Efficient Learning Through Evolution:
Neural Programming and Internal Reinforcement

Astro Teller

ASTRO+@CS.CMU.EDU

BodyMedia, Inc., 4 Smithfield St. Suite 1200,° Pittsburgh, PA 15222, USA

Manuela Veloso

MMV+@CSs.CMU.EDU

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

Genetic programming (GP) can learn com-
plex concepts by searching for the target con-
cept through evolution of population of can-
didate hypothesis programs. However, unlike
some learning techniques, such as Artificial
neural networks (ANNs), GP does not have
a principled procedure for changing parts of
a learned structure based on that structure’s
performance on the training data. GP is
missing a clear, locally optimal update proce-
dure, an equivalent of gradient-descent back-
propagation for ANNs. This article intro-
duces a new mechanism, “internal reinforce-
ment,” for defining and using performance
feedback on program evolution. A new con-
nectionist representation for evolving param-
eterized programs, “neural programming” is
also introduced. We present the algorithms
for the generation of credit and blame as-
signment in the process of learning programs
using neural programming and internal rein-
forcement. The article includes some of our
extensive experiments that demonstrate the
increased learning rate obtained by using our
principled program evolution approach.

1. Introduction

There are many mechanisms that provide efficient su-
pervised learning algorithms that vary along several
dimensions, in particular in the way that the search
progresses by updating the model being learned.

Supervised learning has successful representatives of
the practice of explicit credit assignment. The models
to be learned are constructed so that why a particular
model is imperfect, what part of that model needs to
be changed, and how to change the model can all be
described analytically with at least locally optimal re-
sults. Feed-forward artificial neural networks (ANNs)
with the back-propagation algorithm are an example
of an explicit credit-assignment learning approach.

In this paper, we use genetic programming (GP) as a
machine learning mechanism. Concepts to be learned
are defined as parameterized programs with powerful
primitive constructs. GP searches for the target con-
cept by evolving a population of candidate hypothesis
programs. As opposed to ANNs, GP is a representa-
tive of the machine learning practice of empirical credit
assignment (Angeline, 1993). The learner implicitly
determines credit and blame of a hypothesis during
its search without an explicit computation of which
parts of the description need to be changed. Evolu-
tion does empirical credit assignment as it searches
based on the evaluation of the fitness of different tar-
get descriptions (Altenberg, 1994), but it progresses by
randomly changing the most promising descriptions.

There is therefore a gap in the way that machine learn-
ing algorithms perform credit assignment. The goal of
this work is to bridge this gap, finding ways in which
explicit and empirical credit assignment can find mu-
tual benefit in a single machine learning technique.

This paper introduces a new GP approach to learn
complex programs through evolution with explicit
credit assignment. The method has been developed
with the goal of incorporating a principled updating
procedure in program evolution, until now unaccom-
plished in genetic programming. The GP learner iden-
tifies and updates specific parts or aspects of a pro-
gram as a function of the program’s performance. A
new program representation, neural programming, is
introduced as a connectionist programming language
that supports a principled internal reinforcement in
program evolution.

Neural programming organizes genetic programs into
a network of nodes replacing program flow of control
with flow of data. We introduce a method to accumu-
late explicit credit assignment directly attached to the
nodes of the program network. The acquired feedback
values are collectively referred to as the credit-blame
map, representing the propagation of punishment and
reward through each evolving program. We then in-
troduce an wnternal reinforcement algorithm that uses
the credit-blame map to provide a reasoned method to

guide search in the field of program induction.

When hill-climbing in a space of hypotheses, it is pos-
sible to sample a few points and then choose the best
of those to continue from. When the gradient is avail-
able, however, it is more efficient, locally at least, to
move in the direction of the gradient. Program evolu-
tion can work with fitness-guided random samplings of
nearby points in program space. However in this pa-
per, we show that program evolution converges more
effectively if guided by our internal reinforcement pro-
cedure. Internal reinforcement acts as an approxima-
tion to the gradient function for program evolution.

In summary, this paper has three main contributions.
First, we contribute the neural programming repre-
sentation as a new, connectionist, representation for
evolving programs. Second, we describe how this rep-
resentation can be used to deliver explicit, useful, in-
ternal reinforcement to the evolving programs to help
guide the learning search process. And third, we
demonstrate the effectiveness of both the representa-
tion and its associated internal reinforcement strategy
through empirical machine learning experiments ap-
plied in signal classification domains. The paper also
includes a brief overview of genetic programming.

