Learning With Many Irrelevant Features

Hussein Almuallim and Thomas G. Dietterich
303 Dearborn Hall
Department of Computer Science
Oregon State University
Corvallis, OR 97331-3202
almualh@cs.orst.edu
tgd@cs.orst.edu

Abstract

In many domains, an appropriate inductive bias is the
MIN-FEATURES bias, which prefers consistent hy-
potheses definable over as few features as possible.
This paper defines and studies this bias. First, it
is shown that any learning algorithm implementing
the MIN-FEATURES bias requires ©(11In$4 1[2¢ +
plnn]) training examples to guarantee PAC-learning
a concept having p relevant features out of n avail-
able features. This bound is only logarithmic in the
number of irrelevant features. The paper also presents
a quasi-polynomial time algorithm, FOCUS, which
implements MIN-FEATURES. Experimental studies
are presented that compare FOCUS to the ID3 and
FRINGE algorithms. These experiments show that—
contrary to expectations—these algorithms do not im-
plement good approximations of MIN-FEATURES.
The coverage, sample complexity, and generalization
performance of FOCUS is substantially better than ei-
ther ID3 or FRINGE on learning problems where the
MIN-FEATURES bias is appropriate. This suggests
that, in practical applications, training data should be
preprocessed to remove irrelevant features before being
given to ID3 or FRINGE.

Introduction

Historically, the development of inductive learning al-
gorithms has been a two-step process: (i) select a rep-
resentation scheme (e.g., decision trees), (ii) develop an
algorithm to find instances of the scheme that are con-
sistent with given collections of training examples. A
shortcoming of this approach is that there is no separa-
tion between a specification of the desired learning be-
havior of the algorithm and its implementation. Specif-
ically, the bias of the algorithm is adopted implicitly,
particularly as a side-effect of the second step. Often,
it is difficult even to state the bias in any simple way.
Consequently, it is difficult to tell in advance whether
the bias is appropriate for a new learning problem.
Recently, a few authors (Buntine 1990, Wolpert
1990) have advocated a different procedure: (i) adopt
a bias over some space of hypotheses (or, equivalently,
select a prior probability distribution over the space),

(ii) select a scheme for representing hypotheses in the
space, and (iii) design an algorithm that implements
this bias, at least approximately.

The goal of this paper is to pursue this second proce-
dure. We consider the space of all binary functions de-
fined over n Boolean input features. We adopt the fol-
lowing bias, which we call the MIN-FEATURES bias:
if two functions are consistent with the training ex-
amples, prefer the function that involves fewer input
features (break ties arbitrarily). This is a bias in favor
of simplicity—but not mere syntactic simplicity. Func-
tions over fewer variables are semantically simpler than
functions over more variables.

We begin by adopting a straightforward represen-
tation for binary functions defined over n input fea-
tures. We then analyze the sample complexity of any
probably-approximately correct (PAC) learning algo-
rithm that implements the MIN-FEATURES bias. It
is proved that

C) <llnl+l[2p+plnn]>
€ 6 ¢

training examples are required to PAC-learn a binary
concept involving p input features (out of a space of n
input features) with accuracy parameter € and confi-
dence parameter 6. Note in this bound that the total
number of available features n appears only logarith-
mically. Hence, if there are k irrelevant features, it only
costs us a factor of In k training examples to detect and
eliminate them from consideration.

Following this analysis, a simple, quasi-polynomial
time algorithm that implements the MIN-FEATURES
bias is described and analyzed. The algorithm, called
FOCUS, first identifies the p features that are needed
to define the binary function. It then applies a straight-
forward learning procedure that focuses on just those
p features.

