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Abstract 
 

 

The main objective of this paper is to study the 
usefulness of cooperative coevolutionary algo-
rithms (CCA) for improving the performance of 
classification of machine learning (ML) classifi-
ers, in particular those following the symbolic 
paradigm. For this purpose, we present a genetic 
programming (GP) -based coevolutionary feature 
construction procedure. In the experimental part, 
we confront the coevolutionary methodology 
with difficult real-world ML task with unknown 
internal structure and complex interrelationships 
between solution subcomponents (features), as 
opposed to artificial problems considered usually 
in the literature.  

1 INTRODUCTION  
Representation of knowledge and external stimuli is the 
key issue in the area of intelligent systems design. An 
inappropriate representation of the external world may 
seriously limit the performance of an intelligent agent, 
whereas a carefully designed one can significantly im-
prove its operation.  

This principle affects in particular machine learning 
(ML), a branch of artificial intelligence dealing with 
automatic induction of knowledge from data (Langley, 
1996; Mitchell, 1997). Many ML classifiers do not per-
form well on some problems due to their limited ability to 
construct an internal representation of external inputs, i.e. 
values of attributes that describe instances to be classified. 
That affects mostly the classifiers implementing the sym-
bolic paradigm of knowledge representation, like decision 
trees or decision rules.  

On the other hand, there are several classification ap-
proaches, which do not suffer from this deficiency. Most 
of them represent the non-symbolic and/or sub-symbolic 
paradigm of knowledge representation and processing. 

For instance, neural nets, discriminant analysis and sup-
port vector machines are able to benefit from the synergy 
of selected attributes (e.g. by building linear combinations 
of their values). A rich internal representation allows for 
better discrimination between decision classes. Conse-
quently, as far as the accuracy of classification is con-
cerned, sub-symbolic ML systems often outperform the 
symbolic ones (see, for instance, (Lim et al. 2001)). How-
ever, the price we usually pay for that is the inexplicabil-
ity of knowledge acquired by the classifier and, in particu-
lar, incomprehensibility of the internal representation.  

In this paper, we continue our former research on GP–
based change of representation for machine learners. The 
evolutionary process constructs new features, deriving 
them from the original ones, and searches for a subopti-
mal set of them. Evolving GP individuals encode feature 
definitions expressed as LISP-like expressions. The con-
structed features have therefore symbolic, comprehensible 
definitions. In particular, the central topic of this paper is 
the applying the cooperative coevolution to the feature 
construction task. 

The following sections outline the background for the 
proposed method, the method itself (Section 4), and pre-
sent the related work (Section 3). Then, an extensive 
computational experiment is described in Section 5 and its 
results are discussed in Section 6.    

2 FEATURE CONSTRUCTION FOR 
CHANGE OF REPRESENTATION IN 
MACHINE LEARNING 

Topics described in this study refer to several concepts 
and research directions known in artificial intelligence 
(AI), machine learning (ML) and related disciplines. The 
crucial role of representation has been appreciated in AI 
already in its infancy. That awareness was present also in 
ML community (e.g. Chapter 1.3 of (Langley, 1996)), 
where the representation problem appears at least at two 
points: in the context of input representation and in the 
context of hypothesis representation (referred also to as 



 

hypothesis language representation). In this paper, the 
former one is of interest.  

In particular, we will focus here on the paradigm of learn-
ing from examples and attribute-value representation of 
input data (Mitchell, 1997). In this setting, the original 
representation is made up of a vector of attributes (fea-
tures, variables) F0 describing examples (instances, ob-
jects). This representation is the starting point for the 
process of representation transformation, which can be 
posed as follows: given the original vector of features F0 
and the training set L, invent a derived representation F 
better than F0 with respect to some criteria. Undoubtedly, 
the criterion most often considered at this point is the 
predictive accuracy or, to be more precise, the accuracy of 
classification on the test set (denoted hereafter by T). The 
other measure mentioned relatively frequently is the size 
of the representation, i.e. |F|, however in this paper we 
will focus on the former one.   

The approaches embedded in such environment and re-
ported in the literature can be roughly divided into three 
categories: 

• Feature selection methods (also referred to as variable 
selection). Here, the resulting representation is a subset 
of the original one, i.e. F⊆F0.  

