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Abstract 
 

This report describes the results of investigations on the use of genetic 
programming for learning in pattern recognition problems. The general idea 
consists in evolutionary search in the space of pattern recognition programs. 
The solutions are expressed in terms of the Genetic Programming for Visual 
Learning language (GPVISL), described in this work. This paper continues the 
work initiated in [Krawiec 2000].  
 

 

Introduction 
 
Reasoning from the visual information belongs to the most complex problems ever faced in 

computer science and artificial intelligence. Despite several decades of research and 

experimental efforts, it is generally still not clear how to detect, represent, process, and make 

use of visual information in robust and effective way. Moreover, we still lack general 

methodology for design and implementation of pattern recognition systems. And, last but not 

least, the problem of automatic search for an optimal or sub-optimal (wrt the accuracy of 

classification) pattern recognition program based on example data or, in other words, the task of 

incorporating learning in that process, is still not well formulated, not mentioning its solution. 

This report describes an approach to reasoning from pictorial information based on 

evolutionary computation, or, to be more precise, on the paradigm of genetic programming 

[Koza 1994]. The outline of the method is as follows. The genetic search engine performs the 

search through the space of image processing and analysis programs. The programs have the 

form of expressions formulated in a specialized language called GPVISL (Genetic Programming 
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for Visual Learning language). The genetic search engine realizes the selection of parent 

solutions (individuals), which are then crossed over and mutated to obtain the next generation 

of solutions. The selection is done wrt the value of evaluation (fitness) function. A solution is 

evaluated by testing its behavior on a set of fitness cases, which are equivalent to images in this 

context. The fitness function is the percentage of ‘hits’ [Koza 2000], i.e. of the correct decisions 

(recognitions) made by the system.   

This paper is organized as follows. The next section contains considerations concerning 

the use of background knowledge in the learning based on visual information. Then, the 

relations between the visual learning, constructive induction, and genetic programming are 

discussed. After that theoretical introduction, the more practical results are presented, including 

the proposal of the Genetic Programming for Visual Learning language (GPVISL) and the 

results of experimental evaluation of the proposed approach on the problem of recognition of 

handwritten characters.  

 

Background knowledge and constructive induction in visual learning 
 
There is a fundamental question related to the design of pattern recognition (PR) systems 

exploiting learning, namely: what is the amount of background (domain) knowledge, which 

should be implemented explicitly in the system?  Or, expressing it more technically, to what 

extent should we equip the designed PR system with ready-to-use building blocks which then 

the system makes use of in the learning process? 1  

An answer to this question is extremely hard and depends on several factors including, 

but not limited to, the nature and complexity of the considered task, the exploited image 

representation(s), and the incorporated learning algorithm. Thus, in practice the decision is 

usually made by the human designer of the system basing on his/her experience and intuition. 

For this purpose, it is usually useful to know the extreme and mutually opposite alternatives for 

this dilemma.  Thus, the policy of using no background knowledge at all is usually exploited by 

neural systems. On the other hand, most state-of-the-art commercial solutions for pattern 

recognition represent the opposite extreme, where the complete recognition algorithm is 

implemented at hand.  

Obviously, from the system designer’s viewpoint, the more a PR system is able to learn 

on itself, the better. However, such a ‘wishful thinking’ is very risky, as the aforementioned 

                                                                 
1 Note that this dilemma could be actually considered in a more broader philosophical context, 
i.e. that of the existence (Plato) or non existence (Locke) of innate ideas. 
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problem is actually a vision-specific instance of the bias-variance dilemma well known in statistics 

and machine learning [Geman & Bienenstock 1992], [Bensusan 1998]. That term refers to the 

trade-off between  

• a priori bias resulting from the problem representation and hypothesis space search 

algorithm ([inductive] bias), and  

• the ability of the system to follow the regularities spotted in the training data (variance).  

Too much bias deteriorates the flexibility of the system and may result in the situation, when 

the induction algorithm does not consider some promising hypotheses (potentially optimal wrt 

the classification accuracy). As a result, no satisfactory solution may be found. On the other 

hand, low bias increases the risk of overfitting as a result of, for instance, building a 

prohibitively large hypothesis which memorizes all the training instances. An overfitted 

hypothesis, although performs well or even perfect on the training set, is usually completely 

useless for predictive purposes (on the testing set).  

