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Abstract

In this paper, we propose meta-learning as a general tech-
nigue to combinethe results of multiplelearning agorithms,
each applied to aset of training data. We detail several meta
learning strategiesfor combining independently learned clas-
sifiers, each computed by different algorithms, to improve
overal prediction accuracy. The overal resulting classi-
fier is composed of the classifiers generated by the differ-
ent learning agorithms and a meta-classifier generated by
a meta-learning strategy. The strategies described here are
independent of thelearning algorithmsused. Preliminary ex-
periments using different strategies and learning agorithms
on two molecular biol ogy sequence analysisdata setsdemon-
strate encouraging results. Machine learning techniques are
central to automated knowledgediscovery systemsand hence
our approach can enhance the effectiveness of such systems.

1 Introduction

The information age provides us with easy access to awide
range of information, however, it aso creates databases of
increasing size and complexity. The task of analyzing such
vast amounts of databy hand with the goal of gaining new in-
sightsbecomes an impossible one; automated techniques are
therefore necessary to cope with this problem. In the fields
of machine learning and knowledge discovery, researchers
have been developing automated techniques to learn new
knowledge by analyzing datato uncover subtle rel ationships
and patterns of events that are not immediately discernible
by direct human inspection or are overlooked due to the
sheer volume of data. Various machine learning algorithms
have been proposed to learn descriptive relationships and
uncover rules that classify and explain what the data mean.
These techniques are central to automated knowledge dis-

covery systems[12], which generally also contain statistical
dataanalysistools. Attaining high prediction accuracy isthe
primary goal of most of the work on inductive learning tech-
niques (techniquesthat useminimal or no domain knowledge
and are further discussed in Section 2) and is also the focus
of our approach described here.

Most research ininductivelearning focuses on the concep-
tionand eval uation of distinct |earning strategi esembodied by
anindividual agorithm. Since different algorithmshave dif-
ferent representations and search heuristics, different search
spaces are being explored and hence potentialy diverse re-
sultscan beobtained from different algorithms. Mitchell [13]
refers to this phenomenon asinductive bias. That is, the out-
come of running an algorithmisbiased in a certain direction.
Furthermore, different data sets have different characteristics
and the performance of different algorithms on these data
sets might differ. In other words, to date there is no single
algorithmthat worksbest on all kindsof datasets. Hence, we
postul atethat itisbeneficial to build aframework that allows
the intelligent integration of different learning algorithmsto
be used in diverse situations.

Recently, severd researchers have proposed implementing
learning systems by integrating in some fashion a number of
different strategies and algorithms to boost overall accuracy
[23, 24, 19]. The basic notion behind this integration is to
complement the different underlying learning strategies em-
bodied by different learning a gorithmsby effectively reduc-
ing the space of incorrect classifications of alearned concept.
There are many ways of integrating different learning al-
gorithms. For example, work on integrating inductive and
explanation-based learning [10, 20] requires a complicated
new algorithm that implements both approaches to learning
in asingle system. However, not much work has been done
on combining different learning systems in a loose fashion
by essentialy learning anew system that knows how to com-
bine the collective outputs of the constituent systems. One
advantage of this approach is its smplicity in treating the
individual learning systems as black boxes with little or no
modification required to achieve a final system. Therefore,
individual systems can be added or replaced with relative
ease.



Wolpert [23] presents a theory of stacked generalization
(metarlearning). Severa (level 0) classifiers arefirst learned
from the same training set. The predictions made by these
classifiers on the training set and the correct classifications
form the training set of the next level (level 1) classifier.
When an instance is being classified, the level O classifiers
first make their predictions on the instance. The predictions
are then presented to the level 1 classifier, which makes the
fina prediction. Zhang et a.'s [24] work utilizes a similar
approach to learn a combiner based on the predictions made
by three different classifiers. The work from the two groups
demonstrates that meta-learning can improve overall predic-
tionaccuracy. Silver et a.'s[18] work aso employsmultiple
learners, but no learning is involved beyond those learners
(i.e, a the meta level). The Machine Learning Toolbox
project provides a set of learning algorithms as individua
toolswithout much interaction among them.

In this paper we present the concept of meta-learning, in-
troduced in [3], and its use in coaescing the results from
multiple inductive learning systems to improve accuracy.
Meta-learning can aso be used to combine results from a
set of parallel or distributed learning processes to improve
learning speed. In thispaper we focus primarily on boosting
accuracy, leaving details of our preliminary experiments to
improve speed to a companion paper [5]. The ultimate goal
of thiswork isto improve both the accuracy and efficiency of
machine learning by means of parallel processing of multiple
learning systems applied to massive amounts of training data,
which isfurther discussed in Section 6.