At first glance, it may appear that there are already
many algorithms that approximate this bias. For ex-
ample, ID3 (Quinlan 1986) has a bias in favor of small
decision trees, and small trees would seem to test only
a subset of the input features. In the final section of
the paper, we present experiments comparing FOCUS

to ID3 and FRINGE (Pagallo & Haussler 1990). These
demonstrate that ID3 and FRINGE are not good im-
plementations of the MIN-FEATURES bias—these al-
gorithms often produce hypotheses as output that are
much more complex (in terms of the number of in-
put features used) than the hypotheses found by FO-
CUS. Indeed, there are some cases in which ID3 and
FRINGE miss extremely simple hypotheses.

These results suggest that the FOCUS algorithm
will require fewer training examples and generalize
more correctly than ID3 in domains where the MIN-
FEATURES bias is appropriate. We believe there are
many such domains. For example, in many practical
applications, it is often not known exactly which in-
put features are relevant or how they should be rep-
resented. The natural response of users is to include
all features that they believe could possibly be rele-
vant and let the learning algorithm determine which
features are in fact worthwhile.

Another situation in which many irrelevant features
may be present is when the same body of training data
is being used to learn many different binary functions.
In such cases, one must ensure that the set of features
measured in the data is sufficient to learn all of the tar-
get functions. However, when learning each individual
function, it is likely that only a small subset of the fea-
tures will be relevant. This applies, for example, to the
task of learning diagnosis rules for several different dis-
eases from the medical records of a large number of pa-
tients. These records usually contain more information
than is actually required for describing each disease.
Another example (given in Littlestone, 1988) involves
pattern recognition tasks in which feature detectors au-
tomatically extract a large number of features for the
learner’s consideration, not knowing which might prove
useful.

Notation

For each n > 1, let {&1,22, -+, 2,} denote a set of n
Boolean features and X,, denote the set {0,1}" of all
assignments to these features—the set of instances. A
binary concept ¢ is a subset of X,,. A binary function
f represents the concept ¢ if f(z) = 1 for all € ¢
and f(z) = 0 otherwise. Of course, binary functions
can be represented as Boolean formulas. A feature x;,
for 1 < i < n, is said to be relevant to a concept c if
x; appears in every Boolean formula that represents ¢
and irrelevant otherwise.

The complexity of a concept, denoted s(c), is defined
to be the minimum number of bits needed to encode
the concept with respect to some encoding scheme.
The encoding scheme we use in this work will be in-
troduced in Section 3. We let C), ; denote the set of
all binary concepts of complexity at most s defined on
{’rla L2, 0, xn}

We assume an arbitrary probability distribution D
on X,,. For 0 < € < 1, a concept h is said to be e-
close to a concept ¢ with respect to D if the sum of

the probability of all the instances in the symmetric
difference of h and c is at most e.

Let f be a function that represents the concept c.
Then, for z € X,, the value f(z) is said to be the
class of x. A pre-classified ezample of ¢ is a pair of the
form (z, f(z)). A sample of a concept ¢ is a multi-set
of examples of ¢ drawn randomly (with replacement)
according to D. The size of the sample is just the
number of instances drawn.

In this work, we adopt the notion of Probably Ap-
proximately Correct (PAC) learning as defined by
Blumer et al. (1987a). With respect to parameters
eand 8,0 < ¢€,6 < 1, we say that a learning algorithm
PAC learns (or simply, learns) a concept ¢ using a sam-
ple of size m if, with probability at least (1 — 6), this
algorithm returns as an hypothesis a concept that is
e-close to ¢ when the algorithm is given a sample of ¢
of size m, for all fixed but unknown D.

Formal Analysis

In this section, we first define the MIN-FEATURES
bias. We then investigate the sample complexity of any
algorithm that implements MIN-FEATURES. Finally,
we present the FOCUS algorithm that implements this
bias, and we analyze its computational complexity.

The MIN-FEATURES bias can be stated simply.
Given a training sample S for some unknown binary
function f over X,, let V be the set of all binary func-
tions over X, consistent with S. (V is sometimes called
the version space; Mitchell, 1982.) Let H be the subset
of V whose elements have the fewest relevant features.
The MIN-FEATURES bias chooses its guess, f, from
H arbitrarily.

