
Experiments on Multistrategy Learning by Meta-Learning

Philip K. Chan and Salvatore J. Stolfo

Department of Computer Science
Columbia University
New York, NY 10027

pkc@cs.columbia.edu and sal@cs.columbia.edu

Abstract

In this paper, we propose meta-learning as a general tech-
nique to combine the results of multiple learning algorithms,
each applied to a set of training data. We detail several meta-
learning strategies for combining independently learned clas-
sifiers, each computed by different algorithms, to improve
overall prediction accuracy. The overall resulting classi-
fier is composed of the classifiers generated by the differ-
ent learning algorithms and a meta-classifier generated by
a meta-learning strategy. The strategies described here are
independent of the learning algorithms used. Preliminary ex-
periments using different strategies and learning algorithms
on two molecular biologysequence analysis data sets demon-
strate encouraging results. Machine learning techniques are
central to automated knowledge discovery systems and hence
our approach can enhance the effectiveness of such systems.

1 Introduction

The information age provides us with easy access to a wide
range of information, however, it also creates databases of
increasing size and complexity. The task of analyzing such
vast amounts of data by hand with the goal of gaining new in-
sights becomes an impossible one; automated techniques are
therefore necessary to cope with this problem. In the fields
of machine learning and knowledge discovery, researchers
have been developing automated techniques to learn new
knowledge by analyzing data to uncover subtle relationships
and patterns of events that are not immediately discernible
by direct human inspection or are overlooked due to the
sheer volume of data. Various machine learning algorithms
have been proposed to learn descriptive relationships and
uncover rules that classify and explain what the data mean.
These techniques are central to automated knowledge dis-

covery systems [12], which generally also contain statistical
data analysis tools. Attaining high prediction accuracy is the
primary goal of most of the work on inductive learning tech-
niques (techniques that use minimal or no domain knowledge
and are further discussed in Section 2) and is also the focus
of our approach described here.

Most research in inductive learning focuses on the concep-
tion and evaluation of distinct learning strategies embodied by
an individual algorithm. Since different algorithms have dif-
ferent representations and search heuristics, different search
spaces are being explored and hence potentially diverse re-
sults can be obtained from different algorithms. Mitchell [13]
refers to this phenomenon as inductive bias. That is, the out-
come of running an algorithm is biased in a certain direction.
Furthermore, different data sets have different characteristics
and the performance of different algorithms on these data
sets might differ. In other words, to date there is no single
algorithm that works best on all kinds of data sets. Hence, we
postulate that it is beneficial to build a framework that allows
the intelligent integration of different learning algorithms to
be used in diverse situations.

Recently, several researchers have proposed implementing
learning systems by integrating in some fashion a number of
different strategies and algorithms to boost overall accuracy
[23, 24, 19]. The basic notion behind this integration is to
complement the different underlying learning strategies em-
bodied by different learning algorithms by effectively reduc-
ing the space of incorrect classifications of a learned concept.
There are many ways of integrating different learning al-
gorithms. For example, work on integrating inductive and
explanation-based learning [10, 20] requires a complicated
new algorithm that implements both approaches to learning
in a single system. However, not much work has been done
on combining different learning systems in a loose fashion
by essentially learning a new system that knows how to com-
bine the collective outputs of the constituent systems. One
advantage of this approach is its simplicity in treating the
individual learning systems as black boxes with little or no
modification required to achieve a final system. Therefore,
individual systems can be added or replaced with relative
ease.

Wolpert [23] presents a theory of stacked generalization
(meta-learning). Several (level 0) classifiers are first learned
from the same training set. The predictions made by these
classifiers on the training set and the correct classifications
form the training set of the next level (level 1) classifier.
When an instance is being classified, the level 0 classifiers
first make their predictions on the instance. The predictions
are then presented to the level 1 classifier, which makes the
final prediction. Zhang et al.’s [24] work utilizes a similar
approach to learn a combiner based on the predictions made
by three different classifiers. The work from the two groups
demonstrates that meta-learning can improve overall predic-
tion accuracy. Silver et al.’s [18] work also employs multiple
learners, but no learning is involved beyond those learners
(i.e., at the meta level). The Machine Learning Toolbox
project provides a set of learning algorithms as individual
tools without much interaction among them.

In this paper we present the concept of meta-learning, in-
troduced in [3], and its use in coalescing the results from
multiple inductive learning systems to improve accuracy.
Meta-learning can also be used to combine results from a
set of parallel or distributed learning processes to improve
learning speed. In this paper we focus primarily on boosting
accuracy, leaving details of our preliminary experiments to
improve speed to a companion paper [5]. The ultimate goal
of this work is to improve both the accuracy and efficiency of
machine learning by means of parallel processing of multiple
learning systems applied to massive amounts of training data,
which is further discussed in Section 6.

There are many ways one might imagine to combine
learned classifiers. For this paper, we detail several ap-
proaches and measure their behavior on a set of standard
tasks often cited in the literature. Thus, this work may be
viewed as exploratory to determine the efficacy of the general
approach, but certainly it is not exhaustive. Section 2 dis-
cusses meta-learning and how it facilitates a multiple learner
framework. Section 3 details our strategies for boosting ac-
curacy by meta-learning. Section 4 discusses our preliminary
experiments. Section 5 presents our experimental results and
Section 6 discusses our findings and work in progress.

