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ABSTRACT 
This paper investigates the use of genetic programming (GP) for learning of pattern recognition programs. 
The central topic here is the introduction of GP incorporating partial order of solutions as opposed to the 
standard complete (linear) order imposed by the scalar fitness function. We claim that such an extension 
protects the ‘interesting’, however worse w.r.t. the value of the fitness function, solutions from being 
discarded in the selection process, and thus increases the diversity of the population. That hypothesis is 
verified on a real-world case study concerning the recognition of handwritten characters.  
Keywords: machine learning, visual learning, genetic programming, handwritten character recognition. 

INTRODUCTION 
The motivation for this paper comes from the following observation. Let us assume that 
we perform a search in a discrete space of solutions using some search algorithm and an 
evaluation function. In the case of common search algorithms, like tabu search, 
simulated annealing or evolutionary computation, it is a usual assumption, that the 
evaluation function returns a scalar numerical value as the measure of the ‘fitness’ 
(quality) of a particular solution. An advantage of such an approach is the clear and 
simple interface between the search engine and the evaluation function, what makes 
their replacement easy.  
 However, there is a price we pay for this simplification, which consists in imposing a 
complete (linear) order of solutions onto the search space. As a consequence, it is 
assumed that solutions are always comparable and that, given a pair of them, we are 
always able to point the better one, unless they have the same value of the evaluation 
function.  
 The primary claim of this paper is that in fact solutions may be incomparable and 
that it is possible to commit a serious oversimplification when comparing them in the 
complete order framework. This statement is widely accepted in the multiple objective 
optimization (see, for instance, [13], or, for review, [14]), where the solutions are 
evaluated w.r.t. their different features. However, here we show that incomparability of 
solutions may have different origins than the presence of multiple, explicitly defined, 
objectives. In particular, we focus here on the case when evaluation of a particular 
solution is based on a set of some entities and aggregates somehow the behavior of the 
solution on particular elements of this set. This setting is characteristic for machine 
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learning, where solutions are hypotheses, the aforementioned set contains training cases, 
and the evaluation function is usually the accuracy of classification. This paper focuses 
on this perspective.  

PARTIAL ORDER OF SOLUTIONS  
Let us start with an illustrative example embedded in the machine learning environment, 
where the above-mentioned search is controlled by the so-called inducer (e.g. decision 
tree inducer) and takes place in the space of hypotheses (decision trees, respectively) 
evaluated on the set T of training examples [10]. For a particular hypothesis h, the 
evaluation function f returns its accuracy of classification on the training set, the 
simplest and the most widely used measure of hypothesis quality. Suppose there are 
three hypotheses (solutions), h1, h2 and h3, characterized by subsets of correctly 
classified examples H1, H2 and H3, respectively. Thus, for instance f(h1)=|H1|/|T|. Let us 
assume, that |H1| > |H2| = |H3|. Then, with respect to f, hypotheses h2 and h3 are of the 
same quality and are both worse than h1.  
 However, having a closer look at the subsets H1, H2 and H3 and their mutual relations 
illustrated in Fig. 1 should incline us to revise some of the above statements. As 
H2 ⊂ H1, the superiority of h1 to h2 is still well founded, but what about the relation 
between h1 and h3? Although h1 classifies correctly more examples than h3, there is a 
remarkable subset of examples (H3 \ H1), which it doesn’t cope with, while they are 
successfully classified by h3. Thus, superiority of h1 to h3 is doubtful and, as the same 
applies when considering the superiority of h3 to h1, the question concerning their 
mutual relation should probably remain without answer, leading us to the concept of the 
solution incomparability. Then, incomparability implies a partial order in the solution 
space (as opposed to the complete order imposed by scalar evaluation function f) and, in 
particular, the possibility of simultaneous existence of many ‘best’ solutions (even with 
different values of f).  
  
 
 
 
 
 

Fig. 1.  An example of comparable and incomparable hypotheses. 
 
Ignoring this issue and forcing the evaluation procedure to impose a complete order of 
solutions may result in an undesirable behavior of the search algorithm, which discards 
solutions inferior (even slightly) w.r.t. accuracy of classification (h2 and h3), although 
some of them (h3) discover some new knowledge from the training data. To prevent the 
search algorithm from losing such ‘interesting’ solutions, we should redefine the 
interface between search engine and evaluation module, replacing the scalar evaluation 
function by pairwise comparison of solutions. Such a redefinition is generally not 
straightforward, as most metaheuristcs rely on numerical evaluation and complete order 
of solutions. In this paper, the above-mentioned idea is being embedded in the 
metaheuristics of evolutionary computation [2], or, more specifically, genetic 
programming [4]. This choice is mostly due to the fact that GP is reported to be very 
effective in solving a broad scope of problems, including the search for pattern 
recognition programs [2][11], what was also subject of our former research [5][6][7].  

