. Hence, coverage maximization alone does not appear to yield practically-
useful learning algorithms. The paper concludes with a definition of coverage within a
bias, which suggests a way that coverage maximization could be applied to strengthen
weak preference biases.

1 Introduction

Research in computational learning theory (e.g., [Valiant 84], [Natarajan 87], [COLT 88]-
[COLT 91]) has provided many insights into the capabilities and limitations of inductive
learning from examples. However, an important shortcoming of most work in this area is
that it focuses on learning concepts drawn from prespecified classes of concepts (e.g., linearly
separable functions, k-DNF formulae). This style of research begins by choosing a restricted
class of concepts and then finding a polynomial bound—called the sample complexity—such



that if a sample of size larger than the sample complexity is available, any concept from
the concept class that is consistent with the sample will be approximately correct with high
probability.

Work of the above type usually leads to a learning algorithm that is spectalized in learning
the prescribed class of concepts, and an upper bound on the number of training examples
required by the algorithm to guarantee successful learning. For real-world applications, such
findings can be viewed as follows: A learning algorithm L designed to learn a class of concepts
C is guaranteed to succeed! in application domains in which the target concept belongs to
C (i.e., the restrictions used to define C are satisfied by the target concept), provided that
a sufficient number of training examples is given to the algorithm. Of course, no such
guarantees are given if the target concept is not in C.

This naturally means that one should seek algorithms that learn concept classes that are
as large (i.e., less restricted) as possible. Rivest [Rivest 87], for instance, mentions this goal
most explicitly by saying:

“One goal of research in machine learning is to identify the largest possible class
of concepts that are learnable from examples.”

This goal is also declared (although less explicitly) in many papers in the related literature
(e.g., [Valiant 84], [Natarajan 87], [COLT 88]-[COLT 91]).

Nevertheless, it is a well-known fact that learning larger classes of concepts necessarily
requires a larger number of training examples [Blumer et.al. 87]. Such trade-off between the
size of the class of concepts being learned and the required number of training examples
dictates how far one can go in attempting to learn larger and larger classes of concepts.

Traditionally, this issue has been addressed by identifying new classes of concepts that are
as large as possible but still require a training sample of size bounded by some polynomial.
Such an approach, however, does not enjoy great practical merit. In fact, the idea of learning
prescribed classes of concepts in general suffers from two important problems:

e Training examples are usually hard to obtain. In a typical inductive learning task, one
has only a limited number of training examples, much less than the polynomial bounds
provided by learning theory.

e The concept class is usually unknown. In most application settings, there is often
considerable flexibility (and concomitant lack of prior knowledge) concerning the choice
of which concept class to explore. In fact, many of the concept classes studied in
computational learning theory have never been supported by any practical justification.

Due to these difficulties, the learning algorithms and sample complexity bounds developed
in computational learning theory have rarely been of practical value.

Recently, an alternative theoretical framework was introduced [Dietterich 89]. Instead of
fixing a class of concepts and then deriving the sample complexity, this framework turns the
problem around by asking: Given a fized number of training examples, what is the largest

!The guarantees are on being approximately correct with high confidence.



collection of concepts that some algorithm can learn? The intuition behind this framework is
that, in the absence of additional information, one should prefer the learning algorithm that
has the highest chance of learning the unknown concept—that is, the algorithm that can
learn the largest number of concepts. In short, this framework could provide an approach to
discovering an “optimal” bias for inductive learning in the absence of prior knowledge.

The goal of this paper is to explore this approach. We define the coverage of a learning
algorithm to be the number of concepts learnable by the algorithm from a given sample size
(and other relevant parameters). There are three questions raised by this approach:

1. For given sample size m, accuracy parameter € and confidence parameter 6, what is
the largest possible coverage that any algorithm can achieve?

2. Can we design a learning algorithm that attains this optimal coverage?
3. What is the coverage of existing learning algorithms?

This paper contributes to answering each of these questions. First, we generalize the upper
bound on coverage given in [Dietterich 89]. Next, we present two learning algorithms and
determine their coverage analytically. The coverage of the first algorithm, Multi-Balls, is
shown to be quite close to the upper bound. The coverage of the second algorithm, Large-
Ball, turns out to be even better than Multi-Balls in many situations. Third, we considerably
improve upon Dietterich’s limited experiments for estimating the coverage of existing learning
algorithms. We find that the coverage of Large-Ball exceeds the coverage of ID3 [Quinlan 86]
and FRINGE [Pagallo and Haussler 90] by more than an order of magnitude in most cases.

These results are very thought-provoking, because, upon careful analysis, it becomes
clear that the Large-Ball algorithm is rather trivial and uninteresting. In the final part of
the paper, we conclude that coverage analysis does not—by itselt—provide a framework for
deriving an optimal inductive bias. It does, however, provide a framework for designing
optimal-coverage algorithms within a given bias.

2 Definitions and Notation

We consider the space of Boolean concepts defined on n Boolean features. Let U, be the set
of all the 2" truth assignments to the n features. A concept is an arbitrary set ¢ C U,. An
example of a concept ¢ is a pair (X, ¢(X)) where ¢(X) =1 if X € ¢ and 0 otherwise. The
example is called positive in the first case, and negative in the second.

We assume the uniform distribution over U,. However, all our results can be easily
extended to the distributions where the probability is 0 on a subset of U, and uniform
on the rest. This is done by substituting the number of instances in U, having non-zero
probability in place of every occurrence of 2" in the results.

A training sample of a concept c¢ is a collection of examples drawn randomly from U,
and labeled according to ¢. The number of examples in this collection is called the sample
size, denoted by m. Except in our experimental work, we assume that examples in a sample



are drawn independently (i.e., with replacement), and thus, a sample of size m does not
necessarily contain m distinct examples. It should be noted that, assuming m < 2", the
difference between sampling with and without replacement is not significant.

The disagreement between a training sample and a concept is the number of examples in
the sample that are incorrectly classified by the concept.

The distance between two concepts ¢ and h is the number of assignments X € U, such
that ¢(X) # h(X). The error between ¢ and h is the distance divided by 2", which is
equivalent to the probability that a randomly chosen X will be classified differently by the
two concepts. For any 0 < € < 1, we say that h is e-close to c if the error between the two
concepts is at most e. We let Ball(c, €) denote the set of concepts that are e-close to ¢. Note
that for any concept ¢’ € Ball(c,¢€), the distance between ¢’ and ¢ is at most €2”. Therefore,
the number of concepts in Ball(c, €) is given by |Ball(c, €)| = E}fgj (2;) We call ¢ and |€2" ]
the center and radius of the ball, respectively.

