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Abstract

This paper details the theoretical basis of a block-oriented fractal image encoding
scheme. Encoding a fractal image entails seeking a set of transforms W such that the
attractor resembles a close approximation of the target image. Fisher's PIFS scheme
enables one to create a set of transforms that obeys the general contractivity
requirements and yet need not have every transform being attractive.
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1 Introduction

Following the pioneering work of Williams [WILL71] and Hutchinson [HUTCH8]]
in the synthesis of deterministic fractals, Barnsley [BARNS88], [BADES5], proposed
the use of what he termed IFS Iterated Function Systems for the encoding of arbitrary
monochrome images. It is important to note that in IFS encoding, a set of marked
pixelsis described in terms of afinite set of contractive maps of the form (wi:i =0, ..

.,n) where : ’
“(3)=(22) () (5) memramsarar o

Subsequently, Barndey and co-workers [BASL88] further proposed that fractal
encoding should be applicable, and effective for the compressive encoding of gray-
scale and high quality colour images [BARNS8S]. Barnsey’'s demonstration of the
encoding of high quality images from the 1987 National Geographic involved ‘hand-
encoding’ as described in the appendix of [BARNS8S8]. However, a solution to the
problem of implementing fractal image coding is now known. Firstly, there has been a
patent [BARN9Ob] granted to Michael Barndey for the fractal encoding of images.
The patent is vaguely worded and rather general in scope. Secondly, demonstration of
a practical scheme for the block-oriented fractal encoding of an arbitrary gray-scale
image has been given by Jacquin [JACQ92]. Following Jacquin, other workers,
notably Fisher [FIJB89], have implemented practical schemes of block encoding.
Jacquin’s approach, which we follow in broad outline though not in detail, involves
image blocking and transform for each domain block. The authors have published a
preliminary report on the implementation of block-oriented fractal image encoding
[CONG93]. This paper seeks to describe the theoretical basis for block-oriented
fractal encoding.

Fractal image compression necessarily requires that on encoding an image, as
discussed in [CONG93], to determine W, a collection of transforms w; , and that this
transform W is able to store the image as a fixed point on the space F ® F from a
complete metric space to itself. Our image model f(x,y) represents a gray scale image
with gray levels at point (x,y) of the image.

IFS theory requires that for a fixed point [W] to exist, every transform w;: is
contractive. The collage theorem provides the motivation to find a close
approximation. The contractive



mapping fixed point theorem assures us that such a fixed point will exists for any initial
image. PIFS Partitioned Iterated Function Systems [F1JB89],[FISH92) are a form of RIFS
Recurrent Iterated Function Systems [BAJA88] which partitioned the image in blocks. PIFS
however has a less stringent requirement by insisting that the transformation W°™ can be
contractive rather than W.

2 Encoding Images

Our image space F is a space which consists of all graphs of a real function z = f(z,y)
with (z,y, f(z,y) € I°. To construct the map W, such that w; is applied to a part of the
image called domains D; and mapped to a copy called ranges R; requires some mapping
v; : I3 — I3, As mentioned earlier, the transforms w; is restricted to certain parts of the
image defined as

w; = vi|pixr
These maps w; will tile the image I? if

n

W(fy=Jw(f) VfeF

i=1

D; therefore defines a part of the image fN(D; x I) to which w; is restricted. The application
of w; to f N (D; x I) must be a graph of a function over R; with I? = UL, R;. Since R;
must be disjoint, the union U, w;(f) must yield a graph of a function over I2. The union
of w; defines a map of the form

To seek an approximation f = |W| requires that the distance metric d(f, f) be at
its minimal. Finding this [W| = W(|W|) = U, wi(]W]) would require in PIFS to seek
domains D; and corresponding w; to form an image f defined as

n

Frw(f) = w(f) 2

i=1

Equation 2 is an expression which says that the union of these transforms w; defines a map
W. This map W is created by f covering with parts D; of itself. How these parts would
cover f is determined by w;. The approximated image f should be close to the original
image if d(f,|W]|) is at minimal. The collage theorem provides such a motivation.

