
To appear in Materialy II Krajowej Konferencji Naukowo-Szkoleniowej
‘Komputerowe Systemy Rozpoznawania’ KOSYR’2001 (accepted)

GENETIC PROGRAMMING USING PARTIAL
ORDER OF SOLUTIONS

FOR PATTERN RECOGNITION TASKS

Krzysztof Krawiec1

1Institute of Computing Science, Poznan University of Technology
Piotrowo 3A, 60-965 Poznan, krawiec@cs.put.poznan.pl

ABSTRACT
This paper investigates the use of genetic programming (GP) for learning of pattern recognition programs.
The central topic here is the introduction of GP incorporating partial order of solutions as opposed to the
standard complete (linear) order imposed by the scalar fitness function. We claim that such an extension
protects the ‘interesting’, however worse w.r.t. the value of the fitness function, solutions from being
discarded in the selection process, and thus increases the diversity of the population. That hypothesis is
verified on a real-world case study concerning the recognition of handwritten characters.
Keywords: machine learning, visual learning, genetic programming, handwritten character recognition.

INTRODUCTION
The motivation for this paper comes from the following observation. Let us assume that
we perform a search in a discrete space of solutions using some search algorithm and an
evaluation function. In the case of common search algorithms, like tabu search,
simulated annealing or evolutionary computation, it is a usual assumption, that the
evaluation function returns a scalar numerical value as the measure of the ‘fitness’
(quality) of a particular solution. An advantage of such an approach is the clear and
simple interface between the search engine and the evaluation function, what makes
their replacement easy.
 However, there is a price we pay for this simplification, which consists in imposing a
complete (linear) order of solutions onto the search space. As a consequence, it is
assumed that solutions are always comparable and that, given a pair of them, we are
always able to point the better one, unless they have the same value of the evaluation
function.
 The primary claim of this paper is that in fact solutions may be incomparable and
that it is possible to commit a serious oversimplification when comparing them in the
complete order framework. This statement is widely accepted in the multiple objective
optimization (see, for instance, [13], or, for review, [14]), where the solutions are
evaluated w.r.t. their different features. However, here we show that incomparability of
solutions may have different origins than the presence of multiple, explicitly defined,
objectives. In particular, we focus here on the case when evaluation of a particular
solution is based on a set of some entities and aggregates somehow the behavior of the
solution on particular elements of this set. This setting is characteristic for machine

To appear in Materialy II Krajowej Konferencji Naukowo-Szkoleniowej
‘Komputerowe Systemy Rozpoznawania’ KOSYR’2001 (accepted)

learning, where solutions are hypotheses, the aforementioned set contains training cases,
and the evaluation function is usually the accuracy of classification. This paper focuses
on this perspective.

PARTIAL ORDER OF SOLUTIONS
Let us start with an illustrative example embedded in the machine learning environment,
where the above-mentioned search is controlled by the so-called inducer (e.g. decision
tree inducer) and takes place in the space of hypotheses (decision trees, respectively)
evaluated on the set T of training examples [10]. For a particular hypothesis h, the
evaluation function f returns its accuracy of classification on the training set, the
simplest and the most widely used measure of hypothesis quality. Suppose there are
three hypotheses (solutions), h1, h2 and h3, characterized by subsets of correctly
classified examples H1, H2 and H3, respectively. Thus, for instance f(h1)=|H1|/|T|. Let us
assume, that |H1| > |H2| = |H3|. Then, with respect to f, hypotheses h2 and h3 are of the
same quality and are both worse than h1.
 However, having a closer look at the subsets H1, H2 and H3 and their mutual relations
illustrated in Fig. 1 should incline us to revise some of the above statements. As
H2 ⊂ H1, the superiority of h1 to h2 is still well founded, but what about the relation
between h1 and h3? Although h1 classifies correctly more examples than h3, there is a
remarkable subset of examples (H3 \ H1), which it doesn’t cope with, while they are
successfully classified by h3. Thus, superiority of h1 to h3 is doubtful and, as the same
applies when considering the superiority of h3 to h1, the question concerning their
mutual relation should probably remain without answer, leading us to the concept of the
solution incomparability. Then, incomparability implies a partial order in the solution
space (as opposed to the complete order imposed by scalar evaluation function f) and, in
particular, the possibility of simultaneous existence of many ‘best’ solutions (even with
different values of f).