2 Meta-learning

Meta-learning can be loosely defined as learning from infor-
mation generated by a learner(s). It can also be viewed as the
learning of meta-knowledge on the learned information. In
our work we concentrate on learning from the output of in-
ductive learning (or learning-from-examples) systems. Given
a set of labeled (classified) examples, the task of inductive
learning is to form concepts that describe relationships among
the data and accurately predict the classification of future
unclassified instances. These concepts are also called clas-
sifiers. In the inductive learning case meta-learning means
learning from the classifiers produced by the learners and the
predictions of these classifiers on training data. A classifier

(or concept) is the output of an inductive learning system and
a prediction (or classification) is the predicted class generated
by a classifier when an instance is supplied. That is, we are
interested in the output of the learners, not the learners them-
selves. Moreover, the training data presented to the learners
initially are also available to the meta-learner if warranted.

Meta-learning is a general technique to coalesce the results
of multiple learners. In this paper we concentrate on using
meta-learning to combine different learners to improve pre-
diction accuracy. We call this approach multistrategy hypoth-
esis boosting. (The term hypothesis boosting was introduced
by Schapire [17]; his work on hypothesis boosting using only
one strategy is discussed in Section 6.) It involves applying
multiple algorithms on the same set of data and the results
of the learned concepts are combined by meta-learning. Our
goal is to achieve an overall accuracy that is higher than the ac-
curacy obtained by any of the individual learning algorithms.
Similar ideas were first proposed in [19] in the domain of
speech recognition. The aforementioned approaches used by
Wolpert [23] and Zhang et al. [24] are examples of this ap-
proach. In the next section we will discuss our approach to
using meta-learning for multistrategy hypothesis boosting.

3 Multistrategy Hypothesis Boosting

The objective here is to improve prediction accuracy by ex-
ploring the diversity of multiple learning algorithms through
meta-learning. This is achieved by a basic configuration
which has several different base learners and one meta-
learner that learns from the output of the base leaners, as
depicted in Figure 1. The meta-learner may employ the same
algorithm as one of the base learners or a completely distinct
algorithm. Each of the base learners is provided with the
entire training set of raw data. However, the training set for
the meta-learner (meta-level training data) varies according
to the strategies described below, and is quite different from
the original training set. Each base-learner generates a base
classifier and the meta-learner generates a meta-classifier.
Note that the meta-learner does not aim at picking the “best”
base classifier; instead it tries to combine the classifiers. That
is, the prediction accuracy of the overall system is not limited
to the most accurate base classifier. It is our intention to
generate an overall system that outperforms the underlying
base classifiers.

There are in general two types of information the meta-
learner can combine: the learned base classifiers and the
predictions of the learned base classifiers. The first type of
information consists of concept descriptions in the base clas-
sifiers (or concepts). Some common concept descriptions
are represented in the form of decision trees, rules, and net-
works. Since we are aiming at diversity in the base learners,
the learning algorithms chosen usually have different repre-
sentations for their learned classifiers. Hence, in order to
combine the classifiers, we need to define a uniform repre-
sentation to which the different learned classifiers are trans-

Training

Data

Meta-level

Training

Data

Meta-

Learner

...

Base

Base

Classifier 1
Base

Base
Classifier 2

Base
Classifier n

Base
Learner 2

Learner 1

Learner n

Meta-
Classifier

Figure 1: Multistrategy Hypothesis Boosting

lated. However, it is difficult to define such a representation
to encapsulate all the other representations without losing
a significant amount of information during the translation.
For instance, it is very difficult to define a common repre-
sentation to integrate the distance functions and exemplars
computed by a nearest-neighbor learning algorithm with the
tree computed by a decision tree learning algorithm. Because
of this difficulty, one might define a uniform representation
that limits the types of representation that can be supported
and hence the choice of learning algorithms.

An alternative strategy is to integrate the predictions of
the learned classifiers for the training set leaving the inter-
nal organization of each classifier completely transparent.
These predictions are hypothesized classes present in the
training data and can be categorical or associated with some
numeric measure (e.g., probabilities, confidence values, and
distances). In this case, the problem of finding a common
ground is much less severe. For instance, classes with nu-
meric measures can be treated as categorical (by picking the
class with the highest value). Since any learner can be em-
ployed in this case, we focus our work on combining predic-
tions from the learned classifiers. In addition, since convert-
ing categorical predictions to ones with numeric measures
is undesirable or impossible, we concentrate on combining
categorical predictions.

We experimented with three types of meta-learning strate-
gies (combiner, arbiter, and hybrid) in combining predictions
which we discuss in the following sections. For pedagogical
reasons, our discussion assumes three base learners and one
meta-learner.

3.1 Combiner Strategy

In the combiner strategy, the predictions of the learned base
classifiers on the training set form the basis of the meta-
learner’s training set. A composition rule, which varies in
different schemes, determines the content of training exam-
ples for the meta-learner. From these examples, the meta-

learner generates a meta-classifier, that we call a combiner.
In classifying an instance, the base classifiers first generate
their predictions. Based on the same composition rule, a
new instance is generated from the predictions, which is then
classified by the combiner (see Figure 2). The aim of this
strategy is to coalesce the predictions from the base classi-
fiers by learning the relationship between these predictions
and the correct prediction.

