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Abstract 

This paper investigates the use of evolutionary 
algorithms for the search of hypothesis space in 
machine learning tasks. As opposed to the 
common scalar evaluation function imposing a 
complete  order onto the hypothesis space, we 
propose genetic search incorporating pairwise 
comparison of hypotheses. Particularly, we allow 
incomparability of hypotheses, what implies a 
partial order in the hypothesis space.  We claim 
that such an extension protects the ‘interesting’ 
hypotheses from being discarded in the search 
process, and thus increases the diversity of the 
population, allowing better exploration of the 
solution space. As a result it is more probable to 
reach hypotheses with good predictive accuracy. 
This supposition has been positively verified in 
an extensive comparative experiment of 
evolutionary visual learning concerning the 
recognition of handwritten characters. 

1.  Introduction 

Evolutionary computation (De Jong, 1975; Holland, 
1975) has been used in machine learning for quite a long 
time (Mitchell, 1996). Now it is recognized as a useful 
approach or even as one of its paradigms (Langley, 1996; 
Mitchell, 1997, Chapter 9). It is highly appreciated due to 
its ability to perform global parallel search of the solution 
space with low probability of getting stuck in local 
minima. Its most renowned applications include feature 
selection (Yang & Honavar; 1998), feature construction, 
and concept induction (DeJong, Spears, & Gordon; 1993; 
Goldberg, 1989). In this paper, we focus on the last of the 
aforementioned tasks, with solutions corresponding to 
hypotheses; from now on, these terms will be used 
interchangeably.   

Like all metaheuristics, evolutionary algorithm needs an 
evaluation (fitness) function to guide the search. In the 
machine learning framework, this evaluation is commonly 
based on an estimate of predictive accuracy of the 
hypothesis (Langley, 1996), eventually including the 
hypothesis -size factor to prevent overfitting, introduced 
explicitly or in a more sophisticated way (as it is, for 

instance, in the minimum description length by Rissanen 
(1983)).  

Such a scalar evaluation function imposes a complete 
order onto the hypothesis space. As a result, it is assumed 
that all hypotheses are comparable with respect to their 
predictive ability and, given a pair of them, it is always 
possible to point the better one, unless they have the same 
evaluation.  

In this contribution we argue that the above statement is 
in general not valid. The following section of this paper 
presents some negative consequences of forcing the 
hypotheses to be always comparable. Then, in Section 3 
we propose the replacement the scalar evaluation by the 
pairwise comparison of hypotheses. Section 4 describes 
how it is possible to embed this idea into learning based 
on evolutionary search of the hypothesis space. Section 5 
contains the description of an experimental evaluation of 
the approach on the visual learning task of handwritten 
character recognition, followed by conclusions.    

2.  The Need for Incomparability of Hypotheses 

The main claim of this paper is that scalar evaluation of 
hypotheses implies the complete order of solutions, which 
does not reflect well the structure of the hypothesis space. 
A numerical evaluation function, like for instance the 
accuracy of classification, reflects well the utility of 
particular hypothesis, however, it reveals some 
shortcomings when used for hypothesis comparison. This 
is mainly due to the fact that such measures have by 
definition aggregating and compensatory character 
(Vincke, 1992). They may yield similar or even equal 
values for very different hypotheses. 

We suggest that when the considered hypotheses ‘behave’ 
in a significantly different way, for instance they produce 
different outcomes on particular parts of the decision 
space, we should allow them to be incomparable . The 
need of such incomparability grows with the dissimilarity 
between the compared hypotheses and becomes especially 
important when their scalar evaluations are relatively 
close.  

Let us illustrate this problem with the following example. 
For a hypothesis h, let C(h) denote the s ubset of examples 
from the training set T that are classified correctly by h 
(C(h)⊆T). Then, let the hypotheses be evaluated by means 



 

 

of scalar evaluation function f, computing the accuracy of 
classification of h on T (f(h) = |C(h)| / |T|). Let us consider 
three hypotheses, a, b, and c, for which |C(a)| > |C(b)| = 
|C(c)|. Thus, with respect to f, hypotheses b and c are of 
the same quality and are worse than a. This evaluation 
method cannot differentiate the pairs of hypotheses (a,b) 
and (a,c). 

