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Database dependencies, such as functional and multivalued
dependencies, express the presence of structure in database
relations, that can be utilised in the database design process.
The discovery of database dependencies can be viewed as an
induction problem, in which general rules (dependencies) are
obtained from specific facts (the relation). This viewpoint
has the advantage of abstracting away as much as possible
from the particulars of the dependencies. The algorithms in
this paper are designed such that they can easily be gener-
alised to other kinds of dependencies.
Like in current approaches to computational induction such
as inductive logic programming, we distinguish between top-
down algorithms and bottom-up algorithms. In a top-down
approach, hypotheses are generated in a systematic way and
then tested against the given relation. In a bottom-up ap-
proach, the relation is inspected in order to see what depen-
dencies it may satisfy or violate. We give a simple (but inef-
ficient) top-down algorithm, a bi-directional algorithm, and a
bottom-up algorithm. In the case of functional dependencies,
these algorithms have been implemented in the FDEP sys-
tem and evaluated experimentally. The bottom-up algorithm
is the most efficient of the three, and also outperforms other
algorithms from the literature.

Keywords: Induction, attribute dependency, database re-
verse engineering, data mining.

1. Introduction

Dependencies between attributes of a database re-
lation express the presence of structure in that rela-

tion, that can be utilised in the database design pro-
cess. For instance, a functional dependency

�����
ex-

presses that the values of attributes
�

uniquely deter-
mine the value of attributes

�
. The way

�
depends

on
�

can thus be stored in a separate relation with at-
tributes

�����
. Furthermore,

�
can be removed from

the original relation, which can be reconstructed as the
join of the two new relations over

�
. In this way the

implicit structure of the relation is made explicit. In
fact, the relation between

�
and
�

does not need to be
functional: all that is needed for a lossless decomposi-
tion is that the way

�
depends on

�
is independent of

the remaining attributes. This has led to the concept of
a multivalued dependency

�����	�
.

Traditionally, database dependencies were consid-
ered to be part of the data model provided by the
database designer. However, they may also be re-
trieved from the extensional data. One reason for do-
ing so can be that the data model, or parts of it, has
been lost or is no longer accurate, so that some form of
reverse engineering is required. Another reason may
be that certain dependencies were not foreseen by the
database designer, but do occur in practice. Once they
have been discovered, they may be utilised for restruc-
turing the database, as indicated above, but also for
query optimisation. In this paper we address this prob-
lem of dependency discovery, understood as charac-
terising the set of dependencies that are satisfied by a
given collection of data. 


Some previous work has been done on algorithms
for dependency discovery, mostly restricted to discov-
ery of functional dependencies [18, 14, 20, 13]. In
this paper we propose some new algorithms for dis-
covery of functional dependencies, and we study the
new problem of discovery of multivalued dependen-
cies. The major contribution, however, is the elabora-

�
We avoid using the ambiguous term ‘dependency inference’,

which has been used in the literature both for dependency discovery
and for the problem of constructing dependencies that are implied by
given dependencies, which is not the problem we are dealing with in
this paper.
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tion of the connection between the problem of depen-
dency discovery and the problem of inductive learning
or learning from examples from the field of machine
learning. Through this novel perspective we are able
to develop our algorithms in a systematic and princi-
pled way. Furthermore, the algorithms are formulated
in very general terms, relegating the particulars of the
kind of dependency that is being induced to specific
sub-procedures. As a consequence, the algorithms we
develop can be adapted to discover other kinds of de-
pendencies than the functional and multivalued depen-
dencies considered in this paper.

This paper summarises and extends results from [6,
28, 29, 7, 8, 30].

1.1. Overview of the paper

In Section 2 we review the main concepts and no-
tation from the relational database model. Some ad-
ditional insights are gained through a reformulation in
terms of clausal logic. Section 3 gives a brief introduc-
tion to the field of computational induction, and indi-
cates how database dependency discovery fits in. Sec-
tion 4 is the main part of the paper, giving top-down,
bi-directional, and bottom-up algorithms for induction
of functional and multivalued dependencies. The algo-
rithms are formulated so that they can be easily adapted
to other kinds of dependencies. In Section 5 we discuss
implementation details of the algorithms. In particular,
we define a datastructure for succinct representation
of large sets of functional dependencies. In Section 6
we discuss relations of our results with other published
work, and in Section 7 we report some experimental
results. Section 8 concludes.

2. Preliminaries

This section provides the theoretical backgrounds
of database dependencies. In Section 2.1 we review
the main concepts and notation from the relational
database model. In Section 2.2 we provide an alterna-
tive, logical view, through which we derive some addi-
tional theoretical results needed further on in the paper.

2.1. The relational model

Our notational conventions are close to [17]. A
relation scheme R is an indexed set of attributes�

����������

���
. Each attribute

���
has a domain 	 �

, 
��
 ��� , consisting of values. Domains are assumed to

be countably infinite. A tuple over � is a mapping ���
� ��� � 	 �

with ��� � ����� 	 �
, 
�� 
 ��� . The values

of a tuple � are usually denoted as ����� � 

�
��������� ���

��� � �
if the order of attributes is understood. A relation on R
is a set of tuples over � . We will only consider finite
relations. Any expression that is allowed for attributes
is extended, by a slight abuse of symbols, to sets of at-
tributes, e.g., if

�
is a subset of � , ��� � �

denotes the
set !"��� � �$# � � �&%

. We will not distinguish between
an attribute

�
and a set

�
containing only one attribute.

A set of values for a set of attributes
�

is called an�
-value. In general, attributes are denoted by upper-

case letters (possibly subscripted) from the beginning
of the alphabet; sets of attributes are denoted by upper-
case letters (possibly subscripted) from the end of the
alphabet; values of (sets of) attributes are denoted by
corresponding lowercase letters. Relations are denoted
by lowercase letters (possibly subscripted) such as � ,' , ( , ) , * ; tuples are denoted by � , � 
 , �,+ , . . . . If

�
and�

are sets of attributes, their juxtaposition
� �

means� ���
. If - is a set,

# - #
denotes its cardinality.

Informally, a functional dependency from attributes�
to attributes

�
expresses that the

�
-value of any

tuple from a relation satisfying the functional depen-
dency is uniquely determined by its

�
-value. In other

words, if two tuples in the relation have the same
�

-
value, they also have the same

�
-value.

Definition 1 (Functional dependency) Let � be a re-
lation scheme, and let

�
and
�

be subsets of attributes
from � . The expression

�����
is a functional depen-

dency over � (fd for short). If
�

is a single attribute
the fd is called simple.
A pair of tuples � 
 and �,+ over � violates a functional
dependency

�����
if � 
 �

� �/. �,+0� � �
and � 
 �

� �21.
� + � � �

.
A relation ) over � violates a functional dependency� �	�

if some pair of tuples � 

� ) and � + � ) violates� �	�

; � 
 and � + are called witnesses. ) satisfies an fd
if ) does not violate it.

The following properties are immediate from Defini-
tion 1.

Proposition 1 (Properties of fds) (1) A relation sat-
isfies a functional dependency

� �	�
iff it satisfies� � �

for every
� � �

.
(2) If a relation satisfies an fd

�����
, it also satisfies

any functional dependency 3 ��� with 354 � .
(3) If a relation satisfies an fd

�����
, it also satisfies

any fd
�����76

with
�76 . �98��

.
(4) If a functional dependency is satisfied by a relation
) , it is also satisfied by any relation ) 6;: ) .
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(1) allows us, without loss of generality, to restrict at-
tention to simple functional dependencies with a sin-
gle dependent attribute. (2) indicates that functional
dependencies with minimal left-hand sides convey the
most information. (3) indicates that left-hand side at-
tributes are redundant on the right-hand side. (4) states
that the set of functional dependencies satisfied by a
relation decreases monotonically when the relation in-
creases.