Given that we wish to implement and analyze the
MIN-FEATURES bias, the first step is to choose a
representation for hypotheses. We will represent a con-
cept ¢ by the concatenation of two bit vectors R, and
T.. R. is an n-bit vector in which the ith bit is 0
if and only if z; is irrelevant to c¢. T, is the right-
most column of the truth table of a Boolean function
f that represents ¢ defined only on those features in
{z1, 24, -, 2.}, whose corresponding bits in R, are
set to 1.

With this definition, we can now analyze the sample
complexity of MIN-FEATURES—that is, the number
of training examples required to ensure PAC learning.
We must first define a complexity measure correspond-
ing to our bias. Following Blumer et al. (1987b), we
will define the complexity s(c) for concept ¢ to be the
number of bits needed to encode ¢ using our bit-vector
representation. This measure has the property that
s(e1) < s(e) iff the number of relevant features of ¢; is
less than the number of relevant features of ¢5. Specif-
ically, if ¢ has p relevant features then s(c) = n + 2P,
Section 3.1 of Blumer et al. (1987a) gives 3 properties
to be satisfied by a reasonable representation of con-
cepts. The reader may verify that these are satisfied
by our method of encoding.

Example: Let n = 5 and let ¢ be a concept repre-
sented by x1 V 3. Then, R. = 10100 and 7, = 0111.
Hence, the complexity of cis 9. O

The following theorem gives an upper bound on the
sample complexity of any algorithm implementing the

MIN-FEATURES bias.

Theorem 1 Let C, ; be the class of concepts defined
on n features with complexity at most s. Then, under
any probability distribution D, any n > 1, any ¢ and
6 such that 0 < ¢,6 < 1 and any concept c € Cy 5, @
sample of size

lhql—}—l[logQ(s—n)lnn—l—s—n]

e 6 €
1s sufficient to guarantee that any algorithm imple-
menting the MIN-FEATURES bias will return an hy-
pothesis that is e-close to ¢ with probability at least 1-6.

Proof(Sketch): For any target concept of complex-
ity at most s, the hypothesis space for any algorithm
that implements the MIN-FEATURES bias is con-

tained in Cy, ;. We argue that |C), ;| < <log ("s_n))QS—n.
The result follows immediately by applying the lemma

of (Blumer et al. 1987b). O

It is interesting to note that the number of exam-
ples sufficient for learning grows only logarithmically
in the number of irrelevant features and linearly in the
complexity of the concept.

We now show that this bound is tight by exhibit-
ing an identical lower bound using the methods devel-
oped by Blumer et al. (1987a) exploiting the Vapnik-
Chervonenkis dimension (VC-dimension).

The VC-dimension of a class of concepts C' is defined
to be the largest integer d such that there exists a set
of d instances that can be labelled by the concepts in
C in all the 2¢ possible ways. It is shown that the
number of examples needed for learning any class of
concepts strongly depends on the VC-dimension of the
class. Specifically, (Ehrenfeucht et al. 1988) prove the
following:

Theorem 2 Let C' be a class of concepts and 0 <
€,6 < 1. Then, any algorithm that PAC learns
all the concepts in C with respect to €,6 and any
probability distribution must use a sample of size

0 (%ln % + VCdz'EmQC)).

To apply this result, we must first determine the VC-
dimension of the C), ,, the set of boolean concepts over
n features having complexity less than or equal to s.

Lemma 1 Let C, ; be as in Theorem 1. Then
1
VCdim(Cy) > max{m log,(s — n)logy n, s — n} .

