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Abstract

The choice of features or attributes used to
represent patterns in the synthesis of pattern
classifiers using machine learning algorithms
has a strong impact on the accuracy of the
classifier, the number of examples needed to
attain a given classification accuracy on test
data, the cost of classification, and the com-
prehensibility of the learned classifier. This
presents us with a feature subset selection
problem, namely, the selection of a subset
of features from a much larger candidate set
of features to represent patterns to be clas-
sified so as to optimize multiple criteria such
as the accuracy and the cost of pattern clas-
sification. Evolutionary algorithms, because
of their ability to find good solutions of-
fer a promising approach to such a multi-
criteria optimization problem. Results of ex-
periments reported in this paper demonstrate
that feature subset selection using a genetic
algorithm results in substantial improvement
in classification accuracy and comprehensi-
bility, and substantial reduction in the cost
of classification associated with pattern clas-
sifiers trained using RIPPER on a number of
benchmark problems. RIPPER is a relatively
fast algorithm for induction of pattern clas-
sification rules from labeled examples. Given
the ability of RIPPER to induce rules from
large, noisy datasets consisting of patterns
that are encoded using binary, numeric, or
nominal attributes, this makes GARIPPER,
the proposed hybrid approach to rule induc-
tion, an attractive approach to data-driven
knowledge discovery.
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1 Introduction

Many practical pattern classification tasks (e.g., med-
ical diagnosis, power system applications) require
learning of an appropriate classification function that
assigns a given input pattern (typically represented
using a vector of attribute or feature values) to one
of a finite set of classes. It has been observed in the
past that the choice of features, attributes, or measure-
ments used to represent patterns that are presented to
a classifier affect (among other things):

e The accuracy of the classification function that
can be learned using an inductive learning algo-
rithm (e.g., a decision tree induction algorithm or
a neural network learning algorithm): The fea-
tures used to describe the patterns implicitly de-
fine a pattern language. If the language is not
expressive enough, it would fail to capture the in-
formation that is necessary for classification and
hence regardless of the learning algorithm used,
the accuracy of the classification function learned
would be limited by this lack of information.

e The time needed for learning a sufficiently accu-
rate classification function: For a given represen-
tation of the classification function, the features
used to describe the patterns implicitly determine
the search space that needs to be explored by the
learning algorithm. An abundance of irrelevant
features can unnecessarily increase the size of the
search space, and hence the time needed for learn-
ing a sufficiently accurate classification function.

e The number of examples needed for learning a suf-
ficiently accurate classification function: All other
things being equal, the larger the number of fea-
tures used to describe the patterns in a domain
of interest, the larger is the number of examples
needed to learn a classification function to a de-
sired accuracy [Langley, 1995, Mitchell, 1997].



e The cost of performing classification using the
learned classification function: In many practi-
cal applications e.g., medical diagnosis, patterns
are described using observable symptoms as well
as results of diagnostic tests. Different diagnos-
tic tests might have different costs as well as risks
associated with them. For instance, an invasive
exploratory surgery can be much more expensive
and risky than say, a blood test.

e The comprehensibility of the knowledge acquired
through learning: A primary task of an induc-
tive learning algorithm is to extract knowledge
(e.g., in the form of classification rules) from the
training data. Presence of a large number of fea-
tures, especially if they are irrelevant or mislead-
ing, can make the knowledge difficult to compre-
hend by humans. Conversely, if the learned rules
are based on a small number of relevant features,
they would much more concise and hence easier
to understand, and use by humans.

This presents us with a feature subset selection prob-
lem in automated design of pattern classifiers. The
feature subset selection problem refers to the task of
identifying and selecting a useful subset of features to
be used to represent patterns from a larger set of often
mutually redundant, possibly irrelevant features with
different associated measurement costs and/or risks.
An example of such a scenario which is of significant
practical interest is the task of selecting a subset of
clinical tests (each with different financial cost, di-
agnostic value, and associated risk) to be performed
as part of a medical diagnosis task. Other exam-
ples of feature subset selection problem include large
scale data mining applications, power system control
[Zhou et al., 1997], construction of user interest pro-
files for text classification [Yang et al., 1998] and sen-
sor subset selection in the design of autonomous robots
[Balakrishnan and Honavar, 1996b].