 This problem has been originally identified in basic research concerning statistics and 

machine learning. It should be stressed however, that it becomes more and more annoying when 

the number of, expressing it roughly, 'degrees of freedom' of the inductive learner grows. In 

conventional inductive learning algorithms, the overfitting risk is a function of the size of the 

hypothesis space. However, the more advanced systems have the ability to change even the 

representations space (for instance, in the standard machine learning setting, to modify the set 

of attributes which is used as the basis of induction). This process, known in machine learning 

as constructive induction [Matheus 1989][Bloedron et. al. 1993], replaces the search through the 

hypothesis space performed by conventional inducers by the two-level search realized 

simultaneously in the space of representations and in the space of hypothesis of the current 

representation. As a consequence, the inducer is much more likely to yield an overfitted 

hypothesis (solution).  

 In the context of evolutionary computation, this trade-off is in part reflected by the 

problem of the representation of solutions. In literature, there is common criticism of GP, that 

already the choice of primitives, terminals and function solves the problem in a great part.  On 

the other hand, there is a relatively wide agreement, that one has to choose some non-trivial 

representation, because relying on the raw data (e.g. bitmap in vision tasks) increases the 

aforementioned overfitting risk and is usually prohibitively expensive as far as the computation 

time is concerned.  

Thus, the problem of the language choice remains still open, but it does not mean that 

we should abandon the research concerning the use of genetic programming in pattern 
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recognition. Most of the work present in the literature concerns the use of genetic algorithms or 

genetic programming in image analysis (see, for instance, [Poli 1996]). Leading research in this 

area focuses on looking for solutions, which are not general, however, give evidence of some 

psychological plausibility. One of the probably most impressive researches carried out in this 

domain has been described in [Johnson 1995], where the image processing and analysis language 

makes use of some notions and ideas taken from the Ullman’s theory of visual routines [Ullman 

1985]. The image processing and analysis language GPVISL described in the next section is 

generally simpler than that proposal and it is based on a few ‘common-sense’ assumptions, 

which, although arbitrary, seem to work well in the studied application.   

 

 

GPVISL - The language for genetic programming of visual information 

processing programs 

 
We decided to evolve the complete pattern recognition program expressed in a form of tree. 

Specifically, the strong typing [Koza 1994] has been implemented, with the following types: 

numeric, point (pair of numbers), and rectangular region of interest ROI (a pair of points). 

Terminals (leaves of the tree) are represented exclusively by numeric constants. These 

constants are interpreted by the non-terminal operations as parts of arithmetic expressions or 

image coordinates.  

The entire set of non-terminals is composed of two types of operations, not depending 

and depending on the image contents. The former one includes: 

• logical aggregation (disjunction and conjunction), 

• logical conditions: arithmetic comparisons (<,>), testing for ROI-ROI and ROI-

point intersection,  

• arithmetic operations (+,-,* and, as usual in GP, the protected division %),  

• point and ROI construction, ROI shifting,  

• computing of simple, image contents-independent, features of ROI, like area, 

width, height, etc., 

• extracting members from structures (i.e. points and ROIs), e.g. getting the 'x' 

coordinate of a point.  

The set of non-terminals contains the following image contents-based operations: 

• testing the state of a pixel (only on/off; the gray levels are discarded), 
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• computing simple statistics of ROI contents: number of pixels on/off, average pixel 

value, 

• computing the mass center of a ROI, 

• adjusting the ROI size to its actual contents.  

An exemplary individual (solution) expressed in the GPVISL language is presented in Figures 3 

and 4.  In Figure 3 the solution is shown in a form of Lisp-like expression, whereas Fig. 4 shows 

the same solution in a tree-like representation. The idea of processing carried out by this 

solution on an exemplary image of the ‘2’ digit is illustrated in Fig. 6.  For a more detailed 

description of the syntax of the GPVISL language and the semantics of its operations, see 

Appendices A and B, respectively.  

The possible alternative to the proposed approach was to search for image 

representation (e.g. a vector of features), which could be then evaluated in some way 

(statistical, using information measures, or by the so-called wrapper approach [Kohavi&John 

1997]). However, the latter methodology is computationally more expensive and introduces 

additional bias, which was not the main topic of this experiment. On the other hand, it prevents 

better overfitting, which is the main problem in pattern recognition and machine learning. 