The proof of this result is lengthy and is omitted for
lack of space.
We can now state the lower bound:

Algorithm FOCUS (sample)
1. For:=0,1,2, - do:
1.1 For all A C {z1,29, -, 2, } of size i
1.1.1 If there exist no two examples in the
sample that agree on all the features
in A but do not agree on the class
then go to 2.
2.Return any concept h consistent with the sample,
such that only those features in A are relevant to

h.
Figure 1: The FOCUS Learning Algorithm

Theorem 3 Under the same conditions as Theorem
1, any algorithm that PAC-learns Cp s must use a sam-
ple of size

1.1 1
Q <zlng+z[ln(s—n)lnn+s—n]).

These results show that the presence of many irrele-
vant features does not make the learning task substan-
tially more difficult, at least in terms of the number of
examples needed for learning, since the sample com-
plexity grows only logarithmically in the number of
irrelevant features.

Now that we have analyzed the sample complexity
of the MIN-FEATURES bias, we exhibit an algorithm
that implements this bias. The algorithm given in Fig-
ure 1 searches for and returns a consistent hypothesis
using a minimal set of attributes, and hence, it imple-
ments the desired bias.

To determine the computational complexity of FO-
CUS, suppose that it is given a sample of size m for
a concept of complexity s. The condition in the inner
loop can be tested by maintaining an array of length
2141 with an entry for each possible assignment of the
features in A. For each example in the sample, we
check the values of the features in A as given in the
example and label the corresponding entry in the array
using the class of the example. If, during this process,
a label of any entry has to be reversed, then the re-
sult of the test is false. Otherwise, the result is true.
This will cost time O(m - 2141). Since the target con-
cept has complexity s, the value of |A| will reach at
most log,(s — n). The outer loop is then executed
at most (logz("s_n)) = O(n'°&2(s=7)) times. The com-
putational complexity of this algorithm is dominated
by the two nested loops, and, therefore, the algorithm
will terminate in time O((2n)!°8(s=")m). This is quasi-
polynomial in n and s, but clearly it will be impractical
for large values of s.

According to the definition of learnability given in
(Blumer et al. 1987a), this says that the class of
Boolean concepts, under our complexity measure, is
learnable using a polynomial number of examples in
quasi-polynomial time. An analogous result is given in
(Verbeurgt 1990) where, taking the minimum number

of terms needed to encode the concept as a DNF for-
mula as the complexity measure, they obtain a learn-
ability result using a polynomial sample size and quasi-
polynomial time. However, their result is only shown
for the uniform distribution case, while ours applies to
all distributions.

Experimental Work

Several learning algorithms appear to have biases sim-
ilar to the MIN-FEATURES bias. In particular, algo-
rithms related to ID3 (Quinlan 1986) attempt to con-
struct “small” decision trees. These algorithms con-
struct the decision tree top-down (i.e., starting at the
root), and they terminate as soon as they find a tree
consistent with the training examples. Features tested
at each node are chosen according to their estimated
relevance to the target concept, measured using the
mutual information criterion. In this section, we test
these algorithms to see how well they implement the
MIN-FEATURES bias.

In particular, we compare three algorithms: (i) ID3:
As described in (Quinlan 1986), but resolving ties ran-
domly when two or more features look equally good.
(ii) FRINGE: As given in (Pagallo & Haussler 1990),
with the maximum number of iterations set to 10. (iii)
FOCUSed-ID3: First, a minimum set of features suf-
ficient to produce a consistent hypothesis is obtained
as in FOCUS. After finding a minimal-size subset of
relevant features, the training examples are filtered to
remove all irrelevant features. The filtered examples
are then given to ID3 to construct a decision tree.

We consider three evaluation criteria: coverage, sam-
ple complexity, and error rate. The coverage of a learn-
ing algorithm, L, is a measure of the number of distinct
concepts that can be learned from a training sample of
size m. More precisely, consider the collection of all
training samples containing m distinct examples for a
concept ¢, and suppose we give each of these samples to
algorithm L. If, for fraction 1 — é of the training sam-
ples, L outputs a function that is e-close to the correct
concept, then we say that L frequently-approximately
correctly (FAC) learns ¢ (Dietterich 1989). The cover-
age of an algorithm, given m, €, and §, is the number
of concepts that can be FAC-learned by the algorithm.

