

Constructive induction
in learning of image representation

Krzysztof Krawiec

Institute of Computing Science

Poznan University of Technology
Research Report RA-006/2000

October 2000

Constructive induction in learning of image representation

Krzysztof Krawiec

Institute of Computing Science
Poznan University of Technology

Research Report RA-006/2000
October 2000

Abstract

This report describes the results of investigations on the use of genetic
programming for learning in pattern recognition problems. The general idea
consists in evolutionary search in the space of pattern recognition programs.
The solutions are expressed in terms of the Genetic Programming for Visual
Learning language (GPVISL), described in this work. This paper continues the
work initiated in [Krawiec 2000].

Introduction

Reasoning from the visual information belongs to the most complex problems ever faced in

computer science and artificial intelligence. Despite several decades of research and

experimental efforts, it is generally still not clear how to detect, represent, process, and make

use of visual information in robust and effective way. Moreover, we still lack general

methodology for design and implementation of pattern recognition systems. And, last but not

least, the problem of automatic search for an optimal or sub-optimal (wrt the accuracy of

classification) pattern recognition program based on example data or, in other words, the task of

incorporating learning in that process, is still not well formulated, not mentioning its solution.

This report describes an approach to reasoning from pictorial information based on

evolutionary computation, or, to be more precise, on the paradigm of genetic programming

[Koza 1994]. The outline of the method is as follows. The genetic search engine performs the

search through the space of image processing and analysis programs. The programs have the

form of expressions formulated in a specialized language called GPVISL (Genetic Programming

Constructive induction in learning of image representation, K. Krawiec 3

for Visual Learning language). The genetic search engine realizes the selection of parent

solutions (individuals), which are then crossed over and mutated to obtain the next generation

of solutions. The selection is done wrt the value of evaluation (fitness) function. A solution is

evaluated by testing its behavior on a set of fitness cases, which are equivalent to images in this

context. The fitness function is the percentage of ‘hits’ [Koza 2000], i.e. of the correct decisions

(recognitions) made by the system.

This paper is organized as follows. The next section contains considerations concerning

the use of background knowledge in the learning based on visual information. Then, the

relations between the visual learning, constructive induction, and genetic programming are

discussed. After that theoretical introduction, the more practical results are presented, including

the proposal of the Genetic Programming for Visual Learning language (GPVISL) and the

results of experimental evaluation of the proposed approach on the problem of recognition of

handwritten characters.

Background knowledge and constructive induction in visual learning

There is a fundamental question related to the design of pattern recognition (PR) systems

exploiting learning, namely: what is the amount of background (domain) knowledge, which

should be implemented explicitly in the system? Or, expressing it more technically, to what

extent should we equip the designed PR system with ready-to-use building blocks which then

the system makes use of in the learning process? 1

An answer to this question is extremely hard and depends on several factors including,

but not limited to, the nature and complexity of the considered task, the exploited image

representation(s), and the incorporated learning algorithm. Thus, in practice the decision is

usually made by the human designer of the system basing on his/her experience and intuition.

For this purpose, it is usually useful to know the extreme and mutually opposite alternatives for

this dilemma. Thus, the policy of using no background knowledge at all is usually exploited by

neural systems. On the other hand, most state-of-the-art commercial solutions for pattern

recognition represent the opposite extreme, where the complete recognition algorithm is

implemented at hand.

Obviously, from the system designer’s viewpoint, the more a PR system is able to learn

on itself, the better. However, such a ‘wishful thinking’ is very risky, as the aforementioned

1 Note that this dilemma could be actually considered in a more broader philosophical context,
i.e. that of the existence (Plato) or non existence (Locke) of innate ideas.

Constructive induction in learning of image representation, K. Krawiec 4

problem is actually a vision-specific instance of the bias-variance dilemma well known in statistics

and machine learning [Geman & Bienenstock 1992], [Bensusan 1998]. That term refers to the

trade-off between

• a priori bias resulting from the problem representation and hypothesis space search

algorithm ([inductive] bias), and

• the ability of the system to follow the regularities spotted in the training data (variance).

Too much bias deteriorates the flexibility of the system and may result in the situation, when

the induction algorithm does not consider some promising hypotheses (potentially optimal wrt

the classification accuracy). As a result, no satisfactory solution may be found. On the other

hand, low bias increases the risk of overfitting as a result of, for instance, building a

prohibitively large hypothesis which memorizes all the training instances. An overfitted

hypothesis, although performs well or even perfect on the training set, is usually completely

useless for predictive purposes (on the testing set).