Multivalued dependencies generalise functional de-
pendencies by stipulating that every

�
-value deter-

mines a set of possible
�

-values. For instance, if a
relation describes events that occur weekly during a
given period, this relation satisfies a multivalued de-
pendency from day of week to date: given the day of
week, we can determine the set of dates on which the
event occurs. For instance, if the Computer Science
course and the Artificial Intelligence course are both
taught on a Wednesday during the fall semester, and
there is a CS lecture on Wednesday September 7, while
there is an AI lecture on Wednesday December 7, then
there is also a CS lecture on the latter date and an AI
lecture on September 7.

Definition 2 (Multivalued dependency) Let � be a
relation scheme, let

�
and

�
be subsets of attributes

from � , and let 3 denote � 8 � �
. The expression� � ���

is a multivalued dependency over � (mvd for
short).
Given an mvd

� � ���
, the tuple determined by a pair

of tuples � 
 and � + over � is defined by ���0� � � � .
� 
 �
� � �

and ��� � 3 � . �,+0� 3 �
. Given a relation ) , a

pair of tuples � 

� ) and � + � ) violates a multivalued

dependency
�����	�

if � 
 �
� � . � + � � �

and the tuple
determined by � 
 and � + is not in ) .
A relation ) over � violates a multivalued dependency� � ���

if some pair of tuples � 

� ) and �,+ � ) vio-

lates
�������

; � 
 and � + are called positive witnesses,
and the tuple determined by them is called a negative
witness. ) satisfies an mvd if ) does not violate it.

Thus, a relation ) satisfies an mvd
�����	�

if for ev-
ery pair of tuples � 


� ) and �,+ � ) such that
� 
 �
� � . �,+ � � �

the tuple ��� determined by � 
 and �,+ is
in ) as well. Note that by exchanging � 
 and � + , there
should also be a tuple ��� � ) with ���0� � � � . � + � � � �
and � � ��3 � . � 
 ��3

�
. Furthermore, notice that a pair of

tuples can only violate an mvd in the context of a par-
ticular relation, while an fd can be violated by a pair of
tuples in isolation. This difference has certain conse-
quences for the induction algorithms developed in Sec-
tion 4.

The following properties are immediate from Defi-
nition 2.

Proposition 2 (Properties of mvds) (1) A relation sat-
isfies a multivalued dependency

�������
iff it satisfies� � � 3 with 3 . � 8 � �

.
(2) If a relation satisfies an mvd

�����	�
, it also satis-

fies any mvd 3 � ��� with 3�4 � .
(3) If a relation satisfies an mvd

�����	�
, it also satis-

fies any mvd
�����	� 6

with
� 6 . �98 �

.
(4) If a relation satisfies a functional dependency� �	�

, it also satisfies the multivalued dependency� � ���
.

(1) states that mvds are pairwise equivalent. This gives
us a sort of “normal form” which is however much
weaker than for fds: any mvd

� � ���
partitions a rela-

tion scheme � into three subsets
�

,
�

, � 8 � �
. Such

a partition is called a dependency basis for
�

[17]. It
can be generalised to represent a set of mvds with iden-
tical left-hand side. (2) and (3) demonstrate that, analo-
gously to fds, multivalued dependencies with minimal
left-hand sides are most informative, and that left-hand
side attributes are redundant on the right-hand side. (4)
states that functional dependencies are indeed special
cases of multivalued dependencies. Notice that Propo-
sition 1 (4) does not extend to multivalued dependen-
cies, since an mvd requires the existence of certain tu-
ples in the relation. Thus, if ) satisfies a certain mvd,
some subset of ) may violate it.

Functional dependencies and multivalued dependen-
cies are jointly referred to as dependencies. The at-
tributes found on the left-hand side of an attribute
dependency are called antecedent attributes, those
on the right-hand side consequent attributes. The
set of dependencies over a relation scheme � is de-
noted

�����
	
. If ) is a relation over relation scheme

� , the set of dependencies satisfied by ) is denoted������	 ��� � . Single dependencies are denoted by Greek
lowercase letters such as 
 , � , � ; sets of dependencies
are denoted by Greek uppercase letter such as � , � , � .

As we see from Propositions 1 and 2, the set����� 	 ��� � contains a lot of redundancy. A cover of����� 	 ��� � is a subset from which all other dependen-
cies satisfied by ) can be recovered. In order to de-
fine this formally we need the notion of entailment
between (sets of) dependencies. In the database lit-
erature (e.g. [17, 32, 19]) the entailment structure of
functional and multivalued dependencies is usually de-
fined by means of inference rules like the following
(cf. Proposition 1 (2), Proposition 2 (1,2)):
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from
���	�

infer
��� 3 for 3�4 �

from
��� ���

infer
��� � 3 for 354 �

from
��� ���

infer
��� � � 8�� �

If we view dependencies as logical statements about
the tuples in a relation, as will be discussed in Section
2.2 below, there is no need to axiomatise the entailment
structure of functional and multivalued dependencies,
as they are, so to speak, hardwired into the logical rep-
resentation. A cover of a set of dependencies � is thus
simply any subset that is satisfied by exactly the same
relations.

Definition 3 (Cover) Let � be a relation scheme, and
let � be a set of dependencies over � . � : � is a
cover of � if the set of relations over � satisfying �
is equal to the set of relations over � satisfying � . A
cover � is minimal if for every proper subset ��� � ,
there is a relation over � satisfying � but not � .

We are usually interested in a cover of
����� 	 ��� � ,

but sometimes we are also interested in a cover of����� 	 8 ����� 	 ��� � , i.e. the set of dependencies that
are violated by ) .

2.2. The logical view

There is a well-known correspondence between
statements from the relational model and first-order
predicate logic [5, 10, 27]. The basic idea is to interpret
an � -ary relation ) as a Herbrand interpretation for an
� -ary predicate r. Given this Herbrand interpretation,
we can translate a relational statement like

�����
to a

logical formula 
 , such that ) satisfies the relational
statement if and only if the Herbrand interpretation is
a model for 
 .

For instance, given a relation ) with relational
scheme � . ! � �

�
�
�

� 	
%
, the functional dependency� � � 	 corresponds to the logical statement

D1=D2 :- r(A,B1,C,D1),r(A,B2,C,D2)

In words: if two tuples from relation ) agree on their� �
-values, they also agree on their 	 -value. Sim-

ilarly, the multivalued dependency
� � ��� 	 corre-

sponds to the logical statement

r(A,B1,C2,D1) :- r(A,B1,C1,D1),
r(A,B2,C2,D2)

In words: if two tuples � 
 and � + from relation ) agree
on their

�
-values, then there exists a third tuple � � in

the relation which has the same
�

-value as � 
 and �,+ ,
while inheriting its

� 	 -values from � 
 and its
�

-value
from � + .

We now proceed to define the logical analogues of
the main relational concepts from Section 2.1. Let
� . ! � 
����������

��� %
be a relation scheme with associ-

ated domains 	 �
, 
 � 
 ��� . With � we associate an

� -ary predicate r, and with each attribute
���

we asso-
ciate a countable set of typed variables

� �
�
� �

� 3
�
�������

ranging over the values in domain 	 �
. +

Definition 4 (Clause) A relational atom is an expres-
sion of the form � � � 
 ���������

� � �
. An equality atom

is an expression of the form
� � . � �

. A literal is
an atom or the negation of an atom. A clause is a
set of literals, understood as a disjunction. A defi-
nite clause is a clause with exactly one positive literal.
Definite clauses are conveniently written in the form
H:-B, where H is the positive literal and B is a comma-
separated list of the negative literals.