The sample complezity of an algorithm L for a space
of concepts C' is estimated as the smallest sample size
sufficient to enable L to FAC-learn every concept in
C. This is equivalent to the sample complexity of
PAC-learning, except that it is measured only for the
uniform distribution and instances are drawn without
replacement.

Finally, the error rate for an algorithm on a given
concept is measured as the probability that a randomly
chosen example would be misclassified by the hypoth-
esis output by the algorithm, assuming the uniform
distribution over the space of examples.

Since our objective is to evaluate the learning per-
formance with respect to the MIN-FEATURES bias,

we have specialized the above criteria in the following
manner. First, concepts with 7 + 1 relevant features
are not counted in the coverage of an algorithm un-
less all concepts of 7 or fewer features are FAC learned
as well. If this condition is not included, there exist
trivial algorithms that can attain high coverage while
learning only very uninteresting concepts. Second, for
the sample complexity measurement, we choose C' to
be a class of concepts with only p or fewer relevant fea-
tures. Finally, in measuring the error rates of the three
algorithms, the target concept is chosen randomly from
those concepts having p or fewer features.

One technical problem in performing our exper-
iments is the immense amount of computation in-
volved in the exact measurement of coverage and
sample complexity when the number of features is
large. Therefore, we employed two techniques to re-
duce the computational costs of these measurements.
First, we exploited the fact that each of the three
algorithms is symmetric with respect to permuta-
tions and/or negations of input features. More pre-
cisely, if an algorithm FAC-learns a concept repre-
sented by a Boolean function f(z1,z2,..., &;,...,z;j,

.., &p), then the same algorithm also learns the con-
cepts represented by f(z1,22,..., &j,..., 25, ..., Zn),
flz1,2a,..., &,...,2j, ..., 2,) and so on for all func-
tions obtained by permuting and/or negating the fea-
tures in f. These symmetry properties partition the
space of concepts into equivalence classes such that
it suffices to test one representative concept in each
equivalence class to determine FAC-learnability for all
concepts in the class.! Second, we measured FAC-
learning statistically by running each algorithm on a
large number of randomly-chosen samples (10,000 or
100,000 depending on the experiment). This number
was observed to be large enough to reliably determine
the FAC-learnability of concepts.

Experimental Results

EXPERIMENT 1: Coverage. In this experiment,
we measured the MIN-FEATURES-based coverage of
each of the three algorithms. For each algorithm, we
counted the number of concepts learned in order as
a function of the size m of the sample and the total
number of features n. The learning parameters were
n =5,6,7,and 8 ¢ = 0.1, § = 0.1 and m varying.
The number of samples tested per concept was 10,000.
Figure 2 shows the result for n = 8. The results for
n = 5,6,7 were similar.

EXPERIMENT 2: Sample Complexity. In this
experiment, we estimated the sample size needed to
learn all concepts having 3 or fewer relevant features
out of a total of 8, 10, or 12 available features. As

!For counting techniques that can be employed to find
the number of equivalence classes and the number of con-
cepts in a given equivalence class see Harrison (1965) and
Slepian (1953).

109 T T T T T T T

107 -
106 -
105 -
104 -
103 -
102 -
101 - -

15 20 25 30 35 40 45 50
Number of examples

o ERO<0N)

Figure 2: Coverage of the three algorithms for n = 8.

before, € and § were 0.1. The number of samples tested
per concept was 100,000. The results are given in the
following table:

No. features | ID3 | FRINGE | FOCUS
8 194 52 34
10 648 72 40
12 2236 | 94 42

EXPERIMENT 3: Error rates. In the previous
experiments we were looking at the “worst case” per-
formance of the learning algorithms. That is, given a
reasonable sample size, an algorithm may learn all the
concepts under consideration with the exception of few
that require a substantial increment in the sample size.
Such an algorithm could exhibit poor performance in
the previous two experiments. The purpose of this ex-
periment is to perform a kind of “average case” com-
parison between the three algorithms. The procedure
is to plot the learning curve for randomly chosen con-
cepts with few relevant features.