Combiner
Final

Prediction
Classifier 2Instance

Classifier 1

Classifier 3

Prediction 1

Prediction 3

Prediction 2

Figure 2: Classification in the combiner strategy

We experimented with three schemes for the composition
rule. First, three predictions,

�
1 ����� , � 2 ����� , and

�
3 ����� , for

each example � in the original training set of examples, � ,
are generated by three separate classifiers,

�
1,

�
2, and

�
3.

These predicted classifications are used to form a new set of
“meta-level training instances,” 	 , which is used as input to
a learning algorithm that computes a combiner. The manner
in which 	 is computed varies according to the schemes as
defined below. In the following definitions,
������� ����� denotes
the correct classification of example � as specified in the
training set, � .

1. Return meta-level training instances with the cor-
rect classification and the predictions; i.e., 	 �

Class Attribute vector Example Base classifiers’ predictions

 ���� � ����� ���������
 ����� � �

1 ����� �
2 ����� �

3 �����
table ���������
 1 � 1 table table table
chair ���������
 2 � 2 table chair lamp
lamp ���������
 3 � 3 lamp chair chair

Training set for the meta-class combiner scheme

Class Attribute vector
table (table, table, table)
chair (table, chair, lamp)
lamp (lamp, chair, chair)

Training set for the meta-different arbiter scheme

Class Attribute vector
chair ���������
 2

lamp ���������
 3

Training set for the meta-different-class-attribute hybrid scheme

Class Attribute vector
chair (table, chair, lamp, ���������
 2)
lamp (lamp, chair, chair, ���������
 3)

Figure 3: Sample training sets generated by the combiner, arbiter, and hybrid strategies

	 �
������� ������
 � 1 ������
 � 2 ������
 � 3 ����� �� ��� ����� This
scheme was also used by Wolpert [23]. (For further
reference, this scheme is denoted as meta-class.) A
sample training set is displayed in Figure 3.

2. Return meta-level training instances similar to those
in the first (meta-class) scheme with the addition of
the original attribute vectors in the training exam-
ples; i.e., 	 � 	 �
������� ������
 � 1 ������
 � 2 ������
 � 3 ������
 �����

-���
 ����� ��� ��� ����� (Henceforth, this scheme is denoted
as meta-class-attribute.)

3. Return meta-level training instances similar to those
in the meta-class scheme except that each prediction,��� ����� , has � binary predictions,

���
1 ������
 �����
 ����� ����� ,

where � is the number of classes. Each predic-
tion,

��� � ����� , is produced from a binary classifier,
which is trained on examples that are labeled with
classes ! and "#! . In other words, we are using
more specialized base classifiers and attempting to
learn the correlation between the binary predictions
and the correct prediction. For concreteness, 	 �	 �
������� ������
 � 11 ������
 �����
 � 1

� ������
 � 21 ������
 �����
 � 2
� ������
�

31 ������
 �����
 � 3
� ����� �$� �%� ����� (Henceforth, this

scheme is denoted as meta-class-binary.)

These three schemes for the composition rule are defined in
the context of forming a training set for the combiner. These
composition rules are also used in a similar manner during
classification after a combiner has been computed. Given an
instance whose classification is sought, we first compute the
classifications predicted by each of the base classifiers. The
composition rule is then applied to generate a single meta-
level test instance, which is then classified by the combiner
to produce the final predicted class of the original test datum.

3.2 Arbiter Strategy

In the arbiter strategy, the training set for the meta-learner is
a subset of the training set for the base learners; i.e. the meta-
level training instances are a particular distributionof the raw
training set � . The predictions of the learned base classifiers
for the training set and a selection rule, which varies in dif-
ferent schemes, determines which subset will constitute the
meta-learner’s training set. (This contrasts with the combiner
strategy, which has the same number of examples for the base
classifier as for the combiner. Also, the meta-level training
instances for a combiner incorporate additional information
than just the raw training data.) Based on this training set, the
meta-learner generates a meta-classifier, in this case called
an arbiter. In classifying an instance, the base classifiers first
generate their predictions. These predictions, together with
the arbiter’s prediction and a corresponding arbitration rule,
generate the final prediction (see Figure 4). (This contrasts
with the multi-level arbiter trees introduced in [5].) In this
strategy one learns to arbitrate among the potentiallydifferent
predictions from the base classifiers, instead of learning to
coalesce the predictions as in the combiner strategy. We first
describe the schemes for the selection rule and then those for
the arbitration rule.

We experimented with two schemes for the selection rule,
which chooses training examples for an arbiter. In essence
the schemes select examples that are confusing to the three
base classifiers, from which an arbiter is learned. Based on
three predictions,

�
1 ����� , � 2 ����� , and

�
3 ����� , for each example

� in a set of training examples, � , each scheme generates a
set of training examples, 	 (& �), for the arbiter. The two
versions of this selection rule implemented and reported here
include:

1. Return instances with predictions that disagree; i.e., 	 �

Final

Prediction

Arbitration

Rule
Classifier 2

Prediction 2

Prediction

Arbiter’s

Classifier 1

Arbiter

Instance

Prediction 1

Prediction 3
Classifier 3

Figure 4: Classification in the arbiter strategy

	 � � 	 ��� � � � � 1 ����� �� �
2 ����� ��� � � 2 ����� �� �

3 ����� � ���
Thus, the arbiter is used to decide between conflicting
classifications. However, it does not include classifi-
cations that agree but are incorrect. (We refer to this
scheme as meta-different.) For example, in Figure 3,
the three base classifiers do not share the same pre-
diction for examples � 2 and � 3 so these two examples
constitute the set 	 � .