Definition 5 (Substitution) A substitution is a map-
ping from variables to values from their associated do-
mains. Given a relation ) , a substitution satisfies an
atom � � � 
����������

� � �
if the tuple resulting from apply-

ing the substitution to the sequence � � 
 ���������
� � �

is
in ) . A substitution satisfies an atom

� � . � �
if both

variables are mapped to the same value. Given a rela-
tion ) , a substitution violates a clause if it satisfies all
negative atoms in the clause but none of the positive
atoms. A relation ) satisfies a clause if no substitution
violates it.

Definition 6 (Dependencies in logic) Let
��� �

be a
functional dependency, then the associated logical
statement is H:-B1,B2, constructed as follows. B1
and B2 are two relational atoms that have identical
variables for attributes in

�
, and different variables

otherwise. H is the equality literal A1=A2, where A1
and A2 are the variables associated with attribute

�
occurring in B1 and B2, respectively.
Let
�����	�

be a multivalued dependency, then the as-
sociated logical formula is L3:-L1,L2, constructed
as follows. L1 and L2 are two relational atoms that
have identical variables for attributes in

�
, and differ-

ent variables otherwise. L3 is the relational atom that

�
We adopt the Prolog convention of treating any string starting

with a capital as denoting a variable.
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has the same variables for attributes in
�

as L1 and
L2, the same variables for attributes in

�
as L1, and

the same variables as L2 for the remaining attributes.
If 
 is a relational statement, then the corresponding
logical formula is denoted � � 
�� � .
The following Proposition is immediate from the
above construction.

Proposition 3 (Logical vs. relational view) Let � be
a relation scheme, ) a relation over � , and 
 a depen-
dency. ) satisfies dependency 
 , as defined in Defini-
tions 1 and 2, if and only if ) satisfies formula � � 
�� � , as
defined in Definitions 6 and 5.

As an illustration of the advantage of the logical
view, consider the multivalued dependency

� � � �
which is translated to the statement

r(A,B2,C1,D2) :- r(A,B1,C1,D1),
r(A,B2,C2,D2)

By re-ordering the literals in the body of the latter
clause and renaming the variables, it is readily seen
that it is in fact equivalent to the clause above repre-
senting the mvd

� ��� � 	 . Thus, we see that the equiv-
alence between mvd’s

�����	�
and

� � � � 8�� �
is

obtained as a logical consequence of the chosen rep-
resentation, and does not need to be axiomatised sep-
arately. It is easily checked that this holds true for all
properties stated in Propositions 1 and 2. Thus, a major
advantage of the logical view is that meta-statements
about attribute dependencies are much easier verified.

In particular, we will make use of the following
Proposition.

Proposition 4 (Entailment) Let 
 and � be two fds
or two mvds. 
 entails � (that is, every relation that
satisfies 
 also satisfies � ) iff there is a substitution �
such that � � 
�� ��� . � � ��� � .
The substitution � will have the effect of unifying two
variables in the body of the clause, associated with the
same attribute. Translating the result back to a de-
pendency, this corresponds to an extension of the an-
tecedent.

Corollary 5 A functional dependency
�����

entails
another fd � �	� iff there exists 3 : � such that
� . � 3 and

��8 3 : � : �
.

A multivalued dependency
� � ���

entails another mvd
� � �
� iff there exists 3 : � such that � . � 3 ,
and either

� 8 3 : � : �
or � � 8 � � � 8 3 :

� : � � 8�� � �
.

The significance of Corollary 5 is established by the
only-if halves, by which it extends Propositions 1 and
2. Note that the attributes with which the antecedent
is extended may remain in the consequent, but clearly
they would be redundant. We will need this result in
order to prove the completeness of our induction algo-
rithms.

It must be noted that a disadvantage of the logical
view with respect to the relational view is that the logi-
cal view can refer to attributes only by their position in
a relational scheme, whereas the relational model pro-
vides a metalevel on which attributes can be referred
to by their names. Therefore we usually employ the
relational terminology in this paper, and assume that
logical concepts like entailment have been adequately
reflected upwards to the relational metalevel.

3. Dependency discovery as an induction task

The general problem dealt with in this paper is to
characterise the set of dependencies that are satisfied
by a given set of tuples. We provide a novel perspective
on this problem by viewing it as an induction task. In-
duction is the process of inferring general hypotheses
from specific information. It is the main inference step
in concept learning from examples, which is the prob-
lem of finding a concept definition that correctly clas-
sifies all positive and negative examples, while max-
imising expected accuracy on unseen instances [4].

Induction can also be employed to infer non-classificatory
hypotheses, that describe properties (rather than def-
initions) of the data. From the database perspective
one would refer to such properties as integrity con-
straints. Since attribute dependencies constitute a form
of database constraints, we will concentrate on this
second non-classificatory (also referred to as confirma-
tory [8] or descriptive) form of induction.

Broadly speaking, induction algorithms can be clas-
sified as belonging to either of two main types: bottom-
up algorithms, that take the data as starting point for
hypothesis construction, and top-down algorithms, that
embody a generate-and-test approach. These two types
of induction algorithms are reviewed in Section 3.1. In
Section 3.2 we introduce the main tool for structuring
the search space in computational induction: the gen-
erality ordering.
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3.1. Top-down vs. bottom-up induction

It is customary in computational induction to as-
sume that the hypothesis space (the set of possible hy-
potheses) is known beforehand. Under this assump-
tion, the simplest induction algorithm, reproduced be-
low as Algorithm 1, generates the possible hypothe-
ses � �

one-by-one, halting when the current hypothe-
sis agrees with all examples.

Algorithm 1 (Enumerative induction)
Input: an indexed set of hypotheses ������� ,
and a set of examples � .
Output: a hypothesis � agreeing with � .
begin 	�
 ��


;
while ��� does not agree with �
do
	�
 ��	����

od
output � �

end.

In the case of dependency discovery, !�� � %
would be an

enumeration of the set of attribute dependencies over
a given relation. For any but the simplest hypothesis
space this naive approach is obviously infeasible. The
main problem is that, even if the enumeration is done
in some systematic way, no information is extracted
from it: every hypothesis is treated as if it were the first
one. If we view the algorithm as a search algorithm,
the search space is totally flat: every hypothesis is an
immediate descendant of the root node, so solutions
are only found at leaves of the search tree.

If solutions are to be found higher up in the search
space, we need a strict partial order that structures the
hypothesis space in a non-trivial way. For instance, in
concept learning from examples a suitable search or-
der can be defined in terms of generality of the pos-
sible concept definitions: more specific definitions are
only tried after the more general ones have been found
inappropriate (top-down algorithms). We will further
discuss the generality ordering in Section 3.2.

Bottom-up induction algorithms construct hypothe-
ses directly from the data. They are less easily viewed
as search algorithms, and are in some cases even deter-
ministic. For instance, when inducing a definition for
the append-predicate we may encounter the facts

append([a],[],[a])

and

append([1,2],[3,4],[1,2,3,4])

If we assume that these are generated by the same
clause, we can construct the clause head

append([A|B],C,[A|D])

by anti-unification, and then proceed to find appropri-
ate restrictions for the variables. Since the data can
be viewed as extremely specific hypotheses, such al-
gorithms climb the generality ordering from specific to
general, and are thus in some sense dual to top-down
algorithms.

It should be noted that some algorithms, most no-
tably those inducing classification rules, induce a sin-
gle possible hypotheses agreeing with the data, while
others result in a description of the set of all hypothe-
ses agreeing with the data. The latter holds for all al-
gorithms in this paper. Alternatively, we can determine
the set of all hypotheses refuted by the data, which can
be seen as a dual induction problem with the reverse
generality ordering.