We randomly selected 50 concepts each having at
most 5 (out of n) relevant features. For each of these
concepts, we measured the accuracy of the hypothe-
ses returned by the three algorithms while successively
increasing the sample size. For each value of m, the
accuracy rate is averaged over 100 randomly chosen
samples. This experiment was performed for n = 8,
12, and 16. 50 randomly chosen concepts of no more
than 5 relevant features were tested for each value of
n.

Figure 3 shows a pattern typical of all learning
curves that we observed. Over all 50 concepts, af-
ter 60 examples, the mean difference in accuracy rate
between FOCUS and ID3 was 0.24 (variance 0.0022).
The mean difference between FOCUS and FRINGE
was 0.21 (variance 0.0020).

EXPERIMENT 4: Irrelevant Features. The goal
of this experiment was to see how the three algorithms
are influenced by the introduction of additional (irrel-
evant) features whose values are assigned at random.

1.00
0.95 |
0.90 |-
0.85
0.80 |-
0.75
0.70
0.65 -
0.60 |-
0.55 |

0.50 | | | | |
0 20 40 60 80 100
Number of examples

“aAPREOO D

Figure 3: Learning curve for the randomly chosen
concept f(x1,...,%16) = 21222384 V L12223T4T5 V
L1X2E3L4T5 V T1Z2Z3 V T1T223Za V T1T223L42T5 V
f1f2z3x43:5 \Y f1f2I3f4 \Y f1f3I4l‘5 \Y f1f3f4f5 which
has 5 relevant features out of 16.

T T T T T
- FOCUS <—
ID3 +—
A 10T FRINGE @)
¢ 09f -
u
08¢t -
a
C
y 0.7f -
0.6 F -
05 | | | | |
8 10 12 14 16

Number of total attributes

Figure 4: Accuracy of the three algorithms on a ran-
domly chosen concept-sample pair as more irrelevant
random features are introduced. The sample size was

64.

For this purpose, we choose a concept-sample pair at
random, and measure the accuracy of the hypothe-
sis returned by each algorithm while adding more and
more irrelevant features to the sample. The concepts
chosen have 5 relevant features out of 8. The sam-
ple size was chosen such that all the three algorithms
are reasonably accurate when tested using only the 8
starting features. A sample of such a size is chosen
randomly and then augmented by successively adding
random features to bring the total number of features
up to n = 16. For each value of n, the accuracy is
averaged over 100 runs.

This experiment was repeated on more than 50
concept-sample pairs. A typical result of these runs
is shown in Figure 4.

Discussion

These experiments show conclusively that the biases
implemented by ID3 and FRINGE, though they may
be interesting and appropriate in many domains, are
not good approximations of the MIN-FEATURES bias.
The final experiment shows this most directly. Using
the MIN-FEATURES bias, FOCUS maintains a con-
stant, high level of performance as the number of ir-
relevant features is increased. In contrast, the perfor-
mance of ID3 and FRINGE steadily degrades. This
occurs because ID3 and FRINGE are proposing hy-
potheses that involve many extra features (or perhaps
different features) than those identified by FOCUS.

This also explains the results of Experiments 1, 2,
and 3. In Experiment 2, we see that many more train-
ing examples are required for ID3 and FRINGE to
find good hypotheses. These extra training examples
are needed to force the algorithms to discard the ir-
relevant features. This also means that, for a fixed
sample size, ID3 and FRINGE can learn many fewer
concepts (with respect to the MIN-FEATURES bias),
as shown in Experiment 1. Experiment 3 shows that
if the MIN-FEATURES bias is appropriate, then FO-
CUS will give much better generalization performance
than either ID3 or FRINGE.