• Feature weighting methods. In this case, the transfor-
mation method assigns weights to particular attributes 
(thus, formally the representation does not change here, 
i.e. F=F0). The weight reflects relative importance of 
an attribute and may be utilized in the process of in-
ductive learning. Unfortunately, the group of inductive 
learning methods that can successfully benefit from 
these extra data is rather limited and encompasses 
mostly distance-based classifiers (see (Dash & Liu, 
1997) for an extensive overview and experimental 
comparison of various methods).   

• Feature construction methods. Here, new features are 
invented and defined (in some language) as expres-
sions, which refer to the values of original ones.  

Principally, each of approaches listed here encompasses 
its predecessors. For instance, feature selection may be 
regarded as a special case of feature weighting with con-
strained domains of weights (e.g. to {0,1} set). Analo-
gously, feature construction usually does not forbid creat-
ing features being ‘clones’ of the original attributes (i.e. 
F0⊆F), what is essentially equivalent to feature selection.  

The subject of this study is the feature construction as the 
most general and, therefore, the most promising approach 
to representation transformation. According to (Matheus, 
1989), feature construction may be further subdivided into 
constructive compilation and constructive induction of 
features. Feature compilation consists in re-writing the 
original representation in a new, usually more compact 
way, so the result is logically equivalent to the original. 
Constructive induction (CI) goes further and takes into 
account the inductive characteristics of learning from 

examples, which is inherently bounded with the incom-
pleteness and/or limited representativeness of the training 
set. Therefore, CI enables building features that are not 
necessarily supported by the training set, but may poten-
tially improve the predictive accuracy of the classifier.   

A more precise taxonomy depending on the type of con-
trol mechanism used for feature construction has been 
introduced in (Michalski, 1983). In particular, in data-
driven constructive induction (DCI) the input data (train-
ing examples) guides the feature construction process. In 
hypothesis-driven constructive induction (HCI), the fea-
ture construction process benefits from the form of the 
induced hypothesis. The methodology described further in 
this paper represent both aforementioned paradigms. 

3 EVOLUTIONARY COMPUTATION 
FOR REPRESENTATION TRANS-
FORMATION  

Evolutionary computation has been used in machine 
learning for quite a long time. Contemporarily it is recog-
nized as a useful engine for many ML problems or even 
as one of its paradigms (Langley, 1996; Mitchell, 1997). 
It is highly appreciated due to its ability to perform global 
parallel search in the solution space with low probability 
of getting stuck in local minima.  

Evolutionary computation is basically applied for learning 
in one of the following ways: 

• Individuals (or groups of individuals) implement com-
plete ML classifiers. 

• Evolutionary search is responsible only for a part of 
learning process, for instance for feature selection.  

Although the former case (complete concept induction) 
belongs to the most widely known applications of evolu-
tionary computation in ML (with classifier systems 
(Goldberg, 1989) as probably the most prominent accent; 
also (De Jong et al., 1993)), some efforts have been made 
in the domain of representation transformation (see previ-
ous section).  

Most research on GP-based change of representation for 
ML learners reported so far in literature focuses on fea-
ture selection and feature weighting. In our previous study 
on GA-based feature selection and weighting (Komosin-
ski & Krawiec, 2000) we noted a significant improvement 
in accuracy of classification in an experiment concerning 
medical image analysis and feature extraction. Also ex-
periments reported in (Raymer et al., 2000) proved use-
fulness of GA-based feature selection and feature weight-
ing, which yield increase of accuracy of classification on 
three different ML domains, requiring only a fraction of 
available attributes (however, authors admit that they 
conducted some preliminary experiments to determine run 
parameters). Other experiments, reported for instance in 
(Vafaie & Imam, 1994), led to similar conclusions.    



 

The topic of evolutionary feature construction received 
more modest attention in the literature. One of the first 
attempts to apply GP to feature construction for machine 
learners were reported in (Bensusan & Kuscu, 1996). In 
(Kishore et al., 2000) an evolutionary approach to multi-
category pattern classification has been proposed and a 
GP-based classifier has been applied to the problem of 
remotely sensed satellite data.  