There are many ways one might imagine to combine
learned classifiers. For this paper, we detail severa ap-
proaches and measure their behavior on a set of standard
tasks often cited in the literature. Thus, this work may be
viewed asexploratory to determinethe efficacy of thegenera
approach, but certainly it is not exhaustive. Section 2 dis-
cusses meta-learning and how it facilitatesamultiplelearner
framework. Section 3 details our strategies for boosting ac-
curacy by meta-learning. Section 4 discussesour preliminary
experiments. Section 5 presents our experimental resultsand
Section 6 discusses our findings and work in progress.

2 Meta-learning

Meta-learning can beloosdly defined as learning from infor-
mation generated by alearner(s). It can also beviewed asthe
learning of meta-knowledge on the learned information. In
our work we concentrate on learning from the output of in-
ductivelearning (or learning-from-exampl es) systems. Given
a set of labeled (classified) examples, the task of inductive
learning isto form conceptsthat describerel ationshipsamong
the data and accurately predict the classification of future
unclassified instances. These concepts are also caled clas
sifiers. In the inductive learning case meta-learning means
learning from the classifiers produced by the learners and the
predictions of these classifiers on training data. A classifier

(or concept) isthe output of an inductivelearning system and
aprediction (or classification) isthe predicted class generated
by a classifier when an instance is supplied. That is, we are
interested in the output of the learners, not thelearnersthem-
selves. Moreover, the training data presented to the learners
initially are a so available to the meta-learner if warranted.
Meta-learningisageneral techniqueto coal escetheresults
of multiple learners. In this paper we concentrate on using
meta-learning to combine different learners to improve pre-
dictionaccuracy. Wecall thisapproach multistrategy hypoth-
esisboosting. (The term hypothesi s boosting wasintroduced
by Schapire[17]; hiswork on hypothesisboosting using only
one strategy is discussed in Section 6.) It involves applying
multiple algorithms on the same set of data and the results
of the learned concepts are combined by meta-learning. Our
goal istoachievean overall accuracy that ishigher thantheac-
curacy obtained by any of theindividual learning algorithms.
Similar ideas were first proposed in [19] in the domain of
speech recognition. The aforementioned approaches used by
Wolpert [23] and Zhang et al. [24] are examples of this ap-
proach. In the next section we will discuss our approach to
using metarlearning for multistrategy hypothesis boosting.

3 Multistrategy Hypothesis Boosting

The objective here is to improve prediction accuracy by ex-
ploring the diversity of multiplelearning algorithmsthrough
meta-learning. This is achieved by a basic configuration
which has severa different base learners and one meta-
learner that learns from the output of the base leaners, as
depictedin Figure 1. The meta-learner may employ the same
algorithm as one of the base learners or a completely distinct
algorithm. Each of the base learners is provided with the
entire training set of raw data. However, the training set for
the meta-learner (meta-leve training data) varies according
to the strategies described below, and is quite different from
the origina training set. Each base-learner generates a base
classifier and the meta-learner generates a meta-classifier.
Note that the meta-learner does not aim at picking the“best”
base classifier; instead it triesto combinethe classifiers. That
is, the prediction accuracy of theoverall systemisnot limited
to the most accurate base classifier. It is our intention to
generate an overall system that outperforms the underlying
base classifiers.

There are in genera two types of information the meta-
learner can combine; the learned base classifiers and the
predictions of the learned base classifiers. The first type of
information consists of concept descriptionsin the base clas-
sifiers (or concepts). Some common concept descriptions
are represented in the form of decision trees, rules, and net-
works. Since we are aiming at diversity in the base learners,
the learning a gorithms chosen usually have different repre-
sentations for their learned classifiers. Hence, in order to
combine the classifiers, we need to define a uniform repre-
sentation to which the different learned classifiers are trans-
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Figure 1: Multistrategy Hypothesis Boosting

lated. However, it is difficult to define such arepresentation
to encapsulate dl the other representations without losing
a significant amount of information during the trandation.
For instance, it is very difficult to define a common repre-
sentation to integrate the distance functions and exemplars
computed by a nearest-neighbor learning a gorithm with the
tree computed by adecision treelearning algorithm. Because
of this difficulty, one might define a uniform representation
that limits the types of representation that can be supported
and hence the choice of |earning algorithms.

An dternative strategy is to integrate the predictions of
the learned classifiers for the training set leaving the inter-
nal organization of each classifier completely transparent.
These predictions are hypothesized classes present in the
training data and can be categorical or associated with some
numeric measure (e.g., probabilities, confidence values, and
distances). In this case, the problem of finding a common
ground is much less severe. For instance, classes with nu-
meric measures can be treated as categorica (by picking the
class with the highest value). Since any learner can be em-
ployed in this case, we focus our work on combining predic-
tionsfrom the learned classifiers. In addition, since convert-
ing categorical predictions to ones with numeric measures
is undesirable or impossible, we concentrate on combining
categorical predictions.