Fig. 1. An example of comparable and incomparable hypotheses.

Ignoring this issue and forcing the evaluation procedure to impose a complete order of
solutions may result in an undesirable behavior of the search algorithm, which discards
solutions inferior (even slightly) w.r.t. accuracy of classification (h2 and h3), although
some of them (h3) discover some new knowledge from the training data. To prevent the
search algorithm from losing such ‘interesting’ solutions, we should redefine the
interface between search engine and evaluation module, replacing the scalar evaluation
function by pairwise comparison of solutions. Such a redefinition is generally not
straightforward, as most metaheuristcs rely on numerical evaluation and complete order
of solutions. In this paper, the above-mentioned idea is being embedded in the
metaheuristics of evolutionary computation [2], or, more specifically, genetic
programming [4]. This choice is mostly due to the fact that GP is reported to be very
effective in solving a broad scope of problems, including the search for pattern
recognition programs [2][11], what was also subject of our former research [5][6][7].

T
H1 H2 H3

To appear in Materialy II Krajowej Konferencji Naukowo-Szkoleniowej
‘Komputerowe Systemy Rozpoznawania’ KOSYR’2001 (accepted)

 To make the idea work, we have to define formally the outranking relation, denoted
thereafter by ‘≥’, between two solutions (hypotheses) h1 and h2, given the sets of
examples (H1 and H2, respectively) properly classified by these hypotheses. According
to the definition of outranking [12], h1≥h2 should express the fact that h1 is at least as
good as h2. To keep the approach as simple as possible, we decided to define the
outranking in a very intuitive way: h1≥h2 iff H2 ⊆ H1 1. Note that, as a consequence,
even a single training example may disable the outranking (|H2 \ H1|=1), what implies
some vulnerability of this relation. This is however the price we decided to pay for
keeping the approach simple and non-parametric. Finally, four cases are possible: h1 is
better than h2 (when h1≥h2 and not h2≥h1), h2 is better than h1 (analogously), h1 is
indiscernible with h2 (h1≥h2 and h2≥h1) or h1 and h2 are incomparable (neither h1≥h2 nor
h2≥h1).
 Provided the pairwise comparison, we have to decide how to build up the mating
pool, i.e. how to select the best solutions from the population Pt in t-th generation of GP
run taking into account the potential presence of incomparability. In the preliminary
research, we tried to extend for this purpose the popular tournament selection scheme
[4]. Unfortunately, that approach did not yield satisfactory results in experimental
evaluation, probably due to the fact, that the presence of incomparability generally
decreases the selection pressure (some tournaments remain unsettled). Thus, the
approach presented in this paper takes another way and consists in selecting the ‘non-
outranked’ solutions, i.e. such solutions h∈Pt that ¬∃ h'∈Pt: h' ≥ h. However, as there
are usually relatively few such solutions, the missing part of the mating pool is filled up
with solutions obtained by means of the standard tournament selection.

CASE STUDY: LEARNING HANDWRITTEN DIGIT DISCRIMINATION
The proposed idea has been adopted in genetic programming-based visual learning,
which was the subject of our previous research [5][6]. Here, the candidate programs
(solutions) performing image analysis and recognition are evaluated on a set of training
cases (images), called fitness cases in the GP terminology. GP searches the space of
pattern recognition procedures formulated in a specialized language called GPVIS [7].
GPVIS is an image analysis-oriented language encompassing a set of operators
responsible for simple feature extraction, region-of-interest selection, and numerical and
logical operations. Despite its simplicity, it allows for formulating a complete pattern
recognition program without the need for external machine learning classifier, what is
usually when the processing is split into the feature extraction module and the reasoning
module. Figures 2 and 3 show an example of image recognition program formulated in
GPVIS (see [7] for details on GPVIS syntax and GP search using this representation of
solutions).
 As the experimental test bed for the approach, we chose the problem of handwritten
character recognition, which is often referred to due to its wide scope of real-world
applications. The solutions proposed in literature incorporate statistics,
structural/syntactic methodology, sophisticated neural networks, or ad hoc feature
extraction procedures, to mention only a few (for review, see [9]). The approach
presented in this paper cannot be univocally classified into any of these categories, and

1 To be more precise, this condition must hold simultaneously and separately for examples representing
particular decision classes.

