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André Treptow and Andreas Zell

University of Tuebingen
Department of Computer Science WSI-RA

Sand 1
D-72076 Tuebingen, Germany

Email: treptow@informatik.uni-tuebingen.de

Abstract— Recently Viola et al. [13] presented a method for
real-time object detection in images using a boosted cascade of
simple features. In this paper we show how an Evolutionary
Algorithm can be used within the Adaboost framework to
find new features providing better classifiers. The Evolutionary
Algorithm replaces the exhaustive search over all features so that
even very large feature sets can be searched in reasonable time.
Experiments on two different sets of images prove that by the
use of evolutionary search we are able to find object detectors
that are faster and have higher detection rates.

I. INTRODUCTION

Detecting objects in images in real-time is a challenging
problem. Due to the time constraint (40ms to process one
frame) one has to find a good trade-off between high detection
rates and runtime. Discriminative and fast to compute features
have to be found that allow to build robust classifiers. Viola
at. al. [13] were the first who developed a real-time frontal
face detector that achieves comparable detection and false
positive rates to actual state-of-the art systems [5][16][4][15].
According to Viola et al. the detector is about 15 times faster
than the method described by Rowley et al. [5], which is
considered to be one of the fastest systems.
Due to the robustness and real-time capability of the approach,
different publications emerged that enhanced the idea of
boosting simple weak classifiers. Li et al. [17] describe a
variant of Adaboost called Floatboost for learning better
classifiers. Lilienhart et al. [14] showed that extending the
basic feature set yields detectors with lower error rates.
However, extending the feature set leads to much higher
training times because exhaustive search over all possible
features is done. To reduce training time McCane et al. [10]
proposed a simple heuristic search known as local search to
find suboptimal features. However, they only use the base
feature set with 4 different types of features and are only
able to find classifiers that have slightly worse detection rates
than those produced with exhaustive search. Bartlett et al.
[12] also use a heuristic to find promising features: After
selecting 5% of all possible features randomly, they refine
their selection by shifting, scaling and reflecting the best

found feature in small steps.
Recapitulating the research that is based on the publication of
Viola et al. one can see that there are mainly two problems to
deal with: Extending the feature set and being able to search
over these very large sets in reasonable time. Another problem
is, that one does not know the best feature base in advance. To
overcome these problems, we use an Evolutionary Algorithm
in combination with Adaboost to search over a large number
of possible features. Our goal is to find faster classifiers that
use fewer and more significant features and that achieve
comparable or even better classification results compared to
the classifiers that are trained with Adaboost in combination
with exhaustive search over a small set of features.

The use of Evolutionary Algorithms in the field of image
processing, especially automatic learning of features for
object detection, is a field of research which receives growing
interest. Howard et al. [3] apply Genetic Programming (GP)
to build a classifier that detects ships in satellite images.
Krawiec [8] extends standard GP by a local search operation
for visual learning. Lin et al. [9] propose a co-evolutionary
GP to learn composite features based on primitive features
that are designed by human experts. Bala et al. [6] combine
a Genetic Algorithm (GA) with decision tree learning: The
GA selects a good subset of features from a fixed set and a
decision tree is learned to build the detector structure. Guarda
et al. [1] combine a GA to select different convolution masks
(features) with GP to evolve the final detector based logical
combinations of pixel convolutions in subwindows.
Our approach pays special attention to the real-time capability
of the resulting object detector that is meant to be applied
in real-time vision tasks on our robots to detect and track
objects in gray value images. Therefore, the EA operates on
a large set of fast to calculate features. Instead of evolving
a detector structure by GP, the Adaboost algorithm learns a
weighted linear combination of the best features that were
selected by evolutionary search. The final detector can be
evaluated very quickly because of this simple linear structure
and the fast wavelet-like features.



The paper is organized as follows: The Adaboost learning
procedure proposed in [13] is introduced in section II. Section
III describes our idea of integrating an evolutionary search
into the Adaboost framework. To demonstrate the advantages
of this combination, we evaluate different object detectors,
which are trained with our algorithm and compare detection
rates and runtimes on two different image sets. The results
of those experiments are shown in section IV. Section V
summarizes our work and points out perspectives for future
research.

II. ADABOOST LEARNING OF OBJECT DETECTORS

Recently, Viola and Jones developed a reliable method to
detect faces in pictures in real-time. An object that has to
be detected is described by a combination of a set of simple
Haar-wavelet like features shown in figure 1.

Fig. 1. Four different types of rectangle features within their bounding box.
The sum of pixels in the white boxes are subtracted from the sum of pixels
in the black areas.