The above reasoning ignores the mutual relations between 
C(a), C(b) and C(c). If, for instance, C(b) ⊂ C(a), we 
probably would not doubt the superiority of a over b. But 
what about the relation between a and c, assumed that 
C(c) ⊄ C(a) and |C(c) ∩ C(a)| << |C(a)| ? In such a case, 
although a classifies correctly more examples than c, 
there is a remarkable subset of examples (C(c) \ C(a)), 
which it does not cope with, while they are successfully 
classified by c. Thus, superiority of a over c is rather 
questionable. Moreover, if also C(a) ⊄ C(c), the question 
concerning mutual relation between a and c should 
probably remain without answer, leading us to the 
concept of hypothesis incomparability.  n 

Scalar evaluation ignores the issue illustrated in the above 
example and forces the hypotheses to be always 
comparable. As a result, some novel and ‘interesting’ 
hypotheses may be discarded in the search due to their 
minor evaluation. The loss of such solutions may 
influence significantly the effectiveness of the search.  In 
the further processing, they could explore some new, 
hitherto unrevealed parts of the hypothesis space and 
attain better evaluation than the solutions that won the 
scalar competition.  

Note that the above observation is valid for any machine 
learning algorithm (or other heuristics) that explicitly 
evaluates and compares hypotheses. However, it is of 
special importance in genetic programming, where the 
offspring solutions have often low fitness due to the 
destructive nature of mutation and recombination 
operators.  

3.  Pairwise Comparison of Hypotheses 

3.1  From Incomparability to Outranking  

In this part we will present an alternative approach, 
devoid of the shortcomings discussed in the previous 
section. We showed that it is reasonable in some cases to 
allow hypotheses to remain incomparable. This suggests 
us that we should move on from the functional method of 
hypothesis evaluation to the relational one. The resulting 
structure of complete order is very popular in, for 
instance, relational approaches to multiple criteria 
decision aid, where it is often being described by means 
of a binary outranking relation 1, denoted thereafter by ‘≥’ 

————— 
1 Formally, an outranking relation induces partial preorder, as it permits 
indiscernibility.  

(see, for instance, Chapter 5 of (Vincke, 1992)). 
According to the definition, for a pair a,b of solutions, 
a ≥ b should express the fact that a is at least as good as 
b. Then, one of the following cases is possible:  

• a is indiscernible with b (a  ≥ b and  b ≥ a), or  

• a is strictly better than b (a ≥ b and not b ≥ a), or 

• b is strictly better than a (b ≥ a and not a  ≥  b), or 

• a and b are incomparable (neither a  ≥  b nor  b ≥ a). 

Partial order has a natural graphical representation of a 
directed graph. The nodes of outranking graph correspond 
to hypotheses, whereas arcs express the outranking. 
Particularly, the ‘best’ solutions match the initial 
(predecessor-free) nodes. Note also that outranking is in 
general reflexive and non-symmetric. 

3.2  Hypothesis Outranking  

3.2.1  PRELIMINARY ASSUMPTIONS 
The outranking relation ≥ may be defined in many 
different ways. Generally, we could consider here the 
definitions based on the representation (form) of the 
hypothesis (like in the well-known Candidate-Elimination 
by Mitchell (1997)) or the definitions based on the 
functioning  (behavior) of the hypothesis on the training 
set. Obviously, the partial orders imposed on the 
hypothesis space by both these types of outranking are 
different.  The approach presented here implements the 
latter case, which has an advantage of not making any 
assumption about knowledge representation used by the 
induction algorithm.  

Particularly, we focus on the paradigm of supervised 
learning from examples, the one used most often in the 
real-world applications. For the sake of simplicity, 
however without loss of generality, we also limit our 
considerations to the binary (two-class) classification 
problems (the positive and negative decision classes).  

3.2.2  DEFINITION OF HYPOTHESIS OUTRANKING BASED 
ON TRAINING SET CLASSIFICATION 

The presence of the training set T in learning from 
examples paradigm allows us to define the outranking in 
terms of sets. However, instead of using an aggregating 
measure like accuracy of classification, we go more into 
detail and analyze the behavior of the hypotheses on 
particular instances from the training set.  