However, we claim that using sufficiently large set of fitness cases solves that difficulty.    

 

 

Case study: learning handwritten digit discrimination 

 
As a test bed for GPVISL the problem of recognition of handwritten digits has been chosen. 

This problem is very popular in the pattern recognition community due to the wide scope of 

real-world applications.  Many various approaches have been proposed here in the literature, 

using statistics [Wong & Chan 1998], structural/syntactic methodology [Zabawa 1994][Cai & 

Liu 1999], sophisticated neural networks [Wake 1991] [LeCun & et al. 1989] [LeCun & Bengio 

1994], or ad hoc feature extraction procedures [Kato, Omachi, et al. 1999], to mention only a 

few (for review, see [LeCun & et al. 1995]).  
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Fig. 1.  Exemplary images from the MNIST database. 

 
 

 
Fig. 2.  Selected difficult examples of digits from the MNIST database. 

 
 

The data source was the MNIST database of handwritten digits 

(http://www.research.att.com/~yann/ocr/mnist) [LeCun & et al. 1995], which consists of two 

subsets, training and testing, containing together 70,000 digits written by approx. 250 persons 

(students and clerks). Each image consists of 28x28 gray level pixels. Digits are centered and 

scaled with respect to their horizontal and vertical dimensions, however, no 'deskewing' has 

been performed. For more detailed description of the MNIST database please refer to [LeCun & 

et al. 1995].  

In the GPVISL language one can formulate expressions returning logical value (true or 

false). Therefore, we are obliged to adopt the multi-class problem of digit recognition to the 

binary classification problem, where the decision can be computed by an expression written in 

GPVISL.  Such a decomposition can be done in several ways; for details related to this problem 

the reader should refer to the literature of the so-called meta-classifiers (e.g. [Chan&Stolfo 
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1993] [Jelonek et. al. 1998.]). However, as here the task decomposition was not the central 

topic of this research, one of the simplest approaches has been chosen, where the task is to 

discriminate between one selected decision class (called hereafter prototype class) and all the 

remaining classes. Using this 'one-of-n' decomposition, where n is the number of decision 

classes in the original machine learning problem, we obtain n (here 10) separate subproblems, 

which, solved using some machine learning inducer, yield n independent (base) classifiers. 

Therefore, later on there is a need for an aggregation scheme able to combine the decisions 

made by the base classifiers into one final decision. However, in this report we skip this part of 

processing and present the result obtained by the base classifiers for the 10 independent 

subproblems.  

 
(or  
 (and  
  (poutside  
   (shift  
    (absRoiN 19.2 8.21 2.47 3.98 ) 
    (absPoint 12 0.126 )) 
   (absPoint 15.4 16.4 )) 
  (>  
   (x  
    (absPoint 21.1 14 )) 
   (y  
    (absPoint 25 3.84 )))) 
 (routside  
  (shift  
   (adjust  
    (absRoiN 7.19 22.7 10.1 18.3 )) 
   (absPoint 7.45 15.9 )) 
  (shift  
   (shift  
    (absRoiN 12.6 25.6 2.92 10.4 ) 
    (absPoint 15.5 4.09 )) 
   (absPoint 14 20.3 )))) 
 

Fig. 3.  The Lisp-like representation of an exemplary solution. 
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Fig. 4.  The graphical representation of the solution from Fig. 3 (numerical values (leaves) not 
shown). Output values of the yellow marked nodes depend on the contents  

of the image because the operation 'adjust' is based on the input image. 
 
 

 

Fig. 5.  The solution from Fig. 4 after simplification (see text). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Processing of an exemplary image in a fragment of the solution from Fig 4. 
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The setting of the computational experiments 
 
The experiments vary in the setting of different GP run parameters, specifically: 

- population size |P|, and 

- selection method (or, more precisely, the number |T| of solutions drawn at random and 

participating in the same tournament).  