 This problem has been originally identified in basic research concerning statistics and

machine learning. It should be stressed however, that it becomes more and more annoying when

the number of, expressing it roughly, 'degrees of freedom' of the inductive learner grows. In

conventional inductive learning algorithms, the overfitting risk is a function of the size of the

hypothesis space. However, the more advanced systems have the ability to change even the

representations space (for instance, in the standard machine learning setting, to modify the set

of attributes which is used as the basis of induction). This process, known in machine learning

as constructive induction [Matheus 1989][Bloedron et. al. 1993], replaces the search through the

hypothesis space performed by conventional inducers by the two-level search realized

simultaneously in the space of representations and in the space of hypothesis of the current

representation. As a consequence, the inducer is much more likely to yield an overfitted

hypothesis (solution).

 In the context of evolutionary computation, this trade-off is in part reflected by the

problem of the representation of solutions. In literature, there is common criticism of GP, that

already the choice of primitives, terminals and function solves the problem in a great part. On

the other hand, there is a relatively wide agreement, that one has to choose some non-trivial

representation, because relying on the raw data (e.g. bitmap in vision tasks) increases the

aforementioned overfitting risk and is usually prohibitively expensive as far as the computation

time is concerned.

Thus, the problem of the language choice remains still open, but it does not mean that

we should abandon the research concerning the use of genetic programming in pattern

Constructive induction in learning of image representation, K. Krawiec 5

recognition. Most of the work present in the literature concerns the use of genetic algorithms or

genetic programming in image analysis (see, for instance, [Poli 1996]). Leading research in this

area focuses on looking for solutions, which are not general, however, give evidence of some

psychological plausibility. One of the probably most impressive researches carried out in this

domain has been described in [Johnson 1995], where the image processing and analysis language

makes use of some notions and ideas taken from the Ullman’s theory of visual routines [Ullman

1985]. The image processing and analysis language GPVISL described in the next section is

generally simpler than that proposal and it is based on a few ‘common-sense’ assumptions,

which, although arbitrary, seem to work well in the studied application.

GPVISL - The language for genetic programming of visual information

processing programs

We decided to evolve the complete pattern recognition program expressed in a form of tree.

Specifically, the strong typing [Koza 1994] has been implemented, with the following types:

numeric, point (pair of numbers), and rectangular region of interest ROI (a pair of points).

Terminals (leaves of the tree) are represented exclusively by numeric constants. These

constants are interpreted by the non-terminal operations as parts of arithmetic expressions or

image coordinates.

The entire set of non-terminals is composed of two types of operations, not depending

and depending on the image contents. The former one includes:

• logical aggregation (disjunction and conjunction),

• logical conditions: arithmetic comparisons (<,>), testing for ROI-ROI and ROI-

point intersection,

• arithmetic operations (+,-,* and, as usual in GP, the protected division %),

• point and ROI construction, ROI shifting,

• computing of simple, image contents-independent, features of ROI, like area,

width, height, etc.,

• extracting members from structures (i.e. points and ROIs), e.g. getting the 'x'

coordinate of a point.

The set of non-terminals contains the following image contents-based operations:

• testing the state of a pixel (only on/off; the gray levels are discarded),

Constructive induction in learning of image representation, K. Krawiec 6

• computing simple statistics of ROI contents: number of pixels on/off, average pixel

value,

• computing the mass center of a ROI,

• adjusting the ROI size to its actual contents.

An exemplary individual (solution) expressed in the GPVISL language is presented in Figures 3

and 4. In Figure 3 the solution is shown in a form of Lisp-like expression, whereas Fig. 4 shows

the same solution in a tree-like representation. The idea of processing carried out by this

solution on an exemplary image of the ‘2’ digit is illustrated in Fig. 6. For a more detailed

description of the syntax of the GPVISL language and the semantics of its operations, see

Appendices A and B, respectively.

The possible alternative to the proposed approach was to search for image

representation (e.g. a vector of features), which could be then evaluated in some way

(statistical, using information measures, or by the so-called wrapper approach [Kohavi&John

1997]). However, the latter methodology is computationally more expensive and introduces

additional bias, which was not the main topic of this experiment. On the other hand, it prevents

better overfitting, which is the main problem in pattern recognition and machine learning.

However, we claim that using sufficiently large set of fitness cases solves that difficulty.

Case study: learning handwritten digit discrimination

As a test bed for GPVISL the problem of recognition of handwritten digits has been chosen.

This problem is very popular in the pattern recognition community due to the wide scope of

real-world applications. Many various approaches have been proposed here in the literature,

using statistics [Wong & Chan 1998], structural/syntactic methodology [Zabawa 1994][Cai &

Liu 1999], sophisticated neural networks [Wake 1991] [LeCun & et al. 1989] [LeCun & Bengio

1994], or ad hoc feature extraction procedures [Kato, Omachi, et al. 1999], to mention only a

few (for review, see [LeCun & et al. 1995]).

Constructive induction in learning of image representation, K. Krawiec 7

Fig. 1. Exemplary images from the MNIST database.

Fig. 2. Selected difficult examples of digits from the MNIST database.