The example presented in Section 2 shows that it seems to 
be useful to refer here to the set difference of the sets of 
instances properly classified by the considered hypotheses 
a and b (C(a) and C(b), respectively). In particular, the 
more examples belong to C(b) \ C(a), the less likely is the 
outranking a ≥ b.  

An outranking relation that follows this intuition may be 
reasonably defined in several different ways. An elegant 
idea could be to refer here to the notion of set inclusion 



 

 

grade (Dubois & Prade, 1980), or fuzzy inclusion relation 
(Dubois & Prade, 2000, Section 2.4). However, as the 
goal of this research was to investigate the issues of 
partial order of hypotheses and incomparability, it was 
undesirable at that point to apply sophisticated and 
parameterized relations. Thus, we employ here the crisp 
inclusion of sets and define the outranking of a over b as 
follows: 

 a ≥ b ⇔ C (b) ⊆  C (a). (1) 

This definition states that a hypothesis a is at least as 
good as a hypothesis b iff a classifiers correctly at least all 
the examples which are classified correctly by b. Note 
that the outranking of a over b may be disabled by just a 
single training example x (C(b) \ C(a) = {x}). This 
sensitivity is surely a weak point, we decided however to 
pay such a price for keeping this study simple and non-
parametric. For real-world implementations a more 
sophisticated definition should be engaged. On the other 
hand, outranking relation as defined in (1) is transitive; 
this property, in general not required, may be 
advantageous when computing some of the entities 
introduced further in the paper.  

4.  GPPO - Embedding Pairwise Hypothesis 
Comparison into Evolutionary Learning 

Genetic Programming using Partial Order of solutions, 
referred hereafter to as GPPO, requires redefinition of 
some parts of the evolutionary search procedure 
(Goldberg, 1989). This applies to the selection process, to 
the maintenance of the set of best solutions found so far, 
and to the interpretation of the final result. The following 
subsections describe these changes.  

4.1  Outranking-based Selection of Hypotheses 

Selection is the central step of any evolutionary algorithm 
procedure and consists in choosing the set of parent 
solutions P* (often referred to as mating pool) from the 
population P evolved in considered generation of 
evolutionary search. In the outranking-based selection 
process we have to take into account the potential 
presence of hypotheses incomparability. In the 
preliminary research (Krawiec, 2001), we tried to extend 
for this purpose the popular tournament selection scheme 
(Goldberg, Deb, & Korb, 1991). Unfortunately, that 
approach did not yield satisfactory results in experimental 
evaluation, probably due to the fact, that, as tournaments 
for incomparable hypotheses remain unsettled, the 
selection pressure decreases. 

Thus, in GPPO we take an alternate way and start with 
computing the subset N(P) of non-outranked solutions 
from P, i.e.  

 N(P)  = {h ∈ P: ¬∃  h’∈ P : h’ ≥ h}. (2) 

This definition is straightforward, but troublesome in the 
sense that we cannot directly control the cardinality of 

N(P). In practice N(P) usually contains a small fraction of 
P, nevertheless in extreme cases it can be empty may or 
encompass all the individuals from P. This is 
contradictory to a reasonable assumption that we should 
preserve constant size of the population (at least 
approximately).  

Thus, the approach described in this paper combines the 
standard tournament selection with the outranking-based 
selection in the following steps: 

1. P* ← N(P) 

2. If |P*| is smaller than a predefined fraction of the 
population size α|P|, α∈(0,1〉, the solutions in P* are 
‘cloned’ to reach that size.  

3. The missing part of the mating pool (P \ P*) is filled 
with solutions obtained by means of the standard 
tournament selection on P.  

The α parameter controls the penetration of the mating 
pool by the non-outranked solutions P* and ensures that 
this influence is relatively constant, no matter what the 
actual size of P* is.  

