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Abstract

In many domains, an appropriate inductive bias is the MIN-FEATURES bias, which
prefers consistent hypotheses definable over as few features as possible. This paper
defines and studies this bias in Boolean domains. First, it is shown that any learning
algorithm implementing the MIN-FEATURES bias requires @(% In %—I— %[279 + plnn))
training examples to guarantee PAC-learning a concept having p relevant features out
of n available features. This bound is only logarithmic in the number of irrelevant
features.

For implementing the MIN-FEATURES bias, the paper presents five algorithms
that identify a subset of features sufficient to construct a hypothesis consistent with
the training examples. FOCUS-1 is a straightforward algorithm that returns a minimal
and sufficient subset of features in quasi-polynomial time. FOCUS-2 does the same task
as FOCUS-1 but is empirically shown to be substantially faster than FOCUS-1. Finally,
the Simple-Greedy, Mutual-Information-Greedy and Weighted-Greedy algorithms are
three greedy heuristics that trade optimality for computational efficiency.

Experimental studies are presented that compare these exact and approximate
algorithms to two well-known algorithms, ID3 and FRINGE, in learning situations
where many irrelevant features are present. These experiments show that—contrary
to expectations—the ID3 and FRINGE algorithms do not implement good approxima-
tions of MIN-FEATURES. The sample complexity and generalization performance of
the FOCUS algorithms is substantially better than either ID3 or FRINGE on learn-
ing problems where the MIN-FEATURES bias is appropriate. These experiments also
show that, among our three heuristics, the Weighted-Greedy algorithm provides an
excellent approximation to the FOCUS algorithms.



1 Introduction

Historically, the development of inductive learning algorithms has been a two-step process:
(i) select a representation scheme (e.g., decision trees), (ii) develop an algorithm to find
instances of the scheme that are consistent with given collections of training examples. A
shortcoming of this approach is that there is no separation between a specification of the
desired learning behavior of the algorithm and its implementation. Specifically, the bias of
the algorithm is adopted implicitly, particularly as a side-effect of the second step. Often,
it is difficult even to state the bias in any simple way. Consequently, it is difficult to tell in
advance whether the bias is appropriate for a new learning problem.

Recently, a few authors [5, 24] have advocated a different procedure: (i) adopt a bias
over some space of hypotheses (or, equivalently, select a prior probability distribution over
the space), (ii) select a scheme for representing hypotheses in the space, and (iii) design an
algorithm that implements this bias, at least approximately.

The goal of this paper is to pursue this second procedure. We consider the space of all
binary functions defined over n Boolean input features. We adopt the following bias, which
we call the MIN-FEATURES bias: if two functions are consistent with the training examples,
prefer the function that involves fewer input features (break ties arbitrarily). This is a bias
in favor of simplicity—but not mere syntactic simplicity. Functions over fewer variables are
semantically simpler than functions over more variables, because they consider fewer aspects
of each example.

We begin by adopting a straightforward representation for binary functions defined over
n input features. We then analyze the sample complexity of any probably-approximately
correct (PAC) learning algorithm that implements the MIN-FEATURES bias. It is proved

that any such algorithm requires

Q) (llnl + l[2p —I—plnn])
e 6 €

training examples to PAC-learn a binary concept involving p input features (out of a space

of n input features) with accuracy parameter € and confidence parameter 6.

Note in this bound that the total number of available features n appears only logarith-
mically. Hence, if there are k irrelevant features, it only costs us a factor of Ink training
examples to detect and eliminate them from consideration.

Following this sample complexity analysis, we turn to the problem of implementing the
MIN-FEATURES bias. This bias can be implemented in two steps: First, we identify the
smallest subset of features that is sufficient to construct a hypothesis consistent with the
given training examples. Then, we apply some learning procedure (e.g., ID3 [23]) that
focuses on just those chosen features. For identification of the smallest sufficient subset of
features we describe two algorithms. The first algorithm, FOCUS-1, is a straightforward
algorithm that runs in time quasi-polynomial in the appropriate learning parameters. The

second algorithm, FOCUS-2, is a more sophisticated algorithm which is empirically shown
to be substantially faster than FOCUS-1.



For situations where implementing the exact MIN-FEATURES bias is computationally
unaffordable, we introduce the Mutual-Information-Greedy, Simple-Greedy and Weighted-
Greedy algorithms, which apply efficient heuristics for approximating the MIN-FEATURES
bias. Unlike FOCUS-1 and FOCUS-2, these algorithms employ greedy heuristics that trade
optimality for computational efficiency. Experimental studies show that these heuristics ap-
proximate the MIN-FEATURES bias to various levels of success. Particularly, the Weighted-
Greedy algorithm is shown to provide an excellent approximation of the FOCUS algorithms
but with substantially lower computational costs.

At first glance, it may appear that there are already many algorithms that approximate
the MIN-FEATURES bias. For example, ID3 [23] has a bias in favor of small decision
trees, and small trees would seem to test only a subset of the input features. In the ex-
perimental part of this work, we compare ID3 and FRINGE [21] to our algorithms. The
experiments demonstrate that ID3 and FRINGE do not provide good approximations to the
MIN-FEATURES bias—these algorithms often produce hypotheses as output that are much
more complex (in terms of the number of input features used) than the hypotheses found by
the algorithms we propose. Indeed, there are some cases in which 1D3 and FRINGE miss
extremely simple hypotheses.

These results suggest that the FOCUS and the Weighted-Greedy algorithms will require
fewer training examples and generalize more correctly than ID3 in domains where the MIN-
FEATURES bias is appropriate. We believe there are many such domains. For example, in
many practical applications, it is often not known exactly which input features are relevant
or how they should be represented. The natural response of users is to include all features
that they believe could possibly be relevant and let the learning algorithm determine which
features are in fact worthwhile.

Another situation in which many irrelevant features may be present is when the same
body of training data is being used to learn many different binary functions. In such cases,
one must ensure that the set of features measured in the data is sufficient to learn all of the
target functions. However, when learning each individual function, it is likely that only a
small subset of the features will be relevant. This applies, for example, to the task of learning
diagnosis rules for several different diseases from the medical records of a large number
of patients. These records usually contain more information than is actually required for
describing each disease. Another example (given in [16]) involves pattern recognition tasks
in which feature detectors automatically extract a large number of features for the learner’s
consideration, not knowing which might prove usetul.

The task of selecting a subset of the available features that meets a given criterion has
long been known in the field of pattern recognition as the problem of “feature selection” or
“dimensionality reduction.” However, most feature selection criteria in pattern recognition
are defined with respect to a specific classifier or group of classifiers. For example, [14]
shows methods for selecting a small subset of features that optimizes the expected error
of the nearest neighbor classifier. Similar work has addressed feature selection for the Box
classifier [11], the linear classifier [12] and the Bayes classifier [22]. Other work (aimed at
removing feature redundancy when features are highly correlated) is based on performing



a principal components analysis to find a reduced set of new uncorrelated features defined
by combining the original features using the eigenvectors [18, 19]. To our knowledge, the
problem of finding the smallest subset of Boolean features that is sufficient to construct a
consistent hypothesis—which is the topic of this paper—has not been addressed.