A learning algorithm is a mapping from the space of samples to the space of concepts.
The output of the algorithm is called an hypothesis. An hypothesis is consistent if it has no
disagreement with the training sample.

We adopt PAC learning [Blumer et.al. 87] as the criterion for successful learning, but we
restrict this to learning under the uniform distribution only. We say that an algorithm L
learns a concept ¢ for given m, e and 6, if with probability at least 1 — 6, L returns some
hypothesis h that is e-close to ¢ when given a randomly drawn sample of ¢ of size m. Formally,
let ST denote a random sample of ¢ of size m. We say that L learns ¢ with respect to m, e
and ¢ if

Pr[ error(h,c) <€ >1-14¢

where h is the hypothesis returned by L given ST, and where the probability is computed
over all the samples of ¢ of size m. ¢ and ¢ are called the accuracy and confidence parameters,
respectively.

In general, € and ¢ are in the range 0 < €,6 < 1. In practice, however, only values
that are close to 0 are interesting. For this reason, we will sometimes explicitly assume for
instance that 0 < ¢ < 7 and/or 0 < é < 3, with the understanding that these are reasonable
assumptions in practice. Further, to simplify our results, we will only consider the values
of € such that €2™ is a positive integer. Clearly, this is not a serious assumption when n is
sufficiently large.

For given n,m,e and ¢, the coverage of a learning algorithm is the number of concepts
the algorithm learns with respect to these parameters.

3 Upper Bound on Coverage

We begin by proving an upper bound on the best coverage that any algorithm can attain.
An upper bound of this type has been proven for the case where the training sample is drawn
randomly without replacement [Dietterich 89]. In the following, we generalize Dietterich’s



result and show that the same upper bound also holds for the case where sampling is done
with replacement. In addition, we provide a closed-form expression for this bound.

Theorem 1 Assuming that m < (1 — 2€)2", the coverage of any learning algorithm under
the uniform distribution can not exceed

1 & —m
e (M)

1=0 t

concepts, for sample size m, accuracy parameter € and confidence parameter 6.

Proof: The proof of this theorem uses Lemmas 6 and 7 which are given in the appendix.
Let L be any learning algorithm and let C' C 2U» be the set of concepts learned by L for the
given learning parameters. Let us denote by p. the probability that a sample of size m for
a concept ¢ be mapped by L to some hypothesis within ¢ of ¢. By definition, for any ¢ € C,
p. must be at least 1 — 6. Thus, it must be true that

> pe = |C|(1=6)

ceC

and therefore

1—5zpc—1—5 2, e

ce2Un

since C' C 2V, In the following, we let

W = Z Pe -
ce2Un
The theorem holds by proving an upper bound on W as follows.

Let S be the set of all possible outcomes of randomly drawing m objects from U,. For
any s € S, let §s denote the number of distinct objects in s. Note that §s = m for every
s € § in the case of sampling without replacement, and that 1 < fs < m in the case of
sampling with replacement. Also, let Pr[s] denote the probability of the outcome s.

Now, for some s € §, suppose t is a training sample obtained by arbitrarily labeling the
objects in s as positive or negative, and let i be the hypothesis returned by L when given t.
Mapping t to h contributes the amount of Pr[s] to p. for every concept ¢ that is (i) consistent
with ¢ and (ii) within € of h. Therefore, we can compute W by summing up this contribution
for all possible outcomes s € & and all possible ways of labeling these. That is,

W=3 Prls] > N

s€S teLabeling(s)

where Labeling(s) is the set of all training samples obtained by labeling s, and N(¢) is the
number of concepts that are consistent with ¢ and within € from the hypothesis returned by
L when given t. By Lemma 6, for any ¢t € Labeling(s)

sE )



which means that

2

W<y {PT[S] | Labeling(s) | <3 (2n i ﬁs)}

sES 1=0
- {Pr[s] x 28 22: (zn N ﬁs)}
seS i=0 t
= > {Pr[s] X %2“ X (2” _ ﬁs)} .
sES i=0 t

For both cases of sampling with and without replacement, fs is at most m. Therefore,
using Lemma 7 we can write

IN

W< S Prls] zi;zm (Qn N m)

SES t
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which proves the theorem. O
The following theorem puts the upper bound of Theorem 1 in closed-form.

Theorem 2 For 0 < ¢ <
above by

% and m < 52”, the quantity of Theorem 1 is further bounded

9(1—¢log, e)m+1 (5227;) 9(1-1.44e)m+14H(c)2"
) - 1-46
where e is the base of the natural logarithm, and H(e) = elog, = 4 (1 — €)log, .

Proof: The first inequality follows directly from Lemma 9. The second inequality follows
from Lemma 5. O

This result shows that given a training sample of a reasonable size, any learning algorithm
can learn only a small proportion of the concept space. As a numerical example, consider
the case where n = 20,m = 100,000 and 6 = € = 0.05. Note that while having 20 features
in a practical domain is not unusual, 100,000 examples is a rather large sample size. In this
case, H(e) ~ 0.286. The above result states that no learning algorithm can learn more than

992,78840.286x 220

0.95

concepts. This is less than m of the 22 possible concepts definable over 20 features—a
strikingly small fraction.

For the extreme case where 6 = 0, we can derive a much tighter bound:
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Theorem 3 If6 =0 and ¢ < i, then the coverage of any learning algorithm ts at most

e2” 9n
%)
=0

concepts, for accuracy parameter ¢ and confidence parameter 0.

Proof: Let L be any learning algorithm. Any two concepts ¢, ¢z, such that ¢; # —¢g, must
share some samples in common. Since 6 = 0, for L to learn both concepts, L. must map all
of these samples to some hypothesis & that is within € of both concepts. Such an h exists
only if distance(cy, cz) < 2€2™.

Now, suppose that C is the set of concepts learned by L for 6 = 0, € < i and some
particular m. One of the following two cases must hold:

e There exists no concept ¢ such that both ¢ and —¢ are in €. This implies that the
distance between every pair of concepts in C' is at most 2¢2”, and hence, |C| < 3252, (2:)

as desired.

o There exists some concept ¢ such that ¢, ~¢ € C. Let ¢ be any concept such that ¢’ # ¢
and ¢ # —c. ¢ must, therefore, share some samples with ¢ and some samples with —c.
Thus, for ¢’ to be learned by L, it must be within 2¢2™ of both ¢ and —¢. However,
this 1s impossible since € < i. This implies that C' contains no concepts other than ¢
and —c¢ which means a coverage of only 2.