4.2  Outranking-based Maintenance of Best Solutions 

The presence of solution incomparability implies also 
some changes in the way we should keep track of the best 
solutions found in the evolution process. We have to be 
prepared to face many ‘leaders’ in the population and 
maintain the set of all non-outranked solutions found 
during the search, denoted further by N*. Starting with 
N* = ∅, the update of N* for consecutive generations 
requires the following operation in GPPO: 

 N*  ← N(P ∪ N*). (3) 

4.3  Utilization of the Best Solutions 

The set N* of non-outranked solutions resulting from the 
completed evolution process may be used in a usual way, 
i.e. one can select from it the best solution with respect to 
the scalar evaluation function and treat it as the final 
outcome of the learning process. This was the method 
applied in the forthcoming case study (Section 5), as it 
ensures the comparability of results with the standard 
genetic programming.  

However, the mutual incomparability of solutions from N* 
suggests that they are significantly different in terms of 
particular definition of outranking. In the case of training 
set performance-based outranking (1), that means 
different performance in various parts of the decision 
space. Therefore, it seems reasonable to benefit from the 
knowledge acquired by (potentially all) solutions from N*. 
A natural approach here is to refer to the methodology of 
meta-classifiers, which offers a broad scope of methods 
for combining classifiers, usually aiming at boosting the 
accuracy of classification (see, for instance, (Chan & 



 

 

Stolfo, 1993)). We plan to devote a part of our future 
research on GPPO to this topic. 

4.4  Remarks and Related Research 

Methods of improving the exploration of the solution 
space (or maintenance of diversity) appear in evolutionary 
computation under the name of niching and multimodal 
genetic search. Some of those methods operate on the 
solution level and base the selection on a random, usually 
small sample of the population (e.g. tournament selection 
by Goldberg, Deb, and Korb (1991), or restricted 
tournament selection by Harik (1995)). Others use a more 
careful pairing of selected parents (Mitchell, 1997, p. 
259). Yet another approaches rely on a more intermediate 
influence and modify the evaluation scheme, penalizing 
the solutions for ‘crowding’ in the same parts of the 
solution space, as in the popular fitness sharing by 
Goldberg and Richardson (1987) or sequential niche 
technique by Beasley, Bull and Martin (1993). In 
particular, niches may be maintained during the entire 
evolution process (parallelly) or only temporarily 
(sequentially); Mahfoud (1995) provided an interesting 
comparison of these groups of methods.  

The specificity of GPPO method in comparison to the 
aforementioned approaches consists in the following 
features: 

• GPPO supports niching in an explicit way, by means 
of the concept of outranking. In particular, GPPO 
does not require any extra distance metric in the 
search space (whereas, for instance, many fitness 
sharing methods do).  

• GPPO carries out the search without making any 
reference to the scalar evaluation function, which, as 
pointed out in Section 2, has some drawbacks due to 
its aggregative character in machine learning tasks. 
Thus, GPPO is more than a mere niching method; it 
is rather a variety of evolutionary search procedure 
that maintains the set of mutually non-outranking 
solutions during the search process. 

• GPPO makes direct use of the detailed and very basic 
information on performance of the solution on 
particular training examples. Thus, the comparisons 
of individuals in the genetic GPPO search are tied 
very closely to the mutual relationships of hypotheses 
in the hypothesis space.  

A reader familiar with the topic may notice some 
analogies between GPPO and multiobjective genetic 
search and optimization (Schaffer, 1985; Van Veldhuizen, 
1989). However, the multiobjective approach refers to the 
dominance relation, which assumes the existence of a 
multidimensional space spanned over a finite number of 
ordered objectives. The concept of outranking presented 
in Section 3 and, in particular, the outranking definition 
(1) used in this paper, do not assume an existence of such 
a space. The incomparability of solutions in dominance-

based methodology is a consequence of the presence of 
multiple dimensions (objectives) and the tradeoffs 
between them, whereas in our case of outranking we do 
not explicitly define such dimensions.  

5.  Genetic Programming using Partial Order of 
Hypotheses in Visual Learning 

5.1  Genetic Programming for Visual Learning  

The proposed idea has been adopted in genetic 
programming-based visual learning, which was the 
subject of our previous research (Krawiec & Slowinski, 
1997; Krawiec, 2000; Krawiec, 2001). The goal of the 
learning process is here to induce the complete pattern 
analysis and recognition program, without explicit 
division into stages of feature extraction and reasoning.  