The rest of the paper is organized as follows: Section 2
describes our approach that uses a Genetic Algorithm
for RIPPER pattern classifiers. Section 3 explains the
implementation details in our experiments. Section 4
presents the results of various experiments designed to
evaluate the performance of our approach on some text
classification tasks and on certain benchmark classifi-
cation problems. Section 5 concludes with summary
and discussion of some directions for future research.

2 Feature Selection Using a Genetic
Algorithm for Rule Learning With
RIPPER

2.1 Genetic Algorithms

Evolutionary al-
gorithms [Goldberg, 1989, Holland, 1992, Koza, 1992,
Fogel, 1995, Michalewicz, 1996, Mitchell, 1996,
Banzaf et al., 1997] are randomized, population-based
heuristic search techniques which include genetic algo-
rithms, genetic programming, evolutionary program-
ming, evolutionary strategies, and related approaches.
They are inspired by processes that are modeled af-
ter biological evolution. Central to such evolutionary
systems 1s the idea of a population of potential solu-
tions (individuals) that corresponds to members of a
high-dimensional search space.

The individuals represent candidate solutions to the
optimization problem being solved. A wide range of
genetic representations (e.g., bit vectors, LISP pro-
grams, matrices, etc.) can be used to encode the indi-
viduals depending on the space of solutions that needs
to be searched. In genetic algorithms [Goldberg, 1989,
Michalewicz, 1996, Mitchell, 1996], the individuals are
typically represented by n-bit binary vectors. The re-
sulting search space corresponds to an n-dimensional
boolean space. In the feature subset selection problem,
each individual would represent a feature subset.

It is assumed that the quality of each candidate solu-
tion (or fitness of the individual in the population) can
be evaluated using a fitness function. In the feature
subset selection problem, the fitness function would
evaluate the selected features with respect to the cri-
teria of interest (e.g., cost of the resulting classifier,
classification accuracy of the classifier, etc.).

Evolutionary algorithms use some form of fitness-
dependent probabilistic selection of individuals from
the current population to produce individuals for the
next generation. A variety of selection techniques
have been explored in the literature. Some of the
most common ones are fitness-proportionate selection,
rank-based selection, and tournament-based selection
[Goldberg, 1989, Michalewicz, 1996, Mitchell, 1996].
The selected individuals are transformed using genetic
operators to obtain new individuals that constitute the
next generation. The genetic operators are usually de-
signed to exploit the known properties of the genetic
representation, the search space, and the optimization
problem to be solved. Genetic operators enable the
algorithm to ezplore the space of candidate solutions.
See [Balakrishnan and Honavar, 1995] for a discussion



of some desirable properties of genetic representations
and operators.

Mutation and crossover are two of the most commonly
used operators that are used with genetic algorithms
that represent individuals as binary strings. Mutation
operates on a single string and generally changes a
bit at random. Thus, a string 11010 may, as a con-
sequence of random mutation, get changed to 11110.
Crossover, on the other hand, operates on two parent
strings to produce two offspring. With a randomly
chosen crossover position 4, the two strings 01101 and
11000 yield the offspring 01100 and 11001 as a result
of crossover. Other genetic representations (e.g., ma-
trices, LISP programs) require the use of appropri-
ately designed genetic operators [Michalewicz, 1996,
Mitchell, 1996, Banzaf et al., 1997].

The process of selection and application of genetic op-
erators to generate successive generations of individu-
als is repeated until a satisfactory solution is found
(or the search fails to do so within the time allo-
cated). It can be shown that evolutionary algorithms
of the sort outlined above simulate highly opportunis-
tic and exploitative randomized search that explores
high-dimensional search spaces rather effectively un-
der certain conditions [Holland, 1992]. In practice, the
performance of evolutionary algorithms depends on a
number of factors including: the choice of genetic rep-
resentation and operators, the fitness function, the de-
tails of the selection procedure, and the various user-
determined parameters such as population size, proba-
bility of application of different genetic operators, etc.
The specific choices made in the experiments reported
in this paper are summarized in Section 3.