This proves the theorem. O

This suggests that Theorem 1 is not tight when ¢ is very small. It also implies that the
degree of freedom provided by the confidence parameter, 6, in the PAC definition is very
important. Any algorithm that does not exploit this freedom to output (with probability
within ¢) a totally incorrect hypothesis can have only very limited coverage.

4 The Multi-Balls Learning Algorithm

Given these upper bounds on coverage, can we design algorithms that achieve these cover-
ages?

Let ¢; and ¢3 be two concepts with distance d, and suppose that we desire to construct a
learning algorithm L that learns both ¢; and ¢;. To do this, we must consider how L should
treat every possible training sample consistent with ¢;, ¢, or both.

Obviously, any sample that is consistent with only one of ¢; or ¢; can be mapped to
some hypothesis that is within € of the consistent concept. The key question is how to map
a sample that is consistent with both ¢; and ¢;. Now, if % < 2¢, then there exists some
concept h that is within € of both ¢; and ¢;. In this case, all we need to do is to map the
sample to h. However, if Qin > 2¢, then there exists no concept that is within e of both ¢;
and ¢y, and therefore, we must map the sample either in favor of ¢; or in favor of ¢;, but not



Algorithm Two-Balls (Sample)
L. If disagreement(Sample, ¢1) < disagreement(Sample, —c1) then return ¢;.
2. Else return —c¢;. Break ties arbitrarily.

Figure 1: The Two-Balls Algorithm. ¢; is a Built-in Constant Concept.

both. In these cases, if the correct concept is ¢; and we map the sample in favor of ¢;, we
will commit a mistake, and we can only afford to do this with probability 6. The probability
QT;Ed)m, where m is the sample
size. This quantity is decreasing as d increases, so if we choose d sufficiently large, we can

keep the probability of a mistake below 6.

of getting a sample that is consistent with both ¢; and ¢y is (

In short, if ¢; and ¢, are close together, then there is no problem, because we can choose
an h e-close to both. Conversely, if they are far apart, there is also no problem, because
the probability of a mistake can be bounded by 6. This suggests that a good strategy for
designing learning algorithms with high coverage is to choose a collection of concepts that is
as large as possible, such that the distance between each pair of concepts in the collection is
either

o sufficiently large to suppress the probability of getting a sample consistent with both
concepts, or

e within 2¢2”, so that we can find concept(s) within € of both concepts.

This means that the concepts to be learned must be clustered as one or more balls in the
space of concepts. What we need to do in order to construct an appropriate algorithm is to
keep the radius of each ball small enough, and at the same time, make the distance between
the centers of the balls large enough.

As a trivial case, suppose that we want to learn the set of all concepts that are within
e of a fixed concept ¢c—the set Ball(c,e). This is achieved simply by returning ¢ as the
hypothesis regardless of the training sample. This leads to a coverage of 352

A less trivial case is to learn 2 e-balls of concepts. This is accomphshed by the “Two-
Balls” algorithm given in Figure 1. This algorithm returns, as the hypothesis, some fixed
concept ¢; or its complement, whichever is closer to the training sample. For any concept ¢
in Ball(cy,€), the probability of drawing an example of ¢ that disagrees with ¢; (and thus,
agrees with —e¢p) is at most e. The same argument applies to the concepts in Ball(—c¢y, €).
Therefore, if ¢ < 6, then a sample of size 1 (that is, m = 1) is sufficient to learn these
two balls. The following theorem gives the sample size sufficient to achieve this goal in the
general case.



Theorem 4 For accuracy and confidence parameters ¢ and 6, the coverage of the Two-Balls

e2” 9gn
()
=0

12¢ 1
m>—— In

(1—2¢2 6

assuming that sampling is with replacement under the uniform distribution and that € < %

algorithm is

when given a sample of size

Proof: Without loss of generality, assume that ¢; in the algorithm is just the nil concept.
Let ¢ be a concept with distance at most €2” from the nil concept. It is enough to show that
the given sample size is sufficient to make the algorithm learn c.

Let Z denote the number of positive examples in a sample of ¢ of size m. Since ¢ has
at most €2" positive examples, Z can be viewed as a binomial random variable of m trials
and at most € as the ratio of success. A sample of ¢ is mapped to the true (instead of the
nil) concept only if it has more positive examples than negative examples. The probability
of this is bounded above by

PriZ > %] < -_X;n (T) el —e)m .
i=[F]
Using Chernoff’s bound (Lemma 4), this is at most e~ Therefore, c is learned if
o~ <o,
which is satisfied if
- 12¢ | 1
T =202 6

as desired. O

According to this thorem, even when ¢ is as small as 0.001 (i.e. 99.9% confidence), for
any € in the range 0 < € < 0.1, the required sample size is only 13 examples, independent of
n.

Since the sample size is usually much larger than this, a direct generalization of the above
trivial cases is to attempt to learn as many balls of concepts as permitted by the sample size.
The idea is to choose a collection of well-separated concepts (the centers of the balls) and
attempt to learn all the concepts clustered around each of these centers. More specifically, we
start by fixing two positive integers d and k, and then construct a set H = {hy, ho, k3, -, hi}
of k concepts such that the distance between each pair of concepts in H is at least d. Then
given a training sample, the concept in H that has the minimum disagreement with the
sample is returned as the hypothesis.

The goal of the algorithm is to learn all the concepts in U,ey Ball(h, €) which will give a

coverage of k 352 (2:), provided that the intersection between the balls is empty (that is,
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d > 2€2™). The question is, of course, how to determine the appropriate values of d and k
such that this goal is accomplished. Particularly, we need to worry about the following:

1. As explained earlier, d must be large enough so that the interaction between concepts
in different balls is kept within what is allowed by the confidence parameter 6.

2. The number of concepts that we can construct such that the minimum distance between
each pair is d drops sharply as d increases. Therefore, making d too large causes k
(and hence, the coverage of the algorithm) to be too small.

The following two lemmas show how to choose appropriate values for d and k.

Lemma 1 For0<e <1 and2e < a < 3, let H={hy, hy,--, hi} be a set of concepts such
that the distance between each pair h;,h; € H is at least d = [a2™], and let ¢ € Ball(h,¢)
for some h € H. Assume that L is a learning algorithm that on any sample S outputs
some hypothesis h; € H that has minimal disagreement with S. Then, under the uniform
distribution, the probability that a sample of ¢ of size m is mapped by L to an hypothesis
other than h is at most

~plaszer

min k- {6_2(1_5)2a2m +e
0<p<1

"} (1)

Proof: Let ¢ # h be a specific concept in H and let us bound the probability that a
sample of ¢ is mapped to ¢ (instead of h). We consider the case in which this probability is
maximized. First, we assume that ¢ is as close as possible to h—that is, distance(h,g) = d.
Second, we place ¢ to be as far as possible from & and as close as possible to g—that is,
distance(c, h) = €2™ and distance(c,g) = d — €2".