2. Neural Programming

The program representation used in GP can impact
the performance of the algorithm. We first briefly
overview GP. We then introduce our neural program-
ming representation that supports the internal rein-
forcement learning procedure.

2.1 Brief Overview of Genetic Programming

Genetic programming is a subfield of general evolu-
tionary computation in which programs in a popula-
tion evolve to be well fit to represent a given dataset.

Determining the fitness of each program is hence the
important first step in the evolutionary loop. This can
be done in a large number of ways. Within a super-
vised learning task, Table 1 shows the mechanism we
use for determining this “goodness” of each program.

The next step in GP, fitness proportionate reproduc-

Table 1. Common calculation of program fitness in the su-
pervised machine learning form of GP.

For each program p in the evolving population
For each training input S; (1 <i < |S|)
Call L; the correct program label
Run program p on input S; and get response R;;
F(L; R
Gp = Zl’ih (|5| p)’
where Gy, is the fitness of program p and F is an
arbitrary error function specific to the learning task.

tion, is the exploitation phase of the search in which
attention is focused on the highest fit programs. There
are a number of popular schemes for propagating the
influence of the best fit individuals in the popula-
tion, primarily tournament selection, rank selection,
and roulette selection.

Table 2 outlines tournament selection as the reproduc-
tion strategy used in our work. The resulting mating
pool is of the same size as its parent population and
programs have a representation in the new population
proportional to their fitness.

Table 2. Outline of tournament selection in GP.
For a population of M programs, Do M times
Randomly pick K programs from the population.
Copy highest fit of these K programs for mating.

Genetic programming includes exploration and ex-
ploitation. The search process, in which selected indi-
viduals are changed in an attempt to find even better
parts of the search space, is called genetic recombina-
tion of the mating pool. The two most popular forms
of genetic recombination are crossover and mutation.

In crossover, two programs are chosen and some “ge-
netic material” is exchanged. In mutation, a single
individual is taken and changed in some way that is
independent of the other members of the population.

The details of the crossover and mutation mechanisms
vary widely because the representations of the indi-
viduals also vary. The traditional GP crossover proce-
dure is to choose one subtree from each program and
exchange the subtrees; and mutation affects elements
of a program. In general the material for genetic re-
combination is chosen at random.

There is no evidence that the random recombination
common in GP is in general better than an eventual
focused recombination. This paper provides a mecha-
nism for an informed recombination, as well as specific
evidence that it is effective to carefully and purpose-
fully choose pieces of material to change or exchange
during program transformations.

2.2 The NP Representation

We introduce the Neural Programming representation
as a graph of nodes and arcs that perform a flow of
data, rather than the flow of control in typical pro-
gramming languages. The nodes in a neural pro-
gram can compute arbitrary functions of the inputs,
including arithmetic (e.g., multiplication, addition),
memory-access (read, write), branching (e.g., if-then-
else), and, most importantly, any potentially complex
user-defined functions for examining the input data.

The main characteristics of the NP representation are:

e A neural program is a graph of nodes and arcs.

e Each NP node executes a function of some arity.

e An arc (z,y) from node z to node y indicates that
the output of z is an input of y.

e On each time step ¢t (0 < t < T), every node
takes the inputs corresponding to the arity of its
function, computes the value of the function, and
outputs it to all of its output arcs.

e One type of node function is “Output.” Output
nodes collect their inputs and create the program
response through a function OUT of those values.
We use OUT as an average weighted by its time-
step.

We illustrate the NP representation through a set of
constructed examples.

Fibonacci numbers Figure 1 shows a very sim-
ple neural program. This program computes the Fi-
bonacci series and sends each successive element out
of the program fragment on Arc4.

Figure 1. A simple neural program that computes the Fi-
bonacci series. All arc values are initialized to 1.

Since neural programs are data flow machines, each
arc is a potential memory value and so there must be
some initial state to the program. For this example,
the initial value for all arcs is the value 1 and table 3
shows how the values of the arcs change over time.

Table 3. Progression of arc values over time for the neural
program in Figure 1.

Step | Arc1 Arc2 Arc3 Arc4 Arch
0 1 1 1 1 1
1 1 1 2 2 2
2 1 2 3 3 3
3 1 3 5 5 5
4 1 5 8 8 8

Golden mean The program in Figure 1 can be eas-
ily extended to a neural program that approximates
the “Golden Mean.”!. Figure 2 shows such program
where we explicitly represent its OUTPUT node.