The remaining GP run parameters were the same for all the series of experiments and have been 

set as follows: 

- probability of mutation: 0.05, 

- maximal depth of a randomly generated solution: 3, 

- maximal depth of a randomly generated subexpression (needed in mutation): 2, 

- maximal number of generations: 100,  

- training set (set of fitness cases) size: 600 cases (images), i.e. 300 cases for the 

prototype class and another 300 cases representing the remaining decision classes,  

- the size of the independent test set: 1600 cases (images), i.e. 800 cases for the prototype 

class and another 800 cases for the remaining decision classes (note that that set is 

independent in a very strong sense, as the subsets of people engaged in creation of the 

training (fitness) set and the test set are disjoint (see [LeCun & et al. 1995])).  

The tournament selection scheme was applied due to its widely recognized advantages 

over the formerly popular roulette-wheel rule.  As the GPVISL is a typed language, we are 

forced to obey the strong typing [Koza 1994] rules when crossing over the solutions, which is 

implemented as follows. For a pair of parent solutions, a random term is chosen in one of them. 

Then, a term of the same type is randomly selected in the other solution. Consecutively, the 

offspring solutions are obtained by swapping the selected terms with their subtrees (all 

immediate and intermediate offspring terms). In case when no term of the required type exists 

in the other solution, the trial is cancelled and the crossover procedure is reinitialized for this 

pair of solutions.   

The fitness function is based on the accuracy of classification provided by the evolved 

solution on the training set (or, putting it more in GP terms, on the ratio of hits returned by the 

solution on the set of fitness cases and its size). To prevent the undesirable overgrowth of trees 

(solutions), which significantly slows down the computer simulation, the obtained accuracy of 

classification is then multiplied by the term implementing the so-called parsimony penalty , 

shown in Fig. 7.  This term introduces a linear penalty for solutions of size in range (100,200), 

and effectively discards solutions composed of more than 200 terms.   
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Fig. 7.  The characteristics of the parsimony penalty term. 

 
Relying exclusively on the training set when evaluating an inductive learning system is in 

general not acceptable [Weiss&Kulikowski 1991] [Mitchell 1997], as in such a case only the 

apparent error is take into account.  A robust evaluation should reflect the predictive ability of 

the classifier (or, in this context, of the pattern recognition system).  For this purpose the 

classifier induced on the set of fitness cases is usually evaluated on an extra set of cases (let’s 

call it verification set to distinguish it from the final test set, used after the entire evolution 

process). To get rid of the undesired influence of the choice of cases for this set, the steps of 

training and testing are usually repeated several times in a way similar to, for instance, the 

popular cross validation technique [Weiss&Kulikowski 1991].  Such a procedure resembles 

somehow the so-called wrapper approach popular in the feature selection methodology 

[Kohavi&John 1997].  

This attitude to solution evaluation was not followed in the work described here for the 

following reasons. First of all, the inductive learning does not take place in the described 

approach; solutions are taken ‘as they are’ and, therefore, there is no need for the training set. 

Secondly, induction of a classifier always introduces an extra bias (inductive bias), which 

obviously influences the process of the evolution and, as a consequence, makes the 

interpretation of the final result more complicated. And, last but not least, training of the 

classifier implies an extra computational cost, which is usually several orders of magnitude 

higher than the cost of the evolution-related procedures. On the contrary, carrying out only the 

test (evaluation) on the fitness cases allows for caching of values computed in particular 

expression tree nodes. This technical improvement has been used in the software 

implementation and gave a significant speed-up in computational experiments.  
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Experimental results 

 
The included Tables 1 to 6 present the results of experiments for population size varying from 

50 to 200 solutions and the tournament size equal to 2 or 5. In the tables, the best solutions 

evolved are presented for each prototype class separately, including the following data: 

- the prototype class (i.e. the decision class which should be recognized by the evolved 

solution), 

- the number of generation in which the best solution has been found, 

- the value of the fitness function for that solution, i.e. its accuracy of classification on 

the training set (set of fitness cases), 

- the accuracy of classification on the independent test set, 

- the size of the best solution,  

- the size of the best solution after simplification. 

The size of the solution has been defined as the total number of terms it was composed of (both 

internal nodes as well as leaves). The above-mentioned simplification is based on the 

observation that some branches in the expression tree do not depend on the image contents 

and, as a consequence, return a constant value. In such a case, we can cut them off and replace 

by the simplest possible expression returning the same constant value. For instance, a complex 

subexpression returning the numerical value 2.5 (of the 'tfloat' type) could be replaced by just 

the 'num' term equal to 2.5 (see Appendices A and B)2.  In the exemplary solution shown in Fig. 