2. Return instances with predictions that disagree, 	 � , as
in the first (meta-different) case, but also instances with
predictions that agree but are incorrect; i.e, 	 � 	 ��� 	 �

,
where 	 � � 	 � � � � � � 1 ����� � �

2 ����� � �
3 ����� ���

�
����� � ����� �� �
1 ����� � � � Note that we compose both

cases of data that are incorrectly classified or are in
disagreement. (Henceforth, we refer to this case as
meta-different-incorrect.)

The learned arbiters are trained by some learning algorithm
on the particular distinguished distributions of training data
and are used in generating predictions. During the classifi-
cation of an instance, � , an arbitration rule and the learned
arbiter, 	 , produce a final prediction based on the three pre-
dictions,

�
1 � � � , � 2 � � � , and

�
3 � � � , from the three base clas-

sifiers and the arbiter’s own prediction, 	 � � � . The following
arbitration rule applies to both schemes for the selection rule
described above.

1&2. Return the simple vote of the base and arbiter’s
predictions, breaking ties in favor of the ar-
biter’s prediction; i.e., if there are no ties, re-
turn

��
���� � � 1 � � ��
 � 2 � � ��
 � 3 � � ��
 	 � � � � , otherwise return
	 � � � . For example, if the three classifiers predicts
table, chair, and table and the arbiter predicts
chair (i.e., a tie), the final prediction is chair.

3.3 Hybrid Strategy

We integrate the combiner and arbiter strategies in the hybrid
strategy. Given the predictions of the base classifiers on the
original training set, a selection rule picks examples from the
training set as in the arbiter strategy. However, the training
set for the meta-learner is generated by a composition rule
applied to the distribution of training data (a subset of �) as
defined in the combiner strategy. Thus, the hybrid strategy
attempts to improve the arbiter strategy by correcting the pre-
dictions of the “confused” examples. It does so by using the
combiner strategy to coalesce the predicted classifications of
data in disagreement by the base classifiers. A learning algo-
rithm then generates a meta-classifier, effectively a combiner,
from this training set.

When a test instance is classified, the base classifiers
first generate their predictions. These predictions are then
composed to form a meta-level instance for the learned
meta-classifier using the same composition rule. The meta-
classifier then produces the final prediction. The hybrid strat-
egy thus attempts to improve the arbiter strategy by coalesc-
ing predictions instead of purely arbitrating among them.

We experimented with two combinations of composition
and selection rules, though any combination of the rules is
possible:

1. Select examples that have different predictions from the
base classifiers and the predictions, together with the
correct classes and attribute vectors form the training set
for the meta-learner. This integrates the meta-different
and meta-class-attribute schemes. (Henceforth, we re-
fer to this scheme as meta-different-class-attribute.) A
sample training set is displayed in Figure 3.

2. Select examples that have different or incorrect pre-
dictions from the base classifiers and the predictions,
together with the correct classes and attribute vec-
tors form the training set for the meta-learner. This
integrates the meta-different-incorrect and meta-class-
attribute schemes. (Henceforth, denoted as meta-
different-incorrect-class-attribute.)

We described the combiner, arbiter, and hybrid strategies
for meta-learning in multistrategy hypothesis boosting. It is
important to note the difference between the combiner and
arbiter strategies. The combiner strategy tries to find relation-
ships among the predictions generated by the classifiers and
the correct predictions. A combiner is a “learned function”
that determines the final prediction given a set of predictions.
For example, given an unlabeled instance � , the combiner
may learn a rule stating that if classifier

�
1 predicts table,�

2 predicts chair, and
�

3 predicts chair, then the com-
biner predicts lamp (i.e., possibly a completely different
prediction from either classifier). However, the arbiter strat-
egy attempts to arbitrate among the conflicting predictions
and an arbiter is just another classifier, but trained on a bi-
ased distributionof the original examples. Here, for example,

when
�

1,
�

2, and
�

3’s predictionsdisagree, the arbiter makes
its own prediction, which could be completely different from
the three base predictions, and a vote determines the final
prediction. In the next section we describe our experimental
results to explore the effectiveness of these strategies. We
applied the strategies to two real-world scientific tasks em-
ploying different combinations of several standard machine
learning algorithms.

4 Experiments

Four inductive learning algorithms were used in our experi-
ments. We obtained ID3 [16] and CART [1] as part of the
IND package [2] from NASA Ames Research Center; both
algorithms compute decision trees. WPEBLS is the weighted
version of PEBLS [7], which is a nearest-neighbor learning
algorithm. BAYES is a Bayesian classifier that is based
on computing conditional probabilities (frequency distribu-
tions), which is described in [6]. The latter two algorithms
were reimplemented in C.