Table 4 shows the initial values of some of the
arcs, where the OUTPUT node, computing the OUT
function mentioned above, approximates the value
1.618034 of the golden mean.

145

2

'The golden mean is . This example program ap-

proximates 1"'2—‘/5 Note that im0 ﬁil?)z(_i)l) = %

Figure 2. A neural program that iteratively approximates
the golden mean. All arc values are initialized to 1.

Table 4. Progression of arc values over time for the simple
neural program shown in Figure 2.

Step | Arc3 Arc5 Arc?7 ouTPUT
0 1 1 1 NA

1 1 2 1 1

2 2 3 2.0 1.5

3 3 5 1.5 1.5

4 5 8 1.6667 1.5417

5 8 13 1.6000 1.5533

Foveation The Fibonacci series and the golden
mean examples illustrate how the flow of data works
and how the fan out of values can significantly reduce
the size of a solution expression. In this example we
illuminate another important feature of neural pro-
grams: the ability to foveate. Foveation is the process
of changing the focus of attention in response to previ-
ous perceptions. Neural programs have the ability to
use the results of an examination of the input signal
to guide the next part of that examination.

Neural programs view their inputs (called signals when
appropriate to avoid confusion with “inputs” to a
node) through Parameterized Signal Primitives (PSP),
variable argument functions defined by the NP user.

Let us assume that an neural program is examining
signals that are video images. PSP-Variance is a user-
defined PSP that takes four arguments, ag through as,
(interpreted as the rectangular region with upper-left
corner (ag, a1) and lower-right corner (az, as)) as input
and returns the variance of the pixel intensity in that
region. Figure 3 shows what could be part of a larger
neural program. The node indicated with a double
circle computes the function PSP-Variance. The IF-T-
E (If-Then-Else) node computes the function “if (ag <
ap) then return ay else return agz.”

This particular neural program fragment delivers
static values for three of those four inputs. The fourth
input indicated by a dashed circle, changes as the pro-
gram proceeds. That means that PSP-Variance, at
each time step, computes its function over the region
(50,17,104,a3). Table 5 gives the pseudo-code equiva-
lent to the neural program fragment of Figure 3.

Assuming again that all arcs are initialized to

Figure 3. A neural program fragment where the output
value from the dashed circle node is being iteratively re-
fined to minimize the value returned by the PSP-Variance
node.

Table 5. Pseudo-code for the NP fragment in Figure 3.
VARy =1
VAR, = PSP-Variance(50,17,104,as ;)
IF (VARt_l < VAHt)

THEN a3 t41 = A3t

ELSE azt41 = a3t + 1

1, this program increments the fourth parame-
ter only if (PSP-Variance(50,17,104,as;) < PSP-
Variance(50,17,104,a3+—1)) (where az; is az on time-
step t). This is a concise example of NP foveating:
using the values it perceives to focus further investiga-
tion of the input in question.

3. Internal Reinforcement

Evolution is a learning process. In NP (or GP for that
matter) programs are tested for fitness, preferred ac-
cording to those fitness tests, and then changed. Pro-
grams need to become new programs. These program
transformations have a specific goal, namely to pro-
duce programs that are better, which is to say score
on the fitness evaluations higher than their ancestors.

Now that we have introduced the neural programming
representation, we can describe a mechanism to ac-
complish wnternal reinforcement.

In Internal Reinforcement of Neural Programs
(IRNP), there are two main stages. The first stage
is to classify each node and arc of a program with its
perceived contribution to the program’s output. This
set of labels is collectively referred to as the Credit-
Blame map for that program. The second stage is to
use this Credit-Blame map to change that program in
ways that are likely to improve its performance.

3.1 Creating a Credit-Blame Map

Without loss of generality, we assume that the evolv-
ing neural programs are trying to solve a target value
prediction problem. In fact, classification problems (a
non-ordered set of output symbols to be learned) can
be decomposed into target value prediction problems
(an ordered set of output symbols to be learned).

3.1.1 ExpriciT CREDIT SCORES

For each program p and node z in p, over all time steps
on a particular training example S;, we compress? all
the values node x outputs into a single value H:. Let
the correct answer (the correct target value) for train-
ing instance S; be L;. In other words, L; is the desired
output for program p on training instance S;.