To appear in Materialy II Krajowej Konferencji Naukowo-Szkoleniowej
‘Komputerowe Systemy Rozpoznawania’ KOSYR’2001 (accepted)

combines the elasticity and learning capability of adaptive systems with
comprehensibility of symbolic approaches.
 The data source was the MNIST database of handwritten digits [9]. It consists of two
subsets, training and testing, containing together 70,000 digits written by approx. 250
persons (students and clerks), each represented by a 28×28 matrix of gray level pixels
(Fig. 4). Characters are centered and scaled with respect to their horizontal and vertical
dimensions, however, no ‘deskewing’ has been carried out.

(or (and (poutside (shift (absRoiN 19 8 2 4) (absPoint 12 0))(absPoint
15 16))(> (x (absPoint 21 14))(y (absPoint 25 4))))(routside (shift
(adjust (absRoiN 7 23 10 18)) (absPoint 7 16))(shift (shift (absRoiN
13 26 3 10)(absPoint 15 4))(absPoint 14 20))))

Fig. 2. A LISP-like representation of an exemplary solution in GPVIS language.

Fig. 3. The graphical representation of the solution from Fig. 3
(numerical values omitted).

COMPUTATIONAL EXPERIMENT
The experiment described in this section compares the efficiency of ‘plain’ GP and GP
using partial order of solutions (GPPO), mostly w.r.t. the accuracy of classification of
the resulting solution (image analysis and recognition program).
 Programs formulated in GPVIS return logical value (true or false), so it is impossible
to build the complete digit recognition system using it in a direct way. Therefore, we
should decompose the ten-classes problem of digit recognition into binary classification
tasks, where the decision can be computed by an expression written in GPVIS. Such
decomposition may be done in several ways; for details related to this problem the
reader should refer to the literature of the so-called meta-classifiers (e.g. [1]). However,
as it was not the central topic here, in this experiment we focus on selected pairs of
decision classes. To make the task more realistic, we used these pairs of classes, which
are among the most difficult to discriminate for both humans and pattern recognition
systems, i.e. (1,7), (2,7), (3,8), (4,9), and (8,9).
 The genetic search was ran with the same values of parameters in both GP and GPPO
cases: population size: 500; probability of mutation: 0.05; maximal depth of a randomly
generated solution (initialization): 2 (‘soft’ limit); maximal depth of a randomly
generated subexpression (mutation): 3; maximal number of generations: 50 (stopping
condition); training set (set of fitness cases) size: 100 cases (50 images per class);
tournament selection scheme with tournament size equal to 5. The solutions were
modified in the common way. The mutation selects at random a term in the solution and

or

and routside

poutside >

shift

absRoiN absPoint

absPoint x

absPoint

y

absPoint

shift

adjust

absRoiN

absPoint

shift

shift absPoint

absRoiN

To appear in Materialy II Krajowej Konferencji Naukowo-Szkoleniowej
‘Komputerowe Systemy Rozpoznawania’ KOSYR’2001 (accepted)

replaces it (and its antecessors) by a randomly generated subexpression. The crossover
operator selects at random terms in the two parent solutions and exchanges them
together with their antecessors. However, as the GPVIS language uses types, in these
operations one should obey the so-called strong typing principle [4].

Fig. 4. Exemplary images from the MNIST database.

Table 1 presents the results obtained in GP runs for each of five aforementioned tasks
and both methods (GP and GPPO). Each row shows the average of 10 runs (evolutions),
each starting with a different starting point (initial population)2. The table presents the
average profile of the best solution found, including accuracy of classification on the
training (fitness) set and accuracy of classification on an independent test set (1600
cases, 800 images per class)3. For comparative purposes, the difference between the
average result obtained by GPPO and GP and the false reject probability given by the
paired, one-sided t-test are also given. Two last columns show the size of the best
solution, defined as the number of GPVIS language terms it was composed of.

Average accuracy on the

training set
Average accuracy on an

independent test set Average size
Task

 GP GPPO Diff. t-test GP GPPO Diff. t-test GP GPPO
(1,7) .937 .957 .020 .11 .912 .944 .032 .07 42 50
(2,7) .920 .929 .009 .25 .879 .899 .020 .19 38 49
(3,8) .843 .864 .021 .18 .722 .727 .005 .44 46 45
(4,9) .824 .879 .055 .01 .704 .793 .089 .01 46 50
(8,9) .874 .902 .028 .06 .770 .807 .037 .06 44 49

Table 1. The best solutions found in computational experiments (GP- ‘plain’ genetic
programming, GPPO – genetic programming using partial order of solutions).