Let A be the set of objects where ¢ agrees with ¢ but not with 2 and let B be the set of
objects where ¢ agrees with A but not with g. Thus, |A| = €2" and |B| = d — €2". A sample
S of ¢ is mapped to g only if disagreement(S, g) < disagreement(S, h). That is, only if S has
more examples drawn from A than from B. Now, let us define the following three random
variables:

e X: the number of examples in S drawn from A.
e Y: the number of examples in S drawn from B.
o / = X +Y: the number of examples in S drawn from A|J B.

Then, the probability that S is mapped to g is just Pr[X > Y].

Note that Z is just a binomial random variable with m trials and 2%
success. Given that, out of the m examples in S, there are ¢ examples drawn from A B
(i.e. given that Z = 1), the event X > Y is equivalent to ¥ < % In this case, Y can be

as the ratio of

10



_on .
4=2” 45 the ratio of success. Therefore,

viewed as a binomial random variable of 7 trials and 2 y

we can write

PriX>Y] = iPr[Z = Pr[X > Y|Z =]

1=0
= ZPT Pr[Y<—|Z—L]
m o _d E (i d—er
— m—1 . J(o2 \i—J
Z;()n g (e

Applying Hoeffding’s bound (Lemma 3) on the inner summation, this is at most
(7)ot
S |(1) g e

=[5 m]

IN

for any 0 < 3 < 1. Letting # = 0 in the first exponential and i = 3L m in the second, the

/27’1
1855 m] .
(o]
1=0

oo (e g () (42—
e (Mg

i=[855mm]

Lﬁzinmj m d . 2" —d . d (d—2e2™ 2
< K)(—)’( >m_ll+e—2ﬁz—n< )

; on
1=0 t 2

above is at most

Applying Hoeffding’s bound (Lemma 3) again on the first term, the above is at most

( n—ze)2
d -
e~ 2(1=P8)*(5%)*m +e

Since the above bound holds for any 0 < 3 < 1, we can, of course, minimize over all g in
that range and get

d —5(2_n_2€)2m
. 2 2
min e 2(1=P)*(5w)*m +e 255 )

0<B<1



This quantity is decreasing in ;in when % > 2e. Thus, we can replace ;in by « since
2¢e < a < ;in. Since g can be any of the & concepts in ‘H, multiplying the above probability
by k gives the desired result. O

Note that d in this lemma is expressed as a fraction a of 2”. This result says that if
the conditions of the lemma are met, and if ¢ is a concept in one of the k e-balls, then the
samples of ¢ are usually mapped by L to the center of that ball (which is e-close to ¢) except
with a probability that is bounded by the quantity of Equation (1). Thus, o and k£ must be
chosen so that this probability is at most 6. It is important to note that this probability is
diminishing in « and m and independent of n.

The problem of finding a collection of bit vectors that maintain a given minimum pairwise
distance is well studied in the field of Error-Correcting Coding Theory. Specifically, the

following theorem states how large k can (at least) be for a given separation distance d.

Lemma 2 (The Gilbert-Varshamov Bound) There exist at least 2'=" bit vectors of length
and minimum pairwise distance d, where r is any integer satisfying

() () ()

A proof of this lemma, in addition to a method of actually constructing the [-bit vectors as
given above, can be found in many references in the literature of Error-Correcting Coding
Theory (e.g., [Peterson and Weldon 72]).

For our purposes here, it is convenient to draw the following corollary from the Gilbert-
Varshamov bound given above.

Corollary 1 For any o, 0 < a < %, and any even positive integer [, there exist at least

=N bit vectors of length | and pairwise distance at least ol, where H(o) = alog, é +
(1—a)log, ==

Proof: We just need to show that when d = [al] and r = [H(«)l], the inequality of
Lemma 2 is satisfied. The left-hand side of the inequality is just

(7)< %()

2H ()l (by Lemma 5)
o [H()1]

N

IA A

?

which equals the right-hand side. This proves the corollary. O

Using Lemma 1 and Corollary 1, one can search for the appropriate value for d that leads
to learning k different e-balls, for k as large as possible. Let’s now compute a lower bound
on the coverage that can be achieved by this approach.

Figure 2 shows the “Multi-Balls” algorithm in which we give a specific way of choosing
the values of a (and hence, d) and k. To be able to give a lower bound on the coverage of

12



Algorithm Multi-Balls (Sample, €, ¢)
1. Find « in the range 2¢ < a < % such that
1 — H(a) =2[1 - p(a)]?a*Zlog, e
where
H(a) = alog, é + (1 — a)log, ﬁ, and
Bla)=1+ 02" o4 L2
2. Let k= |22~ H@2" x 2]
3. Construct H = {hy, hy, hs, -+, hg} such that
Vhihen distance(h;, h;) > [a27] .
4. Return some hypothesis in H that has minimal disagreement with Sample
(break ties arbitrarily).

Figure 2: The Multi-Balls Algorithm.

this algorithm, we need the following definition.

Definition: For 0 <0 <1 and 0 < € < }, define p(0,¢) as

1 — H(&)

10(976) = 0

for & being the solution of the equation
1 — H(a) =2[1 - B(a)]*a*floge

in the range 2¢ < a < %, where

and

Lemma 10 shows that the above p(6,€) function is well-defined. Although this function
is not provided in closed form, it is easily computed for any given values of § and € using
standard numerical methods. For illustration, Figure 3 plots this function over the range

0<o< % for ¢ = 0.01,0.05 and 0.10.

Using the above definition of p, a lower bound on the coverage of Multi-Balls can be

stated as follows:

13
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Figure 3: The Function p(0, €).

Theorem 5 For(0 < ¢ < i and 0 < 6 < 1, the coverage of the Multi-Balls algorithm under
the uniform distribution is at least

6 . m 2 (o
— 9r(zmse)m
|5 (0)

for sample size m, accuracy parameter ¢ and confidence parameter 6.

Proof: First, the existance of « in the range 2¢ < a < % satisfying the equation of Step 1
is guaranteed by Lemma 10. It is sufficient to show the following three claims for the values
of a and k chosen by the algorithm in Steps 1 and 2:

Claim 1: Step 3 is executable. That is, for a and k as chosen in Steps 1 and 2, we can
actually construct a set of k concepts such that the minimum pairwise distance is

[a2"].