The data source was the MNIST database of handwritten digits

(http://www.research.att.com/~yann/ocr/mnist) [LeCun & et al. 1995], which consists of two

subsets, training and testing, containing together 70,000 digits written by approx. 250 persons

(students and clerks). Each image consists of 28x28 gray level pixels. Digits are centered and

scaled with respect to their horizontal and vertical dimensions, however, no 'deskewing' has

been performed. For more detailed description of the MNIST database please refer to [LeCun &

et al. 1995].

In the GPVISL language one can formulate expressions returning logical value (true or

false). Therefore, we are obliged to adopt the multi-class problem of digit recognition to the

binary classification problem, where the decision can be computed by an expression written in

GPVISL. Such a decomposition can be done in several ways; for details related to this problem

the reader should refer to the literature of the so-called meta-classifiers (e.g. [Chan&Stolfo

Constructive induction in learning of image representation, K. Krawiec 8

1993] [Jelonek et. al. 1998.]). However, as here the task decomposition was not the central

topic of this research, one of the simplest approaches has been chosen, where the task is to

discriminate between one selected decision class (called hereafter prototype class) and all the

remaining classes. Using this 'one-of-n' decomposition, where n is the number of decision

classes in the original machine learning problem, we obtain n (here 10) separate subproblems,

which, solved using some machine learning inducer, yield n independent (base) classifiers.

Therefore, later on there is a need for an aggregation scheme able to combine the decisions

made by the base classifiers into one final decision. However, in this report we skip this part of

processing and present the result obtained by the base classifiers for the 10 independent

subproblems.

(or
 (and
 (poutside
 (shift
 (absRoiN 19.2 8.21 2.47 3.98)
 (absPoint 12 0.126))
 (absPoint 15.4 16.4))
 (>
 (x
 (absPoint 21.1 14))
 (y
 (absPoint 25 3.84))))
 (routside
 (shift
 (adjust
 (absRoiN 7.19 22.7 10.1 18.3))
 (absPoint 7.45 15.9))
 (shift
 (shift
 (absRoiN 12.6 25.6 2.92 10.4)
 (absPoint 15.5 4.09))
 (absPoint 14 20.3))))

Fig. 3. The Lisp-like representation of an exemplary solution.

Constructive induction in learning of image representation, K. Krawiec 9

Fig. 4. The graphical representation of the solution from Fig. 3 (numerical values (leaves) not
shown). Output values of the yellow marked nodes depend on the contents

of the image because the operation 'adjust' is based on the input image.

Fig. 5. The solution from Fig. 4 after simplification (see text).

Fig. 6. Processing of an exemplary image in a fragment of the solution from Fig 4.

or

and routside

poutside >

shift

absRoiN absPoint

absPoint x

absPoint

y

absPoint

shift

adjust

absRoiN

absPoint

shift

shift absPoint

absRoiN

or

true routside

shift

adjust

absRoiN

absPoint

absRoiN

shift

adjust

absRoiN

absPoint Original image

Constructive induction in learning of image representation, K. Krawiec 10

The setting of the computational experiments

The experiments vary in the setting of different GP run parameters, specifically:

- population size |P|, and

- selection method (or, more precisely, the number |T| of solutions drawn at random and

participating in the same tournament).

The remaining GP run parameters were the same for all the series of experiments and have been

set as follows:

- probability of mutation: 0.05,

- maximal depth of a randomly generated solution: 3,

- maximal depth of a randomly generated subexpression (needed in mutation): 2,

- maximal number of generations: 100,

- training set (set of fitness cases) size: 600 cases (images), i.e. 300 cases for the

prototype class and another 300 cases representing the remaining decision classes,

- the size of the independent test set: 1600 cases (images), i.e. 800 cases for the prototype

class and another 800 cases for the remaining decision classes (note that that set is

independent in a very strong sense, as the subsets of people engaged in creation of the

training (fitness) set and the test set are disjoint (see [LeCun & et al. 1995])).

The tournament selection scheme was applied due to its widely recognized advantages

over the formerly popular roulette-wheel rule. As the GPVISL is a typed language, we are

forced to obey the strong typing [Koza 1994] rules when crossing over the solutions, which is

implemented as follows. For a pair of parent solutions, a random term is chosen in one of them.

Then, a term of the same type is randomly selected in the other solution. Consecutively, the

offspring solutions are obtained by swapping the selected terms with their subtrees (all

immediate and intermediate offspring terms). In case when no term of the required type exists

in the other solution, the trial is cancelled and the crossover procedure is reinitialized for this

pair of solutions.

The fitness function is based on the accuracy of classification provided by the evolved

solution on the training set (or, putting it more in GP terms, on the ratio of hits returned by the

solution on the set of fitness cases and its size). To prevent the undesirable overgrowth of trees

(solutions), which significantly slows down the computer simulation, the obtained accuracy of

classification is then multiplied by the term implementing the so-called parsimony penalty ,

shown in Fig. 7. This term introduces a linear penalty for solutions of size in range (100,200),

and effectively discards solutions composed of more than 200 terms.