As the experimental test bed for the approach, we chose 
the problem of off-line handwritten character recognition. 
This task is often referred to in the literature due to its 
wide scope of real-world applications. The methods 
proposed in literature incorporate statistics, structural and 
syntactic  methodology, sophisticated neural networks, or 
ad hoc feature extraction procedures, to mention only a 
few (for review, see (LeCun, Jackel, Bottou, Brunot, et al. 
1995)). The genetic programming approach presented in 
this paper cannot be univocally classified into any of 
these categories, combining the elasticity and learning 
capability of adaptive systems with comprehensibility of 
symbolic knowledge representation. 

5.2  Related Research on GP -based Learning 

Genetic programming (GP) proposed by Koza (1994) is 
reported to be very effective in solving a broad scope of 
learning and optimization problems. The major difference 
in comparison with standard genetic algorithms is here the 
more sophisticated solution representation (usually LISP-
like expressions or programs), which gives more 
elasticity, but requires also more sophisticated 
recombination operators (see Section 5.4.3).  

A remarkable part of research on evolutionary algorithms 
concerns machine learning (see (Mitchell, 1996; Mitchell 
1997) for review). There are also some results in 
application of evolutionary algorithms for image 
processing and analysis (e.g. (Bala, De Jong, & 
Pachowicz, 1994). However, there are relatively few, 
which try to combine both these aspects and refer to the 
visual learning, understood as the search for pattern 
recognition programs (Johnson, 1995; Teller & Veloso, 
1995; Poli, 1996; Krawiec, 1997; Krawiec, 2000). Only a 
small fraction of research aims at inducing the complete 
image analysis program based on training examples, 
which direction is in our opinion very promising and 
universal. 

 



 

 

5.3  Representation of Image Analysis Programs  

In conventional approaches to image analysis and 
interpretation, the processing is usually split into the 
feature extraction and reasoning (Gonzalez & Woods, 
1992). The reasoning is based on the feature vector 
provided by image analysis methods and usually employs 
(statistical or machine learning) classifier. Such a 
separation of the reasoning process from the image 
analysis and feature extraction suffers from several 
drawbacks (Krawiec, 2000). The use of GP for image 
analysis and interpretation was motivated by this 
shortcoming and is aimed at expressing the complete 
program of image analysis and interpretation without the 
need for an external classifier. The major advantage of 
such setting is that the training process is no more limited 
to the decision space predefined by a human expert, but 
encompasses also the search for an appropriate image 
representation.  

In this case study, the search takes place in the space of 
hypotheses being pattern recognition procedures 
formulated in a specialized language called GPVIS 
(Krawiec 2000). GPVIS is an image analysis -oriented 
language encompassing a set of operators responsible for 
simple feature extraction, region-of-interest selection, and 
arithmetic and logic operators. The programs performing 
image analysis and recognition are tree-like GPVIS 
expressions composed of such operations.  

To give the reader a general idea what GPVIS is like, 
Figure 1 presents a simple example of image analysis 
program formulated in that language. Its interpretation is 
as follows: if the x coordinate of the mass center of the 
contents of rectangular region of interest (roi) limited by 
upper left corner (19,8) and lower right corner (2,4) is less 
than 12 or there are more than 8 pixels in the ‘on’ state in 
another region of interest (the right branch of the tree), 
then the return value is true. This returned value could be 
then further processed to yield binary class assignment, as 
in the case study described in this section.  

 

(or (< (x (massCent (roi 19 8 2 4))) 12) 
    (> (nPixOn (roi 7 23 10 18)) 8) 

Figure 1. Tree-like and LISP-like representations of an 
exemplary solution formulated in GPVIS language (numerical 
values omitted in the tree). 

5.4  The Experiment 

5.4.1  THE GOAL OF THE EXPERIMENT  
The goal of the computational experiment was to compare 
the performance of the proposed genetic programming 
with partial order of solutions (GPPO) with the ‘plain’ 
genetic programming (GP).  The main subject of 
comparison was the accuracy of classification of the best 
evolved solutions (hypotheses) on the training and test 
set.  

 

 

Figure 2. Selected difficult examples from the MNIST 
database. 