4 COOPERATIVE COEVOLUTION FOR 
CHANGE OF REPRESENTATION 

4.1 GENETIC PROGRAMMING FOR FEATURE 
CONSTRUCTION 

In this study we employ GP for constructive induction of 
features. Therefore, we do not expect the evolutionary 
computation to do the entire task of concept induction. On 
the other hand, we attack the most advanced form of rep-
resentation transformation (feature construction). Thus, 
the proposed methodology may be considered as located 
on the boundary between the two approaches mentioned 
above.  

Our rationale for such choice is as follows. Firstly, feature 
selection and weighting do not offer much as far as the 
change of representation is concerned. On the other hand, 
some experience we gained from experimenting with GP-
based visual pattern classification (Krawiec, 2001) and 
GP-based ML feature construction (Krawiec, 2002) led us 
to the conclusion that in most real-world cases it is rather 
unreasonable to expect the GP individuals to evolve to 
complete, well-performing classifiers, even for the two-
class discrimination problem. Therefore, the GP-based 
constructive induction of features seems to be a good 
compromise.  

Let us introduce the background more fomally. It is as-
sumed that all examples x ∈ L are described by the set of 
features F0, which will be further referred to as original 
features (or variables), as opposed to the features con-
structed further in the search. The evolving individuals 
encode feature definitions fj, j = 1..n. Each feature fj ∈ F 
is defined by a LISP-like expression built from the values 
of original features F0, in the manner usual for GP (Koza, 
1994). Therefore, an individual consists of a vector of GP 
expressions. Given a training instance x∈L and the values 
of original features F0 that describe it, an individual is 
able to compute the values of feature(s) F it implements.  

4.2 PROBLEM DECOMPOSITION 

The task outlined above belongs undoubtedly to the com-
plex ones. That complexity manifests itself, among others, 
in the fact that many features are required to obtain com-
petetive accuracy of classification (fitness); when facing 
real-world problems, no one expects reasonable results by 
constructing just one feature. It is the features’ synergy 
that makes the representation useful.  

Coevolution is at least for decade reported as an interest-
ing approach to handle the increasing complexity of prob-
lems posed in artificial intelligence and related disci-
plines. In particular, its collaborative variety, the coopera-
tive coevolution algorithms (CCA) (Potter & De Jong, 
2000), besides being appealing from the theoretical view-
point, has been reported to yield interesting results in 
some experiments (Wiegand et al., 2001). 

These reports encouraged us to consider the use of CCA 
to the task of representation transformation by feature 
construction. In particular, we expected the CCA to cope 
better with the feature development for inductive learners 
than the plain evolutionary algorithm.  

The main question that arises at this point is what should 
be the general framework of competence sharing between 
evolving species. In general, as the task here is the repre-
sentation transformation, each individual should be made 
responsible for a part of that task. Therefore, it should be 
equipped in a kind of input and output. Then, a particular 
scheme of cooperation may be conveniently represented 
in a form of directed graph showing the interconnections 
between particular individuals. Although such a scheme 
could be arbitrary, the following two approaches seem to 
be most canonical: 

• parallel – transformed representation consists of a set 
of features, with each species responsible for one fea-
ture; 

• sequential – representation transformation consists of a 
sequence of chained steps, with each species responsi-
ble for one step. 

This study is exclusively devoted to the former of men-
tioned approaches. In particular, each CCA species is 
responsible for developing one feature for the final repre-
sentation, and each individual representing particular 
species implements single feature. The selection of repre-
sentatives follows the optimistic CCA-1 approach: each 
individual (feature) is evaluated in the context of best 
individuals representing remaining subpopulations (spe-
cies) with respect to the previous evaluation process. This 
method has been selected mostly due to the positive re-
sults reported in (Wiegand et al., 2001).   

5 EXPERIMENTAL EVALUATION 
The described methodology has been verified in an exten-
sive computational experiment. Two primary objectives 
of the experiment were: (i) to explore the usefulness of 
genetic programming-based construction of features, and 
(ii) to compare the cooperative coevolution (GP-CCA) 
with the standard approach (GP) on a real-world, difficult 
data set.  