Constructive induction in learning of image representation, K. Krawiec 11

0

1

0 100 200 300

Solution size (# of terms)

Pa
rs

im
on

y
pe

na
lty

 te
rm

Fig. 7. The characteristics of the parsimony penalty term.

Relying exclusively on the training set when evaluating an inductive learning system is in

general not acceptable [Weiss&Kulikowski 1991] [Mitchell 1997], as in such a case only the

apparent error is take into account. A robust evaluation should reflect the predictive ability of

the classifier (or, in this context, of the pattern recognition system). For this purpose the

classifier induced on the set of fitness cases is usually evaluated on an extra set of cases (let’s

call it verification set to distinguish it from the final test set, used after the entire evolution

process). To get rid of the undesired influence of the choice of cases for this set, the steps of

training and testing are usually repeated several times in a way similar to, for instance, the

popular cross validation technique [Weiss&Kulikowski 1991]. Such a procedure resembles

somehow the so-called wrapper approach popular in the feature selection methodology

[Kohavi&John 1997].

This attitude to solution evaluation was not followed in the work described here for the

following reasons. First of all, the inductive learning does not take place in the described

approach; solutions are taken ‘as they are’ and, therefore, there is no need for the training set.

Secondly, induction of a classifier always introduces an extra bias (inductive bias), which

obviously influences the process of the evolution and, as a consequence, makes the

interpretation of the final result more complicated. And, last but not least, training of the

classifier implies an extra computational cost, which is usually several orders of magnitude

higher than the cost of the evolution-related procedures. On the contrary, carrying out only the

test (evaluation) on the fitness cases allows for caching of values computed in particular

expression tree nodes. This technical improvement has been used in the software

implementation and gave a significant speed-up in computational experiments.

Constructive induction in learning of image representation, K. Krawiec 12

Experimental results

The included Tables 1 to 6 present the results of experiments for population size varying from

50 to 200 solutions and the tournament size equal to 2 or 5. In the tables, the best solutions

evolved are presented for each prototype class separately, including the following data:

- the prototype class (i.e. the decision class which should be recognized by the evolved

solution),

- the number of generation in which the best solution has been found,

- the value of the fitness function for that solution, i.e. its accuracy of classification on

the training set (set of fitness cases),

- the accuracy of classification on the independent test set,

- the size of the best solution,

- the size of the best solution after simplification.

The size of the solution has been defined as the total number of terms it was composed of (both

internal nodes as well as leaves). The above-mentioned simplification is based on the

observation that some branches in the expression tree do not depend on the image contents

and, as a consequence, return a constant value. In such a case, we can cut them off and replace

by the simplest possible expression returning the same constant value. For instance, a complex

subexpression returning the numerical value 2.5 (of the 'tfloat' type) could be replaced by just

the 'num' term equal to 2.5 (see Appendices A and B)2. In the exemplary solution shown in Fig.

4, only the yellow-marked terms compute their output value based on the input image. The

values returned by the remaining terms are constant. Thus, according to the aforementioned

procedure this expression can be reduced to the one presented in Fig. 5 without any loss of

functionality.

 The size of the simplified tree gives a better estimate of the complexity of the genetic

program in comparison to the original solution, which is often 'overgrown' and superfluous.

However, the simplification operation is performed only at the end of the simulation. It is not

intertwined with the evolution process, because the superfluous fragments of genetic code

(introns) protect the solutions from the so-called destructive mutations and crossovers,

decreasing the probability of genome modification at relevant points.

2 Note that such a simplification affects only the image contents-independent parts of the solution. In some cases it is
possible to perform a far more advanced process, where the unnaturally complex expressions (e.g. the arithmetic ones)
could be simplified to the most compact form, no matter whether they depended on the image contents or not.
However, such a procedure would be much more complex and has not been implemented, as it was not the main topic
of this research.

Constructive induction in learning of image representation, K. Krawiec 13

 In the tables, the results of experiments where an extreme overfitting took place are

shown in bold in the tables. By an ‘extreme overfitting’ we mean here the situation, where the

difference between the accuracy of classification on the training set and that for the testing set

is at least 0.4.

Accuracy Size
Prototype

class

Best solution
evolved in
generation

on the set
of fitness

cases

on an
independent

test set

original simplified

0 56 0.873 0.865 96 35
1 75 0.957 0.956 77 77
2 100 0.797 0.720 61 32
3 24 0.993 0.500 51 42
4 67 0.882 0.858 42 32
5 87 0.823 0.809 83 59
6 79 0.933 0.931 87 19
7 99 0.790 0.782 57 49
8 40 0.997 0.958 94 86
9 75 0.855 0.845 89 18

Table. 1. Brief characteristic of the solutions evolved in the GP run (|P|=50, |T|=2).
Extreme cases of overfitting in bold. See text for details.