4, only the yellow-marked terms compute their output value based on the input image. The 

values returned by the remaining terms are constant. Thus, according to the aforementioned 

procedure this expression can be reduced to the one presented in Fig. 5 without any loss of 

functionality.  

 The size of the simplified tree gives a better estimate of the complexity of the genetic 

program in comparison to the original solution, which is often 'overgrown' and superfluous. 

However, the simplification operation is performed only at the end of the simulation. It is not 

intertwined with the evolution process, because the superfluous fragments of genetic code 

(introns) protect the solutions from the so-called destructive mutations and crossovers, 

decreasing the probability of genome modification at relevant points.  

                                                                 
2 Note that such a simplification affects only the image contents-independent parts of the solution. In some cases it is 
possible to perform a far more advanced process, where the unnaturally complex expressions (e.g. the arithmetic ones) 
could be simplified to the most compact form, no matter whether they depended on the image contents or not. 
However, such a procedure would be much more complex and has not been implemented, as it was not the main topic 
of this research.  
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 In the tables, the results of experiments where an extreme overfitting took place are 

shown in bold in the tables. By an ‘extreme overfitting’ we mean here the situation, where the 

difference between the accuracy of classification on the training set and that for the testing set 

is at least 0.4. 

 

Accuracy  Size 
Prototype 

class 

Best solution 
evolved in 
generation 

on the set 
of fitness 

cases 

on an  
independent 

test set 

 
original simplified 

0 56 0.873 0.865  96 35 
1 75 0.957 0.956  77 77 
2 100 0.797 0.720  61 32 
3 24 0.993 0.500  51 42 
4 67 0.882 0.858  42 32 
5 87 0.823 0.809  83 59 
6 79 0.933 0.931  87 19 
7 99 0.790 0.782  57 49 
8 40 0.997 0.958  94 86 
9 75 0.855 0.845  89 18 

Table. 1.  Brief characteristic of the solutions evolved in the GP run (|P|=50, |T|=2).  
Extreme cases of overfitting in bold. See text for details.  

 
 

Accuracy  Size 
Prototype 

class 

Best solution 
evolved in 
generation 

on the set 
of fitness 

cases 

on an  
independent 

test set 

 
original simplified 

0 87 0.892 0.877  88 44 
1 78 0.960 0.964  83 75 
2 28 0.830 0.785  74 30 
3 90 0.777 0.739  42 28 
4 83 0.820 0.786  42 42 
5 95 0.735 0.683  83 61 
6 73 0.935 0.930  67 43 
7 41 0.992 0.661  45 36 
8 90 0.808 0.767  88 51 
9 26 0.837 0.557  46 44 

Table. 2.  Brief characteristic of the solutions evolved in the GP run (|P|=100, |T|=2). 
 
 

Accuracy  Size 
Prototype 

class 

Best solution 
evolved in 
generation 

on the set 
of fitness 

cases 

on an  
independent 

test set 

 
Original simplified 

0 65 0.952 0.956  84 47 
1 95 0.943 0.930  98 79 
2 49 0.980 0.778  89 53 
3 60 0.985 0.282  71 57 
4 92 0.862 0.786  86 45 
5 89 0.767 0.723  96 82 
6 88 0.918 0.926  74 67 
7 36 0.830 0.810  85 45 
8 61 0.858 0.855  56 35 
9 93 0.870 0.865  99 78 

Table. 3.  Brief characteristic of the solutions evolved in the GP run (|P|=200, |T|=2). 
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Accuracy  Size 

Prototype 
class 

Best solution 
evolved in 
generation 

on the set 
of fitness 

cases 

on an  
independent 

test set 

 
Original simplified 

0 51 0.982 0.649  98 73 
1 93 0.927 0.922  91 66 
2 42 1.000 0.608  87 61 
3 73 0.983 0.549  74 42 
4 96 0.993 0.507  93 48 
5 80 0.998 0.655  55 36 
6 100 0.937 0.875  85 74 
7 97 0.868 0.851  98 76 
8 18 0.955 0.540  71 20 
9 42 1.000 0.571  75 39 

Table. 4.  Brief characteristic of the solutions evolved in the GP run (|P|=50, |T|=5). 
 