2 Preliminaries

For each n > 1, let {1,232, -+, 2,} denote a set of n Boolean features and U,, denote the set
{0,1}" of all assignments to these features—the set of instances. A concept ¢ is a subset of
U, (i.e., all positive instances of ¢). A Boolean formula f represents a concept ¢ if f(X) =1
for all X € ¢ and f(X) = 0 otherwise.

For an instance X € U,, let X(i) for 1 <17 < n, denote the value of the feature x; in the
instance X. A feature z; is sald to be relemnt to a concept c¢ if there exist two instances
X1 € cand X, € ¢ such that X # X and V;z; X (7 — X(]). The feature z; is said to be
irrelevant otherwise.

We assume an arbitrary probability distribution D on U,. The error between two con-
cepts ¢ and h is the sum of the probability of all the instances in the symmetric difference
of ¢ and h, or formally

errorp(c, h) Z Prp[X]
X€ cBh
where & indicates symmetric set difference. For 0 < € < 1, a concept h is said to be e-close
to a concept ¢ with respect to D if errorp(c, h) is at most e.

An ezample of ¢ is a pair of the form (X, class), where X € U, and class is the label
+ if X € ¢ and the label — otherwise. The example is called positive in the first case,
and negative in the second case. A sample of a concept ¢ is a multi-set of instances drawn
randomly (with replacement) according to D, and labeled according to ¢. The size of the
sample is the number of these examples.

A learning algorithm is an algorithm that takes as input a sample of some unknown
concept (to be called the target concept), and returns as output some concept A C U,,. The
sample given to a learning algorithm is usually called the training sample and each example
in the sample is called a training ezample. h is called the hypothesis of the algorithm. If
h classifies all the examples in the training sample as given in the sample, then h is said
to be a consistent hypothesis. That is, h is consistent with a sample S if for each example
(X,4) € S, X € h and for each example (X,—) € S, X ¢ h. An algorithm that on any
training sample returns a consistent hypothesis is called a consistent algorithm. In other
words, a consistent learning algorithm is an algorithm whose hypothesis never disagrees
with the training sample.

In this work, we adopt the notion of Probably Approximately Correct (PAC) learning as
defined by Blumer et al. [6]. Let L be a learning algorithm and let € and ¢ be such that
0 < €6 < 1. Wesay that “L PAC learns (or simply, learns) a concept ¢ with respect to
parameters € and 6 using a sample of size m” if, with probability at least (1 — 6), L returns
as an hypothesis a concept that is e-close to ¢ when the algorithm is given a sample of ¢ of



size m drawn under any fixed but unknown probability distribution D. In other words, let
ST, denote a sample of m examples of ¢ drawn randomly under probability distribution D,
and let L(S7) denote the hypothesis returned by L when given S7. With respect to e and
0, to say that the algorithm L learns the concept ¢ using a sample of size m, it is required
that for any D

Prlerrorp(c, L(SH)) <€ >1-6

where the probability is taken over all samples of ¢ of size m. € and ¢ are called the accuracy
and confidence parameters, respectively.

The complexity of a concept, denoted s(c¢), is defined to be the minimum number of
bits needed to encode the concept with respect to some encoding scheme. The encoding
scheme we use in this work will be introduced in Section 4. We let €, ; denote the set of
all concepts of complexity at most s defined on {zy,z2, -+, 2,}. The sample complezity of
a learning algorithm L is the minimum m(n, s, €, 6) such that L learns every concept in C,, ,
with respect to € and ¢ using a sample of size m.

Given a training sample S and a set of features (), a sufficitency test is a procedure for
checking whether () is sufficient to form an hypothesis consistent with S. The sufficiency
test can be implemented simply by checking whether the sample contains a pair (X7, +) and
(X2, —) of positive and negative examples such that X; and X, have the same values for
all the features in (). If such a pair appears, then () cannot discriminate all of the positive
examples from all of the negative examples. In general, () is a sufficient set if and only if no
such a pair appears in the training sample.

Given a sufficient subset of features, it is easy to construct a consistent hypothesis. For
example, the algorithm ID3 [23] can be applied to the training sample but restricted to
consider only the features in the given subset. Hence, in the rest of this paper, finding a
solution will be taken to mean identifying a subset of features sufficient to form a hypothesis
consistent with the given training sample.

3 The MIN-FEATURES Bias

The MIN-FEATURES bias can be stated simply. Given a training sample S of some unknown
target concept ¢, let V' be the set of all possible hypotheses consistent with S. (V is sometimes
called the version space; [17]) Let H be the subset of V whose elements have the fewest
relevant features. The MIN-FEATURES bias chooses its guess, h, from H arbitrarily.

Note that the MIN-FEATURES bias is “incomplete” in the sense that it does not neces-
sarily lead to a unique hypothesis. Therefore, to construct a learning algorithm we need an
additional mechanism to enable the algorithm to choose among those alternatives that are
equally good under the MIN-FEATURES bias. Regardless of what mechanism is employed,
an algorithm is said to be implementing the MIN-FEATURES bias as long as it never out-
puts an hypothesis that is defined on a number of features larger than the minimum possible,

i.e. it never “violates” the MIN-FEATURES bias.



4 Sample Complexity Analysis

Given that we wish to implement and analyze the MIN-FEATURES bias, the first step is to
choose a representation for hypotheses. We will represent a concept ¢ by the concatenation
of two bit vectors R. and T.. R. is an n-bit vector in which the 2-th bit is 0 if and only if
x; 1s irrelevant to ¢. T, is the right-most column of the truth table of a Boolean function f
that represents ¢ defined only on those features in {x1, x5, -+, z,}, whose corresponding bits
in R, are set to 1. Following Blumer et al. [7], we will let the complexity s(c) for concept
¢ be the number of bits needed to encode ¢ using the above bit-vector representation. This
measure has the desired property that s(c¢;) < s(ez) iff the number of relevant features of ¢
is less than the number of relevant features of cy. Specifically, if ¢ has p relevant features
then s(c¢) = n + 2°.

Example: Let n =5 and let ¢ be a concept represented by x; V x3. Then, R. = 10100 and
T.=0111. Hence, the complexity of ¢is 9. O

The goal of this section is to analyze the sample complexity—that is, the number of
training examples required to ensure PAC learning of an arbitrary target concept of com-
plexity s. The sample complexity of a learning algorithm is expressed in terms of the total
number of features n, the complexity of the target concept s, the accuracy parameter €, and
the confidence parameter 6.

To derive an upper bound on the sample complexity of learning algorithms that imple-
ment the MIN-FEATURES bias, we make use of the following well-known lemma given by
Blumer et al. [7].