Accuracy Size
Prototype

class

Best solution
evolved in
generation

on the set
of fitness

cases

on an
independent

test set

original simplified

0 87 0.892 0.877 88 44
1 78 0.960 0.964 83 75
2 28 0.830 0.785 74 30
3 90 0.777 0.739 42 28
4 83 0.820 0.786 42 42
5 95 0.735 0.683 83 61
6 73 0.935 0.930 67 43
7 41 0.992 0.661 45 36
8 90 0.808 0.767 88 51
9 26 0.837 0.557 46 44

Table. 2. Brief characteristic of the solutions evolved in the GP run (|P|=100, |T|=2).

Accuracy Size
Prototype

class

Best solution
evolved in
generation

on the set
of fitness

cases

on an
independent

test set

Original simplified

0 65 0.952 0.956 84 47
1 95 0.943 0.930 98 79
2 49 0.980 0.778 89 53
3 60 0.985 0.282 71 57
4 92 0.862 0.786 86 45
5 89 0.767 0.723 96 82
6 88 0.918 0.926 74 67
7 36 0.830 0.810 85 45
8 61 0.858 0.855 56 35
9 93 0.870 0.865 99 78

Table. 3. Brief characteristic of the solutions evolved in the GP run (|P|=200, |T|=2).

Constructive induction in learning of image representation, K. Krawiec 14

Accuracy Size

Prototype
class

Best solution
evolved in
generation

on the set
of fitness

cases

on an
independent

test set

Original simplified

0 51 0.982 0.649 98 73
1 93 0.927 0.922 91 66
2 42 1.000 0.608 87 61
3 73 0.983 0.549 74 42
4 96 0.993 0.507 93 48
5 80 0.998 0.655 55 36
6 100 0.937 0.875 85 74
7 97 0.868 0.851 98 76
8 18 0.955 0.540 71 20
9 42 1.000 0.571 75 39

Table. 4. Brief characteristic of the solutions evolved in the GP run (|P|=50, |T|=5).

Accuracy Size
Prototype

class

Best solution
evolved in
generation

On the set
of fitness

cases

on an
independent

test set

Original simplified

0 99 0.945 0.934 87 46
1 93 0.945 0.939 76 73
2 32 0.997 0.995 51 25
3 86 0.997 0.911 97 68
4 94 0.928 0.911 96 76
5 100 0.853 0.834 92 73
6 79 0.938 0.920 95 53
7 51 0.998 0.905 92 85
8 82 0.998 0.526 83 57
9 14 0.997 0.992 73 37

Table. 5. Brief characteristic of the solutions evolved in the GP run (|P|=100, |T|=5).

Accuracy Size
Prototype

class

Best solution
evolved in
generation

On the set
of fitness

cases

on an
independent

test set

Original simplified

0 100 0.967 0.960 93 68
1 44 0.972 0.966 74 60
2 26 0.992 0.476 68 55
3 55 0.998 0.510 79 73
4 89 0.888 0.826 95 51
5 58 0.998 0.637 83 64
6 86 0.942 0.933 91 66
7 70 0.918 0.889 96 74
8 100 0.845 0.808 87 72
9 82 1.000 0.464 99 67

Table. 6. Brief characteristic of the solutions evolved in the GP run (|P|=200, |T|=5).

Constructive induction in learning of image representation, K. Krawiec 15

Fig. 8. Fitness chart for the GP run (|P|=200, |T|=2) and prototype class 4.
The thick solid line shows the average fitness in the generation,

and the thin lines depict the variability (min,max) of the fitness in the generation.

Tournament size Population

size 2 5
P(~acc2<acc5)

50 0.890 0.964 0.013
100 0.859 0.960 0.002
200 0.896 0.952 0.021

Table 7. Statistical comparison of average accuracy of classification wrt the tournament size for the training set.
The second and third column of the table show the average accuracy of classification yielded by the system on

the training set. The column denoted by ‘P(~acc2<acc5)’ contains the true-negative probability of a paired,
one-sided t-Student test.

Tournament size Population
size 2 5

P(~acc2>acc5)

50 0.822 0.673 0.009
100 0.775 0.887 0.958
200 0.791 0.747 0.233

Table 8. Statistical comparison of average accuracy of classification wrt the tournament size for the testing set.
The second and third column of the table show the average accuracy of classification yielded by the system on

the testing set. The column denoted by ‘P(~acc2>acc5)’ contains the true-negative probability of a paired,
one-sided t-Student test.

Discussion of results and conclusions

An analysis of the results of GP runs allows us to formulate the following conclusions.