The advantage of using these simple features is that they
can be calculated very quickly with the use of a so called
“integral image”. An integral image II over an image I is
defined as follows:

II(x, y) =
∑

x′≤x,y′≤y

I(x′, y′) (1)

In [13] it is shown that every rectangular sum within an
image can be computed with the use of an integral image by
four array references. In our implementation the total integral
image is calculated in less than 1 ms on a Athlon XP 1600.

To detect an object a classifier has to be trained consisting
of several discriminating features within a subwindow. The
possible positions and scales of the four different base types
within a box sized 24x24 allow more than 160000 (far more
than the number of pixels!) alternative features. Therefore, one
has to select a small set of features that describe the object that
has to be detected. Adaboost [18] is a mechanism so select a
low number of good classification functions, so called “weak
classifiers”, to form a final “strong classifier”, which is a linear
combination of the weak classifiers. In the context of learning
features, each weak classifier hj(x) consists of one feature fj :

hj(x) =

{

1 : if pjfj(x) < pjθj

0 : otherwise
(2)

where θj is a threshold and pj a parity to indicate the direction
of the inequality.

The algorithm to select a predefined number of features
given a training set of positive an negative example images

1) Input: Training examples (xi, yi), i = 1..N with
positive (yi = 1) and negative (yi = 0) examples.

2) Initialization: weights w1,i = 1

2m
, 1

2l
with m

negative and l positive examples

3) For t=1,...,T:

a) Normalize all weights

b) For each feature j train classifier hj with
error εj =

∑

i wt,i|hj(xi − yi)|

c) Choose ht with lowest error εt

d) Update weights: wt+1,i = wt,iβ
1−ei

t with

ei =

{

0 : xi correctly classified
1 : otherwise

and βt = εt

1−εt

4) Final strong classifier:

h(x) =

{

1 :
∑T

t=1
αtht(x) ≥ 0.5

∑T

t=1
αt

0 : otherwise
with αt = log( 1

βt

)

Fig. 2. Adaboost learning algorithm as proposed in [13].

is shown in figure 2. The Adaboost algorithm iterates over a
number of T rounds. In every iteration, the space of all possi-
ble features is searched exhaustively to train weak classifiers
that consist of one feature. To train a single weak classifier, one
has to find the threshold θj for the feature value to discriminate
between positive and negative examples. Due to the fact that
every weak classifier only has to be better than a guess,
calculation of the threshold is very simple: We determine the
mean value of the feature responses on the positive examples
mpos and the mean value of the feature results on the negative
examples mneg. The threshold is calculated as

θ =
mpos + mneg

2
(3)

After choosing the best weak classifier concerning the
weighted classification error on the training set, all training
examples are reweighted, to concentrate in the next round on
those examples that were not correctly classified. At the end,
the resulting strong classifier is a weighted linear combination
of all T weak classifiers.

III. EVOLUTIONARY ALGORITHM FOR FEATURE

SELECTION

Our goal is to replace the exhaustive search over all features
(step 3b) in figure 2) by an evolutionary search (see figure 3)
and to increase the number of possible features.

We enlarge the base feature set, so that we come up
with 6 different base types that are shown in figure 4.



Step 3)b) EASearch()
begin

t2:=0;
initialize feature population(P (0));
repeat

P ′ := select(P (t2));
crossover(P ′);
mutate(P ′);
train classifiers(P ′);
evaluate classification error(P ′);
P (t2 + 1) := replace(P (t2), P ′);
t2:=t2+1;

until terminated;
end;

Fig. 3. Evolutionary Algorithm which replaces step 3)b) in figure 2

The weights wi, i = 1, ..., 4 are integers between -4 and
4. Remember that the base features in [13] are special
cases of our extended feature set. The first feature in figure
1 for example is described by feature type t = 3 with
w1 = 1, w2 = −1, w3 = −1, w4 = 1.

We use these 6 base types to be comparable to [13]

Fig. 4. New feature set: 6 different geometrical layouts

considering the runtime for calculating the feature response
on an image. The most complex feature is the first one
shown in figure 1 which requires 9 lookup operations in the
integral image to calculate the result. None of the features
in the extended set requires more than 9 lookup operations.
The most general feature is feature number 6 in the new set
(see figure 4). The two regions of interest can cover non
symmetrical dependencies with larger spatial distance.

We encode every feature by a string of up to 13 integer
variables (see figure 5):

• Base-type k ∈ {1, 2, ..., 6} of the feature describing one
of the six different geometrical layouts.