T 
H1 H2 H3 
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 To make the idea work, we have to define formally the outranking relation, denoted 
thereafter by ‘≥’, between two solutions (hypotheses) h1 and h2, given the sets of 
examples (H1 and H2, respectively) properly classified by these hypotheses. According 
to the definition of outranking [12], h1≥h2 should express the fact that h1 is at least as 
good as h2. To keep the approach as simple as possible, we decided to define the 
outranking in a very intuitive way: h1≥h2 iff H2 ⊆ H1 1. Note that, as a consequence, 
even a single training example may disable the outranking (|H2 \ H1|=1), what implies 
some vulnerability of this relation. This is however the price we decided to pay for 
keeping the approach simple and non-parametric. Finally, four cases are possible: h1 is 
better than h2 (when h1≥h2 and not h2≥h1), h2 is better than h1 (analogously), h1 is 
indiscernible with h2 (h1≥h2 and h2≥h1) or h1 and h2 are incomparable (neither h1≥h2 nor 
h2≥h1).    
 Provided the pairwise comparison, we have to decide how to build up the mating 
pool, i.e. how to select the best solutions from the population Pt in t-th generation of GP 
run taking into account the potential presence of incomparability. In the preliminary 
research, we tried to extend for this purpose the popular tournament selection scheme 
[4]. Unfortunately, that approach did not yield satisfactory results in experimental 
evaluation, probably due to the fact, that the presence of incomparability generally 
decreases the selection pressure (some tournaments remain unsettled). Thus, the 
approach presented in this paper takes another way and consists in selecting the ‘non-
outranked’ solutions, i.e. such solutions h∈Pt that ¬∃ h'∈Pt: h' ≥ h. However, as there 
are usually relatively few such solutions, the missing part of the mating pool is filled up 
with solutions obtained by means of the standard tournament selection. 

CASE STUDY: LEARNING HANDWRITTEN DIGIT DISCRIMINATION 
The proposed idea has been adopted in genetic programming-based visual learning, 
which was the subject of our previous research [5][6]. Here, the candidate programs 
(solutions) performing image analysis and recognition are evaluated on a set of training 
cases (images), called fitness cases in the GP terminology. GP searches the space of 
pattern recognition procedures formulated in a specialized language called GPVIS [7]. 
GPVIS is an image analysis-oriented language encompassing a set of operators 
responsible for simple feature extraction, region-of-interest selection, and numerical and 
logical operations. Despite its simplicity, it allows for formulating a complete pattern 
recognition program without the need for external machine learning classifier, what is 
usually when the processing is split into the feature extraction module and the reasoning 
module. Figures 2 and 3 show an example of image recognition program formulated in 
GPVIS (see [7] for details on GPVIS syntax and GP search using this representation of 
solutions).   
 As the experimental test bed for the approach, we chose the problem of handwritten 
character recognition, which is often referred to due to its wide scope of real-world 
applications. The solutions proposed in literature incorporate statistics, 
structural/syntactic methodology, sophisticated neural networks, or ad hoc feature 
extraction procedures, to mention only a few (for review, see [9]). The approach 
presented in this paper cannot be univocally classified into any of these categories, and 

                                                 
1 To be more precise, this condition must hold simultaneously and separately for examples representing 
particular decision classes. 
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combines the elasticity and learning capability of adaptive systems with 
comprehensibility of symbolic approaches.  
 The data source was the MNIST database of handwritten digits [9]. It consists of two 
subsets, training and testing, containing together 70,000 digits written by approx. 250 
persons (students and clerks), each represented by a 28×28 matrix of gray level pixels 
(Fig. 4). Characters are centered and scaled with respect to their horizontal and vertical 
dimensions, however, no ‘deskewing’ has been carried out.  
 
(or (and (poutside (shift (absRoiN 19 8 2 4) (absPoint 12 0))(absPoint 
15 16))(> (x (absPoint 21 14))(y (absPoint 25 4))))(routside (shift 
(adjust (absRoiN 7 23 10 18)) (absPoint 7 16))(shift (shift (absRoiN 
13 26 3 10)(absPoint 15 4))(absPoint 14 20)))) 

Fig. 2.  A LISP-like representation of an exemplary solution in GPVIS language. 
 

Fig. 3.  The graphical representation of the solution from Fig. 3  
(numerical values omitted).  