The encoding process is therefore first to partition the image 72 in a certain manner by
the ranges R;. Domains D; are created by partitioning I? also. The w; : D; x I3+ I® and
domains D; corresponding to the range R; is sought such that wi(f) and f N (R; x I) has
the closest distance, that is

d(F 0 (R x D) wil ) @)

is at its minimal. Maps w; which specifies W must be chosen such that W or W°™ is
contractive.



To reconstruct the image given W, use an arbitrary image and iterate n times computing
W(fo), W(W(fo)), ... until the attractor [W] for the image appears 1.

2.1 Z-Contractive Maps

The theory here provides a method to map three-dimensional objects onto a two-dimensional
space and yet obey the general contractivity requirements.

Let 7, : I3+ I? be the projection operation defined as r.(z,y, z) = (z,y).
Then, a map w : R® — R2 is said to be z-contractive if there is a positive real number
s < 1 such that for all z,y,21,2, € R

lwi(z,y, 21) = wi(=, ¥, 22)| < 8; - |71 - 2|
Now 7, o w(z,y, z) is independent of 2.

Define (D; : i = 1,...,n) as subsets of I and some mappings (v; : i = 1,...,n) : I3 — I3,
Define w; to be some mappings with restrictions as such

wi = v]p;xI

Maps w; would now tile I? if for all images f € F, and the union of such mappings also
belong to F. This implied that for an image f € F, each D; defines a part of the image
given as

d(f 0 (R; x I),wi( £))

into which w; is restricted. When w; is applied to this part, the result must be a graph of
a function z = f(z,y) over R; which is the result of 7, o wi(f).

2.2 Eventually Contractive Maps

PIFS attractors are formed by the same iteration process as IFS with its limit set defined
as
W= Wl foo = lim W(fo)

but with less stringent contractivity requirements. It has been found [FIIB89] that the
attractor in PIFS is bounded as long as W is eventually contractive. A map W :F — F
is eventually contractive if there exists a positive integer m called the ezponent of even-
tual contractivity such that W°™ is contractive [FIJB89]. If every transform w; obeys the
contractivity condition, as in IFS then the transform is eventually contractive also, but
this cannot be said of a map that is eventually contractive must necessarily compose of
all transforms that are contractive . When these maps w; are choosen through a suitably
metric to yield z-contractivity the following results

[wi(z, ¥, 21) — wile, ¥, 22)| < ;- |21 — 2

then W will be d,up-contractive if and only if every w; is dsup-contractive. This happens
when each s; < 1. If at least one s; > 1 then W will not be dsup-contractive. Recall that

examples given in [CONG93]



the map W is defined as

n

w()=Jw()
i=1
which is a union of maps w;, but such maps are mapping onto disjoint parts of the image.

The iterate transform W°™ is then composed of the union of compositions of the form
Wi OWi20...0 Wim

The product of these composition must be that it bounds the contractivity of the com-
position if there is sufficient ‘mixing’ with those contractive w; eventually dominating the
non-contractive ones.

Generalized Collage Theorem([FIJB91})
For f € F and W : F — F eventually contractive with minimum ezponent of eventual-
contractivity m and eventual-contractivity o < 1,

TR g (), ).

a(wl, f) < 1=
This theorem relates the metric difference between the attractor |W| of the mapping
W and the target image f, to the like difference between the target image f and the
mapping of f by the mapping, viz W(f). This is of course a significant generalization
of the well-known collage theorem for IFS encoding of Barnsley and Sloan. Note that
Smaz = MaZi=1..n{s : s = z-contractivity of w;} This theorem as in the earlier IFS Col-
lage theorem only serves as a motivation and has been found to not provide useful bounds
[FIJB91].

3 Conclusion

In this paper, we have detailed the theoretical basis of block-oriented fractal compression
scheme. Our discussion has been directed towards fractal compressing using linear map-
pings, as used by us [CONG93),in Jacquin’s system and PIFS encoding; it would appear
trivial to extend the discussion to fractal encoding using bilinear mappings such as the
recently described Bath Fractal Transform [WINM94]. In the above discussion, we have
not dealt with the issue of convergence which has vital significance for practical decoding:
a specific study of this aspect has been dealt with by Hiirtgen [JUHA94].

Images are essentially three-dimensional quantities. Fisher’s Z-contractive maps de-
fines a way to map such a three-dimensional object into two-dimensional object. In this
framework eventually contractive maps are shown to be effective.
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