3.2. The generality ordering

The generality ordering arose from work on con-
cept learning from examples. Briefly, concept learning
can be defined as inferring an intensional definition of
a predicate from positive examples (ground instances)
and negative examples (non-instances). The induction
task is to construct a concept definition such that the
extension of the defined predicate contains all of the
positive examples and none of the negative examples.
This induces a natural generality ordering on the space
of possible definitions: a predicate definition is said to
be more general than another if the extension of the
first is a proper superset of the second.

Notice that this definition of generality refers to ex-
tensions and is thus a semantical definition. For the
generality ordering to be practically useful during the
search for an appropriate hypothesis we need a syntac-
tical analogue of this semantical concept. In theory it
would be desirable that the semantical and syntactical
generality ordering coincide, but in practice this ideal
is unattainable. Even if the set of all extensions forms
a Boolean algebra, the syntactical hypothesis space is
often not more than a partially ordered set, possibly
with infinite chains. The complexity of the learning
task depends for a great deal on the algebraic structure
of the hypothesis space that is reflected by the syntac-
tical generality ordering.

In general, a predicate definition establishes both
sufficient and necessary conditions for concept mem-
bership. In practice, however, the necessary conditions
are usually left implicit. This means that the hypothe-
sis language is restricted to definite clauses, as is cus-
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tomary in inductive logic programming [23, 24, 2]. It
furthermore means that the extension of the defined
predicate is obtained from the least Herbrand model of
its definition, using negation as failure. Consequently,
one predicate definition is more general than another
if the least Herbrand model of the first is a model of
the second, which in fact means that the first logically
entails the second.

For predicate definitions consisting of a single, non-
recursive clause, logical entailment between predicate
definitions is equivalent to � -subsumption: a clause � -
subsumes another if a substitution can be applied to the
first, such that every literal occurs, with the appropri-
ate sign, in the second. � In the general case of recur-
sive clauses � -subsumption is strictly weaker than log-
ical entailment [11]. However, for the restricted lan-
guage of attribute dependencies � -subsumption is quite
sufficient, as demonstrated by Proposition 4. Note
that clauses representing attribute dependencies always
have the same number of literals.

In the last 15 years, an abundance of algorithms for
induction of predicate definitions in first-order clausal
logic has been developed [23, 24, 2]. A top-down in-
duction algorithm starts from a set of most general sen-
tences, specialising when a sentence is found too gen-
eral (i.e. it misclassifies a negative example). In def-
inite clause logic, there are two ways to specialise a
clause under � -subsumption: to apply a substitution,
and to add a literal to the body. Alternatively, a bottom-
up algorithm operates by generalising a few selected
examples, for instance by applying some variant of
anti-unification.

As has been said before, in this paper we are inter-
ested in non-classificatory induction. Contrasting with
induction of classification rules, induction of integrity
constraints does not allow for an interpretation in terms
of extensions. � We simply want to find the set of all hy-
potheses that agree with the data. For instance, given a
relation ) we may want to find the set

����� 	 ��� � of all

�
This definition, and the term

�
-subsumption, was introduced in

the context of induction by Plotkin [25, 26]. In theorem proving the
above version is termed subsumption, whereas

�
-subsumption indi-

cates a special case in which the number of literals of the subsumant
does not exceed the number of literals of the subsumee [16].�

An alternative view of induction of integrity constraints is ob-
tained if we view the data (e.g. a database relation or a Herbrand
model) as one example, i.e. a member of the extension of the set
of satisfied integrity constraints, which re-establishes the extensional
interpretation of generality [3]. A disadvantage of this alternative
view is that it reverses the intuitive relation between generality and
entailment: an integrity constraint with more Herbrand models is
logically weaker.

dependencies satisfied by ) . Another instance of this
problem is the construction of a logical theory axioma-
tising a given Herbrand model � .

Even if there is no extensional relation between data
and hypothesis, the notion of logical entailment can
again be used to structure the search space, since we
are usually interested in finding a cover of the set of all
possible hypotheses, which only needs to contain the
most general integrity constraints satisfied by the data
(see Definition 3). An important difference in compar-
ison with induction of predicate definitions is that sat-
isfaction of an integrity constraint does not depend on
other sentences.

�
This gives rise to a simple yet general

top-down algorithm, that is given below as Algorithm
2.

The most interesting differences, and the major con-
tributions of the present paper, manifest itself when
considering bottom-up approaches to induction of in-
tegrity constraints, that operate more in a data-driven
fashion. It is in general not possible to construct a sat-
isfied integrity constraint from only a small subset of
the data, because such a constraint may be violated by
other parts of the data. It is however possible to con-
struct, in a general and principled way, a number of de-
pendencies that are violated by the data. Proceeding in
this way we can extract from the data, in one run, all
the information that is needed to construct a cover for
the set of satisfied dependencies. This makes a data-
driven method more feasible than a top-down method
when the amount of data is relatively large. The details
can be found below in Sections 4.2 and 4.3.

4. Algorithms for inducing dependencies

We are now ready to present the main induction al-
gorithms for dependency discovery. The specifics of a
particular kind of dependency will as much as possi-
ble be relegated to sub-procedures, in order to obtain
specifications of the top-level algorithms that are gen-
erally applicable. We start with the conceptually sim-
pler top-down algorithm in Section 4.1, followed by
a bi-directional algorithm in Section 4.2, and a pure
bottom-up algorithm in Section 4.3.

�
In contrast, when inducing a recursive predicate definition what

we are constructing is a set of interrelated sentences, which is clearly
much more complicated than the construction of several independent
sentences.
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4.1. A top-down induction algorithm

We want to find a cover of
� ��� 	 ��� � for a given re-

lation ) . The basic idea underlying the top-down ap-
proach is that such a cover is formed by the most gen-
eral elements of

� � �
	 ��� � . Therefore, the possible
dependencies are enumerated from general to specific.
For every dependency thus generated, we test whether
the given relation satisfies it. If it does not, we schedule
all of its specialisations for future inspection; if it does,
these specialisations are known to be satisfied also and
need not be considered. In the context of database de-
pendencies, the process can be slightly optimised be-
cause the witnesses signalling the violation of a depen-
dency may indicate that some of its specialisations are
also violated. For instance, let � . ! � �

�
�
�

� 	
%
, let

) contain the tuples ��� �
�

�� � �

�


�

and ��� �
� + � � �

� + � , and
consider the fd

� � �
which is violated by ) . Its spe-

cialisations are
� � ���

and
� 	 � � , but the first of

these is violated by the same pair of witnesses.

Algorithm 2 (Top-down induction of dependencies)
Input: a relation scheme � and a relation � over � .
Output: a cover of �	��

������� .
begin

DEPS := � ;
Q := initialise( � );
while Q �

�
�

do D := next item from Q; Q := Q � D;
if some witnesses � ����������� ��� from � violate D
then Q := Q � spec( � ,D, � ����������� ��� )
else DEPS := DEPS � � D �
fi

od
output DEPS

end.

Algorithm 2 is basically an agenda-based search algo-
rithm, specialising items on the agenda  until they
are no longer violated by ) . Notice that the thus con-
structed set 	"!$# - may still contain redundancies; a
non-redundant cover may be constructed in some more
or less sophisticated way.