Lemma 1 Let C be a set of concepts and let L be a consistent learning algorithm which
always chooses its hypothesis from C'. Then, under any probability distribution D, any e and
0 such that 0 < ¢,6 < 1 and any concept ¢ € C, a sample of ¢ of size

1 1
—<1n|0|—|-1n—)
€ o

is sufficient to guarantee that L returns an hypothesis that is e-close to ¢ with probability at
least 1 — 6.

This result is useful in deriving upper bounds on the sample complexity in cases where the
size of the hypothesis space explored by the learning algorithm can be computed analytically.
This is the case for algorithms that implement the MIN-FEATURES bias. Using the above

lemma, we can state the following upper bound on the sample complexity of such algorithms.

Theorem 1 Let C, ; denote the class of concepts defined on n features with complexity at
most s. Then, under any probability distribution D, any n > 1, any ¢ and 6 such that
0 <e€6<1 and any concept c € Cy, 5, a sample of ¢ of size

1.1 1

Zlng + z[logz(s —n)lnn+ (s —n)ln2]



is sufficient to guarantee that any algorithm implementing the MIN-FEATURES bias will
return an hypothesis that is e-close to ¢ with probability at least 1 — 6.

Proof: By definition, the number of features needed to define the hypothesis of any algorithm
implementing the MIN-FEATURES bias is less than or equal to the number of features
relevant to the target concept. Therefore, for any target concept of complexity at most
s, the hypothesis space for any algorithm that implements the MIN-FEATURES bias is
contained in C, ;. Every concept in C,, 5 is defined on at most p = log,(s — n) features out of
a total of n features. The number of concepts one can define on at most p specific features
is 2%, Since there are (Z) ways to choose p out of n features, it must be true that

|Cn7s| S (n) 22P
p
< pr2?

_ logs(s—n)g(s—n)

Substituting this in the sufficient sample size given by Lemma 1 completes the proof. O

It is interesting to note that the number of examples sufficient for learning grows only
logarithmically in the number of irrelevant features and linearly in the complexity of the
concept.

We now show that this bound is tight by exhibiting an identical lower bound using
the methods developed by Blumer et al. [6] exploiting the Vapnik-Chervonenkis dimension
(VC-dimension).

The VC-dimension of a class of concepts C' is defined to be the largest integer d such
that there exists a set of d instances that can be labeled by the concepts in C in all the 2¢
possible ways. In other words, suppose S is a fixed set of instances, and let {(.S) denote an
arbitrary labeling of the instances in .S as positive or negative. Note that there exist a total
of 2151 such labelings. If for any £(S) we can find some ¢ € C that gives the same labeling
to the elements in S as given by £(S), then we say that the set S is shattered by C. The
VC-dimension of C is just the size of the largest such 5, that is the size of the largest set of
instances that is shattered by C.

Blumer et al. show that the number of examples needed for learning any class of concepts
strongly depends on the VC-dimension of the class [6]. Specifically, Ehrenfeucht et al. [9]
prove the following:

Theorem 2 Let C be a class of concepts and 0 < €,6 < 1. Then, any algorithm that learns
every concept in C with respect to €,6 and any probability distribution must use a sample of

0 (1 1 N VCdim(C)) .

S1z€

“ln=

e 0 €

To apply this result, we must first derive a lower bound on the VC-dimension of C,, ,,
the set of concepts over n features having complexity less than or equal to s. Note that if



we construct a set of instances S that is shattered by a given class of concepts C, then |S]
immediately serves as a lower bound on the VC-dimension of C'. The following lemma is
based on such an argument. We give a method for constructing a set of instances that is
shattered by C,, ; and let the size of that set be the desired lower bound.

Lemma 2 Let C,, 5 be as in Theorem 1. Then
1
VCdim(Cps) > max{g log,(s —n)logyn, s — n} )

Before proving this lemma, we will need to make the following definitions.

Definition: Let oy, as,as,- -+, a, be r Boolean variables. For any 0 < d <r, by F, ; let us
denote the union of the following two sets:

1. The set of all Boolean functions defined on aq, ag, s, -+, a,_q4.

2. The set of the d singleton Boolean functions «,_g11, @, _g12, @p_gi3, -+, ;.

Thus, the cardinality of F, 4 is just 2Y7 4 4. O

Definition: The bit-vector V = (vg, vy, -,v,_1)7 is called the bit-vector representation of
the Boolean function f(aq, az,as, -, a,) if V matches the right-most column of the truth
table of f. Boolean operations V, A and — are defined on bit-vectors by applying the
operations bit-wise on the components of these vectors. O

It should be clear that a Boolean function f can be expressed in terms of a set of Boolean
functions ¢1,¢2,---, ¢, if and only if the bit-vector that represents f can be obtained by
Boolean operations on the bit-vectors that represent the functions ¢1, 42, -, g..

Definition: Let f be any Boolean function defined on the variables ay, ag, as, - - -, ;.. Then,
rewriting f as

f(a17027."7ai7."7aT) —

(_'Oéi A f(a/ha?a e 7ai—1707ai+17 e 7a7“)) \ (ai A f(alaa% IR P 17ai+17 U 7a7°))
will be called unfolding of the function f on the variable «;. O

Lemma 3 For anyr > 1 and any d such that 0 < d < r, any Boolean function f(aq,as,as,
-+, a,) can be expressed in terms of at most

2¢ 4+ d
elements of F, 4.

Proof:
By unfolding f on «, we get

(ma, A flag, a2, 0,21,0)) V (ar A flag, ag, -, 0,21, 1)) .

9



f is now expressed in terms of «, and two functions defined on a4, ay, -+, a,_;. Unfolding
these two functions again on «,_1, f will be expressed in terms of a1, «, and four functions
defined on a4, ag, - -+, a,_5. Unfolding d times in this manner, f will be expressed in terms of
Qr—dg1, Qp_dya, Qr_gps, - -, o, and 2¢ functions defined on oy, ay, s, -+, a,_g. All of these
are in F, 4, and thus the lemma follows. O

Proof of Lemma 2:

Let p = log,(s — n). We prove the lemma by constructing a set of instances that is
shattered by C), s and has cardinality that is both > 27 and > ép log, n. We will represent
this set of instances as a matrix M of width n, in which each row represents an instance and
each column corresponds to one of the n features. In other words, the entry M, ; is the value
of the feature z; in the ¢-th instance in the collection of instances being constructed. An
arbitrary labeling of these instances is viewed as a bit-vector. The proof proceeds by showing
that, for any labeling of the instances, the corresponding bit-vector can be expressed using
Boolean operations (-, V,A) over at most p out of the n columns of the matrix M. This,
of course, means that for every labeling ¢ of the instances, there exists a Boolean function
definable over only p features of 1,3, -+, 2, (that is, a concept in C, ) which labels the
instances as given by {. Hence, the set of instances represented by M is shattered by C,, ;

Part 1: To show that VCdim(C, ) > s — n, we construct a matrix M of n columns and
s—n = 2P rows as follows. To begin, we fill the first p columns of the matrix as we ordinarily
fill any truth table of a function defined over p Boolean variables. That is, the first p columns
of M will look like

p

000 --- 000
000 --- 001
000 --- 010
000 --- OI1
111 --- 110
111 .-+ 111

The remaining columns of M (if any) can be filled arbitrarily.