Claim 2: For any h € H and any ¢ € Ball(h, €), the probability that a sample of ¢ of size
m is mapped to an hypothesis other than A is at most 6.

Claim 3: The number of balls, £, is at least [% 20 (e mJ

Claim 1 follows from Corollary 1 since k is set to [QZH_H(“)ZH X %J and thus

k S 22"—H(a)2" «

b | o
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— 22"—]'1T(oz)2"—10g2 %
S 22"—[H(a)2"-|+1—10g2 %
< 22"—[H(a)2"]

since log, < is necessarily greater than 1.
For Claim 2, we use Lemma 1 which states that the probability of a mistake is bounded
above by

a—s€ 2
L. {6—2(1—ﬁ)2a2m 4+ e—ﬁgTiLm} (3)
for any [ in the range [0, 1]. Let us choose 3 such that
6—2(1—5)2a2m — e—ﬁ%m

which means that

— 2¢)?
2(1 — B)*a*m = ﬂ%m . (4)
Solving this quadratic equation for 3 gives the two solutions
(o — 2¢)? \/ (o — 2¢)?
1+ —— =+l +—]?-1. 5
+ 8a? [+ 8a? ] (5)

It can be checked that Equation (4) has two roots, one in the range [0, 1] and the other larger
than 1. Thus, the smaller root in Equation (5), namely

1 +_£91:;gfli__.w/ﬂ+.£91:L2EZ%P -1

Rad Rad

is between 0 and 1, and thus, is an appropriate value for 3. Note that this is exactly the
quantity 3(«) in Step 1 of the algorithm.

Now, substituting for £ and 4 in the bound of Lemma 1, the probability that Multi-Balls
commits a mistake is at most

min  k x {e M-ty o —BEEmy

0<B<1

§ o
< Sx 92" [I-H(@)]  f -20=8(e)Pam | =5(e)=5my
_ b o) g —2i-Be)Petm

2

The value of « is chosen in Step 1 such that

1— H(a) =21 — B(a)]%ﬂ% log, €

15



Therefore, continuing from above, the desired probability is at most
§ % 22"2[1—ﬁ(a)]2a22ﬂn10g2 ee—Q[I—ﬁ(a)]2a2m
§ % e?[l—ﬁ(a)]2a2m —2[1-8(a))?a?m

€
0

?

which shows Claim 2.
Finally, Claim 3 follows immediately from the definition of p. Since the value of « found
in Step 1 is equivalent to & in the definition of p, we can write

p(%,e)m = 1_T]j(a)m
= 2"[1 - H(a)].

Thus, k is equivalent to [% 2e(Z ) mJ, which completes the proof. O

More specific bounds on the coverage of Multi-Balls can be obtained from Theorem 5 if
upper bounds on % and ¢ are assumed. For example, if we are interested only in the range
0 <e<0.05and 0 < &% < 0.25 (which are reasonable assumptions in practice), then the

coverage of Multi-Balls as given by Theorem 5 is at least

§ e2™ on
0 90.094m
3 2|5 (0)

where the constant 0.094 is just the value of p(0.25,0.05).
Note that the upper bound of Theorem 2 can be written as

1 2(1—1.445)m+1 2"
1—-46 €2n

The main difference between this upper bound and the above lower bound is the coefficient
of m in the exponent of 2. Therefore, for any fixed ¢, this lower bound indicates that to
achieve a given coverage, Multi-Balls requires a sample size that is within a constant factor
of that required by an optimal learning algorithm.

5 The Large-Ball Algorithm

So far we have been trying to maximize the coverage by learning as many balls of concepts
as possible, while fixing the radius of each ball at €2”. An alternative approach to increase
the coverage is to learn ball(s) of concepts with larger radius. Because of the extremely high
dimensionality of the space of concepts, any small increment in a ball’s radius results in a
huge increase in the number of concepts contained in the ball.

It turns out that learning a single ball of radius larger than €2™ is a surprisingly easy task
that can be achieved by the simple algorithm “Large-Ball” given in Figure 4. This algorithm
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Algorithm: Large-Ball (Sample)

1. Let ¢; be a constant concept.

2. Define the concept s as: s(X) = (1) ft})lirfvigzmple
3. Define the concept p as: p(X) = (1) ftfliriiggmple and X is a positive example

4. Return h = (ms A ¢q) V p.

Figure 4: The Large-Ball Learning Algorithm.

works by modifying a default hypothesis ¢; so that the final hypothesis fully agrees with the
training sample. For example, suppose ¢; is the nil concept. Then this algorithm classifies
all examples as negative unless they appeared as positive examples in the training sample!
The coverage of this algorithm is computed by the following theorem.

Theorem 6 For sample size m, accuracy parameter ¢ and confidence parameter 6, the cov-
erage of the Large-Ball algorithm under the uniform distribution is

2”46 (2n)
=0 ¢
where (3 is the largest integer such that

ﬁ—l aOn on N k an an ) i
SN G IR K\ 20— e — B4k —i |
| — -2 ’ ™)t} <6
k:o< k )( 2 a izl(i)( ek ) CUTS

Proof: Without loss of generality, assume that ¢; of the algorithm is the nil concept. Suppose
¢ is a concept such that distance(c,c;) = €2 4 [ for some integer 5. That is, ¢ has exactly
€2™ + (3 distinct positive examples. The algorithm classifies all examples as negative except
those appearing in the training sample as positive examples. Therefore, any sample that
has  or more positive examples is mapped by the algorithm to an hypothesis within € of c.
Thus, to prove the theorem, it is enough to show that the probability of getting a sample
with less than 3 distinct positive examples is just the left-hand side of the inequality of the
theorem.

Let
e [ be the set of negative examples of the concept ¢. Thus, |F| = 2" — 2" — 3.

o 1" be the set of positive examples of the concept of ¢. Thus, |T'| = €2" + £.
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e D be the (random) number of distinct positive examples in a random sample of size
m of the concept c.