We now have two vectors for all |S| training instances:
L =[Li.LiLs] and Hy = [H2. Hi. '], We can
compute the statistical correlation between them. We
call the absolute value of this correlation the explicitly
computed Credit Score for node z, notated as CS,.
This computation is shown in Equation 1.

oS, E(Hy —pg) % E(L — py) 1)

O'Hx*O'L‘

This credit score for a node indicates how valuable that
node is to the program. This measured correlation pro-
vides an empirically-shown good linear approximation.

The set of explicit credit scores for all nodes provides
a Credit-Blame map for the program: a value asso-
ciated with each node in the program that indicates
its individual contribution to the program. However,
we want the Credit-Blame map to capture not only a
node’s immediate (individual) usefulness, but also its
usefulness in the context of the program topology.

As an example, let nodes x and y produce values and
node z compute the XOR of those values. Even even
if z has a high credit score, z and y may not. There
is nothing provably wrong with this situation but the
topological notion of usefulness has not been captured
in these explicit credit scores. We can say that nodes «
and y are partly responsible for the credit score node
z receives because, by definition, the output of the
function XOR is dependent on its inputs and CS, is,
by definition, dependent on the output of XOR. The
reason we do not say that nodes x and y are entirely
responsible for CS; is that the function at node z is
also an important factor (over and above the inputs
node z receives from nodes z and y) in determining

the value of CS,.

The Credit-Blame map is refined by passing credit and
blame back through the topology of the neural pro-

2The compression function used in this paper is mean.

grams. The statistical correlation between L and H,
presented above constitutes only the first explicit ap-
proximation to the credit score of node .

3.1.2 FUNCTION SENSITIVITY APPROXIMATION

To pass back credit and blame through the neural
program topology, we must first answer an important
question: “What is the responsibility of each input
value for the output value produced by a function?”

This problem is very difficult for arbitrary functions,
which is one of the main reasons why ANN back-
propagation requires differentiable functions (e.g., the
sigmoid or the Gaussian). Unfortunately, we can not
always differentiate the functions used in neural pro-
grams as they may not be differentiable (e.g., If-Then-
Else).

In our work, we introduce Function Sensitivity Ap-
proximation, a method for “differentiating” an arbi-
trary function that can be treated as a black box. The
two questions that function sensitivity approximation
can automatically answer about a black box function’s
relation to its inputs are “How many and how few pa-
rameters can it take (min and max arity)?” and “How
sensitive is the output value to changes in its inputs?”
This sensitivity is a substitute to the derivative of the
function in question.

Table 6 shows the process for finding the sensitivity of
each parameter of a general, possibly nondeterministic
function f. The procedure is performed for all values
of A between 1 and the maximum arity of the function.
Nondeterminism can also be handled by this process
and is adjusted for through the calculation of “Noise”
as shown in Table 6.

The benefits of Function Sensitivity Approximation
are particularly clear in the context of a non-
differentiable functions, such as “if-then-else.” IF-
Then-Else is the function “if (ag < a1) then return

Table 6. Function Sensitivity Approximation: the process
for finding Sy a,:, the sensitivity of a particular parameter
a; for some function f that is given a parameter vector
with A elements.

Noise := 0; Sensitive := 0;
DO Qs times
Let A be the arity of function f
Let d@ be the input vector for function f
Pick uniform random values aq,as, ..., a4 for @
Resulty := f(d)
Result; := f(d)
Change @: parameter a; «+ random value
Results := f(d)
If (Resulty # Result;)
If (Resulty # Results)

S aii= Sensitive—Noise
fAg = Q.

Noise := Noise + 1
Sensitive := Sensitive + 1

as else return ag”. Left to figure it out for our-
selves, we originally assigned the four sensitivities as
(1.0,1.0,0.5,0.5). @z and ag are certainly equally im-
portant and each has sensitivity of 0.5. The first two
parameters, however, only matter with respect to each
other. So for two random values af} and a?, changing a§
to some new random value a} has only a 33% chance of
changing the value of the relevant test: (ag < ai). The
procedure outlined in Table 6 discovered this counter-
intuitive result automatically as shown in Table 7.

Table 7. Input sensitivity for the function /FTE.
Params || arg 1 | arg 2 | arg 3 | arg 4
4 0.32 0.33 0.50 0.49

Function sensitivity approximation is useful exactly
because it works without prior information about the
function to be analyzed. The algorithm successfully
applied it to all the user defined functions. Parame-
terized Signal Primitives used in the experiments.