Two molecular biology sequence analysis data sets, ob-
tained from the UCI Machine Learning Database, were used
in our studies. The secondary protein structure data set (SS)
[15], courtesy of Qian and Sejnowski, contains sequences of
amino acids and the secondary structures at the correspond-
ing positions. There are three structures and 20 amino acids
(21 attributes because of a spacer [15]) in the data. The
amino acid sequences were split into shorter sequences of
length 13 according to a windowing technique used in [15].
The sequences were then divided into a disjoint training and
test set, according to the distribution described in [15]. The
training set, � , for this task has 18105 instances and the test
set has 3520. The DNA splice junction data set (SJ) [14],
courtesy of Noordewier, Towell, and Shavlik, contains se-
quences of nucleotides and the type of splice junction, if any,
at the center of each sequence (three classes). Each sequence
has 60 nucleotides with eight different values each (four base
ones plus four combinations). Some 2552 sequences were
randomly picked as the training set, � , for this task and the
rest, 638 sequences, served as the test set.

The predictions used in the training set of the meta-learner
were generated by a two-fold cross validation scheme. The
training set is first split in two halves. Each of the three base
classifiers were trained on the first half and the second half is
used to generate predictions. Similarly, each base classifier is
trained on the second half and the first half is used to generate
predictions. The predictions from the two halves are merged
and then used in constructing the training set for the meta-
learner. The objective is to mimic the behavior of the learned
classifiers when unseen instances are classified. That is, the
meta-learner is trained on predictions of unseen instances
in the training set. The base learners are also trained on
the entire training set to generate base classifiers, which are
then used with the learned meta-classifier in the classification
process.

We performed experiments on the different schemes for
the combiner, arbiter, and hybrid strategies. Different com-
binations of three base and one meta-learner are explored
on the two data sets and the results are presented in Ta-
bles 1 and 2. Each table has four subtables and each subtable
presents results from a different combination of base learn-
ers. The names of meta-learning schemes are abbreviated
in the tables: m-c represents meta-class, m-c-a represents
meta-class-attribute, and so on. Results for the two data sets
with single-strategy classifiers are displayed in Table 3. In
addition, we experimented with a windowing scheme used
in Zhang’s work [24], which is specific to the SS data. This
scheme is similar to the meta-class scheme described above.
However, in addition to the three predictions present in one
training example for the meta-learner, the guesses on either
side of the three predictions in the sequence (windows) are
also present in the example. We denote this scheme as meta-
class-window (or m-c-w in the tables).

Furthermore, several non-meta-learning approaches were
applied for comparison. Vote is a simple voting scheme
applied to the predictions from the base classifiers. Freq pre-
dicts the most frequent correct class with respect to a combi-
nation of predictions in the training set1. That is, for a given
combination of predictions (� �

combinations for � classes
and
 classifiers), freq predicts the most frequent correct class
in the training data. Vote-b is a simple voting scheme applied
to the predictions from the binary base classifiers.

5 Results

There are two ways to analyze the results. First, we look at
whether the employment of a meta-learner improves accuracy
with respect to the underlying three base classifiers. (The
presence of an improvement is denoted by a ‘+’ in the tables.)
For both sets of data, improvements were always achieved
when BAYES was used as the meta-learner and the other three
learning algorithms we used as the base learners, regardless
of the meta-learning strategies.

Now let us consider various combinations of meta-learner
and strategies with any of base learning algorithms. For
the SJ data, a higher or equal accuracy was consistently at-
tained when BAYES was the meta-learner in the meta-class-
attribute strategy. Similarly, higher accuracy was attained
when ID3 served as the meta-learner in the meta-class and
meta-class-attribute strategies, regardless of the base learn-
ers used. Improvements were also observed in the vote and
freq strategies. For the SS data, none of the various combi-
nations of meta-learners and strategies attained a consistent
improvement in overall accuracy.

Next, we consider whether the use of meta-learning
achieves higher accuracy than the most accurate single-
strategy learner (BAYES). (The presence of an improvement
is denoted by a ‘*’ in the tables.) For the SJ data, an improve-

1Freq was suggested by Wolpert (personal communication).

Table 1: Summary of prediction accuracy for protein secondary structures (%)

Base learners: ID3, CART & WPEBLS

Meta-learner
Scheme BAYES ID3 CART WPEBLS
m-c 56.3+ 55.8+ 55.7+ 55.1
m-c-a 60.3+ 55.4 48.7 48.5
m-c-b 55.6+ 56.6+ 56.6+ 52.7
m-c-w 56.9+ 54.5 49.9 50.6
m-d 60.7+ 56.4+ 56.1+ 53.3
m-d-i 59.8+ 56.4+ 53.9 52.4
m-d-c-a 60.5+ 56.5+ 55.7+ 54.4
m-d-i-c-a 59.1+ 56.4+ 54.1 53.1
vote 56.3+ * better than the best single strategy
freq 56.5+ + better than the best base classifier
vote-b 57.1

Base learners: BAYES, ID3 & CART

Meta-learner
Scheme BAYES ID3 CART WPEBLS
m-c 61.4 62.1 62.1 57.3
m-c-a 62.1 61.0 51.0 50.4
m-c-b 61.1 61.9 61.7 54.4
m-c-w 60.7 60.1 52.5 53.3
m-d 62.2+* 57.2 57.6 57.6
m-d-i 60.8 58.3 57.7 56.6
m-d-c-a 62.1 61.5 58.9 58.5
m-d-i-c-a 60.4 58.6 58.0 56.7
vote 60.6
freq 62.1
vote-b 60.9