What we need to compute is just
B-1
PriD<B]=> PrlD=k .
k=0

Now, let S C T be some specific set of k distinct positive examples of the concept ¢, and let
R be the event of getting a sample of the concept ¢ of size m that contains exactly S and
any number of negative examples, but no positive examples not in S. Then

on
Pr[D =k = (6 ]:r ﬁ)Pr[R] .
Now, R occurs if and only if both

e event R1: No positive examples from 7' — S are in the sample, and

o event R2: Each positive example in S is present in the sample

are true. Therefore, Pr[R] = Pr[R1 - R2] = Pr[R1]Pr[R2|R1], and so finding Pr[R1] and
Pr[R2|R1] is all what we need.
First, it 1s not difficult to see that
2" — 2" —,8—|—k)m

Pr[R1] = ( T

Second, to find Pr[R2|R1], let A;,i = 1,2,---k, be the event that the positive example
number z of S is not included in a sample of size m drawn from S U F. Then

Pr[R2|R1] =1— Pr [CJ Ai] .

=1

By the principle of inclusion and exclusion (e.g. [Ross 88]), we get

k
PT[U AZ] = ZPT[AZ] — ZPT[AZAJ] + R —}— (—1)k+1PT[A1A2' . Ak] .
i=1 B i#]
Now,
28— 2" =B+ k—1 ,
PrlA)] = 1< <k
rlAd a5+ '
-2V =B+ k-2 o .
PriAAj] = ( ST " )" 1 <i,j<kandi#]
20— 2" —
Pr(A1Ay--- Ay = "
iy A = (gt



Therefore,

Assembling, we get

PriD < f] = ﬁz:_lP(D = k)

1 /g
_ z:(zg*ﬂpﬂm

2"+ B\ 2" —e2" - B+ k.,
B (e
k=0

LR\ 2t -2t — Btk —i |
1 - -
{ ;(L)( 20 — 2" — B+ k )" (—1) },
and the theorem follows. O

It can be easily shown that a sample of size %ln% is sufficient to make 3 at least 1. The
following theorem gives a lower bound on the value of 3 in general.

™
- o

Theorem 7 Ife < —, €2”

~ 0.347 x 2", then setting

n—log%

5= \‘emlog2 e —log 5 1- 1J
satisfies the inequality of Theorem 6.

Proof: The left-hand side of the inequality of Theorem 6 is at most

. [e2" 4+ 3 —e2" - B+ k.,
Il (g ©)

since {1 — Y%, (f)(%)m(—l)”’l} is just the probability Pr[R1|R2] as defined in

the proof of Theorem 6, and hence, can be at most 1. Also, since k is at most 5 — 1,

(2”—62”—,3—|—k)m <2n—62n—,3+(,8—1))m
on on

=—)
il

A\

—6

€M

IN

This is independent of k and thus can be moved outside the summation of Equation (6).
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Next, we need to bound Eg;é (62nk+ﬁ). Here, we can use Lemma 8 in addition to the fact

that
2"+ B\ B(e2"+8) (2" + 3 -1 )
B—1) em(e2r+1) 3 '

These give

A1 2™ + 245 (2" HF) 2" +
() - s ()

k=0
e (2 + ﬁ)
B—1
(by Lemma 8, provided that g < €2" + 2) (8)
_ el (62” + ﬁ)

IN

o —F+2\ -1
B +8) (@rap-
e2n(e2n — B+ 2) 3

B(e2" + B)
€27(e2" — B+ 2)

: 1
< %(62”)5 (provided that g < 562”). (9)

) (by Equation (7))

< (e27)?

Therefore, the left-hand side of the inequality of Theorem 6 is at most

3 3
5(62”)ﬁ(1 —e)" < 5(62”)%_“”

Setting this to be at most ¢, and taking the logarithm of both sides of the inequality gives
3
log, ) + B(logy, e + n) — emlogy e < log, 6 .

This is certainly satisfied when

emlog, e — log, =

13:

n —log,

Clearly, this is less than em log, e. Given the assumption that m < 2101?2”, the above value
of 3 is at most 12", which satisfies the conditions of Equations (8) and (9). This completes
the proof. O

For fixed ¢, this theorem says that the radius of the ball of concepts learned by the Large-
Ball algorithm grows linearly in em. Note that a unit increment in the radius of the ball
corresponds to a very large increment in coverage. The coverage of Large-Ball, therefore,

grows quite rapidly as the sample size increases.
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The coverage lower bound obtained for Large-Ball appears to overlap the bound for
Multi-Balls, although Multi-Balls gives higher coverage for small values of ¢ (e.g. 0.01).
In any case, the fact that a trivial algorithm like Large-Ball achieves such high coverage
suggests that coverage analysis alone is not strong enough to derive good inductive biases.
Before considering this point further, let us measure the coverage of some popular learning
algorithms.

6 Coverage of Current Learning Algorithms

The last problem investigated in this paper is the evaluation of the coverage of existing
learning algorithms. Due to the difficulty of performing coverage analysis for empirical
algorithms (e.g, ID3 [Quinlan 86]), one may consider measuring the coverage experimentally
by running learning algorithms on every possible training sample (as done in [Dietterich 89]).
However, this involves an immense amount of computation. Specifically, if the number of

features is n and the sample size is m, then we have to run an algorithm on as many as 2™ (3:)

samaples and test the learnability of 22" concepts. This is doable when n = 3 [Dietterich 89]
or 4, but soon becomes unaffordable when n = 5.

To reduce these computational costs, we can employ the following two techniques: First,
we can exploit the fact that most of the learning algorithms are symmetric with respect to
permutations and/or negations of input features. More precisely, if an algorithm learns a

concept represented by a Boolean function f(x1,x2,..., %4 ..., &, ..., &, ), then the same al-
gorithm also learns the concepts represented by f(z1,x2, ..., @, ..., Tiy ..y 20), f(21, 29,00,
Tiy...,%j, ..., &) and so on for all functions obtained by permuting and/or negating the

features in f. These symmetry properties partition the space of concepts into equivalence
classes such that it suffices to test one representative concept in each equivalence class to
determine learnability for all concepts in the class. It turns out that for n = 5, the number
of representative concepts one needs to consider is 1,228,158. Also, if the algorithm being
tested is also symmetric with respect to complementing the target concept then this number
if further reduced to 698,635. This is a considerable reduction since one has to consider more
than 4 billion concepts in the exhaustive approach.

Second, we can measure the learnability of each concept statistically by running the
learning algorithm on a large number of randomly-chosen samples, rather than all the possible
samples. The goal is to estimate the ratio of the samples on which the algorithm returns an
e-close hypothesis, and check that this is at lease 1 — ¢ in order to consider a concept learned.

The details of the above cost-reduction techniques are not central to this study. For a
thorough discussion of these, we refer the interested reader to [Almuallim 92].