2.2 RIPPER: An Effective Fast Algorithm for
Rule Induction from Examples

Rule induction algorithms offer an attractive approach
to data-driven knowledge discovery from labeled exam-
ples. Pattern classifiers that are induced by rule learn-
ing algorithms are often simpler and easier to compre-
hend by humans than those induced using genetic pro-
gramming or most neural network approaches. Yet,
results of experiments [Mooney et al., 1989] indicate
that the classification accuracies of the classifiers in-
duced using different approaches are often compara-

ble.

A variety of algorithms for rule induction from la-
beled examples have been proposed in the litera-
ture. Some of them first construct a decision tree
e.g., using C4.5 [Quinlan, 1993], and then extract
a set of classification rules from the decision tree.

Other algorithms (e.g., RIPPER [W.Cohen, 1995]) di-

rectly induce rules from the training data using a
separate-and-conquer approach. The learned ruleset
is post-processed to discard (as in C4.5) or prune
(as in RIPPER) some of the rules using various cri-
teria to improve their classification accuracy on test
data.Recently, [Frank and Witten, 1998] has proposed
an approach to rule learning that combines aspects
of decision tree learning and the separate-and-conquer
approach to eliminate the need for post-processing of
the learned ruleset.

The design of RIPPER is an extension of IREP
(Incremental Reduced Error Pruning) algorithm
[Furnkranz and Widmer, 1994].  IREP tightly in-
tegrates reduced error pruning with separate-and-
conquer strategy. IREP is a greedy rule induction
algorithm which learns a rule at a time. The rule
so learned covers a maximal subset of examples in its
current training set. The rule is pruned so as to max-
imize a desired performance measure. All of the ex-
amples that are correctly labeled by the resulting rule
are elminated from the training set. This process is
repeated until a predertemined stopping condition is
satisfied or the training set becomes empty. The IREP
algorithm is shown in Figure 1 [W.Cohen, 1995].

procedure IREP(Pos,Neg)

begin

Ruleset: = @

while Pos#® do

/* grow and prune a new rule */
split(Pos,Neg) into (GrowPos,GrowNeg)
and (PrunePos,PruneNeg)
Rule:=GrowRule(GrowPos,GrowNeg)
Rule:=PruneRule(Rule,PrunePos,PruneNeg)
/* stopping condition */

if the error rate of Rule on
(PrunePos,PruneNeg) exceeds 50% then
return Ruleset

else

add Rule to Ruleset

remove examples covered by Rule

from (Pos,Neg)

endif

endwhile

return Ruleset

end

Figure 1: The IREP algorithm

RIPPER [W.Cohen, 1995] is an improvement over
IREP. It includes a better pruning and stopping crite-
ria as well as post-processing of the rule set:



candidate sequences of conditions from

IREP deletes conditions that maximize
V(Rule,PrunePos,PruneNeg)EZﬂij_\,m where P and
N represent the total number of examples in PrunePos
and PruneNeg respectively and and p and n denote
the number of examples in PrunePos and PruneNeg
respectively that are correctly classified by the
rule. RIPPER replaces v(Rule,PrunePos,PruneNeg)

by v*(Rule,PrunePos,PruneNeg)= ;:—Z )

Among
the rule,

The stopping criterion used in RIPPER is based on the
total description length of the rule set and the exam-
ples which is motivated by the minimum description
length (MDL) heuristic [Rissanen, 1978]. For each rule
in rule set, say R;, A MDL heuristic is used in RIP-
PER decide whether to keep R;, or a pruned version
of Rz

Experiments reported show that the classification ac-
curacy of the rule set induced by RIPPER is compara-
ble to that induced by C4.5. However, the time com-
plexity of RIPPER is O(mlog?m) where as (4.5 has
a time complexity of O(m?®) where m is the number
of examples in the training set. This makes RIPPER
especially attractive for large datasets. It is also worth
noting that RIPPER is able to induce rules from ex-
amples that are encoded using boolean, numeric, or
nominal attributes making it a useful technique for
induction of pattern classifiers in a wide range of prac-
tical applications.