We experimented with three types of meta-learning strate-
gies(combiner, arbiter, and hybrid) in combining predictions
which we discuss in the following sections. For pedagogica
reasons, our discussion assumes three base learners and one
meta-learner.

3.1 Combiner Strategy

In the combiner strategy, the predictions of the learned base
classifiers on the training set form the basis of the meta
learner’s training set. A composition rule, which variesin
different schemes, determines the content of training exam-
ples for the meta-learner. From these examples, the meta-

learner generates a meta-classifier, that we call a combiner.
In classifying an instance, the base classifiers first generate
their predictions. Based on the same composition rule, a
new instanceis generated from the predictions, which isthen
classified by the combiner (see Figure 2). The am of this
strategy is to coalesce the predictions from the base classi-
fiers by learning the relationship between these predictions
and the correct prediction.

Classifier 1 -
Prediction 1

Prediction 2 Final

Prediction

Instance Classifier 2 Combiner

Prediction 3

Classifier 3

Figure 2: Classification in the combiner strategy

We experimented with three schemes for the composition
rule. Firgt, three predictions, C1(z), Co(x), and C3(z), for
each example « in the original training set of examples, £,
are generated by three separate classifiers, C'1, Co, and Ci.
These predicted classifications are used to form a new set of
“meta-leve training instances,” 1", which is used as input to
alearning agorithm that computes a combiner. The manner
in which 7' is computed varies according to the schemes as
defined below. Inthefollowing definitions, class(x) denotes
the correct classification of example « as specified in the
training set, F.

1. Return metalevel training instances with the cor-
rect classification and the predictions, i.e, T =



Class | Attributevector || Example | Baseclassifiers predictions
class(z) attrvec(x) x Ci(z) | Cao(x) | Cs(z)
tabl e attrvecy 1 table | table | table
chair attrvecs o table | chair | anp

[ anp attrvecs z3 lanp | chair | chair

| Training set for the meta-class combiner scheme |

Class Attribute vector
tabl e (tabl e,t abl e, t abl e)
chair (t abl e, chai r, | anmp)
[ anp (I amp, chai r,chair)

| Training set for the meta-different arbiter scheme |

Class Attribute vector
chair attrvees
[ anp attrvecs

| Training set for the meta-different-class-attribute hybrid scheme |

Class Attribute vector
chair (t abl e, chai r, | anp, attrvecy)
[ anp (I amp, chai r, chai r, attrvecs)

Figure 3: Sample training sets generated by the combiner, arbiter, and hybrid strategies

{(class(z),C1(z), Ca(x),C3(x)) | « € E}. This
scheme was also used by Wolpert [23]. (For further
reference, this scheme is denoted as meta-class) A
sample training set isdisplayed in Figure 3.

2. Return meta-level training instances similar to those
in the first (meta-class) scheme with the addition of
the origina attribute vectors in the training exam-
ples, i.e, T = {(class(z), C1(x), Ca(x), C3(x), attr-
vec(z)) | @ € E}. (Henceforth, this scheme is denoted
as meta-class-attribute.)

3. Return meta-level training instances similar to those
in the meta-class scheme except that each prediction,
Cji(z), has m binary predictions, C;,(z), ..., C;, (),
where m is the number of classes. Each predic-
tion, Cj,(x), is produced from a binary classifier,
which is trained on examples that are labeled with
classes j and —j. In other words, we are using
more specidized base classifiers and attempting to
learn the correlation between the binary predictions
and the correct prediction. For concreteness, 1" =
{(class(z),C1,(x),...,C1, (), Co(x),...,Co, (),
C3(z),...,C3,(x)) | = € E}. (Henceforth, this
scheme is denoted as meta-class-binary.)

Thesethree schemesfor thecompositionrulearedefinedin
the context of forming atraining set for the combiner. These
composition rules are also used in a similar manner during
classification after a combiner has been computed. Given an
instance whose classification is sought, we first compute the
classifications predicted by each of the base classifiers. The
composition rule is then applied to generate a single meta
level test instance, which is then classified by the combiner
to producethefina predicted class of the original test datum.

3.2 Arbiter Strategy

Inthe arbiter strategy, the training set for the meta-learner is
asubset of thetraining set for thebase learners; i.e. themeta-
level training instances are aparticular distribution of the raw
training set /. The predictionsof thelearned base classifiers
for thetraining set and a selection rule, which variesin dif-
ferent schemes, determines which subset will constitute the
meta-learner’straining set. (Thiscontrastswith thecombiner
strategy, which hasthe same number of examplesfor thebase
classifier as for the combiner. Also, the meta-leve training
instances for a combiner incorporate additional information
thanjust theraw training data.) Based onthistraining set, the
meta-learner generates a meta-classifier, in this case called
anarbiter. Inclassifying aninstance, the base classifiersfirst
generate their predictions. These predictions, together with
the arbiter’s prediction and a corresponding arbitrationrule,
generate the fina prediction (see Figure 4). (This contrasts
with the multi-level arbiter trees introduced in [5].) In this
strategy onelearnsto arbitrateamong thepotentially different
predictions from the base classifiers, instead of learning to
coalesce the predictions asin the combiner strategy. Wefirst
describe the schemes for the sel ection rule and then those for
thearbitrationrule.