Let V' be a bit-vector representing an arbitrary labeling of the 27 instances represented by
M. Obviously, V represents some Boolean function defined over p variables. Therefore, V' can
be expressed using Boolean operations on the first p columns of M as constructed above. This
shows that this set of instances is shattered by C,, ; and hence, VCdim(C,, 5) > 27 = s — n.

Part 2: Now we show that VCdim(C,, 5) > ép log, n. In the following, we will assume that
p > 2 and n > 4. Showing the lemma for p < 1 and/or n < 3 is straightforward.

Let d = |log, p| — 1 and r = [log, p + log, log, n| — 2. We construct a matrix M of n
columns and 2" rows as follows:

Let oy, ag,, -+, a, be a set of r Boolean variables, and let F, 4 be as defined immediately
prior to this proof. Construct a matrix N by letting the bit-vector representation of each

10



function in F, 4 constitute a column of the matrix (that is, we concatenate the bit-vector
representations of all the functions in F,4). Clearly, for any function ¢ € F., such that
g € {ar—dt1, g2, -, 0.}, g (the complement of ¢) must also be in F, 4. For each such
g, suppose we remove from N the column of either g or —g. (It does not matter which one is
removed.) Since the cardinality of F, 4 is just 227 4 d, the number of columns that remain
in N is exactly

2r—d

2

d. 1
> (1)
22r—d

We let these constitute the first 5

of M (if any) arbitrarily.

We have to show the following two claims:
Claim 1: The number of columns of M does not exceed n. That is, the quantity given by
Equation 1 is bounded by n.

+ d columns in M, and fill the rest of the n columns

Claim 2: An arbitrary bit-vector of length 2" can be expressed using Boolean operations
over at most p columns of M, and hence the set of instances represented by M is shattered
by 5.

Claim 1 is shown as follows:

22T—d 22 [logz pt+loga loge n|—2—|loga p|+1
5 +d = 5 + [logyp] — 1
2210g2 ptlogs logy n—2—logy p+2
< 5 +log,p— 1

n
= §—|—10g2p—1§n.

Claim 2 is shown using Lemma 3 which says that any Boolean function defined over
Q1,Qq,, , a, can be expressed using at most 2¢ + d functions of F, 4. Remember that M
is constructed such that for any f € F, 4, there exists a column V' in M such that either V
or =V represents f. This implies that any arbitrary bit-vector of length 2" can be expressed
using Boolean operations over at most 2% + d columns of M. Note that

2d+d§ 2d—|—1 S 210g2p =p

and thus, Claim 2 follows.
The proof is completed by noting that the number of rows in M is

1
9 — 2Llog2 p+log, logy, n|—2 > 210g2 pt+logylogo n—=3 _ — IOgZ(S . n) 10g2 n

8

as desired. O
We can now state the lower bound on the sample complexity as follows:

Theorem 3 To learn an arbitrary concept in C,, s with respect to €,6 and any probability
distribution, any algorithm must use a sample of size

Q(llnl—}—l[ln(s—n)lnn—}—s—n]).
e 6 ¢

11



Proof: Follows immediately from Theorem 2 and Lemma 2. O

Note that this lower bound is within only a constant factor of the upper bound given by
Theorem 1. These results show that the presence of many irrelevant features does not make
the learning task substantially more difficult, at least in terms of the number of examples
needed for learning, since the sample complexity grows only logarithmically in the number
of irrelevant features.

5 Implementing the MIN-FEATURES Bias

Now that we have analyzed the sample complexity of the MIN-FEATURES bias, we turn
to the problem of implementing the MIN-FEATURES bias. We first note that one can
quite efficiently test whether a given subset of features is sufficient to construct a hypothesis
consistent with a given set of examples, implying that the expensive part of implementing
the MIN-FEATURES bias lies in the search for the smallest sufficient set of features. We

then discuss two algorithms for implementing such search.

5.1 Testing the Sufficiency of a Subset of Features

Given a training sample S and a subset of features (), it is easy to judge whether @) is
sufficient to construct an hypothesis consistent with S.  All we need to do is search in
the sample for two examples that have the same values for all the features in () but have
conflicting classes. The subset () is sufficient to construct a consistent hypothesis if and only
if such a pair cannot be found in the training sample. This procedure runs in time quadratic
in the number of examples in the sample.

A more efficient sufficiency test can be done by performing successive partitioning of the
the training sample based on a feature arbitrarily chosen from ) each time (see Figure 1).
A subset in which all the examples are of the same class does not need to be partitioned
(Step 1). Insufficiency is reported if and only if we exhaust @) and there still exists a subset
containing a mixture of positive and negative examples (Step 6).

Note that to perform partitioning using a feature at any stage, we need to visit each
example at most once. The total running time for this procedure is therefore O(|S]|Q]), that
is, only linear.

5.2 The Set Covering Viewpoint

The task of finding the smallest sufficient subset of features for a given training sample
can be viewed as a set covering problem. For convenience, let us call this task the “MIN-
FEATURES problem”. To link this problem to the minimum set cover problem we make
the following definition.

Definitions: A conflict generated by a pair of examples (X1, 4) and (X3, —) is an n-bit

12



vector @ = (ayaz - - - a,) such that

o ifx?=x{
Tl i x s x P

for i = 1,2,---,n, where X denotes the value of the i-th feature in the instance X.

We say that the feature z; covers the conflict a if and only if a; is 1. A set of features
() covers a set of conflicts A if every conflict in A is covered by at least one feature in Q).

It should be noted that a conflict is generated only from a pair of examples of conflicting
classes. O

With this definition, the analogy between the minimum set covering and the MIN-
FEATURES problems should be clear. Given a training sample, we can generate the set of
all conflicts from these examples. Each feature covers a subset of the generated conflicts,
and the goal is to find the smallest subset of features that together cover all the conflicts.!

Example: Let the training sample be

(010100, +) (011000, —)
(110010, +) (101001, —)
(101111, +) (100101, —)

Then, the conflicts generated from this sample are

ay = (001100) as = (101010) ar = (110111)
ay = (111101) as = (011011) as = (000110)
as = (110001) ag = (010111) as = (001010)

It can be checked that a subset such as {xy,x3, 24} is sufficient to form a consistent
hypothesis (e.g., 123 V (T3 & x4)), and that all subsets of features of cardinality less than 3
are insufficient. O

The minimum set cover problem is known to be NP-hard [10]. At first glance, this
may appear to mean that it is not possible to implement the MIN-FEATURES bias in
polynomial time (unless P=NP). However, one should be careful before drawing such a
conclusion. The NP-hardness result for the minimum set cover problem means that if the
number of the available sets is n and the number of elements to be covered is ¢, then
one cannot find an optimal solution in time polynomial in n and ¢, unless P=NP. The
usual practice in computational learning theory is to include s, the complexity of the target
concept, among the parameters to measure the computational and sample complexities of
learning algorithms. For a target concept of p relevant features out of n available features, s is
equal to 2 +n. Therefore, assuming that p is the size of the smallest cover, we are concerned
with the question of finding an optimal solution for the minimum set cover problem in time
polynomial in n, £ and 2P.