Base learners: BAYES, ID3 & WPEBLS

Meta-learner
Scheme BAYES ID3 CART WPEBLS
m-c 60.4 62.1 62.1 55.9
m-c-a 61.9 60.6 51.0 52.6
m-c-b 60.5 61.8 61.8 55.2
m-c-w 59.9 59.5 51.4 52.9
m-d 62.0 57.4 57.3 55.7
m-d-i 60.8 59.0 56.6 54.4
m-d-c-a 61.6 60.7 57.9 56.8
m-d-i-c-a 60.8 59.3 56.1 54.6
vote 59.3
freq 62.2+*
vote-b 59.3

Base learners: BAYES, CART & WPEBLS

Meta-learner
Scheme BAYES ID3 CART WPEBLS
m-c 60.7 62.1 61.8 56.8
m-c-a 61.4 60.5 50.4 50.9
m-c-b 60.5 61.7 61.3 52.6
m-c-w 59.7 57.9 52.6 54.2
m-d 62.0 58.1 57.4 54.6
m-d-i 61.4 58.6 56.8 52.0
m-d-c-a 61.1 60.3 58.0 56.1
m-d-i-c-a 59.4 59.1 59.1 59.2
vote 59.6
freq 60.7
vote-b 60.9

ment was consistently achieved when BAYES served as the
meta-learner in the meta-class-attribute strategy, regardless
of the base learners used. In fact, when the base learners
were BAYES, ID3, and CART, the overall accuracy was the
highest obtained. For the SS data, almost all the results did
not outperform BAYES as a single-strategy learner.

In general, the combiner strategies performed more effec-
tively than the arbiter and hybrid strategies. To our surprise,
the hybrid schemes did not improve the arbiter strategies. In
addition, Zhang’s [24] meta-class-window strategy for the SS
data did not improve accuracy with the base and meta-learners
used here. His study employed a neural net algorithm and
different Bayesian and nearest-neighbor learners than those
reported here.

The two data sets chosen represent two different kinds of
data sets: one is difficult to learn (SS) (50+% accuracy) and
the other is easy to learn (SJ) (90+% accuracy). Our ex-
periments indicate that some of our meta-learning strategies
improve accuracy in the SJ data and are more effective than
the non-meta-learning strategies. However, in the SS data,
both meta-learning and non-meta-learning strategies are com-
parable. This can be attributed to the quality of predictions

from the base classifiers for the two data sets. Consider
the statistics we gathered from the predictions for the test set
from classifiers trained by BAYES, ID3, and WPEBLS (other
combinations of learners have similar statistics). In the SJ
data set, on 89% of the instances all predictions from the three
learned classifiers were correct, on 7% two predictions were
correct, on 2% only one, and on 1% none (all incorrect). In
the SS data set, on 29% of the instances all three predictions
were correct, on 33% only two, on 18% only one, and on
20% none. The high percentage of having one or none cor-
rect out of three predictions in the SS data set might greatly
hinder the ability of meta-learning to work. One possible
solution is to increase the number of base classifiers to lower
the percentage of having one or none correct predictions.

6 Discussion

Unlike Wolpert [23] and Zhang et al.’s [24] reports, we
present results from all the combinations of presented strate-
gies, base learners, and meta-learners. We have shown that
improvements can be achieved consistently with a combina-
tion of a meta-learner and collection of base learners across

Table 2: Summary of prediction accuracy for RNA splice junctions (%)

Base learners: ID3, CART & WPEBLS

Meta-learner
Scheme BAYES ID3 CART WPEBLS
m-c 95.1+ 94.8 94.8 72.7
m-c-a 96.6+* 95.0+ 95.9+ 95.5+
m-c-b 95.1+ 94.4 94.4 74.1
m-d 96.4+ 94.7 95.5+ 95.3+
m-d-i 96.6+* 95.8+ 95.8+ 95.5+
m-d-c-a 96.1+ 94.5 94.8 95.3+
m-d-i-c-a 95.9+ 94.2 95.0+ 95.0+
vote 95.0+ * better than the best single strategy
freq 95.0+ + better than the best base classifier
vote-b 95.1+

Base learners: BAYES, ID3 & CART

Meta-learner
Scheme BAYES ID3 CART WPEBLS
m-c 95.6 96.6+* 95.3 74.3
m-c-a 97.2+* 96.4 95.0 96.9+*
m-c-b 95.8 96.2 96.2 75.2
m-d 96.9+* 95.3 95.6 95.9
m-d-i 96.9+* 95.5 95.9 96.2
m-d-c-a 95.8 94.5 95.1 95.9
m-d-i-c-a 95.3 94.2 94.8 95.5
vote 95.6+
freq 95.9+
vote-b 95.6

Base learners: BAYES, ID3 & WPEBLS

Meta-learner
Scheme BAYES ID3 CART WPEBLS
m-c 97.2+* 96.9+* 96.9+* 73.7
m-c-a 97.6+* 96.9+* 95.9 96.1
m-c-b 96.6+* 96.1 96.1 75.6
m-d 96.2 95.6 95.8 96.1
m-d-i 96.1 95.3 96.6+* 95.6
m-d-c-a 95.6 94.4 94.5 95.0
m-d-i-c-a 95.1 94.4 94.2 95.0
vote 97.0+*
freq 97.0+*
vote-b 96.1