3 IMPLEMENTATION OF
GARIPPER

The implementation of GARIPPER is shown in Fig-
ure 2.

1. Choose an initial population by generating the
strings randomly.

2. Test each string to determine its effectiveness. In
our case we used classification accuracy of the RIP-
PER algorithm as the fitness of the string.

3. Select best strings ( based on fitness values ) and
apply crossover and mutation to generate new popu-
lation.

4. Repeat from step 2 for a fixed number of genera-
tions or until the desired classification accuracy is met.
Get the best string.

Figure 2.

We briefly describe in what follows, the design choices
that were made for the implementation of GARIPPER

(genetic approach to feature subset selection for RIP-
PER). Each individual in the population represents a
candidate solution to the feature subset selection prob-
lem. Let m be the total number of features available to
choose from to represent the patterns to be classified.
In a medical diagnosis task, these would be observ-
able symptoms and a set of possible diagnostic tests
that can be performed on the patient. Each candi-
date feature subset is represented by a binary vector
If a bit is a 1, it means that the
corresponding feature is selected. A value of 0 indi-

of dimension m.

cates that the corresponding feature is not selected.
The fitness of a candidate feature subset can be based
on variour criteria such as: accuracy of the rule set
learned by RIPPER (using the selected features), the
measurement cost associated with the features that
were selected, the computational cost of classification
using the learned rule set, etc.

The current implementation of GARIPPER uses the
accuracy of the learned ruleset (measured by ten-fold
crossvalidation) as the fitness measure.

Our experiments with GARIPPER were run using
a genetic algorithm used standard mutation and
crossover operators and the tournament selection
strategy [Goldberg, 1989, Mitchell, 1996]. The param-

eter settings used in the experiments were as follows:

e Population size: 50

e Number of generation: 20

Probability of crossover: 0.6

Probability of mutation: 0.001

Population Replacement value: 99% ( Best String
is always retained )

The parameter settings were based on results of several
preliminary runs. They are comparable to the typical
values mentioned in the literature [Mitchell, 1996]. No
attempt was made to to choose the best parameter

4 EXPERIMENTS

4.1 Description of Datasets

The experiments reported here used a wide range of
real-world datasets from the machine learning data
repository at the University of California at Irvine
[Murphy and Aha, 1994] as well as a carefully con-
structed artificial dataset (3-bit parity) to explore the
feasibility of using genetic algorithms for feature sub-
set selection for neural network classifiers. The feature



Table 1: Datasets used in the experiments. Size is the number of patterns in the dataset, Features is the number
of input features, and Class is the number of output classes.

Dataset Size Features Feature Type Class
ionosphere structure (Ionosphere) 351 34 numeric 2
DNA sequences (Promoters) 106 57 nominal 2
sonar classifiction (Sonar) 208 60 numeric 2
vehicle silhouettes (Vehicle) 846 18 numeric 4
house votes (Votes) 435 16 nominal 2
wine recognition (Wine) 178 13 numeric 3
zoo database (Zoo) 101 16 numeric, nominal 7
paper abstracts 1 (Abstractl) 100 790 numeric 2
paper abstracts 2 (Abstract2) 100 790 numeric 2
news articles 1 (Reutersl) 939 1568 numeric 6
news articles 2 (Reuters2) 139 435 numeric 4
news articles 3 (Reuters3) 834 1440 numeric 8

subset selection using RIPPER is also applied to docu-
ment classification problem for journal paper abstracts
and news articles.

4.1.1 Datasets from UCI Repository

In our experiments with real world datasets, our ob-
jective was to compare the classification accuracy of
RIPPER using feature subsets selected by the genetic
algorithm with those that use the entire set of features
available. Table 1 summarizes the characteristics of
the datasets. Some medical datasets include measure-
ment costs for the features, but most of the datasets
lack this information. Therefore, our experiments with
the datasets from UCI repository focused on identify-
ing a subset of features that yield high accuracy RIP-
PER classifiers. If measurement costs were available,
the performance considering the cost in addition to the
accuracy can also be included.