To our knowledge, there are no known complexity results of this type for the minimum
set cover problem, and thus, whether or not the MIN-FEATURES bias can be implemented
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in time polynomial in the concept complexity and other learning parameters remains an
interesting open problem.
In the rest of the paper, we describe a collection of algorithms that implement and

approximate the MIN-FEATURES bias.

5.3 The FOCUS Algorithms

In Subsection 5.1, we have seen that one can efficiently test whether a given subset of features
is sufficient to construct an hypothesis consistent with a training sample. Since it is assumed
that the target concept has relatively few relevant features, a straightforward algorithm to
solve the MIN-FEATURES problem is to try all subsets of features of size 0, 1, 2, 3, ---
and so on. Because the subsets are tested in order of increasing size, this is guaranteed to
produce the smallest sufficient set of features. We will call this procedure FOCUS-1.

Suppose this algorithm is given m examples of a target concept that has p relevant
features, and thus, has complexity s = 2P +n. Then, the algorithm will be examining all the
subsets of features of size 0, 1, 2, 3 -- - up to at most p. Therefore, the number of sufficiency
tests performed will be at most

() (1) () e (1) = 00

As shown in Subsection 5.1, each sufficiency test costs time O(mp), and thus, FOCUS-1 has
a worst-case time complexity of O(mpn?). In terms of s, this gives O(m log(s — n)n'°s(s=")),
This is quasi-polynomial in n and s, but clearly it will be impractical for large values of n
and s.

The major computational cost of the above simple algorithm stems from the rather blind
search it performs in the space of feature subsets. Consider again the example given in
Subsection 5.2. In this example, FOCUS-1 tests all the 22 subsets of features of size 0, 1 and
2, and some of the 20 subsets of size 3 before returning a solution. By doing so, FOCUS-1
is not exploiting all the information given in the training sample. Consider, for instance,
the conflict a; = (001100). This conflict tells us that any sufficient set of features must
contain x3 or x4 in order to cover the conflict. Hence, none of the sets {x1}, {z2}, {z5},
{ze}, {x1, 22}, {21, 25}, {21,206}, {x2, 25}, {22, 26}, {25, w6} can be solutions. Therefore, all
of these sets can immediately be ruled out of the algorithm’s consideration. Many other
subsets can be similarly ruled out based on the other conflicts.

Figure 2 shows the FOCUS-2 algorithm, which takes advantage of this observation. In
this algorithm, we use a first-in-first-out queue in which each element denotes a subspace of
the space of all feature subsets. Each element has the form My g, which denotes the space
of all feature subsets that include all of the features in the set A and none of the features in
the set B. Formally,

MA,B = {T | T QAaTﬂB: ¢7Tg {$17$27"'7$n}}-
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For example, the set My, denotes all possible feature subsets, the set M, 4 denotes all
feature subsets that contain at least all the features in A, and the set M, g denotes all
feature subsets that do not contain any features in B.

The main idea of FOCUS-2 is to keep in the queue only the promising portions of the
space of feature subsets—i.e. those that may contain a solution. Initially, the queue contains
only the element M, ,, which represents the whole power set. In each iteration in Step 4,
the space represented by the head of the queue is partitioned into disjoint subspaces, and
those subspaces that cannot contain solutions are pruned from the search.

Consider again the conflict a3 = (001100). Suppose the current space of possible feature
subsets is My 4. We know that any sufficient feature subset must contain either zz or z,.
We can incorporate this knowledge into the search by refining M 4 into the two subspaces
Miz.3,0 (all feature subsets that contain xz3) and My.,} (2, (all feature subsets that contain
x4 and do not contain x3). Note that the second subscript of M is used to keep the various
subspaces disjoint.

Clearly, conflicts with fewer 1’s in them provide more constraints for the search than
conflicts with more 1’s. Hence, if the head of the queue is M4 g, then the algorithm (Step 4.3)
searches for a conflict a such that

e a is not covered by any of the features in A, and
e the number of 1’s corresponding to features that are not in B is minimized.

This conflict is then incorporated in the search in Step 4.4.

In detail, here is how FOCUS-2 behaves on the example given above. As shown in
Figure 3, the algorithm starts by processing My 4. The conflict a; = (001100) is selected
in Step 4.3 and My 4 is replaced by M,y 4 and My, ¢7.y. Next, for My, 4, the conflict

= (000110) is selected, and My, .,3,» and Mg, ..y, {zs) are added to the queune. My,,;, {za)
is then processed with ag = (001010) and M, ..} (s, is inserted. Finally, when M, .,y 4 is
processed with a3 = 110001, the algorithm terminates in Step 4.4.1 before adding My, -, 2,16
to the queue, since {1, z3, x4} is a solution.

Using FOCUS-2, the number of sufficiency tests is only 7. By comparison, FOCUS-1
must perform at least 23 sufficiency tests (to test each of the 22 subsets of size up to 2,
and at least one of the 20 subsets of size 3). Because FOCUS-2 only prunes subspaces that
cannot possibly cover all of the conflicts, it is sound and complete—it will not miss any
sufficient feature subsets. Furthermore, because it considers the subspaces My g in order of
increasing size of A, it is guaranteed to find a sufficient subset with the smallest possible
size. Finally, of course, the number of sufficiency tests performed by FOCUS-2 will typically
be much less (and certainly never more) than the number of tests performed by FOCUS-1.
This makes FOCUS-2 substantially faster than FOCUS-1, as will be demonstrated by the

execution-time comparisons reported in Subsection 7.2.
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6 Approximating the MIN-FEATURES Bias

Exact implementation of the MIN-FEATURES bias in domains with many features can be
computationally infeasible. In such cases, one may be willing to employ efficient heuristics
that provide good but not necessarily optimal solutions. In this section, we describe three
such algorithms. Each of these algorithms implements an iterative procedure where, in each
iteration, the feature that seems most promising is added to the partial solution. This
continues until a sufficient set of features is found. The only difference between the three
algorithms is the criterion used in selecting the best feature in each iteration.

6.1 The Mutual-Information-Greedy (MIG) Algorithm

For a given set of features (), imagine that the training sample is partitioned into 2/2! groups
such that the examples in each group have the same truth assignment to the features in
Q). Let p; and n; denote the number of positive and negative examples in the ¢-th group,
respectively, and define the entropy of () as

gl@Ql_q

pi + i Pi Di " i
Entro = - lo + lo
PyQ) ; |Sample| | p; + n; &2 pitni o piton b2 pi + 1

(2)

with the convention that alog,a = 0 when a = 0.