Conclusion
This paper defined and studied the MIN-FEATURES

bias. Section 3 presented a tight bound on the number
of examples needed to guarantee PAC-learning for any
algorithm that implements MIN-FEATURES. It also
introduced the FOCUS algorithm, which implements
MIN-FEATURES, and calculated its computational
complexity. Finally, Section 4 demonstrated empiri-
cally that the ID3 and FRINGE algorithms do not pro-
vide good implementations of the MIN-FEATURES
bias. As a consequence, ID3 and FRINGE do not per-
form nearly as well as FOCUS in problems where the
MIN-FEATURES bias is appropriate. These results
suggest that one should not rely on ID3 or FRINGE to
filter out irrelevant features. Instead, some technique
should be employed to eliminate irrelevant features and
focus ID3 and FRINGE on the relevant ones.

There are many problems for future research. First,
we need to develop and test efficient heuristics for find-
ing the set of relevant features in a learning problem.
Analysis must be performed to ensure that the heuris-
tics still have near-optimal sample complexity. Second,
we need to address the problem of determining relevant
features when the training data are noisy. Third, some
efficient variant of FOCUS should be tested in real-
world learning problems where the MIN-FEATURES

bias is believed to be appropriate.

Acknowledgements

The authors gratefully acknowledge the support of
the NSF under grant number IRI-86-57316. Hussein

Almuallim was supported by a scholarship from the
University of Petroleum and Minerals, Saudi Arabia.
Thanks also to Nick Flann for helpful comments.

References

Buntine, W. L. 1990. Myths and Legends in Learn-
ing Classification Rules. In Proceedings of the
Eighth National Conference on Artificial Intelligence
(AAAI-90), 736-742. Boston, MA: Morgan Kauf-

mani.

Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and War-
muth, M. 1987a. Learnability and the Vapnik-
Chervonenkis Dimension, Technical Report UCSC-
CRL-87-20, Department of Computer and Informa-
tion Sciences, University of California, Santa Cruz,

Nov. 1987. Also in Journal of ACM, 36(4):929-965.

Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and War-
muth, M. 1987b. Occam’s Razor. Information Pro-
cessing Letters, 24:377-380.

Dietterich, T. G. 1989. Limitations on Inductive
Learning. In Proceedings of the Sixth International
Workshop on Machine Learning, 124-128. Ithaca,
NY: Morgan Kaufmann.

Ehrenfeucht, A.; Haussler, D.; Kearns, M.; and
Valiant, L.G. 1988. A General Lower Bound on the
Number of Examples Needed for Learning. In Pro-
ceedings of the First Workshop on Computational
Learning Theory, 139-154. Boston, MA: Morgan

Kaufmann.

Harrison, M. 1965. Introduction to Switching and Au-
tomata Theory. McGraw Hill, Inc.

Littlestone, N. 1988. Learning Quickly When Irrel-
evant Attributes Abound: A New Linear-threshold
Algorithm. Machine Learning, 2:285-318.

Mitchell, T. M. 1982. Generalization as Search. Ar-
tificial Intelligence, 18:203-226.

Pagallo, G.; and Haussler, D. 1990. Boolean Feature
Discovery in Empirical Learning. Machine Learning,
5(1):71-100.

Quinlan, J. R. 1986. Induction of Decision Trees, Ma-
chine Learning, 1(1):81-106.

Slepian, D. 1953. On the Number of Symmetry Types
of Boolean Functions of n Variables. Can. J. Math.,
5(2):185-193.

Verbeurgt, K. 1990. Learning DNF Under the Uni-
form Distribution in Quasi-polynomial Time. In
Proceedings of the Third Workshop on Computa-
tional Learning Theory, 314-326. Rochester, NY:
Morgan Kaufmann.

Wolpert, D. 1990. A Mathematical Theory of Gen-
eralization: Parts 1 and II. Complex Systems, 4
(2):151-249.