Algorithm 2 works for both functional and multival-
ued dependencies; the only difference lies in the ini-
talisation of the agenda, and the way dependencies are
violated and specialised. The correctness of the algo-
rithm depends on the following conditions on the pro-
cedure % ''&(� � � :

– every dependency 	 6
returned by % ')&*� � 	 � � 
���������� �

� �
is a specialisation of 	 , i.e. 	 entails 	 6

but 	 6
does not entail 	 ;

– every dependency entailed by 	 and not violated
by ) is entailed by some dependency returned by
% ')&*� � 	 � � 
���������� �

� �
.

The first condition is called soundness of the special-
isation procedure; the second condition is called rela-
tive completeness (it is not complete in the sense that
minimal specialisations of 	 that are violated by the
same witnesses are not returned).

Theorem 6 Algorithm 2 returns a cover of
� ��� 	 ��� �

if the procedure

 � 
 � 
 �,+ 
 % & � � returns the set of most

general dependencies, and the procedure % ')&*� � � is
sound and relatively complete.

Proof. Let 	"!$# - be the set of dependencies returned
by Algorithm 2 when fed with relation ) . Clearly,
only dependencies not violated by ) are included in	-!$# - . The algorithm halts because every depen-
dency has only a finite number of specialisations. It
remains to prove that every dependency satisfied by )
is entailed by some dependency in 	"!$# - . This fol-
lows from the fact that the agenda is initialised with
the set of most general dependencies and the relative
completeness of the specialisation procedure.

For functional dependencies the parameters of Al-
gorithm 2 are instantiated as follows. By Proposition 1
we can restrict attention to simple fds. In accordance
with Corollary 5 the agenda is initialised with . � �
for every

� � � . Furthermore, according to Defi-
nition 1 an fd

��� �
is violated by two witnesses � 


and �,+ that agree on
�

but not on
�

. Again accord-
ing to Corollary 5,

��� �
must be specialised by ex-

tending the antecedent; without compromising relative
completeness we can ignore

�
(since the fd

� � � �
is

tautological), and also any attribute on which the wit-
nesses agree (since this specialised fd would be refuted
by the same witnesses). This results in the following
relatively complete specialisation algorithm.

Algorithm 3 (Specialisation of functional dependencies)
Input: a relation scheme � , a functional dependency/"021

over � , and two witnesses � � � � � violating
/"031

.
Output: the non-trivial minimal specialisations of

/"021
not violated by the same witnesses.
proc fd-spec

SPECS := � ;
DIS := the set of attributes for which

� � and � � have different values;
for each 465 DIS � 1
do SPECS := SPECS � / 4 031

od;
output SPECS

endproc.

Theorem 7 Algorithm 3 is a sound and relatively com-
plete specialisation algorithm.
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Proof. Clearly,
��� �

entails
� � � �

but not vice
versa, which demonstrates soundness.
Let � �
� be a non-tautological fd entailed by

��� �
,

then by Corollary 5 � 4 � and
� . �

. If further-
more � �	� is not contradicted by the same witnesses,
then the witnesses do not agree on all attributes in � .
Let
� 1. �

be an attribute on which they disagree,
then Algorithm 3 will return

� � � �
, which entails

� �	� .

Example 1 (Top-down induction of fds) Consider the
following relation ) over � . ! � �

�
�
�

� 	
%

(taken
from [20]):� � � 	

0 0 0 0
1 1 0 0
0 2 0 2
1 2 3 4

The initial fd . � �
is violated by the first two tuples;

the only specialisation not violated by the same wit-
nesses is

� � �
. This fd is in turn violated by the last

two tuples, and possible specialisations are
� � � �

and
� 	 � �

. These two dependencies are satisfied by
) and output by Algorithm 2.
Similarly, the initial fd . � � is specialised to

� ���
,

and subsequently to
� 	 ��� if the first and third tu-

ple are taken as witnesses, or alternatively to
� � � �

and
� 	 � � if the second and fourth tuple are taken

instead. In the latter case,
� � ���

is specialised to� � 	 ��� , which is output by Algorithm 2 but may be
removed because it is entailed by

� 	 ��� .

For multivalued dependencies the parameters of Al-
gorithm 2 are instantiated as follows. According to
Corollary 5 the most general mvd’s are . ����� for
every

� : � . In order to avoid redundancies we
can ignore

� . . and
� . � . Furthermore, we

only need to consider one of each pair . � ��� and
. � � � 8 �

; one way to achieve this is to choose a des-
ignated attribute

� � � , and to initialise the agenda
with . ��� � �

with
�
� � . For instance, for � .

! � �
�

�
�
� 	

%
and

�
as designated attribute the agenda

is initialised with . ��� �
, . ��� � �

, . ��� � �
, . ��� � 	 ,

. � � � � �
, . ��� � � 	 , and . ��� � � 	 ; while with

designated attribute 	 the most general mvd’s are
. � � 	 , . ��� � 	 , . ����� 	 , . ��� � 	 , . ��� � � 	 ,
. � � � � 	 , and . � ��� � 	 (clearly, both sets of mvd’s
are logically equivalent).

Furthermore, according to Definition 2, given a re-
lation ) an mvd

� � ���
is violated by two positive

witnesses � 
 and � + if they agree on
�

but the nega-
tive witness determined by them is not in ) . Again ac-
cording to Corollary 5,

��� ���
must be specialised by

moving an attribute from
�

or from � 8 � �
to
�

.
Without compromising relative completeness we can
ignore any attribute on which the positive witnesses
agree (since this specialised mvd would be refuted by
the same witnesses). Furthermore, we can also ignore
the case in which

�
or � 8	� �

is a singleton (since
this would result in a tautological mvd).

This results in the following relatively complete spe-
cialisation algorithm.

Algorithm 4 (Specialisation of mvds)
Input: a relation scheme � , an mvd

/"0�0��
over � ,

and two positive witnesses � � � � � and a negative witness � �

violating
/"0�0��

.
Output: the non-trivial minimal specialisations of

/"0 0��
not violated by the same witnesses.
proc mvd-spec

SPECS := � ;
DIS13 := attributes for which � � and � � have different values;
DIS23 := attributes for which � � and � � have different values;
for each 465 DIS13 such that� �

� � 4 � and � � � /�� � �
� � 4 �

do SPECS := SPECS � / 4 0�0�� � 4 od;
for each 465 DIS23 such that� �

� � 4 � and � � � /�� � �
� � 4 �

do SPECS := SPECS � / 4 0�0�� � 4 od;
output SPECS

endproc.

Theorem 8 Algorithm 4 is a sound and relatively com-
plete specialisation algorithm.

Proof. Clearly,
�������

entails
� � �����98 �

but not
vice versa, which demonstrates soundness.
Let � � �
� be an mvd entailed by

�����	�
, then by

Corollary 5 � 4 �
. If furthermore � ���
� is not

contradicted by the same witnesses, then the positive
witnesses do not agree on all attributes in � . Let

�
be

an attribute on which they disagree, then either
� �

	�� - 
�� or
� � 	�� -
	�� , and consequently Algorithm 4

will return
� � � ���98 �

, which entails � � �
� .

Example 2 (Top-down induction of mvds) Consider the
relation ) from Example 1. The initial mvd . ��� 	 is vi-
olated by the first and the third tuple, since they deter-
mine the tuple �
� � 	 � � � �

�
, which is not in the relation.

We thus have 	�� - 
�� . ! � %
and 	�� -�	�� . !"	 %

,
hence the only non-trivial specialisation not violated
by the same witnesses is

� � � 	 . This mvd is in turn
violated by the last two tuples, and possible special-
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isations are
� � � � 	 and

� � ��� 	 . These two de-
pendencies are satisfied by ) and output by Algorithm
2. Notice that the corresponding fd’s

� � � 	 and� � � 	 are also valid – the course of actions by which
the mvd’s are found is in this case very similar to the
course of actions by which the corresponding fd’s are
found.
Similarly, the initial mvd . ����� is specialised to� � ���

, and subsequently to
� 	 ��� � if the first and

third tuple are taken as witnesses, or alternatively to� � � ���
and

� 	 � ��� if the second and fourth tuple
are taken instead. In the latter case,

� � �����
– while

invalid – cannot be specialised anymore.