Base learners: BAYES, CART & WPEBLS

Meta-learner
Scheme BAYES ID3 CART WPEBLS
m-c 97.0+* 96.6+* 95.3 73.7
m-c-a 97.2+* 96.4 95.3 96.2
m-c-b 96.1 96.2 96.2 76.2
m-d 96.7+* 95.0 96.2 96.2
m-d-i 96.6+* 95.0 95.8 96.2
m-d-c-a 94.8 94.2 94.7 94.5
m-d-i-c-a 94.7 94.2 94.5 94.8
vote 97.0+*
freq 96.9+*
vote-b 96.2

Table 3: Prediction accuracy of single-strategy classifiers (%)

Data Set/Algorithm BAYES ID3 CART WPEBLS
Secondary Structure (SS) 62.1 55.4 50.8 48.1
Splice Junction (SJ) 96.4 93.9 94.8 94.4

various strategies in both data sets. Similarly, better results
were achieved for various combinations of different strate-
gies and meta-learners across all base learners in the SJ data
set. Improvements on the already high accuracy obtained
from the base learners in the SJ data set reflects the viability
of the meta-learning approach.

As mentioned in the previous section, the combiner
schemes generally performed more effectively than the ar-
biter or hybrid schemes. This suggests that coalescing the
results is more beneficial than arbitrating among them. In ad-
dition, the training set for the combiner strategy includes ex-
amples derived from the entire original training set, whereas
the one for the arbiter or hybrid strategy includes only exam-
ples chosen by a selection rule from the original set. That
is, the training set for the arbiter or hybrid strategy is usually
smaller than the one for the combiner strategy and hence con-
tains less information. (This crucial fact may not be exhibited
in larger learning tasks with massive amounts of data.)

Among the combiner schemes, the meta-class-attribute
scheme generally performed more effectively than the others.
This might be due to the additional information (attribute
vectors) present in the training examples, suggesting that
information from the predictions alone is not sufficient to
achieve higher prediction accuracy. To our surprise, the meta-
class-binary scheme did not perform more effectively than
the meta-class scheme. We postulated that more specialized
binary classifiers would provide more precise information
for the meta-learner. However, that was not the case in our
experiments.

We also postulated that a probabilistic learner like BAYES
would be a more effective meta-learner due to the relatively
low regularity in the training data for meta-learners and its
probabilistic means of combining evidence. Our empirical
results indeed show that BAYES is a more effective meta-
learner.

An anonymous reviewer of another paper proposed an “op-

timal” formula based on Bayes Theorem to combine the
results of classifiers, namely,

� ����� ��� �

� �
 ��� � ��� �
 � ,
where � is a prediction and
 is a classifier.

� �
 � is the prior
which represents how likely classifier
 is the true model
and
� ��� �
 � represents the probability classifier
 guesses � .

Therefore,
� ����� represents the combined probability of pre-

diction � to be the correct answer. Unfortunately, to be opti-
mal, Bayes Theorem requires the priors

� �
 � ’s to be known,
which are usually not, and it also requires the summation to
be over all possible classifiers, which is almost impossible to
achieve. However, an approximate

� ����� can still be calcu-
lated by approximating the priors using various established
techniques on the training data and using only the classi-
fiers available. This technique is essentially a “weighted
voting scheme” and does not consider possible relationships
among predictions generated by the classifiers. This and the
aforementioned strategies and issues are the subject matter
of ongoing experimentation.

Hypothesis boosting using only a single strategy has re-
cently attracted attention in the theoretical learning commu-
nity. The pioneering work in this area is due to Schapire [17].
Based on an initial learned hypothesis for some concept de-
rived from a random distribution of training data, Schapire’s
scheme iteratively generates two additional distributions of
examples. The first newly derived distribution includes ran-
domly chosen training examples that are equally likely to be
correctly or incorrectly classified by the first learned classi-
fier. A new classifier is formed from this distribution. Finally,
a third distribution is formed from the training examples on
which both of the first two classifiers disagree. A third clas-
sifier (in effect, an arbiter) is computed for this distribution.
The predictions of the three learned classifiers are combined
using a simple arbitration rule similar to the one of the rules
we presented above. Schapire rigorously proves that the
overall accuracy is higher than the one achieved by simply
applying the learning algorithm to the initial distribution un-
der the PAC learning model [21]. In fact, he shows that
arbitrarily high accuracy can be achieved by recursively ap-
plying the same procedure. Although his approach is limited
to the PAC model of learning, some success was achieved in
the domain of character recognition, using neural networks
[9]. Freund [11] has a similar approach, but with potentially
many more distributions.