 

Accuracy  Size 
Prototype 

class 

Best solution 
evolved in 
generation 

On the set 
of fitness 

cases 

on an  
independent 

test set 

 
Original simplified 

0 99 0.945 0.934  87 46 
1 93 0.945 0.939  76 73 
2 32 0.997 0.995  51 25 
3 86 0.997 0.911  97 68 
4 94 0.928 0.911  96 76 
5 100 0.853 0.834  92 73 
6 79 0.938 0.920  95 53 
7 51 0.998 0.905  92 85 
8 82 0.998 0.526  83 57 
9 14 0.997 0.992  73 37 

Table. 5.  Brief characteristic of the solutions evolved in the GP run (|P|=100, |T|=5). 
 
 

Accuracy  Size 
Prototype 

class 

Best solution 
evolved in 
generation 

On the set 
of fitness 

cases 

on an  
independent 

test set 

 
Original simplified 

0 100 0.967 0.960  93 68 
1 44 0.972 0.966  74 60 
2 26 0.992 0.476  68 55 
3 55 0.998 0.510  79 73 
4 89 0.888 0.826  95 51 
5 58 0.998 0.637  83 64 
6 86 0.942 0.933  91 66 
7 70 0.918 0.889  96 74 
8 100 0.845 0.808  87 72 
9 82 1.000 0.464  99 67 

Table. 6.  Brief characteristic of the solutions evolved in the GP run (|P|=200, |T|=5). 
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Fig. 8.  Fitness chart for the GP run (|P|=200, |T|=2) and prototype class 4.   
The thick solid line shows the average fitness in the generation,  

and the thin lines depict the variability (min,max) of the fitness in the generation.  

 
Tournament size Population 

size 2 5 
P(~acc2<acc5) 

50 0.890 0.964 0.013 
100 0.859 0.960 0.002 
200 0.896 0.952 0.021 

 
Table 7.  Statistical comparison of average accuracy of classification wrt the tournament size for the training set. 
The second and third column of the table show the average accuracy of classification yielded by the system on  

the training set. The column denoted by ‘P(~acc2<acc5)’ contains the true-negative probability of a paired,  
one-sided t-Student test.  

 
 
 

Tournament size Population 
size 2 5 

P(~acc2>acc5) 

50 0.822 0.673 0.009 
100 0.775 0.887 0.958 
200 0.791 0.747 0.233 

 
Table 8.  Statistical comparison of average accuracy of classification wrt the tournament size for the testing set. 
The second and third column of the table show the average accuracy of classification yielded by the system on  

the testing set. The column denoted by ‘P(~acc2>acc5)’ contains the true-negative probability of a paired,  
one-sided t-Student test.  

 
 

 

Discussion of results and conclusions  
 
An analysis of the results of GP runs allows us to formulate the following conclusions. 

Most of the GP runs yielded solutions (pattern recognition programs) providing good 

predictive accuracy. The evaluation on the set of fitness cases, i.e. the estimate of solution’s 

utility, usually does not differ significantly from the evaluation on an independent test set (with 
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a few exceptions, e.g. class 3 in Table 1). Moreover, there are some cases, when the test set 

evaluation gives better results than that of the training set. This result is really impressive taking 

into account the following factors: 

• There was no image preprocessing.  

• The classifier faces a hard task of discrimination between one decision class and examples 

representing nine other decision classes (digits).  

• The GPVISL is rather simple (for instance, it does not contain sophisticated operators 

implementing any shape description method). 

The relatively rare failures of the method in finding a solution with reasonable classification 

accuracy (as, for instance, the above mentioned class 3 in Table 1) result probably from the 

overfitting phenomenon. A good, although computationally expensive, remedy for this problem 

could be an enlargement of the fitness set.  

There is no evidence for an existence of the relationship between the intuitive 

complexity of the task (depending on the prototype class) and the size of the best solution 

found (no matter whether the original or the simplified one). This observation is contradictory 

to the intuition, which suggest that recognition of some digits (e.g. 0,1) should be easier than of 

the other ones.  It could be interesting to check this hypothesis with a more sophisticated 

simplification procedure at hand.  