4.2. A bi-directional induction algorithm

Algorithm 2 is a generate-and-test algorithm: it gen-
erates dependencies from general to specific, testing
each generated dependency against the given relation.
We now describe an alternative approach which dif-
fers from the top-down approach in that the test phase
is conducted against the set of least general violated
dependencies, rather than against the relation itself.
The basic idea is to construct, for each pair of tu-
ples, the least general dependencies for which the tu-
ples are a pair of violating witnesses. For instance,
let � . ! � �

�
�
�

� 	
%

and consider the tuples � 

.

� � �
�

 � � �

�


�

and �,+ . ��� �
� + � � �

� + � . The fd’s
� � �

,� � 	 ,
� � �

,
� � 	 ,

� � � �
, and

� � � 	 are all
violated by � 
 � � + ; of these, the last two are least gen-
eral. If we iterate over all pairs of tuples in relation ) ,
we have constructed a cover for the set of dependen-
cies that are violated by ) ; we will call such a cover a
negative cover. � Since the negative cover is calculated
in a bottom-up fashion, while the positive cover is cal-
culated from the negative cover in a top-down manner
as before, we call this the bi-directional induction al-
gorithm.

The following procedure calculates this negative
cover.

Algorithm 5 (Negative cover)
Input: a relation scheme � and a relation � over � .
Output: a cover of the dependencies violated by � .
proc neg-cover

NCOVER := � ;
for each pair of tuples � ��� � � from �
do NCOVER := NCOVER � violated( � , � , � � , � � ) od
output NCOVER

endproc.

�
Negative covers are called anti-covers in [12].

In practice the procedures neg-cover() and violated()
will be merged, in order to prevent addition of depen-
dencies for which a less general version is already in-
cluded in the negative cover.

The correctness of Algorithm 5 depends on the pro-
cedure � 
�� +�� � & � � � � ) � � 
 � � +

�
, which calculates the set

of dependencies for which � 
 and �,+ are violating wit-
nesses (the relation ) is only needed in the case of
multivalued dependencies). This procedure treats the
attributes on which the tuples agree as antecedent at-
tributes, and the remaining attributes as consequent at-
tributes.

Algorithm 6 (Violated fds)
Input: a relation scheme � and two tuples � ��� � � over � .
Output: the least general fd’s over � violated by � � � � � .
proc fd-violated

VIOLATED := � ;
DIS := attributes for which � � and � � have different values;
AGR := �
� DIS;
for each

1 5 DIS
do VIOLATED := VIOLATED � 1�� � 031

od;
output VIOLATED

endproc.

Notice that the fd-initialisation procedure for the top-
down approach is a special case of Algorithm 6, with
	�� - . � and

��� � . . .
Theorem 9 Algorithm 6 correctly calculates the set of
least general fd’s over � violated by two tuples � 
 and
�,+ .

Proof. Clearly, any fd output by Algorithm 6 is vio-
lated by � 
 and �,+ . Conversely, let

��� �
be an fd vi-

olated by � 
 and � + , then
� : �	� � and

� � 	�� - ,
hence

��� �
entails

�	� � � �
which is output by Al-

gorithm 6.

Example 3 (Negative cover for fds) Consider again the
relation ) from the previous examples:� � � 	

0 0 0 0
1 1 0 0
0 2 0 2
1 2 3 4

For construction of the negative cover we have 6 pairs
of tuples to consider.
The first and second tuple result in violated fd’s� 	 � �

and
� 	 � � .

The first and third tuple result in violated fd’s
� � ���

and
� � � 	 .
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The first and fourth tuple result in violated fd’s . � �
,

. � � , . � � , and . � 	 . (Notice that, if the negative
cover is built incrementally by merging Algorithms 5
and 6, as it is implemented in practice, the first, sec-
ond, and fourth of these fd’s will be found redundant
when compared with previously found fd’s.)
The second and third tuple result in violated fd’s� � �

,
� � �

, and
� � 	 (which are all redundant in

comparison with fd’s found earlier).
The second and fourth tuple result in violated fd’s� � �

,
� � �

, and
� � 	 (of which only the second is

non-redundant).
Finally, the third and fourth tuple result in violated fd’s� � �

,
� � �

, and
� � 	 .

A non-redundant negative cover consists of the follow-
ing violated fd’s:

� � �
,
� 	 � �

,
� � � �

,
� 	 � � ,� � �

,
� � �

,
� � � 	 , and

� � 	 .

For multivalued dependencies the procedure mvd-
violated() is slightly more involved, since for a pair
of positive witnesses and a possibly violated mvd we
need to consider one or both tuples determined by the
positive witnesses, and check whether these are indeed
negative witnesses not contained in ) .

Algorithm 7 (Violated mvds)
Input: a relation scheme � , a relation � over � ,
and two tuples � � � � � over � .
Output: the least general mvd’s violated by � � � � � given � .
proc mvd-violated

VIOLATED := � ;
DIS := attributes for which � � and � � have different values;
AGR := � � DIS;
A := some attribute in DIS;
for each ��� �������"� 1 �
do MVD :=

1�� � 0 031 � ;
� � := tuple determined by � � � � � given MVD;
if � � �5 �
then VIOLATED := VIOLATED � MVD
else � � := tuple determined by � � � � � given MVD;

if � � �5 �
then VIOLATED := VIOLATED � MVD
fi

fi
od;
output VIOLATED

endproc.

Note that the construction of 	 � 	 in Algorithm 7 is
again a variant of the initialisation procedure for mvd’s
in the top-down approach, by putting 	�� - . � and��� � . . .
Theorem 10 Algorithm 7 correctly calculates the set
of least general mvd’s over � violated by two tuples � 

and � + given relation ) .

Proof. Clearly any mvd added to � ��
�� ��
 !7	 is vi-
olated by � 
 and � + given ) . Conversely, let

� � ���

be an mvd violated by � 
 and � + , then
� : ��� � ;

therefore the tuples determined by ) 
 and �,+ given� � ���
are the same as determined by � 
 and �,+ given��� � � ���98 ��� � . Hence the latter mvd – which is

entailed by
��� ���

according to Corollary 5 – will be
output by Algorithm 7.

Example 4 (Negative cover for mvds) We proceed with
the running example. For construction of the nega-
tive cover for mvd’s we have 6 pairs of tuples to con-
sider. We will assume that the designated attribute (

�
in Algorithm 7) is always the lexicographically first at-
tribute in 	�� - .
For the first and second tuple we have 	�� - . ! � �

� %
and

�	� � . ! � � 	
%
, hence with

�
as designated at-

tribute the only potentially violated mvd is
� 	 ��� �

. �
The tuple determined by the first and second tuple in )
given

� 	 ��� �
is �
� � 
 � � � �

�
, which is indeed outside

) , hence the mvd is added to the negative cover.
The first and third tuple result in violated mvd

� � �����
.

The first and fourth tuple result in violated mvd’s
. � � �

, . ��� � �
, . ��� � �

, . ��� � 	 , . ��� � � �
, . � � � � 	 ,

and . ��� � � 	 . (Notice that only . � � � � 	 is non-
redundant in the light of the mvd’s found previously.)
The second and third tuple result in violated mvd’s
� ��� �

,
� � � � �

, and
� ��� � 	 (which are all redun-

dant).
The second and fourth tuple result in violated mvd’s� � ���

,
� ��� � �

, and
� ����� 	 (of which only the

last is non-redundant).
Finally, the third and fourth tuple result in violated
mvd’s

� ��� �
,
� � � � �

, and
� � � � 	 .