5.4.2  IMAGE DATA 
The source of images was the MNIST database of 
handwritten digits made available by LeCun et al. (1995). 
The database contains 70,000 digits written by approx. 
250 persons (students and clerks), each represented by a 
28×28 matrix of gray level pixels (Fig. 2). Characters are 
centered and scaled with respect to their horizontal and 
vertical dimensions, however, not ‘deskewed’.  

5.4.3  EXPERIMENT DESIGN 
To ensure a statistically strong support for the results, a 
extensive computational experiment with different 
training and test data has been carried out. First of all, 
instead of considering the complete ten-class digit 
recognition problem we ran a separate series of 
experiments for each pair of ten digit classes; there were 
10×9/2 = 45 of them. Each such series consisted of three 
simulations. Corresponding GP and GPPO runs started 
from the same initial population. Thus, the results 
presented hereafter summarize 135 pairs of genetic runs.   

The experiments have been also carefully prepared and 
carried out so as to ensure credible comparability of 
results.  The particular GP and GPPO runs were ‘paired’ 
in the sense that they started from the same initial 
population and used the same training and test sets as well 
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as the values of parameters. The most important of them 
were set as follows: population size: 200; probability of 
mutation: .05; maximal number of generations: 100; 
training set size: 100 instances (50 images per class, 
randomly selected from the training subset of the MNIST 
database); tournament size: 5 (Goldberg et al., 1991), and 
α = .5 (see Section 4.1). 

In each generation, half of the population was retained 
unchanged, whereas the other fifty percent underwent 
modifications. The GP runs used the standard tournament 
selection based on scalar fitness function, whereas GPPO 
runs followed the selection procedure described in 
Section 4.1. Then, the offspring were created by means of 
the crossover operator, which randomly selects 
subexpressions (corresponding to subtrees in the graphical 
representation shown in Fig. 1) in the two parent solutions 
and exchanges them. The mutation operator applied to a 
solution randomly selects a subexpression and replaces it 
by other subexpression generated at random. In these 
operations the so-called strong typing principle must be 
obeyed (Koza, 1994). 

Special precautions have been taken to prevent overfitting 
of hypotheses to the training data. In the GP case, the 
scalar fitness function was extended by additional penalty 
term implementing parsimony pressure. Particularly, 
solutions growing over 100 terms were linearly penalized 
with the evaluation decreasing to 0 when the threshold of 
200 terms is reached. In the GPPO approach, a solution 
composed of 100 or more terms was always outranked, no 
matter how it performed on the training data.    

5.4.4  PRESENTATION OF RESULTS 
Table 1 presents the comparison of the best solutions (see 
Section 4.3) obtained in GP and GPPO runs. Table rows 
reflect consecutive stages of the evolution process 
(selected generations). Each row summarizes the 
comparison of 135 paired GP and GPPO runs (see Section 
5.4.3). The description includes:  

• the number of pairs of GP and GPPO runs (per total 
of 135) for which the best solution2 evolved in 
GPPO yielded strictly better accuracy of 
classification on the training set than the best one 
obtained from ‘plain’ GP (‘#GPPO  BETTER’),  

• the average increase of accuracy of classification of 
GPPO in comparison to GP (‘AVERAGE INCREASE’),  

• the false reject probability of Wilcoxon matched 
pairs signed rank test (‘FALSE POSITIVE 
PROBABILITY’); the test takes into account the 
relative magnitude of differences in GP and GPPO 
accuracy. 

————— 
2 For both GP and GPPO, the term ‘best’ in this context refers to the best 
solution found in the evolution process, with respect to the scalar 
evaluation function, i.e. the accuracy of classification (see Section 4.3). 

Table 2 presents the summary of the performance of the 
same solutions as in Table 1 when evaluated on an 
independent test set. The test set for each task contains 
1600 objects, i.e. 800 images for both positive and 
negative classes, selected randomly from the testing part 
of the MNIST database. Note that the training (fitness) set 
and testing set are independent in a strong sense, i.e. 
contain digits written by another people (LeCun et al., 
1995). 

The tables do not refer directly to the (average) accuracy 
of classification, as it would not make much sense due to 
the heterogeneity of particular experiments (different 
pairs of decision classes). However, to give the reader an 
idea about the absolute performances of hypotheses 
elaborated by both algorithms, we provide the average 
accuracy of classification at the end of evolutionary runs 
(training and testing set, respectively): 90.3±6.0% and 
85.2±10.2% for GP, 92.2±4.9% and 87.7±7.4% for GPPO 
(standard deviations included).  