We experimented with two schemes for the selection rule,
which chooses training examples for an arbiter. In essence
the schemes select examples that are confusing to the three
base classifiers, from which an arbiter is learned. Based on
threepredictions, C1(z), Co(z), and C3(z), for each example
z inaset of training examples, I, each scheme generates a
set of training examples, 1" (C E), for the arbiter. The two
versionsof this selection ruleimplemented and reported here
include:

1. Returninstanceswithpredictionsthat disagree;i.e., T’ =
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Figure 4: Classificationin the arbiter strategy

Ty = {z € I | (Cu() # Cal2))V (Cofx) # Cs(x))}.
Thus, the arbiter is used to decide between conflicting
classfications. However, it does not include classifi-
cations that agree but are incorrect. (We refer to this
scheme as meta-different.) For example, in Figure 3,
the three base classifiers do not share the same pre-
diction for examples 2, and z3 so these two examples
constitutethe set 7.

2. Return instances with predictions that disagree, 7, as
inthefirst (meta-different) case, but also instances with
predictionsthat agree but areincorrect; i.e, 1" = Ty UT;,
whereT; = {z € E | (Ci(z) = Co(z) = Cs(z)) A
(class(z) # Ci(z))}. Note that we compose both
cases of data that are incorrectly classified or are in
disagreement. (Henceforth, we refer to this case as
meta-different-incorrect.)

Thelearned arbitersaretrained by somelearning algorithm
on the particular distinguished distributions of training data
and are used in generating predictions. During the classifi-
cation of an instance, y, an arbitration rule and the learned
arbiter, A, produce afina prediction based on the three pre-
dictions, C1(y), Ca(y), and C3(y), from thethree base clas-
sifiers and the arbiter’s own prediction, A(y). Thefollowing
arbitration rule appliesto both schemes for the selection rule
described above.

1&2. Return the simple vote of the base and arbiter's
predictions, breaking ties in favor of the ar-
biter's prediction; i.e, if there are no ties, re
turn vote(C1(y), Co(y), Cs(y), A(y)), otherwisereturn
A(y). For example, if the three classifiers predicts
t abl e, chair, and t abl e and the arbiter predicts
chair (i.e, atie), thefina predictionischai r.

3.3 Hybrid Strategy

Weintegratethe combiner and arbiter strategiesinthehybrid
strategy. Given the predictions of the base classifiers on the
original training set, ase ection rule picks examples fromthe
training set as in the arbiter strategy. However, the training
set for the meta-learner is generated by a composition rule
applied to the distribution of training data (a subset of £) as
defined in the combiner strategy. Thus, the hybrid strategy
attemptsto improvethearbiter strategy by correcting the pre-
dictionsof the“confused” examples. It does so by using the
combiner strategy to coal esce the predicted classifications of
datain disagreement by the base classifiers. A learning ago-
rithmthen generates ameta-classifier, effectively acombiner,
from thistraining set.

When a test instance is classified, the base classifiers
first generate their predictions. These predictions are then
composed to form a metalevel instance for the learned
meta-classifier using the same composition rule. The meta-
classifier then producesthefinal prediction. Thehybrid strat-
egy thus attempts to improve the arbiter strategy by coal esc-
ing predictionsinstead of purely arbitrating among them.

We experimented with two combinations of composition
and selection rules, though any combination of the rulesis
possible:

1. Select examplesthat have different predictionsfromthe
base classifiers and the predictions, together with the
correct classes and attributevectorsform thetraining set
for the meta-learner. This integrates the meta-different
and meta-class-attribute schemes. (Henceforth, we re-
fer to this scheme as meta-different-class-attribute.) A
sample training set isdisplayed in Figure 3.

2. Sdlect examples that have different or incorrect pre-
dictions from the base classifiers and the predictions,
together with the correct classes and attribute vec-
tors form the training set for the meta-learner. This
integrates the meta-different-incorrect and meta-class-
attribute schemes.  (Henceforth, denoted as meta-
different-incorrect-class-attribute.)