A non-redundant negative cover consists of the fol-
lowing violated mvd’s:

� � � �
,
� 	 � � �

,
� � � ���

,� � � �
,
� � � �

, and
� ��� 	 .

We can now give the main bi-directional algorithm.
It starts with construction of the negative cover, and
proceeds by specialising each dependency until none
of them entails any element of the negative cover.

�
With � as designated attribute it would be the logically equiva-

lent mvd ��������� .
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Algorithm 8 (Bi-directional induction of dependencies)
Input: a relation scheme � and a relation � over � .
Output: a cover of �	��

������� .
begin

DEPS := � ;
Q := initialise( � );
NCOVER := neg-cover( � , � );
while Q �

�
�

do D := next item from Q; Q := Q � D;
if D entails some element ND in NCOVER
then Q := Q � spec(D,ND)
else DEPS := DEPS � � D �
fi

od
output DEPS

end.

The procedure spec() is similar to the specialisation
procedures given above as Algorithms 3 and 4, with
the only distinction that specialisation is guided by a
dependency � 	 not to be entailed, rather than a pair
or triple of violating witnesses; we omit the details.

The reader will notice that Algorithm 8 is in fact
quite similar to Algorithm 2, but there is an important
difference: dependencies on the agenda are tested with
respect to the negative cover, without further reference
to the tuples in ) . This bi-directional approach is more
feasible if

# ) # is large compared to
# � #

.

Theorem 11 Let ) be a relation over scheme � , let
NCOVER be the negative cover constructed by Algo-
rithm 5, and let 	 be a dependency over � . 	 violates
) iff 	 entails some element � 	 of NCOVER.

Proof. (if) If � 	 �
NCOVER, then � 	 is contra-

dicted by some witnesses in ) . If 	 entails � 	 , then
	 is contradicted by the same witnesses, hence 	 is
violated by ) .
(only if) Suppose 	 is violated by ) , then the depen-
dency � 	 constructed from any witnesses by Algo-
rithm 5 will be entailed by 	 .

In the light of Theorem 11, the correctness of Algo-
rithm 8 follows from the correctness of Algorithm 2.

Corollary 12 Algorithm 8 returns a cover of
� ��� 	 ��� �

if the procedure

 � 
 � 
 �,+ 
 % & � � returns the set of most

general dependencies, and the procedure % ')&*� � � is
sound and relatively complete.

Example 5 In Example 3 the following non-redundant
negative cover was found:

� � �
,
� 	 � �

,
� � � �

,� 	 � � ,
� � �

,
� � �

,
� � � 	 , and

� � 	 . The
initial fd . � �

entails
� 	 � �

in the negative cover,

and is therefore specialised to
� � �

. This fd is found
to be in the negative cover in the next iteration, and is
specialised to

� � � �
and
� 	 � �

. These two depen-
dencies do not entail any element of the negative cover,
and are output by Algorithm 8.
In the case of mvds, in Example 4 the following
non-redundant negative cover was found:

� ��� �
,� 	 � � �

,
� � ��� �

,
� � � �

,
� ��� �

, and
� ��� 	 .

The initial mvd . � ��� entails
� � ��� �

in the nega-
tive cover, and is specialised to 	 ��� � . In turn, this
mvd entails

� 	 ��� �
in the negative cover, and is spe-

cialised to
� 	 ��� � .

Notice that the agenda cannot be initialised with
NCOVER because, although every most general satis-
fied dependency is the specialisation of a violated de-
pendency (otherwise it would not be most general), it
may not be the specialisation of a least general violated
dependency that is included in the negative cover.

Example 6 The most general satisfied fd’s
� � � �

and
� 	 � �

(see Example 1) are indeed specialisa-
tions of an fd in the negative cover, viz.

� � �
. How-

ever, the most general satisfied fd
� 	 � � is not.

Similarly, the most general satisfied mvd’s
� � � � �

and
� 	 � � �

(see Example 2) are indeed specialisa-
tions of an mvd in the negative cover, viz.

� ��� �
.

However, the most general satisfied mvd 	 ��� � is not.

4.3. A bottom-up induction algorithm

The pure bottom-up induction algorithm is a sim-
ple variation on Algorithm 8. Instead of generating the
positive cover from the negative cover in a top-down,
generate-and-test manner, we iterate once over the neg-
ative cover, considering each least general violated de-
pendency only once. Experimental results in Section
7 demonstrate that this yields a considerable improve-
ment in practice.

Algorithm 9 (Bottom-up induction of dependencies)
Input: a relation scheme � and a relation � over � .
Output: a cover of �	��
 ������� .
begin

DEPS := initialise( � );
NCOVER := neg-cover( � , � );
for each ND 5 NCOVER
do TMP := DEPS;

for each D 5 DEPS entailing ND
do TMP := TMP � D � spec(D,ND) od
DEPS := TMP

od
output DEPS

end.
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The bottom-up algorithm thus contains two nested
loops, the outer one of which iterates over the nega-
tive cover, ensuring that its elements are inspected only
once. Notice that by exchanging the two loops we ob-
tain (more or less) the bi-directional algorithm again.

Example 7 In Example 3 the following non-redundant
negative cover was found:

� � �
,
� 	 � �

,
� � � �

,� 	 � � ,
� � �

,
� � �

,
� � � 	 , and

� � 	 .
� � �

causes specialisation of the initial fd . � �
to
� � �

and 	 � �
. The next element of the negative cover� 	 � �

causes specialisation of these to
� � � �

and
� 	 � �

.
� � ���

causes specialisation of . ��� to
	 � � , subsequently specialised to

� 	 � � by virtue
of the fourth element of the negative cover. Continua-
tion of this process leads to construction of the positive
cover in one iteration over the negative cover.

5. Implementation

The algorithms described above have been imple-
mented in two separate systems: the system fdep for
induction of functional dependencies, and the program
mdep which realizes algorithms for induction of mul-
tivalued dependencies. The system fdep is imple-
mented in GNU C and has been used by the authors for
the discovery of functional dependencies from a vari-
ety of domains. � The program mdep is implemented
in Sicstus Prolog. It serves as an experimental proto-
type for the study of algorithms for the discovery of
multivalued dependencies.

The programs fdep and mdep are described in the
following sub-sections. Section 5.1 presents the imple-
mentation of the algorithms for induction of functional
dependencies. It includes the description of the data
structure which is used for storing sets of dependen-
cies, as well as handling of missing values and noise.
In Section 5.2 we present the main aspects of the pro-
gram mdep and some experiences obtained with the
prototype. Experiments with fdep are described sep-
arately in Section 7.

�
The system is available from the fdep homepage at

http://www.cs.bris.ac.uk/˜flach/fdep/.

5.1. Algorithms for inducing functional dependencies

The top-down induction algorithm for functional
dependencies turned out to be computationally too
expensive for inducing functional dependencies from
larger relations. The main weakness of this algorithm
is its method for testing the validity of the hypotheses;
they are tested by considering all pairs of tuples from
the input relation. The method for testing the validity
of a functional dependency is considerably improved
in the bi-directional induction algorithm.