COMPUTATIONAL EXPERIMENT 
The experiment described in this section compares the efficiency of ‘plain’ GP and GP 
using partial order of solutions (GPPO), mostly w.r.t. the accuracy of classification of 
the resulting solution (image analysis and recognition program).  
 Programs formulated in GPVIS return logical value (true or false), so it is impossible 
to build the complete digit recognition system using it in a direct way. Therefore, we 
should decompose the ten-classes problem of digit recognition into binary classification 
tasks, where the decision can be computed by an expression written in GPVIS.  Such 
decomposition may be done in several ways; for details related to this problem the 
reader should refer to the literature of the so-called meta-classifiers (e.g. [1]). However, 
as it was not the central topic here, in this experiment we focus on selected pairs of 
decision classes. To make the task more realistic, we used these pairs of classes, which 
are among the most difficult to discriminate for both humans and pattern recognition 
systems, i.e. (1,7), (2,7), (3,8), (4,9), and (8,9). 
 The genetic search was ran with the same values of parameters in both GP and GPPO 
cases: population size: 500; probability of mutation: 0.05; maximal depth of a randomly 
generated solution (initialization): 2 (‘soft’ limit); maximal depth of a randomly 
generated subexpression (mutation): 3; maximal number of generations: 50 (stopping 
condition); training set (set of fitness cases) size: 100 cases (50 images per class); 
tournament selection scheme with tournament size equal to 5. The solutions were 
modified in the common way. The mutation selects at random a term in the solution and 
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replaces it (and its antecessors) by a randomly generated subexpression. The crossover 
operator selects at random terms in the two parent solutions and exchanges them 
together with their antecessors.  However, as the GPVIS language uses types, in these 
operations one should obey the so-called strong typing principle [4]. 

 

 
Fig. 4.  Exemplary images from the MNIST database. 

 
Table 1 presents the results obtained in GP runs for each of five aforementioned tasks 
and both methods (GP and GPPO). Each row shows the average of 10 runs (evolutions), 
each starting with a different starting point (initial population)2. The table presents the 
average profile of the best solution found, including accuracy of classification on the 
training (fitness) set and accuracy of classification on an independent test set (1600 
cases, 800 images per class)3. For comparative purposes, the difference between the 
average result obtained by GPPO and GP and the false reject probability given by the 
paired, one-sided t-test are also given. Two last columns show the size of the best 
solution, defined as the number of GPVIS language terms it was composed of. 

 

 
Average accuracy on the 

training set  
Average accuracy on an 

independent test set  Average size 
Task 

 GP GPPO Diff. t-test  GP GPPO Diff. t-test  GP GPPO 
(1,7)  .937 .957 .020 .11  .912 .944 .032 .07  42 50 
(2,7)  .920 .929 .009 .25  .879 .899 .020 .19  38 49 
(3,8)  .843 .864 .021 .18  .722 .727 .005 .44  46 45 
(4,9)  .824 .879 .055 .01  .704 .793 .089 .01  46 50 
(8,9)  .874 .902 .028 .06  .770 .807 .037 .06  44 49 

Table 1.  The best solutions found in computational experiments (GP- ‘plain’ genetic 
programming, GPPO – genetic programming using partial order of solutions).  

CONCLUSIONS  
First of all, the above experiment gives evidence of the usefulness of GP in solving non-
trivial, real-world pattern recognition tasks. Using this metaheuristics together with the 
GPVIS language, we are able to automatically induce complete (i.e. not requiring an 
extern classifier), comprehensible, and quite accurate image recognition programs.  

                                                 
2 However, the experiments are paired, i.e. the corresponding GP and GPPO runs start from the same 
starting point. 
3 Note that the training (fitness) set and testing set are independent in a very strong sense, as they contain 
digits written by different people (see [9]). 
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 The main qualitative result obtained in the experiment is that GPPO, i.e. evolutionary 
search taking into account the partial order of solutions, outperforms the ‘plain’ GP on 
average. When using GPPO, there is an increase of accuracy of classification in 
comparison to GP on both training and testing sets for all five tasks considered in the 
experiment. The statistical significance of these differences varies; nonetheless the t-test 
probability of false reject error is relatively small on average (0.125 and 0.155 for the 
training and testing set, respectively). Moreover, an additional result not shown in the 
table is that GPPO gave better accuracy in 36 runs on the training set and in 33 runs on 
the test set (per total number of 50 runs). For all five tasks, the best solution of all ten 
GPPO runs was not worse than that of GP (on the training set). Note also that these 
improvements have been obtained with solutions (programs) of very similar size.  
 The final conclusion of this work is that it seems to be worthwhile to protect the 
interesting, however sometimes worse w.r.t. the accuracy of classification, solutions 
from being discarded in the search process by means of an appropriate, incomparability-
preserving, pairwise comparison relation. Further work on the topic may concern 
different aspects of the approach; some of them however are of special importance. In 
particular, it seems to be interesting to consider the more sophisticated definitions of 
hypothesis outranking, which should be less sensitive to the classification of particular 
examples. We expect even better results after introducing that modification. 
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