We described the combiner, arbiter, and hybrid strategies
for meta-learning in multistrategy hypothesis boosting. It is
important to note the difference between the combiner and
arbiter strategies. Thecombiner strategy triesto find relation-
ships among the predictions generated by the classifiers and
the correct predictions. A combiner is a“learned function”
that determinesthefina prediction given aset of predictions.
For example, given an unlabeled instance z, the combiner
may learn arule stating that if classifier C'; predictst abl e,
C, predictschai r, and C3 predicts chai r, then the com-
biner predicts | anp (i.e, possibly a completely different
prediction from either classifier). However, the arbiter strat-
egy attempts to arbitrate among the conflicting predictions
and an arbiter is just another classifier, but trained on a bi-
ased distributionof theoriginal examples. Here, for example,



when C1, C, and C3' spredictionsdisagree, thearbiter makes
itsown prediction, which could be completely different from
the three base predictions, and a vote determines the final
prediction. In the next section we describe our experimental
results to explore the effectiveness of these strategies. We
applied the strategies to two real-world scientific tasks em-
ploying different combinations of severa standard machine
learning algorithms.

4 Experiments

Four inductive learning algorithms were used in our experi-
ments. We obtained ID3 [16] and CART [1] as part of the
IND package [2] from NASA Ames Research Center; both
algorithmscomputedecisiontrees. WPEBL Sistheweighted
version of PEBLS[7], which is a nearest-neighbor learning
algorithm. BAYES is a Bayesian classifier that is based
on computing conditiona probabilities (frequency distribu-
tions), which is described in [6]. The latter two algorithms
were reimplemented in C.

Two molecular biology sequence analysis data sets, ob-
tained from the UCI Machine Learning Database, were used
in our studies. The secondary protein structure data set (SS)
[15], courtesy of Qian and Sejnowski, contai ns sequences of
amino acids and the secondary structures at the correspond-
ing positions. There are three structures and 20 amino acids
(21 attributes because of a spacer [19]) in the data. The
amino acid sequences were split into shorter sequences of
length 13 according to a windowing technique used in [15].
The sequences were then divided into a disjoint training and
test set, according to the distribution described in [15]. The
training set, I, for thistask has 18105 instances and the test
set has 3520. The DNA splice junction data set (SJ) [14],
courtesy of Noordewier, Towell, and Shavlik, contains se-
guences of nucleotides and thetype of splicejunction, if any,
at the center of each sequence (three classes). Each sequence
has 60 nucleotideswith eight different values each (four base
ones plus four combinations). Some 2552 sequences were
randomly picked as the training set, F, for thistask and the
rest, 638 sequences, served as the test set.

The predictionsused in thetraining set of the meta-learner
were generated by a two-fold cross validation scheme. The
training set isfirst split intwo halves. Each of the three base
classifiers were trained on thefirst half and the second half is
used to generate predictions. Similarly, each base classifier is
trained on the second half and thefirst half isused to generate
predictions. The predictionsfrom the two halves are merged
and then used in constructing the training set for the meta-
learner. The objectiveisto mimic thebehavior of thelearned
classifiers when unseen instances are classified. That is, the
meta-learner is trained on predictions of unseen instances
in the training set. The base learners are aso trained on
the entire training set to generate base classifiers, which are
then used with thelearned meta-classifier inthe classification
process.

We performed experiments on the different schemes for
the combiner, arbiter, and hybrid strategies. Different com-
binations of three base and one meta-learner are explored
on the two data sets and the results are presented in Ta
bles1 and 2. Each table hasfour subtables and each subtable
presents results from a different combination of base learn-
ers. The names of meta-learning schemes are abbreviated
in the tables: m-c represents meta-class, m-c-a represents
meta-class-attribute, and so on. Resultsfor the two data sets
with single-strategy classifiers are displayed in Table 3. In
addition, we experimented with a windowing scheme used
in Zhang's work [24], which is specific to the SS data. This
schemeis similar to the meta-class scheme described above.
However, in addition to the three predictions present in one
training example for the meta-learner, the guesses on either
side of the three predictions in the sequence (windows) are
also present in the example. We denote this scheme as meta-
class-window (or m-c-w in the tables).

Furthermore, severa non-meta-learning approaches were
applied for comparison. \bte is a smple voting scheme
applied to the predictionsfrom the base classifiers. Freq pre-
dictsthe most frequent correct class with respect to acombi-
nation of predictionsin thetraining set'. That is, for a given
combination of predictions (m*® combinationsfor m classes
and ¢ classifiers), freq predictsthe most frequent correct class
inthetraining data. \ote-b isasimplevoting scheme applied
to the predictions from the binary base classifiers.

5 Results

There are two ways to anayze the results. First, we look at
whether theemployment of ameta-1earner improvesaccuracy
with respect to the underlying three base classifiers. (The
presence of animprovement isdenoted by a‘+' inthetables.)
For both sets of data, improvements were always achieved
when BAY ESwasused asthe meta-| earner and the other three
learning a gorithms we used as the base learners, regardiess
of the meta-learning strategies.