Table 1. Comparison of the best solutions evolved in GP and 
GPPO runs with respect to the accuracy of classification on the 
training set. 

GENERATION #GPPO 
BETTER 

AVERAGE 
INCRASE  

[%] 

FALSE 
POSITIVE  

PROBABILITY  

20 74/135 0.55 .8681 
40 76/135 0.93 .2880 
60 89/135 1.67 .0085 
80 88/135 1.46 .0096 

100 105/135 1.97 .0002 

Table 2. Comparison of the best solutions evolved in GP and 
GPPO runs with respect to the accuracy of classification on the 
test set. 

GENERATION #GPPO 
BETTER 

AVERAGE 
INCRASE  

[%] 

FALSE 
POSITIVE  

PROBABILITY  

20 69/135 -0.02 .6234 
40 82/135 1.68 .1093 
60 86/135 1.92 .0461 
80 89/135 1.69 .0325 

100 92/135 2.63 .0061 

 

 



 

 

6.  Conclusions and Future Research Directions 

The main qualitative result obtained in the experiment is 
that evolutionary search taking into account the partial 
order of solutions and allowing hypothesis 
incomparability (GPPO) outperforms the ‘plain’ genetic 
programming (GP) on average. The longer the time 
devoted to the search, the more best solutions obtained by 
means of GPPO outperform that obtained by GP. Tables 1 
and 2 show that, as both algorithms proceed, the increase 
(difference) of accuracy of classification of best GPPO 
solutions grows in comparison to the best GP solutions. 
Starting from generation 60, this difference becomes 
statistically significant at the .05 level; at the end of the 
runs the probability of false reject error is lower than .01. 
Importantly, this applies to the training set as well as to 
the test set.  The GPPO hypotheses (classifiers) are not 
only superior on the training set, but also reveal better 
predictive ability. The average 2.6% gain on accuracy of 
classification seems to be attractive, remembering the 
complexity of the visual learning task and the fact, that 
the accuracies provided by both the methods at the end of 
runs are close to 100%.  

The result not shown in the tables is that the obtained 
GPPO solutions have similar size to those reached by GP 
(we define the solution size as the total number of GPVIS 
subexpressions; see Section 5.3). As far as time factor is 
concerned, although pairwise comparison of solutions 
introduces obviously an extra overhead, that additional 
cost does not exceed on average 10% of the total 
computing time.  

The general conclusion of this work is that it is 
worthwhile to control the search of the hypothesis space 
by means of an incomparability-allowing, pairwise 
comparison relation. Such evaluation method protects the 
novel solutions from being discarded in the search 
process, even if they exhibit minor fitness in scalar terms. 
The more abstract conclusion could be formulated as 
follows: in the presence of an order, we do not have to 
look for an intermediation of numbers.  

It seems also that such an observation is not limited to 
evolutionary search and could be generalized to other 
machine learning inducers, especially those, which 
explicitly evaluate and compare the hypotheses in the 
context of training data.   

The proposed approach to evolutionary learning has the 
advantage of being independent of the knowledge 
representation. From the viewpoint of information theory, 
the method makes use of the information concerning th 
performance of the hypothesis on training sense in a much 
more extent than the scalar evaluation. 

Further work on this approach may concern different 
aspects, some of them are however of special importance. 
In particular, it seems to be interesting to consider the 
more sophisticated definitions of hypothesis outranking, 
mentioned in Section 3.2.2, which should be less sensitive 

to the classification of particular examples. Then, as 
suggested in Section 4.3, a useful extension of the 
approach could be to combine the non-outranked 
hypotheses to form a meta-classifier, for instance by 
simple or weighted voting. To improve further the results 
and to speed up the learning we plan also to introduce the 
incremental growth of the training set (called incremental 
evaluation  by Langley (1996), p. 60). And, last but not 
least, there is a need for a more extensive computational 
experiment concerning various (not necessarily visual) 
tasks to evaluate the usefulness of the GPPO method in a 
broader context. 
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