• Position (xtl, ytl) of the upper left corner within the
detector subwindow

• Position (xbr, ybr) of the lower right corner within the
detector subwindow

• Weights wi ∈ {−4, ..., 4}, i = 1, ..., 4
• If k = 6: Upper left (x′tl, y

′
tl) and lower right (x′br, y

′
br)

corner of second feature box

Fig. 5. Parameters for features (k = 3 and k = 6)

Therefore, the genotype of an individual is represented
by the following 13-dimensional integer string:
(t, w1, w2, w3, w4, xtl, ytl, xbr, ybr, x

′
tl, y

′
tl, x

′
br, y

′
br). With

this representation, the problem of selecting features becomes
a constrained non-linear integer programming problem. As a
fitness function for evaluating individuals we use the error
function εj =

∑

i wt,i|hj(xi) − yi)| which is the same as
in the original Adaboost training procedure. Therefore, to
calculate the fitness of an individual j, we first evaluate
the feature on every training example and determine the
threshold θj to build a single weak classifier hj . Fitness is
then calculated as the mean classification error of the weak
classifier on the training set. Individuals that are not suitable
for building a classifier with low classification error will be
penalized with a low fitness value and features that are highly
discriminative will receive a high fitness value.

The evolutionary search is driven by two main operators,
crossover and mutation. We use is a standard uniform
crossover. Given two parents A and B the resulting offspring
C is calculated as follows:

Ci =

{

Bi : r ≤ 0.5
Ai : otherwise

, i = 1...n (4)

where r is a uniform random number ∈ [0, 1] and n describes
the length of the individuals.
Mutation of an individual is done by the following scheme:

1) Choose new type t ∈ {1, ..., 6} with probability pmt

2) Choose new weight with probability pmw

3) Mutate positions of feature corners by adding a random
constant (xrm, yrm), xrm, yrm ∈ {−3, ..3}

We use a repair operator on individuals that are no longer
feasible after applying mutation and crossover. Individuals for
which the upper left and lower right feature corners are in
wrong order are repaired by altering corner positions. As the
feature value has to be average free, the weights are rescaled
by the repair operator so that they sum up to zero. In case of
feature type k = 6, the repair operator also adjusts the sizes



of the two regions of interest so that they are equal.
In our EA, parents are selected randomly and children replace
the parent population with a standard (µ + λ) replacement.

IV. EXPERIMENTS

In the following we compare the standard Adaboost learning
with exhaustive search (ExBoost) against our combination
of Adaboost and evolutionary search, which we will call
EABoost. ExBoost searches over the initial limited feature
set, which is shown in figure 1, while EABoost applies our
extended set of features. For training and testing we use two
different image sets: One set containing faces and another set
containing soccer balls. The face image set is provided by P.
Carbonetto [2] and contains 4916 images showing different
faces and 7872 images which do not show a face. Figure 6
shows some of the face and non face images. The face images
seem to be the same as in the original experiments described
by Viola and Jones. The gray value images have the size of
24x24 pixels and are variance normalized. The face/non face
sets are split randomly into a training and a test set containing
2423 positive examples (faces) and 3737 negative examples
(non faces) each. We sorted out those images from the original
image set that were duplicate or too similar to others, because
we do not want to have images in the test set that are too
similar to the training set.
The second image set which is used in our experiments
contains images showing a soccer ball (490 images per
test/training set each) and randomly cropped picture regions
where no ball is present at all (4145 images per test/training
set each). The ball images have the size of 19x19 pixels.

Fig. 6. Images from face/non face set

With both algorithms we trained face and ball detectors
using the given training sets. Training was stopped when the
resulting strong classifier labeled all examples in the training
set correctly. Parameters used for evolution were: Population
size P = 250, 20% of all individuals undergo crossover
(pc = 0.2), 80% of all individuals were mutated (pm = 0.8)
and the population was initialized randomly. In the following,

Fig. 7. Examples from the image set with balls/non balls

averaged results over 20 runs of the EABoost experiments are
shown. The EA terminated if the population was converged to
a good solution so that no better individual was found within
the next 50 generations. If convergence did not occur within
400 generations, the EA was stopped as well. Experiments
were carried out on an Pentium III 650MHz processor.

The classification rates and the false positive rates for both
algorithms during training are shown in figure 8 and 9. For
both training sets EABoost is able to find classifiers with a
lower number of features compared to ExBoost. Table I shows
the best, average and worst number of features. Note that
the classifiers learned with EABoost use only 75%/82% (face
set/ball set) of the number of features of ExBoost. Therefore,
as shown in table IV, the classifiers can be evaluated faster.