In the Mutual-Information-Greedy algorithm, the feature that leads to the minimum
entropy when added to the current partial solution is selected as the best feature. To
implement this algorithm, one needs to avoid explicit partitioning of the training sample
into 29l groups. We explain how this can be done in the appendix.

6.2 The Simple-Greedy (SG) Algorithm

The Simple-Greedy algorithm is based on the well-known greedy heuristic for the minimum
set cover problem [8]. Starting with the set of all conflicts, the algorithm chooses each time
the feature that covers the largest number of conflicts that are not yet covered. The conflicts
that are covered by this feature are then removed from the set of conflicts. The process is
repeated until all conflicts are removed.

To implement the Simple-Greedy algorithm, however, one should avoid explicit generation
of the set of all conflicts (which requires time quadratic in the number of examples). A
detailed discussion is given in the appendix.

6.3 The Weighted-Greedy (WG) Algorithm

In the Simple-Greedy algorithm, every conflict contributes a unit increment to the score of
each feature that coversit. In the Weighted-Greedy algorithm, the increment instead depends
on the total number of features that cover the conflict. The intuition is that if a feature

16



uniquely covers a conflict, then that feature must be part of the solution set of features. If
Az, 1s the set of conflicts covered by a feature x;, then the score of z; is computed as

1
scorey; = Z

wEry, # of features covering a — 1

Under this heuristic, the credit a feature x; receives for covering a conflict a, is inversely
proportional to the number of other features that cover a. If only a few other conflicts cover
a then z; receives high credit for covering a. In the extreme case where a is exclusively
covered by x;, the score of x; becomes oo. This causes the feature to be included in the
solution with certainty.

7 Experimental Results

In this section, we compare our exact (FOCUS-1 and FOCUS-2) and approximate (MIG,
SG, and WG) algorithms to two well-known algorithms, ID3 and FRINGE. The goal of the
comparisons is to determine whether our algorithms show better generalization performance
than ID3 and FRINGE in situations where the MIN-FEATURES bias is appropriate. A
second goal of the comparisons is to determine how well the three heuristic algorithms
approximate the exact algorithms.

We chose ID3 and FRINGE because these algorithms appear to have biases similar to
the MIN-FEATURES bias. In particular, these algorithms attempt to construct “small”
decision trees. The algorithms construct the decision tree top-down (i.e., starting at the
root), and they terminate as soon as they find a tree consistent with the training examples.
Features tested at each node are chosen according to their estimated relevance to the target
concept, measured using the mutual information criterion. Obviously a tree with k£ internal
nodes can test no more than k features, and hence, it is reasonable to expect that ID3 and
FRINGE will perform well in cases where MIN-FEATURES is appropriate.

It should be noted that FOCUS-1, FOCUS-2, MIG, SG, and WG are not complete
learning algorithms—rather they are preprocessors that provide us only with a set of features
sufficient to construct a consistent hypothesis. To construct an actual hypothesis, we first
filter the training examples to remove all features not selected during preprocessing. Then
we give the filtered examples to ID3 to construct a decision tree. Hence, we will refer to
the complete algorithms as FOCUS+1D3, MIG+ID3, SG4+1D3, and WG+ID3. In most of
the experiments, we do not distinguish between FOCUS-1 and FOCUS-2, because they give
identical results. Our version of ID3 performs no windowing or pruning and employs the
information gain (mutual information) criterion to select features. Our version of FRINGE
is terminated after at most 10 iterations.

7.1 Sample Complexity and Accuracy Comparisons

We report here two kinds of experiments. In the first experiment, we are interested in the
worst-case performance over a class of concepts, where each concept is definable over at most
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p out of n features (and hence, the MIN-FEATURES bias is appropriate). As our measure of
performance, we employ the sample complexity—the minimum number of training examples
needed to ensure that every concept in the class can be learned in the PAC sense [6]. We
estimate the sample complexity with respect to fixed learning parameters p,n, e, and ¢ and
with training samples drawn according to the uniform distribution.

In the second experiment, we are interested in the average-case performance of the algo-
rithms. We randomly generate a collection of concepts such that each involves only a few
features among many available ones. We then measure the accuracy rate of each algorithm
while progressively increasing the size of the training sample—i.e. by plotting the learning
curve for each of the concepts under consideration.

EXPERIMENT 1: Sample Complexity. The goal of this experiment is to estimate
the minimum number of examples that enables each algorithm to PAC learn all the concepts
of at most 3 relevant features out of n available features for n = 8,10 and 12. We assume the
uniform distribution over the space of instances. To decide whether an algorithm L learns
a concept ¢ for sample size m, we generate 100,000 random samples of ¢ of size m. We
conclude that ¢ is learned by L if and only if for at least 90% of these samples L returns a
hypothesis that is at least 90% correct.?

The minimum value of m that enables each algorithm to learn all the concepts under
consideration is reported. Thus, the quantity measured here can be viewed as an empirical
estimate of the sample complexity of each algorithm under the uniform distribution for € =
6=0.1.

The results of this experiment are shown in Figure 4.

EXPERIMENT 2: Learning Curve. The purpose of this experiment is to perform a
kind of “average-case” comparison between the algorithms. The experiment is conducted as
follows. First, we randomly choose a concept such that it has only a few relevant features
among many available ones. We then run each of the algorithms on randomly-drawn training
samples of this concept and plot the accuracy of the hypothesis (i.e., the percentage of
the examples correctly classified by the hypothesis) returned by each algorithm against the
training sample size. This is repeated for various sample sizes for the same concept.

The above procedure was applied on 100 randomly selected concepts each having at most
5 relevant features out of 16 available features. For each of these concepts, the sample size
m was varied from 20 to 120 examples. For each value of m, the accuracy rate was averaged
over 100 randomly drawn training samples.

Figure 5 shows a pattern typical of all learning curves that we observed.

As a way to combine the results of the 100 concepts, we have measured the difference in
accuracy between FOCUS+ID3 and each of the other algorithms for each sample size, and
averaged that over all 100 target concepts. The result is shown in Figure 6.

DISCUSSION: The performance of the algorithms tested in the above experiments can be
summarized as follows:

1. Each of the three heuristics improved the performance of 1D3 when learning in the
presence of irrelevant features.
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2. Weighted-Greedy gave the overall best approximation to the MIN-FEATURES bias.
The performance of this algorithm was quite close to that of FOCUS both in the worst
and average cases.

3. Mutual-Information-Greedy and Simple-Greedy are very much alike. These algorithms
maintained reasonable average-case performance, but exhibited rather bad worst-case
performance.

4. Finally, FRINGE showed poor average-case performance, but its worst-case perfor-
mance is almost as good as Weighted-Greedy and substantially better than Mutual-
Information-Greedy and Simple-Greedy. In terms of the computational costs, however,
FRINGE is much more expensive than any of the three heuristics considered here.