Tables 7 and 8 show the results of statistical analysis carried out on the collected data 

wrt the significance of the tournament size, for the accuracy of classification obtained on the 

training and testing sets, respectively. This analysis shows, as far as the training set is 

concerned, there is a statistically significant superiority (at least at the level of significance 

0.05) of using the tournament size equal to 5 over the results obtained whet it was set to 2, 

no matter what the population size was.  However, just the opposite statement follows for the 

case of testing set. Here, at least when the population size equals 50 and 200, the genetic 

search with tournament size equal to 2 significantly outperforms that one with tournament size 

5.  The only exception is the series of experiments with population size set to 100. Briefly 

speaking, it follows that although increasing the genetic pressure (through organizing larger 

tournaments) clearly improves the performance of solutions measured on the set of fitness 

cases, such a statement is in general not valid for the predictive accuracy.  

On the contrary, analyzing the results wrt the population size leads us to a ‘negative’ 

conclusion, i.e. that there is no statistical evidence for the relation between the population 

size and the fitness of the best evolved individual. This observation applies to the accuracy of 



Constructive induction in learning of image representation, K. Krawiec 17 

 

classification measured on both training and testing sets. Showing such an evidence would 

probably require more experiments.  
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Fig. 9.  The histogram of the loss of accuracy, i.e. the difference between the accuracy of classification 

obtained for the training set and that obtained for the testing set. The bar denoted by ‘0’ corresponds 
to the interval of loss (-0.05,0〉, denoted by ‘0.05’ corresponds to the interval (0,0.5〉, and so on. 

 
 

An interesting phenomena concerns the loss of accuracy (LOA), i.e. the difference 

between the accuracy of classification obtained by the method on the training set and that for 

the testing set. Figure 9 illustrates the histogram (frequency chart) of that value for all the 

results shown in Tables 1 to 6. A compact cluster composed of the first three bars shows, that a 

great part of GP runs (47 of total 60) yielded solutions characterized by the loss of accuracy 

close to zero (less than or equal to 0.1), and that three runs gave solutions having better 

performance on the testing set than on the training set. In the remaining experiments a serious 

(greater than 0.1) loss of accuracy has been observed.  But, surprisingly, it seems that it is more 

probable to get a solution with a large accuracy loss (0.35 or greater) than one with 

medium value of this measure (somewhere in the interval (0.1,0.35)). Such a bimodal 

characteristic was rather unexpected, as one would rather expect something similar to the 

normal distribution with. Unfortunately, although interesting, this observation is rather 

inconvenient, as it shows us that there is a relatively high probability of obtaining very poor 

(wrt to the testing set) solutions. This statement is especially painful taking into account the 

fact, that in each task the distribution of the decision classes is 50:50, and therefore every 

solution with LOA>0.5 is surely worse than the so-called default classifier (pointing always to 

the same decision class) and than the random (‘coin-tossing’) classifier. We claim that the 
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described phenomenon is probably related to the specificity of the GPVISL language rather 

than to the genetic search in general.   
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Appendix A – Grammar for solution representation 
 
The grammar for generating of the solutions is presented below in a yacc-like form. The 

following conventions have been used: 

- lines starting with ‘!’ are ignored, 

- ‘;’ character is the production rule delimiter, 

- ‘|’ character is the delimiter for the right-hand of a production,  

- the terminal symbols start with lower letter, 

- the non-terminals start with upper letter, 

- the left hand side of the production contains the non-terminal symbol preceded by its type 

(Basically, there are three types in the proposed language, i.e. tfloat, tpoint, and 

troi. However, there is an additional type ‘t’ for terminals containing the name of 

operator to be used). 

- the non-terminals starting with the upper ‘C’ letter reference the processed image for 

computing of their value (otherwise the value returned by the non-terminal depends on the 

image only if any of its offsprings depend on the image contents), 

- the reserved word ‘PREFER’ determines the choice of right hand of the production rule in 

case when the limit of the expression depth has been reached (otherwise, the right-hand 

expressions are chosen at random); this is purely technical trick to prevent the creation of 

infinitely deep trees. 