Now let us consider various combinations of meta-learner
and strategies with any of base learning algorithms. For
the SJ data, a higher or equal accuracy was consistently at-
tained when BAY ES was the meta-learner in the meta-class-
attribute strategy. Similarly, higher accuracy was attained
when ID3 served as the meta-learner in the meta-class and
meta-class-attribute strategies, regardless of the base learn-
ers used. Improvements were aso observed in the vote and
freq strategies. For the SS data, none of the various combi-
nations of meta-learners and strategies attained a consi stent
improvement in overall accuracy.

Next, we consider whether the use of metalearning
achieves higher accuracy than the most accurate single-
strategy learner (BAY ES). (The presence of an improvement
isdenoted by a‘*’ inthetables.) For the SJdata, animprove-

1Freq was suggested by Wolpert (personal communication).



Table 1: Summary of prediction accuracy for protein secondary structures (%)

| Baselearners: ID3, CART & WPEBLS

| [ Baselearners BAYES, ID3& CART |

Meta-learner Meta-learner
Scheme BAYES | ID3 CART | WPEBLS Scheme BAYES | ID3 | CART | WPEBLS
m-c 56.3+ 55.8+ | B5.7+ | 55.1 m-c 61.4 62.1 | 62.1 57.3
m-c-a 60.3+ 55.4 | 48.7 485 m-c-a 62.1 61.0 | 51.0 50.4
m-c-b 55.6+ 56.6+ | 56.6+ | 52.7 m-c-b 61.1 619 | 61.7 54.4
m-c-w 56.9+ 545 | 49.9 50.6 m-c-w 60.7 60.1 | 525 53.3
m-d 60.7+ 56.4+ | 56.1+ | 53.3 m-d 62.2+* | 57.2 | 57.6 57.6
m-d-i 59.8+ 56.4+ | 53.9 52.4 m-d-i 60.8 58.3 | 57.7 56.6
m-d-c-a | 60.5+ 56.5+ | 55.7+ | 544 m-d-c-a | 62.1 61.5 | 58.9 58.5
m-d-i-c-a | 59.1+ 56.4+ | 54.1 53.1 m-d-i-c-a | 60.4 58.6 | 58.0 56.7
vote 56.3+ * better than the best single strategy vote 60.6
freq 56.5+ + better than the best base classifier freq 62.1
vote-b 57.1 vote-b 60.9
| Base learners; BAYES, ID3 & WPEBLS | | Base learners. BAYES, CART & WPEBLS |
Meta-learner Meta-learner
Scheme BAYES | ID3 | CART | WPEBLS Scheme BAYES | ID3 | CART | WPEBLS
m-c 60.4 62.1 | 62.1 55.9 m-c 60.7 62.1 | 61.8 56.8

m-c-a 61.9 60.6 | 51.0 52.6
m-c-b 60.5 61.8 | 61.8 55.2
m-c-w 59.9 595 | 514 52.9
m-d 62.0 574 | 57.3 55.7
m-d-i 60.8 59.0 | 56.6 54.4
m-d-c-a | 61.6 60.7 | 57.9 56.8
m-d-i-c-a | 60.8 503 | 56.1 54.6

m-c-a 61.4 60.5 | 50.4 50.9
m-c-b 60.5 61.7 | 61.3 52.6
m-c-w 59.7 57.9 | 52.6 54.2
m-d 62.0 581 | 574 54.6
m-d-i 61.4 58.6 | 56.8 52.0
m-d-c-a | 61.1 60.3 | 58.0 56.1
m-d-i-c-a | 59.4 50.1 | 59.1 59.2

vote 59.3
freq 62.2+*
vote-b 59.3

vote 59.6
freq 60.7
vote-b 60.9

ment was consistently achieved when BAY ES served as the
meta-learner in the meta-class-attribute strategy, regardless
of the base learners used. In fact, when the base learners
were BAYES, ID3, and CART, the overall accuracy was the
highest obtained. For the SS data, amost all the results did
not outperform BAY ES as a single-strategy |earner.

In general, the combiner strategies performed more effec-
tively than the arbiter and hybrid strategies. To our surprise,
the hybrid schemes did not improve the arbiter strategies. In
addition, Zhang's[24] meta-class-window strategy for the SS
datadid not improveaccuracy withthebaseand meta-learners
used here. His study employed a neurd net agorithm and
different Bayesian and nearest-neighbor learners than those
reported here.