7.2 Execution-Time Comparisons

In this subsection, we compare the computational costs of FOCUS-1, FOCUS-2 and Weighted-
Greedy measured as the number of sufficiency tests and the amount of CPU-time required by
each algorithm to return a solution. The three algorithms were implemented in C. Special
attention was given to optimizing the implementation of FOCUS-1.

The experiments were conducted using target concepts that have only a few relevant
features out of many available. The relative performance of the algorithms was greatly
affected by the problem size measured as the number of the available features and the ratio of
the relevant features to that number. However, when the problem size was reasonably large,
the relative performance followed a consistent trend. This trend is illustrated by Table I
where we give the result for a target concept with 9 relevant features out of 25 available
features. Training examples were drawn with replacement under the uniform distribution
and the training sample size was varied from 100 to 500. The numbers in this table are
averaged over 10 runs for each training sample size.

Overall, we found that FOCUS-2 was several times faster than FOCUS-1 and that
Weighted-Greedy was further many times faster than FOCUS-2. It is interesting to note
that the number of sufficiency tests done by FOCUS-1 remains steady as the training sam-
ple size grows, since it blindly follows the same steps for any training sample. FOCUS-2,
on the other hand, does a progressively smaller number of sufficiency tests as the number of
training examples increases. This is because with a larger sample there is a greater chance of
getting conflicts that are covered by only a few features, and consequently, a better chance
for significant reduction in the number of sufficiency tests needed by FOCUS-2.

8 Summary and Conclusion

This paper defined and studied the MIN-FEATURES bias. Section 4 presented a tight
bound on the number of examples needed to guarantee PAC-learning for any algorithm that
implements MIN-FEATURES. Section 5 introduced two algorithms for implementing the
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MIN-FEATURES bias. The first algorithm, FOCUS-1, is a straightforward algorithm that
runs in time quasi-polynomial in the total number of features and the complexity of the target
concept. The second algorithm, FOCUS-2, is empirically shown to be substantially faster
than FOCUS-1. Section 6 introduced the algorithms Mutual-Information-Greedy, Simple-
Greedy and Weighted-Greedy for approximating the MIN-FEATURES bias. Experiments
of Section 7 showed that the Weighted-Greedy algorithm in particular provides excellent
approximation of the exact FOCUS algorithms but with substantially less computational
costs. The experiments also showed that both 1D3 and FRINGE do not perform nearly as
well in problems where the MIN-FEATURES bias is appropriate. These results suggest that
one should not rely on ID3 or FRINGE to filter out irrelevant features. Instead, in situations
where the MIN-FEATURES bias is appropriate, it is recommended that the Weighted-
Greedy algorithm be applied to preprocess the training examples before invoking a decision-
tree learning algorithm, such as ID3.
We conclude with the following open problems:

e s the class ), s polynomially learnable in the sense of [7]?7 Namely, does there exist
a learning algorithm L such that, under any probability distribution, I PAC-learns
with respect to parameters € and 6 an arbitrary concept in (), ; using a sample of size

polynomial in n, s, and 1, and such that L runs in time polynomial in n,s, % and 17
€ &7 77 € &

Note that this does not necessarily require that L implement the MIN-FEATURES bias
strictly. For example, L could be a polynomial time algorithm that approximates the
MIN-FEATURES bias quite closely so that its sample complexity is still polynomial. It
is easy to show that the approximation algorithms given in this paper run in polynomial
time. An important goal for future research is to prove formal results on the sample
complexity of these and similar algorithms as an approach to answering the above
question.

e The work reported in this paper assumes noise-free training data. In practice, however,
training examples are often subject to various kinds of noise affecting the values of the
features and/or the classification of the training examples [13, 15]. A direct way to deal
with noise is to modify the given algorithms by relaxing the requirement of covering
all the conflicts generated from the training data. That is, we search for a small
set of features that may leave a certain percentage of the conflicts uncovered, where
such percentage can be determined through cross-validation. Studying this and more
sophisticated approaches to dealing with noise is an important topic for future research.

e A major limitation of this work is that it only applies to Boolean concepts. Many
practical domains have multi-valued (discrete) features and continuous features as
well as multiple classes. Extension of the methods in this paper to multi-valued dis-
crete features and multiple classes is straightforward. However, extending the MIN-
FEATURES bias to continuous features requires a different definition of “relevant
feature”.
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Appendix

In Section 6, we gave sketches of the Mutual-Information-Greedy and the Simple-Greedy
algorithms. These sketches are only meant to explain how those algorithms work. We
describe here more efficient ways to implement the two algorithms.

In the description of the Mutual-Information-Greedy algorithm in Section 6, the entropy
function for a subset () is computed explicitly by partitioning the sample in each iteration.
To be more efficient, one should exploit the following:

o Features are progressively added to the current solution (). Once a feature is added to
@, it is never removed. Therefore, the splitting information from one iteration should
be kept to be used for computing Entropy(QU{z;}) in the succeeding iteration.

o If the examples in the ¢-th group of the splitted sample are all positive or all negative
(i.e., if p;n; = 0.), then this group does not contribute to the summation in equation
(2) since in this case

Pi log, P _ 0
pi + 1 pi + 1
and
n; ;
log =0.

pi+ni lpitn
This is also true if the group is empty. As a result, one should ignore any group that
is empty or having examples that are all of the same class.

Now, consider the following alternative implementation:

Algorithm: Mutual-Information-Greedy(Sample)
1.Q = ¢, V = {ay, 29,23, -+, 2, }, S = {Sample}.
2.Repeat until § is empty:
2.1. Best-Score = .
2.2. For each z; € V :
2.2.1. Score =0 .
2.2.2. For each s € S:
2.2.2.1. po = # of positive examples in s with z; = 0.
2.2.2.2. ng = # of negative examples in s with z; =
2.2.2.3. p1 = # of positive examples in s with z; =
2.2.2.4. ny = # of negative examples in s with z; = 1.

> _ Po Po no no

1125'60_-m+mlog2m+m-+pﬁﬂobg2m+m'

2.2.2.6. eg=-—1lo bl L [} L
6 1 ri1t+na &2 r1t+ni + r1t+na 82 p1tna

2.2.2.7. Score(x;) = Score(x;) _&—:&[60 + e1].
2.2.3 If Score(z;) < Best-Score then

2.2.3.1 Best-Feature = x;.

2.2.3.2 Best-Score = Score.
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2.3. For each s € §:
2.3.1. Partition s into sg and sy, which are the sets of examples
with Best-Feature = 0 and 1, respectively.
2.3.2. Replace s in § by sg and s;. However, if any of sq and s; is
empty or contains only examples of the same class, then it
should not be added to S.
2.4. Remove Best-Feature from V.
2.5. Add Best-Feature to ().
3.Return Q).