 

  
! --------------------------------------------------------- 
tfloat start :   Or disj disj PREFER 
; 
 
tfloat disj :   conj PREFER 
 | Or disj conj 
; 
 
tfloat conj :   cond PREFER 
 | And conj cond  
; 
 
tfloat cond :   Cmpop numexp numexp PREFER 
 | RoiPtRel roi point 
 | RoiRoiRel roi roi 
; 
 
t And : and ; 
t Or : or ; 
t Cmpop : < | > ; 
t RoiPtRel : pinside | poutside ; 
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t RoiRoiRel : rinside | routside | intersect | nintersect ; 
 
! --------------------------------------------------------- 
tfloat numexp : Num PREFER 
 | Arop numexp numexp  
 | Point2num point 
 | Cpoint2num point 
 | Roi2num roi 
 | Croi2num roi 
; 
 
t Num : num ; 
t Arop : + | - | * | % ; 
t Point2num : x | y ; 
t Cpoint2num : pOn | pOff ; 
t Roi2num : area | dx | dy | vert | horiz ; 
t Croi2num : nPixOn | nPixOff | dens ; 
 
! --------------------------------------------------------- 
tpoint point :   PtFromNum numexp numexp PREFER 
 | Roi2point roi 
 | Croi2pt roi 
; 
 
t PtFromNum : absPoint ; 
t Roi2point : ul | ur | ll | lr | mid ; 
t Croi2pt : massCent ; 
 
! --------------------------------------------------------- 
troi roi :   RoiFromNum numexp numexp numexp numexp PREFER 
 | RoiFromPts point point  
 | Roi2roiPt roi point 
 | Croi2roi roi 
; 
 
t RoiFromNum : absRoiN ; 
t RoiFromPts : absRoi | relRoi ; 
t Roi2roiPt : shift ; 
t Croi2roi : adjust ; 
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Appendix B – Semantics of the terminal symbols  
 
This appendix describes the terminal symbols, i.e. operations provided by the grammar and 

implemented in the system.  

 

Image contents-independent operations  

 

num real (double precision) number,  

+ arithmetic addition,  

- arithmetic subtraction, 

* arithmetic multiplication, 

% arithmetic protected division, i.e. (% x y) equals 1 for y=0, x/y otherwise, 

<, > arithmetic comparison, 

and logical conjunction,  

or logical disjunction, 

 

absPoint creation of a point from a pair of arithmetic expressions, 

x, y extraction of a coordinate from the point object,  

ul, ur, ll, lr extraction of upper left, upper right, lower left, and lower right point from 

the ROI, respectively 

mid extraction of the middle point of the ROI, 

 

absRoi  creation of a ROI from a pair of points; the arguments become the upper 

left and lower right corners of the ROI rectangle,  

absRoiN creation of a ROI from a quadruple of numbers, 

relRoi creation of a ROI from a pair of points; the first argument (point) becomes 

the upper left corner, whereas the lower left corner is obtained by shifting 

the first argument by the vector defined by the second argument, 

area area of the ROI, 

dx, dy width and height, respectively, of the ROI, 

vert, horiz verticality and horizontality of the ROI (defined as a protected ration of dx 

and dy), 

shift shifts the first argment (ROI or point) by a vector given in the second 

argument (point),  
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pinside, poutside test whether the first argument (ROI) contains or does not contain, 

respectively, the second argument (point), 

rinside, routside test whether the first argument (ROI) contains or does not contain, 

respectively, the second argument (ROI), 

intersect, nintersect test whether the first argument (ROI) intersects or does not intersect, 

respectively, the second argument (ROI), 

 

 

Operations depending on the image contents  

 

pOn, pOff tests the state of the pixel, given by the first argument (point), in the 

processed image; pOn gives 1 for any non-zero gray level pixel value, 0 

otherwise; pOff returns 1 only for zero-valued pixels, 0 otherwise, 

nPixOn, nPixOff count the number of pixels being in the ‘On’ or ‘Off’ state (see the 

description above) in the rectangle given by the firs argument (ROI), 

dens computes the average gray level pixel value in the image fragment bounded 

by the first argument (ROI), 

massCent computes the mass center of the image fragment bounded by the first 

argument (ROI), taking into account the values of the pixels,  

adjust returns the ROI equal to the first argument (ROI) limited to the smallest 

sub-rectangle that preserves the nPixOn value 

 
 