The two data sets chosen represent two different kinds of
data sets: oneisdifficult to learn (SS) (50+% accuracy) and
the other is easy to learn (SJ) (90+% accuracy). Our ex-
periments indicate that some of our meta-learning strategies
improve accuracy in the SJ data and are more effective than
the non-meta-learning strategies. However, in the SS data,
both meta-l earning and non-meta-l earning strategi esarecom-
parable. This can be attributed to the quality of predictions

from the base classifiers for the two data sets. Consider
the statistics we gathered from the predictionsfor the test set
fromclassifierstrained by BAYES, ID3, and WPEBL S (other
combinations of learners have similar statistics). In the SJ
dataset, on 89% of theinstancesall predictionsfromthethree
learned classifiers were correct, on 7% two predictionswere
correct, on 2% only one, and on 1% none (all incorrect). In
the SS data set, on 29% of the instances all three predictions
were correct, on 33% only two, on 18% only one, and on
20% none. The high percentage of having one or none cor-
rect out of three predictionsin the SS data set might greatly
hinder the ability of meta-learning to work. One possible
solutionisto increase the number of base classifiers to lower
the percentage of having one or none correct predictions.

6 Discussion

Unlike Wolpert [23] and Zhang et al’s [24] reports, we
present resultsfrom all the combinationsof presented strate-
gies, base learners, and meta-learners. We have shown that
improvements can be achieved consistently with a combina-
tion of a meta-learner and collection of base learners across



Table 2: Summary of prediction accuracy for RNA splice junctions (%)

| Baselearners: ID3, CART & WPEBLS

| [ Baseleaners. BAYES, ID3 & CART |

Meta-learner Meta-learner
Scheme BAYES | ID3 CART | WPEBLS Scheme BAYES | ID3 CART | WPEBLS
m-c 95.1+ 948 | 94.8 72.7 m-c 95.6 96.6+* | 95.3 74.3
m-c-a 96.6+* | 95.0+ | 95.9+ | 95.5+ m-c-a 97.2+* | 964 95.0 96.9+*
m-c-b 95.1+ 944 | 94.4 74.1 m-c-b 95.8 96.2 96.2 75.2
m-d 96.4+ 947 | 955+ | 953+ m-d 96.9+* | 95.3 95.6 95.9
m-d-i 96.6+* | 95.8+ | 95.8+ | 95.5+ m-d-i 96.9+* | 955 95.9 96.2
m-d-c-a | 96.1+ 945 | 94.8 95.3+ m-d-c-a | 95.8 94.5 95.1 95.9
m-d-i-c-a | 95.9+ 94.2 95.0+ | 95.0+ m-d-i-c-a | 95.3 94.2 94.8 95.5
vote 95.0+ * better than the best single strategy vote 95.6+
freq 95.0+ + better than the best base classifier freq 95.9+
vote-b 95.1+ vote-b 95.6
| Base learners. BAYES, ID3 & WPEBLS | | Base learners. BAYES, CART & WPEBLS |
Meta-learner Meta-learner
Scheme BAYES | ID3 CART | WPEBLS Scheme BAYES | ID3 CART | WPEBLS
m-c 97.2+* | 96.9+* | 96.9+* | 73.7 m-c 97.0+* | 96.6+* | 95.3 73.7
m-c-a 97.6+* | 96.9+* | 95.9 96.1 m-c-a 97.2+* | 96.4 95.3 96.2
m-c-b 96.6+* | 96.1 96.1 75.6 m-c-b 96.1 96.2 96.2 76.2
m-d 96.2 95.6 95.8 96.1 m-d 96.7+* | 95.0 96.2 96.2
m-d-i 96.1 95.3 96.6+* | 95.6 m-d-i 96.6+* | 95.0 95.8 96.2
m-d-c-a | 95.6 94.4 94.5 95.0 m-d-c-a | 94.8 94.2 94.7 94.5
m-d-i-c-a | 95.1 94.4 94.2 95.0 m-d-i-c-a | 94.7 94.2 94.5 94.8
vote 97.0+* vote 97.0+*
freq 97.0+* freq 96.9+*
vote-b 96.1 vote-b 96.2

Table 3: Prediction accuracy of single-strategy classifiers (%)

Data Set/Algorithm BAYES | ID3 | CART | WPEBLS
Secondary Structure (SS) 62.1 554 | 50.8 48.1
Splice Junction (SJ) 964 | 939 | 9438 94.4

various strategies in both data sets. Similarly, better results
were achieved for various combinations of different strate-
gies and meta-learners across dl base learners in the SJ data
set.  Improvements on the aready high accuracy obtained
from the base learners in the SJ data set reflects the viability
of the meta-1earning approach.

As mentioned in the previous section, the combiner
schemes generally performed more effectively than the ar-
biter or hybrid schemes. This suggests that coaescing the
resultsismore beneficia than arbitratingamong them. Inad-
dition, the training set for the combiner strategy includes ex-
amples derived from the entire origina training set, whereas
the onefor the arbiter or hybrid strategy includesonly exam-
ples chosen by a selection rule from the original set. That
is, thetraining set for the arbiter or hybrid strategy is usually
smaller than the onefor the combiner strategy and hence con-
tainslessinformation. (Thiscrucial fact may not be exhibited
in larger learning tasks with massive amounts of data.)