In this implementation, § is a set of sets that contains the splitting information of the
training sample. Initially, & has only one element which is the training sample itself, and
the current partial solution () is empty. Then, whenever a new feature z; is added to @,
each set s in § is partitioned into two sets sg and s;. These are the sets of training examples
in s that have z; = 0 and 1, respectively. The element s is then replaced in the set S by sq
and s;. However, we neglect any of these two sets if it is empty or if it contains examples
that are all of the same class. In this way, at any particular point of the algorithm, the
set & contains only non-empty sets that have a mixture of positive and negative training
examples. These are the only sets needed for entropy computation. The reader can confirm
that the score of a feature z; (as computed in Step 2.2.2.7 of the algorithm) is equivalent to
the quantity Entropy(QU{z;}) when the loop of Step 2.2.2 terminates.

The Simple-Greedy algorithm can also be implemented more efficiently than described in
Section 6 in a similar manner. Note that computing the score of a feature in this algorithm
does not require the knowledge of the conflicts covered by the feature but only the number
of these conflicts. For a training sample of a large size, constructing a list of all conflicts is
rather expensive since it takes time quadratic in the number of examples in the sample. On
the other hand, counting the number of conflicts generated from a given set of examples can
be done in linear time since all what we need to do is to compute the number of positive
and negative examples in the set and multiply these.

With this observation, we can compute the score of each feature as follows. Suppose that
() is the set of features that have been selected so far. For each of the 219! truth assignments
to the features in @, the training sample can be partitioned into 2/%! groups such that all
the examples in the z-th group have the z-th truth assignment of the features in (). Clearly,
any conflict that is generated from two examples in two different groups must be covered by
some feature in (), and thus, the conflicts that are yet to be covered are only those generated
from pairs of examples that belong to the same group. Therefore, to compute the score of a
feature z;, we only need to find the number of conflicts that remain uncovered after adding
z; to (). This can be computed as follows:

21Ql_1
. ;=0 z;=0 ;=1 ;=1 .
score;; = Z P; “n; + p; “n; (3)
1=0
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where p;’~" and n;’~" denote the number of positive and negative examples in the 7-th group
such that the value of the feature z; in each example is a, for ¢ = 0 or 1.

The above score computation can be achieved simply by replacing the steps 2.2.2.5 to
2.2.2.7 by the following:

2.2.2.5 Score(x;) = Score(x;) +pono + pini -

Note that the feature with the least score (i.e., the one that leaves the least number of
conflicts uncovered) is selected.
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Texts of the footnotes

1. This description reduces the MIN-FEATURES problem to the minimum set cover
problem. Reduction in the opposite direction is given in [3].

2. We have applied several techniques to reduce the immense amount of computation
involved in this experiment. First, we exploited the fact that the algorithms are sym-
metric with respect to the permutation and negation of any subset of the features of
the target concept [1]. Second, we started the experiment by running the algorithms
on a reasonable number (a few thousands) of training samples per concept to get rough
estimates on the sample complexity. These estimates were then refined by increasing
the number of samples to 100,000, considering only the values in the neighborhood of
the obtained estimates.
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Figure Captions

Figure 1: Efficient implementation of sufficiency testing.

Figure 2: The FOCUS-2 algorithm.

Figure 3: An example of FOCUS-2. Rectangles indicate where the sufficiency tests oc-

curred. The tree is traversed in a breadth-first fashion.

Figure 4: The number of examples needed for learning all the concepts with 3 relevant
features out of 8, 10, and 12 available features. 1D3 requires 2236 examples when the total

number of features is 12.

Figure 5: Learning curve for the concept f(x1,...,216) = 1222384 V T1220324%5 V T1X2T3L4T5
V fEl.foL’g \% $1.fgf3.f4 V .fll’g.fgl’;ll’g, V .flfg$3I4$5 \% .fl.fg.?f3.f4 V fl.f3fl}4$5 V .flfg.f4f5 which

has 5 relevant features out of 16.

Figure 6: The difference between the accuracy of FOCUS+ID3 and the accuracy of the

other algorithms averaged over all the randomly chosen 100 target concepts.
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Function Sufficient( Features, Sample)

1.

o

If the examples in Sample are either all positive or all negative, return
true.
If Features is empty return false.

. Let x be any feature in Features.
. Let Samplel) be the set of all examples in which the value of the feature

z 1s 0.

. Let Samplel be the set of all examples in which the value of the feature

xis 1.

If the results of
Sufficient( Features—{x}, Sample0), and
Sufficient( Features—{x}, Samplel)

are both true, then return true, else return false.

Figure 1: Efficient implementation of sufficiency testing.
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Algorithm FOCUS-2(Sample)

1. If all the examples in Sample have the same class, return ¢.

2. Let GG be the set of all conflicts generated from Sample.
3. Queue = {My,}. /* This is a first-in-first-out data structure. */
4. Repeat

4.1. Pop the first element in Queue. Call it M4 p.
4.2. Let OUT = B.
4.3. Let a be the conflict in G not covered by any of the features in
A, such that |Z, — B| is minimized, where Z, is the set of features
covering a.
4.4. Foreachz € Z, — B
4.4.1. If Sufficient(A U{z}), return (AU{z}).
4.4.2. Insert MAU{Z‘},OUT at the tail of Queue.
4.4.3. OUT = OUT | U{=}.

end.

Figure 2: The FOCUS-2 algorithm.
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My, s — 001100
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Mzy 243,6 — 110001 M2y .20} 420} Mz, 20} 420}

e

Mz zs.24).6 Mgy zs et fey My za,26} {21,202}

{1, 23,24} is sufficient

Figure 3: An example of FOCUS-2. Rectangles indicate where the sufficiency tests occurred.
The tree is traversed in a breadth-first fashion.
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Figure 4: The number of examples needed for learning all the concepts with 3 relevant
features out of 8, 10, and 12 available features. 1D3 requires 2236 examples when the total
number of features is 12.
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Figure 5: Learning curve for the concept f(z1,.

..,CL’16) = J/’ll’gngzl V IlI2$3I4f5 V

I1I253I4I5 V Ilfz$3 V :L’lfgfgf4 \% 51I2I3I4I5 V flf2I3$4I5 V flf213f4 \% 1711731’4175 V

T123T4T5 which has 5 relevant features out of 16.
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Figure 6: The difference between the accuracy of FOCUS+1D3 and the accuracy of the other
algorithms averaged over all the randomly chosen 100 target concepts.
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Table I: The number of sufficiency tests and CPU-time of FOCUS-1, FOCUS-2 and Weighted-

Greedy for a target concept with 9 relevant features out of 25 available features.

Algorithm Training Set Size
100 200 300 400 500
FOCUS-1  Sufficiency Tests | 442189.4 | 1329330.5 | 2908068.9 | 2665664.0 | 2695393.0
Time (seconds) 9.74 55.1 211.1 191.7 186.1
FOCUS-2  Sufficiency Tests | 10593.1 9785.3 11339.5 8768.9 5582.3
Time (seconds) 2.0 7.1 20.5 31.9 32.5
WG Sufficiency Tests 8.5 10.1 10.7 10.5 11.0
Time (seconds) 0.16 0.86 2.31 4.3 7.0
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