Most of the GP runs yielded solutions (pattern recognition programs) providing good

predictive accuracy. The evaluation on the set of fitness cases, i.e. the estimate of solution’s

utility, usually does not differ significantly from the evaluation on an independent test set (with

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90

Generation

Fi
ttn

es
s

Constructive induction in learning of image representation, K. Krawiec 16

a few exceptions, e.g. class 3 in Table 1). Moreover, there are some cases, when the test set

evaluation gives better results than that of the training set. This result is really impressive taking

into account the following factors:

• There was no image preprocessing.

• The classifier faces a hard task of discrimination between one decision class and examples

representing nine other decision classes (digits).

• The GPVISL is rather simple (for instance, it does not contain sophisticated operators

implementing any shape description method).

The relatively rare failures of the method in finding a solution with reasonable classification

accuracy (as, for instance, the above mentioned class 3 in Table 1) result probably from the

overfitting phenomenon. A good, although computationally expensive, remedy for this problem

could be an enlargement of the fitness set.

There is no evidence for an existence of the relationship between the intuitive

complexity of the task (depending on the prototype class) and the size of the best solution

found (no matter whether the original or the simplified one). This observation is contradictory

to the intuition, which suggest that recognition of some digits (e.g. 0,1) should be easier than of

the other ones. It could be interesting to check this hypothesis with a more sophisticated

simplification procedure at hand.

Tables 7 and 8 show the results of statistical analysis carried out on the collected data

wrt the significance of the tournament size, for the accuracy of classification obtained on the

training and testing sets, respectively. This analysis shows, as far as the training set is

concerned, there is a statistically significant superiority (at least at the level of significance

0.05) of using the tournament size equal to 5 over the results obtained whet it was set to 2,

no matter what the population size was. However, just the opposite statement follows for the

case of testing set. Here, at least when the population size equals 50 and 200, the genetic

search with tournament size equal to 2 significantly outperforms that one with tournament size

5. The only exception is the series of experiments with population size set to 100. Briefly

speaking, it follows that although increasing the genetic pressure (through organizing larger

tournaments) clearly improves the performance of solutions measured on the set of fitness

cases, such a statement is in general not valid for the predictive accuracy.

On the contrary, analyzing the results wrt the population size leads us to a ‘negative’

conclusion, i.e. that there is no statistical evidence for the relation between the population

size and the fitness of the best evolved individual. This observation applies to the accuracy of

Constructive induction in learning of image representation, K. Krawiec 17

classification measured on both training and testing sets. Showing such an evidence would

probably require more experiments.

0

5

10

15

20

25

30

35

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.
55 0.

6

0.
65 0.

7

0.
75

Loss of accuracy

Fr
eq

ue
nc

y
(#

 o
f e

xp
er

im
en

ts
)

Fig. 9. The histogram of the loss of accuracy, i.e. the difference between the accuracy of classification

obtained for the training set and that obtained for the testing set. The bar denoted by ‘0’ corresponds
to the interval of loss (-0.05,0〉, denoted by ‘0.05’ corresponds to the interval (0,0.5〉, and so on.

An interesting phenomena concerns the loss of accuracy (LOA), i.e. the difference

between the accuracy of classification obtained by the method on the training set and that for

the testing set. Figure 9 illustrates the histogram (frequency chart) of that value for all the

results shown in Tables 1 to 6. A compact cluster composed of the first three bars shows, that a

great part of GP runs (47 of total 60) yielded solutions characterized by the loss of accuracy

close to zero (less than or equal to 0.1), and that three runs gave solutions having better

performance on the testing set than on the training set. In the remaining experiments a serious

(greater than 0.1) loss of accuracy has been observed. But, surprisingly, it seems that it is more

probable to get a solution with a large accuracy loss (0.35 or greater) than one with

medium value of this measure (somewhere in the interval (0.1,0.35)). Such a bimodal

characteristic was rather unexpected, as one would rather expect something similar to the

normal distribution with. Unfortunately, although interesting, this observation is rather

inconvenient, as it shows us that there is a relatively high probability of obtaining very poor

(wrt to the testing set) solutions. This statement is especially painful taking into account the

fact, that in each task the distribution of the decision classes is 50:50, and therefore every

solution with LOA>0.5 is surely worse than the so-called default classifier (pointing always to

the same decision class) and than the random (‘coin-tossing’) classifier. We claim that the

Constructive induction in learning of image representation, K. Krawiec 18

described phenomenon is probably related to the specificity of the GPVISL language rather

than to the genetic search in general.

Acknowledgements
The author wants to thank Yann LeCun for making the MNIST database of handwritten digits

available to the public. This work was supported from the research grant no. DS 43-345.

References

[Bensusan 1998] Bensusan, H.N. Automatic bias learning: an inquiry into the inductive basis of induction.
Ph.D. Thesis. School of Computing and Cognitive Sciences -- University of Sussex,
1998.