Among the combiner schemes, the meta-class-attribute
scheme generally performed more effectively than the others.
This might be due to the additiona information (attribute
vectors) present in the training examples, suggesting that
information from the predictions alone is not sufficient to
achievehigher prediction accuracy. To our surprise, themeta-
class-binary scheme did not perform more effectively than
the meta-class scheme. We postul ated that more specialized
binary classifiers would provide more precise information
for the meta-learner. However, that was not the case in our
experiments.

We al so postul ated that aprobabilisticlearner like BAY ES
would be a more effective meta-learner due to the relatively
low regularity in the training data for meta-learners and its
probabilistic means of combining evidence. Our empirica
results indeed show that BAYES is a more effective meta-
learner.

Ananonymousreviewer of another paper proposed an “op-



timal” formula based on Bayes Theorem to combine the
results of clessifiers, namely, P(z) = >_. P(c) x P(z|c),
where z isapredictionand c isaclassifier. P(c) istheprior
which represents how likely classifier ¢ is the true model
and P(z|c) represents the probability classifier ¢ guesses .
Therefore, P () represents the combined probability of pre-
diction z to be the correct answer. Unfortunately, to be opti-
mal, Bayes Theorem requires the priors P(c¢)’sto be known,
which are usually not, and it aso requires the summation to
be over al possibleclassifiers, whichisamost impossibleto
achieve. However, an approximate P(z) can still be calcu-
lated by approximating the priors using various established
techniques on the training data and using only the classi-
fiers available. This technique is essentially a “weighted
voting scheme” and does not consider possible rel ationships
among predictions generated by the classifiers. Thisand the
aforementioned strategies and issues are the subject matter
of ongoing experimentation.

Hypothesis boosting using only a single strategy has re-
cently attracted attention in the theoretical learning commu-
nity. The pioneeringwork inthisareaisdueto Schapire[17].
Based on an initia learned hypothesis for some concept de-
rived from arandom distribution of training data, Schapire's
scheme iteratively generates two additional distributions of
examples. The first newly derived distribution includes ran-
domly chosen training examples that are equally likely to be
correctly or incorrectly classified by the first learned classi-
fier. A new classifier isformedfromthisdistribution. Finally,
athird distribution is formed from the training examples on
which both of the first two classifiers disagree. A third clas-
sifier (in effect, an arbiter) is computed for this distribution.
The predictions of the three learned classifiers are combined
using asimple arbitration rule similar to the one of the rules
we presented above. Schapire rigoroudly proves that the
overal accuracy is higher than the one achieved by simply
applying the learning algorithm to theinitial distributionun-
der the PAC learning model [21]. In fact, he shows that
arbitrarily high accuracy can be achieved by recursively ap-
plying the same procedure. Although hisapproachislimited
to the PAC model of learning, some success was achieved in
the domain of character recognition, using neura networks
[9]. Freund [11] has a similar approach, but with potentially
many more distributions.

In addition to applying meta-learning to coal escing results
from multiple different agorithms applied to the same set
of data, meta-learning can aso be used to combine results
from a set of paralld or distributed learning processes to
improve speed. Much of the research in inductive learning
concentrates on problems with relatively small amounts of
data. With the coming age of very large network computing,
it is likely that orders of magnitude more data in databases
will be available for various|earning problems of real world
importance. The Human Genome Project [8] and Grand
Challenges of HPCC [22] are perhaps the best examples of
large scale efforts demanding efficient knowledge discovery

systems. Parallel and distributed processing would substan-
tially increase the speed of processing data and hence the
amount of data a knowledge discovery system can handle
effectively. Our approach is to apply learning processes to
digoint subsets of the original training set concurrently (a
data reduction technique) and the results from the processes
are then combined through meta-learning. Preliminary re-
sultsreportedin [5] are encouraging. Sincethe ultimate god
of thiswork is to improve both the accuracy and efficiency
of machine learning, we have been working on combining
ideas in multistrategy hypothesis boosting, described in this
paper, with those in parallel learning. We call this approach
multistrategy parallel learning. Preliminary results reported
in[4] are encouraging. To our knowledge, not much work in
thisdirection has been attempted by others.

7 Concluding Remarks

The schemes presented here constitutea step toward the mul -
tistrategy parallel learning approach and the preliminary re-
sultsobtained so far indi cates certain meta-learning strategies
and algorithm for meta-learning are more effective than oth-
ers. More experiments are being performed to ensure that
the results we have achieved to date are indeed statistically
significant, and to study how meta-learning scales with much
larger data sets. We intend to further explore the diversity
and possible “symbiotic” effects of multiple learners to im-
prove our meta-learning schemes in aparallel and distributed
environment.
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