3.1.3 REFINING THE CREDIT-BLAME MAP

We can now combine the topology of the neural pro-
gram, the explicit credit score for each node, and
the sensitivity values of each primitive function in
a bucket-brigade style backward propagation. This
bucket-brigade refines the credit scores at each node
following the procedure presented in Table 8. The
credit scores are refined according to the network
topology and sensitivity of the node functions.

Table 8. The process of bucket brigading the Credit Scores
(CS) throughout a neural program.

Until no further changes
For each node x in the program

For each output arc (z,y) of that node
y is, by definition, the destination node of (z,y)
Let f, be y’s node function
Let Ay, be the number of inputs y has
Let (z,y) provide the ith input to y
Let Sy, 4, = Sensitivity of f, to Ay and i
CSx = MA)((CSQ;, Sfy,Ay,i * CSy)

The node’s credit score is now updated to be the max-
imum of its explicit credit-score and the product of the
credit score of its input node by the sensitivity of that
destination node to that particular output arc.

This discussion highlighted the characteristics of our
reinforcement procedure. In summary, the refinement
of credit scores in the Credit-Blame map is derived
from the initial credit scores, the program’s topology,
and the discovered sensitivity of each possible node
function.

3.2 Credit Scoring the NP Arcs

Neural program transformations operators (e.g.,
crossover and mutation) also affect neural program
arcs. So far, the discussion of the Credit-Blame map
has entirely focused on assigning credit and blame to
the nodes. The topology of the neural programs, that
is the program nodes and arcs, is used heavily in mak-
ing this map, but the resulting map assigns one float-
ing point number to each node and no number to the
arcs.

The explanation for this discrepancy is that arcs are
even more context dependent than the nodes that de-
fine them. For example, when considering whether to
delete a particular arc (z,y), CSy is a relevant value,
but the value of CS, is much less so. When, on the
other hand, considering whether to reroute arc (z,y)
to some other node z (i.e., arc(x,y) — arc(z,z)) the
current values CS;, CSy, and CS; are all relevant. As
is detailed in the next section, the Credit-Blame map
has a great impact on the arcs during the IRNP pro-
cess, but only indirectly through the credit scores of
the nodes in the program to be recombined.

3.3 Using a Credit-Blame Map

The second phase of the internal reinforcement is the
use of the created Credit-Blame map to increase the
probability that the program updates lead either to
a better solution or to a similar solution in less time.
There are two basic ways that the Credit-Blame map
can be used to do this enhancement: through im-
provement of either the mutation or crossover oper-
ators (Koza, 1992).

Internal reinforcement can have a positive effect on
the recombination procedure. For each recombination
type, we pick a node, arc, or part of the program as a
function of its credit score. For example, when delet-
ing a program node, we can delete the node with the
lowest credit score instead of just deleting a randomly
selected node.

Mutation can take a variety of forms in NP. These
various mutations are: add an arc, delete an arc, swap
two arcs, change a node function, add a node, delete a
node. Notice that the “change a node” and “swap two
arcs” functions are not atomic, but have been included
as examples of non-atomic basic mutation types.

In the experiments shown in the next section, each
of these mutations took place with equal likelihood
in both the random and internal reinforcement re-
combination cases. For example, to add an arc un-
der random mutation to an NP program, we simply
pick a source and destination node at random from
the program to be mutated and add the arc between
the nodes. And Figure 4 illustrates the mutation of
swapping two arcs.

In the random version of crossover, one simply picks a

Figure 4. The Swap Two Arcs mutation procedure.

“cut” from each graph (i.e., a subset of the program
nodes) at random and then exchanges and reconnects
them. This exchange can be accomplished so as to
minimize the disruption to the two programs.

We keep this underlying mechanism and present an
IRNP procedure that selects “good” program frag-
ments to exchange. This means that IRNP has, as its
only job, to choose the fragments to be exchanged, but
the way in which program fragments are exchanged
and reconnected is unaffected by IRNP.

Given that we separate a program into two fragments
before crossover, let us define CutCost to be the sum of
all credit scores of inter-fragment arcs, and Internal-
Cost to be the sum of all credit scores of intra-fragment
arcs in the program to be crossed-over. Table 9 shows
the procedure to apply IRNP to crossover.

Table 9. The IRNP process for choosing a “good” fragment
of a program to exchange through crossover.