[Bloedron et. al.] Bloedorn, E., Michalski, R.S., Wnek, J. Multistrategy Constructive Induction: AQ17-
MCI. In: Michalski, R.S., Tecuci, G. Proceedings of the Second International Workshop on
Multistrategy Learning (MSL--93). Center for Artificial Intelligence, George Mason
University, 1993, pp. 188-203.

[Cai & Liu 1999] Cai, J., Liu, Z.Q. Integration of Structural and Statistical Information for
Unconstrained Handwritten Numeral Recognition. IEEE Trans. on PAMI, 21(3),
1999, pp. 263-270.

[Chan&Stolfo 1993] Chan, P.K., Stolfo, S.J. Experiments on multistrategy learning by meta--learning. In:
Proceedings of the Second International Conference on Information and Knowledge Management.
1993.

[Geman & Bienenstock 1992] Geman, S., Bienenstock, E. Neural networks and the bias/variance dilemma. Neural
Computation, 4, 1992.

[Jelonek et. al. 1998] Jelonek, J., Krawiec, K., Stefanowski, J. Comparative study of feature subset selection
techniques for machine learning tasks. In: Proceedings of the 7th International
Symposium 'Intelligent Information Systems'. Zakopane. 1998, pp. 68-77.

[Johnson 1995] Johnson, M.P. Evolving Visual Routines. M.Sc. Thesis, Massachusetts Institute of
Technology, 1995.

[Kato, Omachi, et al. 1999] Kato, N., Omachi, S., Aso, H., Nemoto, Y. A Handwritten Character Recognition
System Using Directional Element Feature and Asymmetric Mahalanobis Distance.
IEEE Trans. on PAMI, 21(3), 1999, pp. 258-262.

[Kohavi&John 1997] Kohavi, R., John, G.H. Wrappers for feature subset selection. Artificial Intelligence
Journal, 1--2, 1997, pp. 273-324.

[Koza 1994] Koza, J.R. Genetic Programming - 2. MIT Press, Cambridge, 1994.

[Koza 2000] Koza, J.R., Keane, M., Yu, J., Forrest, H.B., Mydlowiec, W. Automatic Creation of
Human--Competetive Programs and Controllers by Means of Genetic Programming.
Genetic Programming and Evolvable Machines, 1, 2000, pp. 121-164.

[Krawiec 2000] Krawiec, K. Constructive Induction in Picture-based Decision Support . Ph.D. dissertation.
Institute of Computing Science, Poznan University of Technology, 2000.

[LeCun & et al. 1989] LeCun, Y., et al., Backpropagation applied to handwritten zip code recognition. Neural
Computation, (1), 1989, pp. 541-551.

[LeCun & Bengio 1994] LeCun, Y., Bengio, Y. Word-level training of a handwritten word recognizer based on
convolutional neural networks. In: Proc. of the International Conference on Pattern
Recognition, volume II. 1994, pp. 88-92.

Constructive induction in learning of image representation, K. Krawiec 19

[LeCun & et al. 1995] LeCun, Y., et al., Comparison of learning algorithms for handwritten digit
recognition. In: Fogelman, F., Gallinari, P. (eds.) International Conference on Artificial
Neural Networks, Paris. 1995, pp. 53-60.

[Matheus 1989] Matheus, C.J. A constructive induction framework. In: Proceedings of the Sixth
International Workshop on Machine Learning. Ithaca, New York, 1989.

[Mitchell 1997] Mitchell, T.M. Machine learning. McGraw--Hill, 1997.

[Poli 1996] Poli, R. Genetic Programming for Image Analysis, Technical Report CSRP-96-1, The
University of Birmingham, 1996.

[Ullman 1985] Ullman, S. Visual Routines. Cognition, 18, 1985, pp. 97-159.

[Wake 1991] Wake, N. Handwritten Alphanumeric Character Recognition by the Neocognitron.
IEEE Trans. on Neural Networks, 2(3), 1991, pp. 355-365.

[Weiss&Kulikowski 1991] Weiss, S., Kulikowski, C.A. Computer systems that learn: classif ication and prediction
methods from statistics, neural nets, machine learning and expert systems. Morgan Kaufmann
Publishers, Inc., San Francisco, 1991.

[Wong & Chan 1998] Wong, P.K., Chan, Ch. Off-Line Handwritten Chinese Character Recognition as a
Compound Bayes Decision Problem. IEEE Trans. on PAMI, 20(9), 1998, pp. 1016-
1023.

[Zabawa 1994] Zabawa, P. Automatyczne rozpoznawanie liter pisma recznego metoda parsingu grafów
zaindeksowanych. Politechnika Krakowska. Monografia 172, Seria: Inzynieria elektryczna.
1994.