Algorithm best average worst
ExBoost (face set) 227 227 227
EABoost (face set) 158 171 184

ExBoost (ball set) 132 132 132
EABoost (ball set) 99 108 121

TABLE I

NUMBER OF SELECTED FEATURES

Algorithm average time average total time
per iteration

ExBoost (face set) 185.2s 42040s
EABoost (face set) 63.5s 10868s

ExBoost (ball set) 57.8s 7627s
EABoost (ball set) 42.2s 4568s

TABLE II

TRAINING TIMES

The results show, that training times are also reduced by
the use of EABoost (see table II). The mean time for the
search for one weak classifier on the face set was 64 seconds
for EABoost compared to 185 seconds for ExBoost which is
a speedup of 2.9. In the ball set, we have smaller images,
so that the search space is not as large in the face set. In
this case, training times for one iteration with EABoost are
comparable to ExBoost. Note that the total training times for
EABoost are much shorter due to the reduced iteration times
and the reduced total number of classifiers.
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Fig. 8. Classification rates (left) and false positive rates (right) on training set (face set)
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Fig. 9. Classification rates (left) and false positive rates (right) on training set (ball set)

Algorithm best average worst
ExBoost (face set) 96.1% 96.1% 96.1%
EABoost (face set) 96.9% 96.7% 96.4%

ExBoost (ball set) 97.5% 97.5% 97.5%
EABoost (ball set) 98.3% 98.0% 97.7%

TABLE III

CLASSIFICATION RATES ON TEST SETS

Algorithm best average worst
ExBoost (face set) 2.44s 2.44s 2.44s
EABoost (face set) 2.10s 2.28s 2.43s

ExBoost (ball set) 1.10s 1.10s 1.10s
EABoost (ball set) 0.98s 1.08s 1.19s

TABLE IV

RUNTIMES FOR FINAL CLASSIFIERS ON COMPLETE TEST SETS

The learned detectors are evaluated on the two test sets to
compare detection and false positive rates (see figures 10 and

11). We can see that although the detectors that are learned
with EABoost use a lower number of features, they are able
achieve higher detection rates with lower false positive rates
on the test sets. For the face set, the best evolved detector
(concerning detection rate on test set) uses only 163 features
and classifies 96.9% of the face set correctly, compared to a
classification rate of 96.1% achieved by the detector with 227
features found by ExBoost. On the set with ball images, the
best evolved detector uses 119 features and classifies 98.3% of
the set correctly, whereas the detector with 132 features found
by ExBoost achieves a classification rate of 97.5%.

It is interesting to have a look at some of the features, that
EABoost evolved. Figure 12 shows the first six features that
were selected for one of the strong classifiers by EABoost. As
one can see, the features mainly cover the regions around the
eyes due to the fact that these regions are characteristically for
faces. The newly proposed feature type with two unconnected
regions can be found within the first significant features, too.
This feature pays attention to the fact, that mostly the area
in the middle of the forehead (spotlight) is brighter than
the area of the hair. Because those situations can better be
tracked by loosely coupled features, it is harder to find an
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Fig. 10. Classification rates (left) and false positive rates (right) on test set (face set)
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Fig. 11. Classification rates (left) and false positive rates (right) on test set (ball set)

appropriate classifier with one of the four base types with
directly connected regions of interest.

V. CONCLUSION AND FUTURE WORK

In this paper we extended the approach of Viola et al. [13],
which is one of best known methods to train real time object
detectors. We presented a new combination of Adaboost
learning with an Evolutionary Algorithm to build robust and
fast classifiers. Our approach can cope with a large set of
possible features that cannot be searched exhaustively. This
makes it possible to train classifiers that have higher detection
rates, which can even be evaluated faster, compared to the
combination of Adaboost with exhaustive search on small
initial feature sets. Training times were also reduced, making
it possible to use larger feature sets on a high number of
training examples.

Nevertheless, there are many directions to go for further
research. First of all, we would like to extend our EA to a so
called Memetic Algorithm [11]. In this case, every individual
is improved by a heuristic Local Search operator after
mutation and crossover has been applied. In our algorithm,
improvement could be done e.g. by translating or scaling the

feature in small steps for a number of iterations to see if the
classification error can be reduced.
Combinations of evolutionary search and other boosting
algorithms like e.g. GentleBoost [7] or FloatBoost [17]
should also be analyzed in the future.
In the second part of their paper, Viola et al proposed the use
of a cascade of multiple strong classifiers to increase detection
speed. The use of detector cascades was not addressed within
this paper. It was our aim, to show how to improve the
feature selection procedure that is a substantial part of the
cascade training so that improving feature selection implies
improving the whole cascade. However, learning the structure
of a cascade of detectors is a difficult optimization problem
that we plan to cope with more sophisticated heuristics in the
future.
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Fig. 12. First six evolved features
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