5.1 THE DATA  

The experimental data was the GLASS benchmark from 
the Irvine repository of ML databases (Blake & Merz, 
1998). Its training set L and test set T contain 142 and 72 



 

examples respectively. Each example describes, by means 
of 9 numeric attributes, selected physiochemical proper-
ties of a glass sample. The task of the machine learner is 
to identify the glass type (float window, non-float win-
dow, container, tableware, headlamp) for the purpose of 
criminological investigation. The decision classes are 
highly imbalanced: the majority class occupies 35.6%1 of 
the database, whereas the least representative one – only 
4.2%. There are no missing values of attributes. All 
conditional attributes were normalized before starting the 
experiment to make their values reasonably comparable in 
GP expressions.  

5.2 EXPERIMENT DESIGN AND PARAMETER 
SETTINGS 

A single experiment consisted of the following steps: 

1. Performing evolutionary construction of features using 
training data L, original attributes F0, and set of GP 
terminals and nonterminals described further in this 
section. 

2. Inducing the classifier from the training set L, using the 
features constructed in the evolutionary search (F). 

3. Testing the induced classifier on the external test set T.  

To make the results statistically significant, this scheme 
was repeated 20 times for different initial populations and 
for each considered number of features n (n=[2,9]). The 
settings of evolutionary run were almost the same as the 
defaults provided in the ECJ package (Luke, 2001). The 
function set used was rather limited and included +, -, *, 
% (protected division), LOG (logarithmic function), LT, 
GT, and EQ (arithmetic comparison operators). The termi-
nal set encompassed the ephemeral random constant and 
the original attributes from F0. Weak typing has been 
used, so no constraints were imposed on the mutation and 
crossover operators, except for those concerning individ-
ual’s maximal depth (set to 5 for both crossover and 
mutation). Standard tournament selection with tournament 
size 7 and common GP recombination operations were 
applied. Each run was terminated after 50 generations.  

For a given number of features n and population size 
s=100, a pair of corresponding GP and GP-CCA experi-
ments consisted of: 

• GP run involving one population of size s, with each 
individual encoding n features, and 

• GP-CCA run involving n subpopulations, each of size 
s, with each individual encoding one feature.  

Such a design of the experiment provides that the number 
of features potentially considered during the evolutionary 
search is the same (n×s) for GP and GP-CCA, so the ap-

                                                           
1 This is the accuracy of classification of the so-called default classifier, 
which is a worst-case reference value for the experimental results. 

proaches have equal chances in searching the space of 
features2.  

In GP-CCA, each individual is evaluated in the context of 
the best individuals (with respect to the previous evalua-
tion) representing the remaining species, i.e. according to 
the CCA-1 scheme (see, for instance, (Wiegand et al., 
2001)). After each generation, we estimate the contribu-
tion of each subpopulation to the entire solution basing on 
the fitness differential of the best individual. Subpopula-
tions that do not contribute to the solution (or even dete-
riorate its evaluation) are re-initialized.  

The evaluation of the entire solution (i.e. vector of n fea-
tures implemented by one GP individual or by n cooperat-
ing GP-CCA individuals) relies on the so-called wrapper 
methodology (Kohavi & John, 1997). The values of fea-
tures defined by the evaluated solution are computed for 
all training examples from L, what produces a new, de-
rived dataset. Then, a multiple train-and-test experiment 
(here: 3-fold cross validation) is carried out using an in-
ductive learning algorithm and the resulting average accu-
racy of classification becomes the evaluation. For this 
purpose, the C4.5 decision tree inducer (Quinlan 1992), as 
implemented in WEKA (Witten & Frank 1999) with de-
fault settings (decision tree pruning on, pruning confi-
dence level 0.25) has been used. The choice of this par-
ticular inducer was motivated by its relatively low compu-
tational complexity (of the training algorithm as well as of 
the querying process), readability of induced hypotheses, 
and popularity in ML community. 

According to (Kohavi & John, 1997) and (Dash & Liu, 
1997), wrapper has the advantage of taking into account 
the inductive bias of the classifier used in the evaluation 
function. It also maintains the discovery of synergy be-
tween particular attributes, as opposed to some local ap-
proaches, where particular features are evaluated on indi-
vidual basis (see (Dash & Liu, 1997) for comparison of 
different feature selection strategies).   