In addition to applying meta-learning to coalescing results
from multiple different algorithms applied to the same set
of data, meta-learning can also be used to combine results
from a set of parallel or distributed learning processes to
improve speed. Much of the research in inductive learning
concentrates on problems with relatively small amounts of
data. With the coming age of very large network computing,
it is likely that orders of magnitude more data in databases
will be available for various learning problems of real world
importance. The Human Genome Project [8] and Grand
Challenges of HPCC [22] are perhaps the best examples of
large scale efforts demanding efficient knowledge discovery

systems. Parallel and distributed processing would substan-
tially increase the speed of processing data and hence the
amount of data a knowledge discovery system can handle
effectively. Our approach is to apply learning processes to
disjoint subsets of the original training set concurrently (a
data reduction technique) and the results from the processes
are then combined through meta-learning. Preliminary re-
sults reported in [5] are encouraging. Since the ultimate goal
of this work is to improve both the accuracy and efficiency
of machine learning, we have been working on combining
ideas in multistrategy hypothesis boosting, described in this
paper, with those in parallel learning. We call this approach
multistrategy parallel learning. Preliminary results reported
in [4] are encouraging. To our knowledge, not much work in
this direction has been attempted by others.

7 Concluding Remarks

The schemes presented here constitute a step toward the mul-
tistrategy parallel learning approach and the preliminary re-
sults obtained so far indicates certain meta-learning strategies
and algorithm for meta-learning are more effective than oth-
ers. More experiments are being performed to ensure that
the results we have achieved to date are indeed statistically
significant, and to study how meta-learning scales with much
larger data sets. We intend to further explore the diversity
and possible “symbiotic” effects of multiple learners to im-
prove our meta-learning schemes in a parallel and distributed
environment.

Acknowledgements

This work has been partially supported by grants from New
York State Science and Technology Foundation, Citicorp,
and NSF CISE. We thank David Wolpert for many useful
and insightful discussions that substantially improved the
ideas presented in this paper. We also thank Pat Langley and
the anonymous reviewers for comments on improving the
presentation of this paper.

References

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees. Wadsworth,
Belmont, CA, 1984.

[2] W. Buntine and R. Caruana. Introduction to IND and
Recursive Partitioning. NASA Ames Research Center,
1991.

[3] P. Chan and S. Stolfo. Meta-learning for multistrategy
and parallel learning. In Proc. Second Intl. Work. on
Multistrategy Learning, pages 150–165, 1993.

[4] P. Chan and S. Stolfo. Toward multistrategy parallel and
distributed learning in sequence analysis. In Proc. First
Intl. Conf. Intel. Sys. Mol. Biol., pages 65–73, 1993.

[5] P. Chan and S. Stolfo. Toward parallel and distributed
learning by meta-learning. In Working Notes AAAI
Work. Know. Disc. Databases, pages 227–240, 1993.

[6] P. Clark and T. Niblett. The CN2 induction algorithm.
Machine Learning, 3:261–285, 1987.

[7] S. Cost and S. Salzberg. A weighted nearest neighbor
algorithm for learning with symbolic features. Machine
Learning, 10:57–78, 1993.

[8] C. DeLisi. The human genome project. American Sci-
entist, 76:488–493, 1988.

[9] H. Drucker, R. Schapire, and P. Simard. Boosting per-
formance in neural networks. Intl. J. Pat. Recog. Art.
Intel., 1993. To appear.

[10] N. Flann and T. Dietterich. A study of explanation-
based mehtods for inductive learning. Machine Learn-
ing, 4:187–266, 1989.

[11] Y. Freund. Boosting a weak learning algorithm by ma-
jority. In Proc. 3rd Work. Comp. Learning Theory,
pages 202–216, 1990.

[12] C. Matheus, P. Chan, and G. Piatesky-Shapiro. Systems
for knowledge discovery in databases. IEEE Trans.
Know. Data. Eng., 1993. To appear.

[13] T. M. Mitchell. The need for biases in learning general-
izaions. Technical Report CBM-TR-117, Dept. Comp.
Sci., Rutgers Univ., 1980.

[14] M. Noordewier, G. Towell, and J. Shavlik. Training
knowledge-based neural networks to recognize genes
in DNA sequences. In Proc. NIPS-91, pages 530–536,
1991.

[15] N. Qian and T. Sejnowski. Predicting the secondary
structure of globular proteins using neural network
models. J. Mol. Biol., 202:865–884, 1988.

[16] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[17] R. Schapire. The strength of weak learnability. Machine
Learning, 5:197–226, 1990.

[18] B. Silver, W. Frawley, G. Iba, J. Vittal, and K. Bradford.
ILS: A framework for multi-paradigmatic learning. In
Proc. Seventh Intl. Conf. Machine Learning, pages 348–
356, 1990.

[19] S. Stolfo, Z. Galil, K. McKeown, and R. Mills. Speech
recognition in parallel. In Proc. Speech Nat. Lang.
Work., pages 353–373. DARPA, 1989.

[20] G. Towell, J. Shavlik, and M. Noordewier. Refinement
of approximate domain theories by knowledge-based
neural networks. In Proc. AAAI-90, pages 861–866,
1990.

[21] L. Valiant. A theory of the learnable. Comm. ACM,
27:1134–1142, 1984.

[22] B. Wah et al. High performance computing and commu-
nications for grand challenge applications: Computer
vision, speech and natural language processing, and ar-
tificial intelligence. IEEE Trans. Know. Data. Eng.,
5(1):138–154, 1993.

[23] D. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

[24] X. Zhang, J. Mesirov, and D. Waltz. A hybrid system
for protein secondary structure prediction. J. Mol. Biol.,
225:1049–1063, 1992.