Pick k random cuts of prog p (Fragment,, Fragment.,)
For candidate cut i
For each arc(z,y) in p
Let CSarc(x,y) = CSy
if (z and y are in the same Fragment;) (j€{1,2})
InternalCost = InternalCost + C'Sgpe(z,y)
else
CutCost = CutCost + C'Sy
CutRanking; = CutCost / InternalCost
Choose the cut with the LOWEST CutRanking

with at least one node on each side of the cut

Neural program arcs have a shifting meaning and so
their credit score must be interpreted within the con-
text of the search operator being used. For the con-
text of crossover we take the credit score of an arc to
be the credit score of its destination node. We say
that the cost of a particular fragmentation of a pro-
gram is equal to CutCost/InternalCost. If we try to
minimize this value for both of the program fragments
we choose, we are much less likely to disrupt a crucial
part of either program during crossover.

4. Experimental Results

IRNP is developed within our research in machine
for signal understanding (Teller, 1998). Most briefly,
our learning environment that decomposes classifica-
tion problems into discrimination problems, evolves
sub-solutions to these discrimination problems, and
then orchestrates these sub-solutions into an overall
solution to the original classification problem. Our
research (e.g., (Teller, 1998)) has demonstrated that
IRNP is highly effective across a wide range of signal
types and sizes, both real world and manufactured.
We show here a few results on two distinct real-world
signal classification problems which demonstrate that
IRNP can learn a difficult problem and that IR is a
significantly more effective way to perform recombina-
tion on the population than is random recombination.

4.1 Natural Images

There are seven classes in the domain used in the fol-
lowing experiments. Figure 5 shows one randomly se-
lected image from each of the seven classes in both the
training and testing sets. Each element is a 150x124
image with 256 level of grey. This particular color
images was created by other researchers for learning
and vision (Thrun & Mitchell, 1994). We removed
the color from the images to make the problem more
challenging.

[|
TRAIN =
o® P ;’fﬁ\\
© E ;‘3’?55_ =
TEST =
Q@ ' 'S

Figure 5. A random training and testing signal from each
of the 7 classes in this classification problem.

The seven classes in this domain are: Book, Bottle,
Cap, Coke Can, Glasses, Hammer, and Shoe. The
lighting, position and rotation of the objects varies
widely. The floor and the wall behind and underneath
the objects are constant. Nothing else except the ob-
ject is in the image. However, the distance from the
object to the camera ranges from 1.5 to 4 ft and there
is often severe foreshortening and even deformation of

Test-Set generalization % Correct

the objects in the image.

In the experiment in this section, the total population
size was 1750 (i.e., 250 % 7). Each point on each graph
is an average of at least 60 independent runs. A to-
tal of 350 (50 from each of seven classes) images were
used for training and a separate set of 350 (50 from
each of seven classes) images were withheld for testing
afterwards.

We use several parameterized signal primitives (PSP)
functions. The simplest one, PSP-Point(ag,a;), re-
turns the pixel intensity at the pixel (ag,a1). Oth-
ers with four arguments (ag, a1, a2, ag), PSP-Average,
PSP-Variance, PSP-Min, PSP-Maz return the cor-
responding pixel intensity values over the image re-
gion specified by the rectangle with upper left corner
(ao,a1) and lower right corner (ag,as). And PSP-
Diff(ag, a1, az, as) returns the absolute difference be-
tween the average pixel intensity above and below the
diagonal line (ag,a1) to (az, as).

During each run, the generalization performance on a
separate set of testing images was recorded and Fig-
ure 6 plots the mean of each of these values.

NP evolution in PADO in the Natural Image classification domain
T T T T

T
0.75 E B L BLALA s BN A
W+W~H++H—P+H—k*‘” SARNS
T T
07 F 4t B
g T
+
-
%’H
0.65 [* A
* .
NP -WITH- IRNP recombination -o—
£ NP -WITHOUT- IRNP recombination —+-
06 47 0.7463 — i
¢
0.55 A
05 I I I I I I I
0 10 20 30 40 50 60 70 80

Generations

Figure 6. NP learning with and without IRNP.

The main result of the experiment is that NP learns
more than twice as fast when IRNP is applied to the
recombination during evolution. Also notice that NP
significantly learns well this difficult image classifica-
tion problem, as random guessing is only 14.3% correct
generalization performance. It is worth also noting
that with a more domain-tuned orchestration strat-
egy, IRNP has, on this particular domain, achieved
generalization performance rates as high as 86%.