6.1 Experimental Work

Using the above cost-reduction techniques, we experimentally measured the coverage figures
for three algorithms: 1D3 [Quinlan 86], FRINGE [Pagallo and Haussler 90] and MDT, which

is an exhaustive algorithm that finds a decision tree with fewest nodes consistent with the

21



Table 1: Coverage Figures For Various Algorithms.

Sample size
Algorithm 8 10 12 14 16
ID3 1240 33240 396+0 1,756+0 4,9544-640
FRINGE 1240 33240 396+0 1,756+0 5,2844970
MDT 1240 1240 1164+40 | 49640 3,694+0
Large-Ball 5,489 5,489 5,489 41,449 41,449
Two-Large-Balls | 10,978 | 10,978 10,978 82,898 82,898
Upper Bound 661,333 | 2,041,173 | 6,148,551 | 17,985,991 | 50,753,991

training sample. The coverage of these algorithms was measured for n =5, e = &, § = 0.1
and m = 8,10,12, 14, and 16. Sampling in these experiments was done without replacement.

FRINGE is symmetric with respect to permuting and negating the features. Thus, the
number of representative concepts we tested for this algorithm was 1,228,158. 1D3 and MDT
are in addition symmetric with respect to complementing the target concept as well, and
thus the number of representative concepts for these algorithms was only 698,635 concepts.

Determining whether or not a concept is learned by an algorithm in the above setting

was done in two passes:

e In the first pass, only 100 randomly-chosen samples per concept were tested. Concepts
for which the number of samples that resulted in e-close hypothesis is less than 60 out
of 100, were considered not learned and thus excluded.

e In the second pass, each algorithm was run on 10,000 randomly-chosen samples for
each of the remaining concepts. Three outcomes are then considered: (i) If the ratio of
the samples on which the algorithm returned an e-close hypothesis is less than 0.893
then the concept is considered unlearned. (ii) If the ratio is greater than 0.907 then
the concept is considered learned. (iii) If the ratio is between 0.893 and 0.907, then we
hesitate to make either decisions.

Due to the third outcome in the above process, the coverage figures are eventually given as a

range a + b. The number of samples tested per concept and the margin £0.007 were chosen

so that the probability of a wrong decision (considering an unlearned concept as learned and

vice versa) becomes within 0.01 [Almuallim 92], that is, to achieve 99% level of significance.
The final results of our experiments are summarized in Table 1.

6.2 Coverage of the “Balls” Approach

For comparison, let us compute the coverage obtained by the balls approach under the same
conditions of our experiments. We look at two algorithms:
Large-Ball: Without loss of generality, assume that ¢; in Large-Ball is just the nil concept.
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Algorithm: Two-Large-Balls(Sample)
L. If disagreement(Sample,ci) < disagreement(Sample,—cy), then h = ¢q,

else, if disagreement(Sample,c;) > disagreement(Sample,—cy), then h = —¢y.

Otherwise, arbitrarily set h to ¢; or —¢;.
2. Define the function s as follows:

1 it X € Sample
s(X) = { 0 otherwise

3. Define the function p as follows:

| 0 otherwise
4. Return (=s A h) V p.

1 if X € Sample and X is a positive example
1 {1 € St i s

Figure 5: The Two-Large-Balls algorithm.

This means that the algorithm guesses negative for all the examples not included in the sam-
ple. Let us define the weight of a concept as the number of positive examples in that concept.
Then, the algorithm trivially learns all the concepts of weight 0 to 3 (i.e., Ball(0, )).
Consider a concept ¢ of weight 4. It should be obvious that any sample of ¢ having one or
more positive examples is mapped within ¢ from ¢. The only samples of ¢ that are mapped
to an e-far hypothesis (the nil hypothesis) are those consisting of negative examples only.

The probability of getting such a sample is just
(32—4)
()

which is less than 0.1 when m > 14. Therefore, the coverage is 37, (322) = 5,489 when

m =8,10 or 12, and £, (%) = 41,449 when m = 14 or 16.
The Two-Large-Balls algorithm: Consider the algorithm given in Figure 5. This algo-
rithm is just a consistent version of the Two-Balls algorithm (Figure 1)—it modifies the final
hypothesis so that there is no disagreement with the training sample.

Again, without loss of generality, assume that ¢; is the nil concept. This means that the
algorithm classifies all the examples that are not in the training sample as positive if the

majority of the examples in the sample are positive, or as negative otherwise (breaking ties
arbitrarily). For those examples included in the training sample, the algorithm gives the
same class as given in the sample.

If m > 7 then Two-Large-Balls behaves exactly like Large-Ball (with ¢; =nil) for all the
concepts of weight up to 3, since at the end of Step 1, h will definitely be the nil concept. If
m > 9, then this can also be said about the concepts of weight 4.

Similarly, h will be the true concept with certainty if the target concept has weight 29
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to 32 and m > 7, or if the target concept has weight 28 and m > 9. Thus, for these cases,
Two-Large-Balls will again behave exactly as Large-Ball but with ¢; =true.

As a result, the coverage of Two-Large-Balls is twice as that of Large-Ball, that is 10,978
when m = 8,10 or 12 and 82,898 when m = 14 or 16.

6.3 Discussion

Three important points can be seen in the coverage figures of Table 1:
1. MDT does not give better coverage than the heuristic algorithms ID3 and FRINGE.

2. The coverage of ID3 and FRINGE is disappointingly smaller than that of Large-Ball
and Two-Large-Balls.

3. The coverage of all these algorithms is far below the upper bound of Theorem 1.

7 Conclusion and Future Extentions

We began this paper by suggesting that an important design criterion for learning algorithms
should be the coverage of the algorithm. We presented the Multi-Balls algorithm and showed
that it can achieve optimal coverage with a sample size that is within a constant factor of
optimal. However, we then showed that a fairly trivial algorithm, Large-Ball, can also
achieve very large coverage—larger than Multi-Balls in cases where € is reasonably big.
Experimental tests confirm that Large-Ball and BALLS, a variation of Multi-Balls, have
much better coverage than the popular ID3 algorithm and its relatives.

Why does Large-Ball strike us as trivial? Because it merely memorizes the training
sample—it does not attempt to find any regularity in the data. Furthermore, the concepts it
learns, while they are very numerous, are all located near a single concept. In short, the bias
of Large-Ball is unlikely to be appropriate in real-world learning situations. This argument
shows that coverage analysis alone is not sufficient to find a practically-useful inductive bias.