4.1.2 Document Datasets

The paper abstracts were chosen from three differ-
ent sources: IEEE Expert magazine, Journal of Arti-
ficial Intelligence Research and Neural Computation.
The news articles were obtained from Reuters dataset.
Each document is represented in the form of a vector
of numeric weights for each of the words (terms) in
the vocabulary. The weights correspond to the term
frequency and inverse document frequency (TFIDF)
[Salton and McGill, 1983, Yang et al., 1998] values for
the corresponding words. The training sets for pa-
per abstracts were generated based on the classifica-
tion of the corresponding documents into two classes
(interesting and not interesting) by two different in-
dividuals, resulting in two different data sets (Ab-
stractl and Abstract2). The classifications for news

articles were given based on their topics (6, 4 and 8
classes) following [Koller and Sahami, 1997], resulting
in three different datasets (Reutersl, Reuters2 and
Reuters3), respectively. These datasets are also sum-
marized in Table 1. Since these datasets do not have
measurement costs for the features, our experiments
with document datasets also focused on identifying a
minimal subset of features that yield high accuracy
neural network classifiers.

4.2 Experimental Results

The experiments were designed to explore the effect
of feature subset selection on the performance of RIP-
PER on a given choice of training and test sets. Each
dataset was randomly partitioned into a training and
test set (with 90% of the data used for training and
the remaining 10% for testing). The genetic algorithm
was used to select the best feature subset on the basis
of this choice of training and test sets. The results
were averaged over 5 independent runs of the genetic
algorithm, for a given choice of training and test set.
This process was repeated 10 times with 10 different
choices of training and test set. The results of these
experiments (which represent 5 x 10 = 50 runs of the
genetic algorithm) are shown in Table 2. The entries
in the tables give the means (and standard deviations)
in the form mean (+ standard deviation).

4.2.1 Improvement in Generalization using
Feature Subset Selection

To study the effect of feature subset selection on gener-
alization, experiments were run using classification ac-
curacy as the fitness function. The results in Table 2
indicate that the results obtained using GA-selected
subset of features compare quite favorably with RIP-



Table 2: Comparison of rule induction pattern classifiers constructed by RIPPER using the entire set of fea-
tures with the best classifier constructed by GARIPPER using fitness estimates based on 10-fold cross-validation.
GARIPPER (best) represents the accuracy of the best classifier produced by GARIPPER using 10-fold crossvalida-
tion among the 5 independent runs of the genetic algorithm. For Reuters 1 and Reuters 3 Datasets we divided
them into trainset(60%) and testset(40%) and did the GARIPPER test for 5 independent runs. We skipped 10
fold crossvalidation part as it was taking long time. So the total number of GA runs were just 5.GARIPPER
(average) represents the mean and the standard deviation (computed over 5 independent runs of the genetic

algorithm) of the accuracy of the best classifier produced by GARIPPER. See Section 4.2 for details.

RIPPER GARIPPER (average) GARIPPER (best)
Dataset Features Accuracy Features Accuracy Features Accuracy
Ionosphere 34 88.91 4+ 1.41 14.6 £ 4.16 94.1+0.71 10 94.61
Promoters a7 84.75 £ 5.01 28 £+ 3.54 92.8 £1.43 28 94.75
Sonar 60 76.86 £+ 2.49 304+ 270 81.24 +£2.37 27 84.3
Vehicle 18 67.25+1.73 9.4+1.34 73.24+0.18 10 73.42
Votes 16 94.0 4+ 1.02 48+1.30 96.1 £0.3 3 96.67
Wine 13 91.95+1.93 7.44+0.55 96.95 +0.52 7 97.48
Zoo 16 89.00 + 4.29 8.5+ 1.97 95.2 £0.84 7 96.0
Abstractl 790 84.04+2.81 385.8+17.43 87.0+£ 0.0 371 87.0
Abstract2 790 86.00£2.81 402.4+6.88 88.0+£ 0.0 395 88.0
Reutersl 1568 92.774+0.98 787 £ 23.54 97.4+£0.94 753 98.09
Reuters2 435 81.80+£1.8 214.6 £ 7.44 92.244+ 0.55 203 92.49
Reuters3 1440 95.9240.76 719.2 4 19.48 97.99+0.17 712 98.12

PER that use all of the features in all randomly parti-
tioned datasets. In particular, feature subset selection
resulted in substantial improvement in generalization
on almost all of the datasets. Also, the number of
features selected is significantly smaller than the total
number of features present in the original data repre-
sentation in all of the datasets.