4.2 Acoustic Signals

The database used in this experiment contains 525
three second sound samples. These are the raw wave
forms at 20K Hertz with 8 bits per sample for about
500,000 bits per training or testing sound. These
sounds were taken from the SPIB ftp site at Rice
University (anonymous ftp to spib.rice.edu). This
database has an appealing seven way clustering (70
examples from each class), with sounds of a Buccan-

Test-Set generalization % Correct

neer jet engine, a firing machine gun, an M109 tank
engine, the floor of a car factory, a car production hall,
a Volvo engine, and the babble in an army mess hall.

The total population size was 1750 (i.e., 250 % 7). Each
point on each graph is an average of at least 55 inde-
pendent runs. A total of 245 (35 from each of seven
classes) images were used for training and a separate
set of 245 (35 from each of seven classes) images were
withheld for testing afterwards.

We used equivalent signal primitives to the ones used
with the natural images. The arguments in this case
refer to time periods instead of rectangular regions of
the image. For example, PSP-Average(ag, a1, as,as)
returns the average wave amplitude in the sound
starting at time (ag * 256 + a1) and ending at time
(az * 256 + a3).

The fitness used during the evolution of the neural
programs was based upon the difference from the re-
turned and correct confidences for each training ex-
ample. Again, with equally represented seven classes,
random guessing is a 14.3% correct generalization.

Figure 7 shows the generalization percent correct NP
reaches on average on each generation, with and with-
out IRNP. This learning is mainly three times as effi-
cient as learning without it.

NP learning in PADO in an acoustic classification domain

08 F T T T T T T T
0.75 + j WW 1
+++’H’
0.7)L+,+++ i
af*
065 F /" i
*
NP -WITH- IRNP recombination —-—
0.6 NP -WITHOUT- IRNP recombination -+--
Y 7675 —
0.55 q
1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Generations

Figure 7. NP learning with and without IRNP.

5. Conclusion

This paper has contributed a new representation for
learning complex programs and a procedure to achieve
explicit credit blame in program evolution. A new pro-
gram representation language, neural programming, is
introduced with the goal of enabling a principled up-
date framework for algorithm evolution. This work in-
troduces internal reinforcement as the first such prin-
cipled update mechanism created for the field of ge-
netic programming. Neural programming enables the
construction of a credit-blame map for each evolving
program. We further introduce a sensitivity function
approzimation algorithm to compute the principled
feedback analysis for the general function primitive
constructs of a program. A sensitivity-based bucket-

brigade leads to the construction of a credit-blame map
for each program with sufficient detail to allow inter-
nal reinforcement to perform focused, beneficial search
operations during program evolution.

We illustrated these techniques with empirical experi-
ments that show that internal reinforcement improves
the speed and accuracy of neural programming learn-
ing. The experiments also demonstrated that neural
programming can successfully learn to correctly clas-
sify large signals from different classes in real domains.

The goal of this paper has been to communicate the
exciting result that, through the exploration of new
program representations, we have captured the expla-
nation and principled update power of explicit credit-
assignment with the flexibility and generality of clas-
sical genetic programming.

Acknowledgements

This work was done while the first author was in
the Computer Science Department at Carnegie Mel-
lon University.

The first author was supported through the generosity
of the Fannie and John Hertz Foundation. This re-
search was sponsored in part by the Department of the
Navy, Office of Naval Research under contract number
N00014-95-1-0591. Views and conclusions contained in
this document are those of the authors and should not
be interpreted as necessarily representing official poli-
cies or endorsements, either expressed or implied, of
the Department of the Navy, Office of Naval Research
or the United States Government.

References
Altenberg, L. (1994). The evolution of evolvability

in genetic programming. In Kinnear, Jr., K. E.

(Ed.), Advances In Genetic Programming, pp.
47-74. MIT Press.

Angeline, P. J. (1993). Evolutionary Algorithms and
Emergent Intelligence. Ph.D. thesis, Ohio State
University, Computer Science Department.

Koza, J. (1992). Genetic Programming. MIT Press.

Teller, A. (1998). Algorithm Evolution with Internal
Rewnforcement for Signal Understanding. Ph.D.
thesis, Computer Science Department, Carnegie
Mellon University.

Thrun, S., & Mitchell, T. (1994). Learning one more
thing. Tech. rep. CMU-CS-94-184, Computer

Science Department, Carnegie Mellon Unversity.