5.3 PRESENTATION OF RESULTS 

Figures 1 and 2 present the performance of GP and GP-
CGA approaches respectively on the training and test set. 
For the training set (Fig. 1) that is the fitness of the best 
individual of the run, whereas for the test set (Fig. 2) it is 
the accuracy of classification obtained on the test set T by 
the C4.5 algorithm trained using best evolved representa-
tion (see explanation on the beginning of Section 5). The 
charts are drawn as a function of the number n of con-
structed features. Both charts show means over 20 genetic 
runs with bars depicting 0.95 confidence intervals.  

                                                           
2 It should be noted, however, that for GP-CCA the number of calls of 
the global fitness function (wrapper) is n times greater than for GP. 
Therefore, unless some sophisticated programming tricks are used, the 
computing times are significantly longer for GP-CCA. 



 

Figure 1: GP-CCA versus GP on the training set. 

 

Figure 2: GP-CCA versus GP on the test set. 

6 CONCLUSIONS  
Results presented in Figure 1 clearly prove that coevolu-
tionary search of representation space (GP-CCA) con-
structs better features with respect to the set of fitness 
cases (training set L) that ‘vanilla’ GP. With except for 
n=2 and n=3, which are apparently too small numbers of 
features to build a reasonable representation on, GP-CCA 
outperforms GP with respect to t-Student test at the confi-
dence level 0.02. When comparing both methods in a 
broader view, the Wilcoxon’s rank test on the averages 
produces p=0.012.  

Figure 2 allows us to state that the superiority of GP-CCA 
concerns also the performance on the test set T, which, let 

us stress again, was ‘invisible’ for the evolutionary run. 
This time the 0.02 t-test significance holds only for n=4 
and n=7, but the general tendency remains in favor of the 
coevolutionary approach (Wilcoxon’s p=0.017).  

The more general conclusion of this experiment is that the 
representations learned by means of GP-based feature 
construction often outperform the original representation 
F0 as far as the predictive accuracy is concerned (C4.5 
yields 62.5% accuracy of classification on the test set T 
when using F0). In particular, this statement is true for 
n≥4 in case of GP-CCA and for n=6, 8, and 9 in case of 
GP. Note also that most of the increases have been ob-
tained by means of a more compact representation (in all 
runs, n does not exceed the size of original representation 
|F0|=9). Larger increases are likely to be achieved after 
more precise parameter tuning.  

Let us note that the constructed features give extra insight 
into the knowledge hidden in the dataset. Carefully se-
lected feature definitions (S-expressions) could be used 
for explanatory purposes after some rewriting, verifica-
tion and expert’s assessment. For some examples of such 
features see (Krawiec, 2002). 

As far as CCA-related issues are concerned, more detailed 
analysis is required to investigate and explain cooperation 
patterns and dynamics taking place in CCA-GP feature 
construction. In particular, the cooperation scheme seems 
to be here more complex than in other studies related to 
the topic. We base this hypothesis on the fact, that the 
collaboration of separately coevolved features takes place 
by the mediation of the inductive learning algorithm im-
plemented in the fitness function. The features developed 
by particular subpopulations are selectively utilized by the 
decision tree inducer embedded in the fitness function 
(C4.5), rather than being just put together to build up the 
solution. The inducer uses particular features at different 
stages of the top-down decision tree construction, so the 
effective contribution of particular feature to the final 
fitness value is partially determined by its location in that 
tree. Therefore, it is mostly the C4.5 inductive bias that 
guides the search for promising synergies between repre-
sentation components.  

The results obtained show also that overfitting is still a 
challenge for feature-constructing learners. For both GP 
and GP-CCA approaches, the external test set accuracy is 
much worse than the estimate produced by the wrap-
per-based fitness function (by ca. 10%). This is due to the 
infamous ‘curse of dimensionality’: the presence of new 
features increases dimensionality of the hypothesis space; 
instead of one representation space, we consider many of 
them. Consequently, the inducer is very prone to overfit-
ting as it has much more ‘degrees of freedom’. Potential 
benefits that overfitting prevention may draw from coop-
erative coevolution methodology might be one of other 
interesting topics for future research. 
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