The results shown in Table 2 indicate that the re-
sults obtained using GA-selected subset of features
are better than the RIPPER that use all of the fea-
tures in almost all of the datasets with 10-fold cross-
validation.The best individual generated by GARIP-
PER outperformed RIPPER in almost all datasets. The
number of features selected is significantly smaller
than the total number of features present in the orig-
inal data representation in all of the datasets; Again
the learned rule sets were observed to be very simple
and easy to comprehend for a human user.

5 Summary and Discussion

An approach to feature subset selection using a genetic
algorithm for RIPPER classifiers is proposed in this
paper. A fast inductive rule learning algorithm, RIP-
PER, is employed to evaluate the fitness (in terms of
the generalization accuracy) of candidate feature sub-
sets in the genetic algorithm. The results presented
in this paper indicate that genetic algorithms offer an
attractive approach to solving the feature subset selec-

tion problem in inductive learning of pattern classifiers
in general, and RIPPER pattern classifiers in particu-
lar as it is very fast in learning the rule sets.

The GA-based approach to feature subset selection
does not rely on monotonicity assumptions that are
used in traditional approaches to feature selection
which often limits their applicability to real-world clas-
sification and knowledge acquisition tasks. It also of-
fers a natural approach to feature subset selection by
taking into account, the distribution of available data.
This is due to the fact that feature selection is driven
by estimated fitness values, which if based on multiple
partitions of the dataset into training and test data,
provide a robust measure of performance of the fea-
ture subset. This is not generally the case with many
of the greedy stepwise algorithms that select features
based on a single partition of the data into training and
test sets. Consequently, the feature subsets selected by
such algorithms are likely to perform rather poorly on
other random partitions of the data into training and
test sets.

The approach to feature subset selection can be ex-
tended to incorporate multiple criteria (e.g., accuracy,
cost) into the feature selection process. This finds ap-
plications in cost-sensitive design of classifiers for tasks
such as medical diagnosis, computer vision, among
others. Another interesting application is automated
data mining and knowledge discovery from datasets



with an abundance of irrelevant or redundant features.
In such cases, identifying a relevant subset that ade-
quately captures the regularities in the data can be
particularly useful, particularly in scientific knowledge
discovery tasks.
cussed in this paper have been successfully used re-
cently to select feature subsets for pattern classifica-

Techniques similar to the one dis-

tion tasks that arise in power system security assess-
ment [Zhou et al., 1997], sensor subsets in the design
of behavior and control structures for autonomous mo-
bile robots [Balakrishnan and Honavar, 1996a,
Balakrishnan and Honavar, 1996b,
Balakrishnan and Honavar, 1996¢|,
detection[Helmer Guy, 1999].

mntrusion

Additional experiments with GARIPPER in scientific
knowledge discovery tasks in bioinformatics (e.g.,
discovery of protein structure—function relationships,
carcinogenicity prediction, gene sequence identifica-
Some directions
Extension of feature

tion) are currently in progress.
for future research include:
subset selection by incorporating feature construc-
tion and genetlic programming [Koza, 1992]; Exten-
sive experimental (and wherever feasible, theoretical)
comparison of the performance of the proposed ap-
proach with that of conventional methods for fea-
ture subset selection; More principled design of multi-
objective fitness functions for feature subset selection
using domain knowledge as well as mathematically
well-founded tools of multi-attribute utility theory;
[Keeney and Raiffa, 1976];find novel genetic operators
which would improve the performance of GARIPPER
approach.
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