Constructive induction in learning of image representation, K. Krawiec 20

Appendix A – Grammar for solution representation

The grammar for generating of the solutions is presented below in a yacc-like form. The

following conventions have been used:

- lines starting with ‘!’ are ignored,

- ‘;’ character is the production rule delimiter,

- ‘|’ character is the delimiter for the right-hand of a production,

- the terminal symbols start with lower letter,

- the non-terminals start with upper letter,

- the left hand side of the production contains the non-terminal symbol preceded by its type

(Basically, there are three types in the proposed language, i.e. tfloat, tpoint, and

troi. However, there is an additional type ‘t’ for terminals containing the name of

operator to be used).

- the non-terminals starting with the upper ‘C’ letter reference the processed image for

computing of their value (otherwise the value returned by the non-terminal depends on the

image only if any of its offsprings depend on the image contents),

- the reserved word ‘PREFER’ determines the choice of right hand of the production rule in

case when the limit of the expression depth has been reached (otherwise, the right-hand

expressions are chosen at random); this is purely technical trick to prevent the creation of

infinitely deep trees.

! ---
tfloat start : Or disj disj PREFER
;

tfloat disj : conj PREFER
 | Or disj conj
;

tfloat conj : cond PREFER
 | And conj cond
;

tfloat cond : Cmpop numexp numexp PREFER
 | RoiPtRel roi point
 | RoiRoiRel roi roi
;

t And : and ;
t Or : or ;
t Cmpop : < | > ;
t RoiPtRel : pinside | poutside ;

Constructive induction in learning of image representation, K. Krawiec 21

t RoiRoiRel : rinside | routside | intersect | nintersect ;

! ---
tfloat numexp : Num PREFER
 | Arop numexp numexp
 | Point2num point
 | Cpoint2num point
 | Roi2num roi
 | Croi2num roi
;

t Num : num ;
t Arop : + | - | * | % ;
t Point2num : x | y ;
t Cpoint2num : pOn | pOff ;
t Roi2num : area | dx | dy | vert | horiz ;
t Croi2num : nPixOn | nPixOff | dens ;

! ---
tpoint point : PtFromNum numexp numexp PREFER
 | Roi2point roi
 | Croi2pt roi
;

t PtFromNum : absPoint ;
t Roi2point : ul | ur | ll | lr | mid ;
t Croi2pt : massCent ;

! ---
troi roi : RoiFromNum numexp numexp numexp numexp PREFER
 | RoiFromPts point point
 | Roi2roiPt roi point
 | Croi2roi roi
;

t RoiFromNum : absRoiN ;
t RoiFromPts : absRoi | relRoi ;
t Roi2roiPt : shift ;
t Croi2roi : adjust ;

Constructive induction in learning of image representation, K. Krawiec 22

Appendix B – Semantics of the terminal symbols

This appendix describes the terminal symbols, i.e. operations provided by the grammar and

implemented in the system.

Image contents-independent operations

num real (double precision) number,

+ arithmetic addition,

- arithmetic subtraction,

* arithmetic multiplication,

% arithmetic protected division, i.e. (% x y) equals 1 for y=0, x/y otherwise,

<, > arithmetic comparison,

and logical conjunction,

or logical disjunction,

absPoint creation of a point from a pair of arithmetic expressions,

x, y extraction of a coordinate from the point object,

ul, ur, ll, lr extraction of upper left, upper right, lower left, and lower right point from

the ROI, respectively

mid extraction of the middle point of the ROI,

absRoi creation of a ROI from a pair of points; the arguments become the upper

left and lower right corners of the ROI rectangle,

absRoiN creation of a ROI from a quadruple of numbers,

relRoi creation of a ROI from a pair of points; the first argument (point) becomes

the upper left corner, whereas the lower left corner is obtained by shifting

the first argument by the vector defined by the second argument,

area area of the ROI,

dx, dy width and height, respectively, of the ROI,

vert, horiz verticality and horizontality of the ROI (defined as a protected ration of dx

and dy),

shift shifts the first argment (ROI or point) by a vector given in the second

argument (point),

Constructive induction in learning of image representation, K. Krawiec 23

pinside, poutside test whether the first argument (ROI) contains or does not contain,

respectively, the second argument (point),

rinside, routside test whether the first argument (ROI) contains or does not contain,

respectively, the second argument (ROI),

intersect, nintersect test whether the first argument (ROI) intersects or does not intersect,

respectively, the second argument (ROI),

Operations depending on the image contents

pOn, pOff tests the state of the pixel, given by the first argument (point), in the

processed image; pOn gives 1 for any non-zero gray level pixel value, 0

otherwise; pOff returns 1 only for zero-valued pixels, 0 otherwise,

nPixOn, nPixOff count the number of pixels being in the ‘On’ or ‘Off’ state (see the

description above) in the rectangle given by the firs argument (ROI),

dens computes the average gray level pixel value in the image fragment bounded

by the first argument (ROI),

massCent computes the mass center of the image fragment bounded by the first

argument (ROI), taking into account the values of the pixels,

adjust returns the ROI equal to the first argument (ROI) limited to the smallest

sub-rectangle that preserves the nPixOn value