This suggests that we combine coverage analysis with other methods for choosing induc-
tive bias. For example, in [Almuallim and Dietterich 91], we described learning situations in
which the MIN-FEATURES bias—the bias that prefers consistent concepts definable over
fewer features—is appropriate. However, the MIN-FEATURES bias does not uniquely define
a learning algorithm, because, given a training sample, there are typically many consistent
hypotheses that have the same, minimum, number of features. Hence, within the MIN-
FEATURES bias, we could apply coverage analysis to design a learning algorithm that has
the largest coverage among all algorithms that implement MIN-FEATURES.

In general, let Pref(ci, cy) be a preference bias that prefers ¢; to ¢ in all cases where both
concepts are consistent with the training sample. Let Learns(L, ¢, m, ¢, 6) be true if algorithm
L can learn concept ¢ from a sample of size m with accuracy and confidence parameters €
and 6. The coverage within bias Pref for L (with respect to m, €, and 6), is the size of the
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set

C={c | Learns(L,c,m,¢, 6) and
V' Prefic’,c) = Learns(L,c,m,¢,0)}

That is, a concept is “covered” only if all concepts preferred to it are also covered.

In conclusion, the results from this paper suggest that an important problem for future
research is to design and analyze algorithms that have optimal coverage-within-bias for many
of the popular biases. This will be particularly important for biases that are so weak that
they do not have polynomial sample complexity.
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Appendix

Lemma 3 [Hoeffding 63] Let Y be a binomial random variable with t trails and p as the
ratio of success. Then

13 t ' ' .
PriY 2rf]= ), (-)pl(l —p) i< e
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for any r such thatp <r <1, and

for any r such that 0 < r < p.

Lemma 4 [Chernoff 52] Let Y be a binomial random variable with t trails and p as the
ratio of success. Then

AN : r—p)?
Py >t = Y (.)pw—p)f—lse—% :

i=[rt] \!

for any r such that p <r <1, and

for any r such that 0 <r < p.

Lemma 5 For any 0 < e < %,

ek k

1=0 t

where H(e) = —elog, e — (1 — €)log,(1 — €).

Proof: For any integer r, it must be true that

2T(1—e)k ik: (k) < ik: 27"(k—i) (k)

i=0 \?!
< Z 2T(k—i)

Thus

[~]s
B
TN
el
~—
VAN
Py
DO | =
3
=+
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Now, letting r = log, 15;6 (which is clearly positive for 0 < € < %), the last quantity is
equal to

[2—(1—5) logy(1—€)+(1—€)log, € 4 2510g2(1—5)—510g2 e] k

[2—(1—5) log,(1—€)—elog, e+log, € + 2—510g2 e—(1—¢) logQ(l—e)—}—logQ(l_e)] k

_ [QH&){ngge+_2ngl—a}}k

= QkH(E)[e +1—¢*
2kH(5)

which shows the lemma. O

Lemma 6 For any set S containing k distinct training examples and any concept h € 2V~
the number of concepts that are consistent with the training examples in S and within € of h

15 at most .

i=0 ¢
Proof: In how many ways can we construct a concept ¢ such that ¢ is consistent with S and
within € of A7 For the k bits of ¢ that correspond to the k examples of S, we have no choice
but to follow the classification of these examples as given in S. For the remaining 2" — k
bits, we can afford to disagree with i on at most €2 bits. Thus, there are at most

(")
=0 Z
ways to construct such ¢, and the lemma follows. O

Lemma 7 For any 0 < e < % and any integer j such that 0 < j < €2", the quantity

;)
J

is monotonically increasing in k in the range 1 < k < (1 — 2¢)2".
Proof:

2k (2F) (28— k= D)2 — k=2 (2" — k— j)

N J 7 _— 9.
2k<2"fk) (2" —k)(2r—k=1)--- (2" —k—7+41)
i
2
— 9.2 J
2" — k
‘ J
= 25
9n
> 2-(1— 2662”) (by substituting j = €2™ and k = (1 — 2¢)2" )
= 1

This shows the lemma. O
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Lemma 8 For any ¢ such that ¢ < % and such that ek ts an integer

* (k l—e(k

Yol < .

=\ 1 —2e\ek
Proof: The left-hand side of the inequality is

0= () () () )

If we divide the second term by the first, the third by the second, the fourth by the third,
and so on, we get

ek ek —1 ek — 2 2 1
k—ek+1"k—ek+2" k—ek+3’ E—1"k

Note that these ratios are monotonically decreasing. Therefore, we can write

<k (k k ck ck
< 2
Z(i) = (ek) [1+k—ek—|—1+(k—ek—l—1) L

=0
ck ek—1 ck ek
(k—ek—l—l) (k—ek—l—l)
(RN E & )
- ek = |k —ck+1
N[ ek ]
< "
- (6k)§_l€—6k—|—1]
E\ST e 71¢
<
- ek);_l—e]
_l—efk
1 —2e\ek/
2o 1;]i as an infinite sum of a geometric series. This

1—¢

The last step follows by viewing
1—-2¢ <

evaluates to provided that ¢

Lemma 9 Provided that € < i and m < %,

ck
k—m k
<2 7).
() =5
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Proof: First, note that

() em) (k= k)l (R)!
(’Z)  (k— ek —m)!(ck)! k!
B (k—ek)(k—ek—=1)---(k—€k—m+1)
B Rk —1)--- - (k—m+1)
< (1—-¢™
< et (10)
Now, the quantity 3¢, (k_ZTr) can be rewritten as

(525 (k—m) ck
. k—m 1 - A k—m
Z ( , ) < W( ” ) (by Lemma 8)

k—m
_ k—m—¢ck [E—m
 k—m — 2k ek

k—m—ek __ [k .
T ot (ek) (by Equation (10)).

The lemma follows by verifying that

k—m — ek
— <2
k—m —2ek —
when € < i and m < %. This is equivalent to
k—m — ek <2k —2m — 4ek
or
k> m+ 3¢ek ,
which is satisfied by the assumptions of the lemma. O

Lemma 10 There exists a value for a in the range 2¢ < a < % that satisfies Fquation 2,
provided that 0 < € < i.

Proof: First, note that H(«) is monotonically increasing in the range 0 < a < % Moreover,

H is always strictly less than 1 except when a = %, where H becomes exactly 1.

Now, call the left-hand side of Equation 2 L(«) and the right-hand side R(«). The reader

can confirm the following:

o [(2¢) > 0, since 2e < % by assumption.
e R(2¢) =0, since #(2¢) = 1.
e L(3)=0,since H(: = 1.

. R(%) > 0, since this is a product of positive quantities.

Therefore, L(a) and R(a) must intersect somewhere in the range 2¢ < o < } and the lemma

holds. O
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