CONCLUSIONS
First of all, the above experiment gives evidence of the usefulness of GP in solving non-
trivial, real-world pattern recognition tasks. Using this metaheuristics together with the
GPVIS language, we are able to automatically induce complete (i.e. not requiring an
extern classifier), comprehensible, and quite accurate image recognition programs.

2 However, the experiments are paired, i.e. the corresponding GP and GPPO runs start from the same
starting point.
3 Note that the training (fitness) set and testing set are independent in a very strong sense, as they contain
digits written by different people (see [9]).

To appear in Materialy II Krajowej Konferencji Naukowo-Szkoleniowej
‘Komputerowe Systemy Rozpoznawania’ KOSYR’2001 (accepted)

 The main qualitative result obtained in the experiment is that GPPO, i.e. evolutionary
search taking into account the partial order of solutions, outperforms the ‘plain’ GP on
average. When using GPPO, there is an increase of accuracy of classification in
comparison to GP on both training and testing sets for all five tasks considered in the
experiment. The statistical significance of these differences varies; nonetheless the t-test
probability of false reject error is relatively small on average (0.125 and 0.155 for the
training and testing set, respectively). Moreover, an additional result not shown in the
table is that GPPO gave better accuracy in 36 runs on the training set and in 33 runs on
the test set (per total number of 50 runs). For all five tasks, the best solution of all ten
GPPO runs was not worse than that of GP (on the training set). Note also that these
improvements have been obtained with solutions (programs) of very similar size.
 The final conclusion of this work is that it seems to be worthwhile to protect the
interesting, however sometimes worse w.r.t. the accuracy of classification, solutions
from being discarded in the search process by means of an appropriate, incomparability-
preserving, pairwise comparison relation. Further work on the topic may concern
different aspects of the approach; some of them however are of special importance. In
particular, it seems to be interesting to consider the more sophisticated definitions of
hypothesis outranking, which should be less sensitive to the classification of particular
examples. We expect even better results after introducing that modification.

ACKNOWLEDGEMENTS
The author would like to thank Yann LeCun for making the MNIST database of
handwritten digits available to the public. This work was supported from the KBN
research grant no. 8T11F 006 19.

REFERENCES
[1] Chan, P.K., Stolfo, S.J. Experiments on multistrategy learning by meta-learning. In: Proceedings of
the Second International Conference on Information and Knowledge Management, 1993.
[2] Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,
Reading 1989.
[3] Johnson, M.P. Evolving Visual Routines. M.Sc. Thesis, Massachusetts Institute of Technology 1995.
[4] Koza, J.R. Genetic Programming - 2. MIT Press, Cambridge 1994.
[5] Krawiec, K., Slowinski, R. Learning Discriminating Descriptions from Images. In: Proc. of VI
International Symposium 'Intelligent Information Systems', Zakopane 1997, pp. 118-127.
[6] Krawiec, K. Constructive Induction in Picture-based Decision Support. Ph.D. dissertation. Institute
of Computing Science, Poznan University of Technology, Poznan 2000.
[7] Krawiec, K. Constructive induction in learning of image representation. Research Report
RA-006/2000, Institute of Computing Science, Poznan University of Technology 2000.
[8] LeCun, Y., et al., Backpropagation applied to handwritten zip code recognition. Neural Computation,
(1) 1989, pp. 541-551.
[9] LeCun, Y., et al., Comparison of learning algorithms for handwritten digit recognition. In: Fogelman,
F., Gallinari, P. (eds.) International Conference on Artificial Neural Networks, Paris 1995, pp. 53-60.
[10] Mitchell, T.M. Machine learning, McGraw-Hill 1997.
[11] Poli, R. Genetic Programming for Image Analysis, Technical Report CSRP-96-1, The University of
Birmingham 1996.
[12] Roy, B. Wielokryterialne wspomaganie decyzji . Wydawnictwa Naukowo-Techniczne, Warszawa
1990.
[13] Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms. In:
Grefenstette, J.J.(ed.) Proceedings of the 1st International Conference on Genetic Algorithms and their
Applications. Lawrence Erlbaum Associates, Hillsdale 1985.
[14] Van Veldhuizen, D.A. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New
Innovations. PhD thesis, Department of Electrical and Computer Engineering, Graduate School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio 1999.