The bi-directional algorithm uses the same method
for the enumeration of hypotheses as the top-down
algorithm: in both algorithms hypotheses (i.e., func-
tional dependencies) are specialised until the valid de-
pendencies are reached. The main improvements of
the bi-directional algorithm are in the method for test-
ing the validity of the dependencies, and for specialisa-
tion of refuted functional dependencies. First, instead
of checking the hypotheses on the complete relation,
they are tested using the negative cover (the set of most
specific invalid dependencies). Secondly, the hypothe-
ses are specialised in the bi-directional algorithm using
the invalid dependencies which are the cause for the
contradiction of the hypotheses.

Since every hypothesis is checked for its validity by
searching the negative cover, an efficient representa-
tion of the set of dependencies is of significant impor-
tance for the performance of the induction algorithm.
The set of dependencies is represented in fdep using
a data structure called FD-tree which allows efficient
use of space for the representation of sets of dependen-
cies, and at the same time provides fast access to the el-
ements of the set. FD-tree is presented in the following
sub-section.

FD-tree is also used for the representation of the set
of valid hypotheses which are the result of the algo-
rithm. The valid hypotheses are added to the set as they
are generated by the enumeration based on specialisa-
tion. Initially, the set of valid dependencies is empty.
Each time a new valid dependency is generated, it is
first tested against the existing set of valid dependen-
cies. The valid hypothesis is added to the existing set
of dependencies only if it is not covered by the existing
set of dependencies. As in the case of the set of invalid
dependencies representing the negative cover, efficient
access to the elements of the set of valid dependencies
is important for the efficient performance of the algo-
rithm.

A problem which appears with the bi-directional
algorithm lies in the enumeration of the hypotheses.
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The hypotheses are enumerated from the most general
functional dependencies to more specific dependencies
as presented by Algorithm 8. The algorithm can be
seen as performing depth-first search where the spe-
cialisation of the refuted candidates is based on invalid
dependencies from the negative cover. Ideally, each of
the hypotheses would be enumerated and tested against
the negative cover only once. However, since the in-
valid dependencies are used for specialisation of re-
futed hypotheses, the enumeration can not be guided
in a way which avoids testing some hypotheses more
than one time. This is one of the main reasons for a
bad performance of the algorithm for some domains.

Finally, the bottom-up algorithm has the best perfor-
mance among the presented algorithms. As presented
in Algorithm 9, the bottom-up algorithm starts with
the positive cover which includes the most general de-
pendencies. The positive cover is refined in each step
by considering only one invalid dependency. A sin-
gle FD-tree is used for the representation of the posi-
tive cover during the iteration through the invalid de-
pendencies from the negative cover. In each step, only
those dependencies from the positive cover which are
refuted by the currently considered invalid dependen-
cies are affected. Each of these dependencies is re-
moved from the FD-tree (positive cover) and their spe-
cialisations which are not contradicted by the currently
considered invalid dependency are added to the same
FD-tree. Therefore, the algorithm generates only those
hypotheses which are actually needed to avoid the con-
tradiction of the invalid dependency considered in one
step of the algorithm. In a way, this algorithm is the
closest approximation of the intuitive idea of comput-
ing the positive cover by “inverting” the negative cover.
In Section 7 we present empirical support for this anal-
ysis.

5.1.1. Data structure for representing sets of
functional dependencies

Each of the presented algorithms for induction
of functional dependencies manipulates sets of valid
and/or invalid dependencies. In the previous sections
it was assumed that covers for valid and invalid func-
tional dependencies are represented simply as lists.
In this section we introduce a data structure which is
used for storing sets of functional dependencies and
which allows efficient implementation of operations
for searching more specific and more general depen-
dencies of a given dependency.

To describe the data structure for representing sets
of dependencies, we first introduce the antecedent tree.

A

B D
B C

B

D E
A

C
BC C

C

A

C

ABC

C

B C
EE

Fig. 1. An example of an FD-tree representing a set of functional
dependencies.

We assume that attributes are totally ordered, so that
for each pair of attributes

� �
�
��� � � � 
 1.�� �

we have
that either

� �
is higher than

���
or the opposite.

Definition 7 (Antecedent tree) Given a relation scheme
� , an antecedent tree over � is a tree with the follow-
ing properties:

1. every node of the tree, except the root node, is an
attribute from � ;

2. the children of the node
� �

are higher attributes;
and

3. the children of the root are all attributes.

Each path starting at the root of an antecedent tree
represents a set of attributes, that will be interpreted as
the antecedent of a functional dependency. The nodes
of an antecedent tree are now labelled with sets of con-
sequent attributes, as follows.

Definition 8 (FD-tree) Given a relation scheme � and
a set of functional dependencies � over � , the FD-tree
of � is defined as follows: for every fd

� � � � �
there is a path representing

�
, and each node from the

path is labelled by the consequent attribute
�

. For ev-
ery attribute

� � � , the unlabelled subtree consisting
of all the nodes in FD-tree that include

�
in its label is

called the
�

-subtree.

Note that the dependencies composing the
�

-subtree
can be identified in the FD-tree by visiting a subtree
of nodes that are labelled by attribute

�
. An example

of the FD-tree which is used for the representation of
the set of functional dependencies

� � � �
,
� � ! ��� ,� 	 � � ,

� 	"! � � ,
� ! � �

is presented in Figure 1.
There are two important operations on the FD-tree

which are used when generating the positive and neg-
ative covers. The first operation can be defined as
follows: given an arbitrary dependency, search for a
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more specific dependency in the FD-tree. If the op-
eration completes successfully, the result of the op-
eration is a more specific dependency found in the
set of dependencies. The second operation is similar:
given an arbitrary dependency, it searches in the FD-
tree for a dependency that is more general than the in-
put dependency. The first operation is called exists-
specialisation and the second exists-generalisation.
Since both algorithms work in a similar manner only
the operation exists-specialisation is detailed below as
Algorithm 10. The description of the operation exists-
generalisation can be found in [28].

Algorithm 10 (exists-specialisation)
Input: the root of an FD-tree denoted as ��������� , and
a dependency

/ 021
Output: a dependency

� 031
from FD-tree that is more

specific than
/"031

, if it exists
function exists-specialisation( ���	����� � / � � � 1 ): boolean;
begin

exists-specialisation := false;
if
/

is empty
then�

:=
�

+ � Path from �����
��� to arbitrary leaf
of ��������� ’s 1 -subtree � ;

exists-specialisation := true;
output

� 031
;

else/ � := first attribute from the list
/

;� � := last attribute from the list
�

;
foreach 4 5
� ����������� � � � � ��� � .. ��������� � / � ���
do if 4

� / � then
/ 
 � / � � / � � fi;

if exists-specialisation( ��������� .child[ 4 ],
/

,� � � 4 � , 1 )
then exists-specialisation := true;

exit;
fi;

od;
fi;

end.

Algorithm 10 searches the FD-tree for a dependency� � �
that is more specific than the input dependency� � �
. Suppose that the antecedent of the input de-

pendency is composed of attributes
�


� + �����

���
and

the antecedent of the dependency
� � �

is composed
of attributes

�


� + �����

���
. The search process is com-

pleted, if a path from the root to a leaf of the
�

-subtree
is found, such that the set of attributes

�
forming the

path includes the set of attributes
�

.
The core of Algorithm 10 can be described as

follows. Suppose that each attribute from the set
! � 
 ���������

� ���


%

matches one of the nodes on the path
from the root of the

�
-subtree to the node

� � �

 . In this

step, the algorithm searches for the descending node of
the node

� � �

 that would form the next attribute in the

path
�

. Only attributes in the range from
� � �

 to the

attribute
� �

are considered. The reason for choosing
the lower bound of the range is obvious, since descend-
ing nodes describe higher attributes. Similarly, there is
no reason for investigating nodes that are higher than
the attribute

� �
, since the attribute

� �
would be miss-

ing in such a path. If the next attribute on the path
�

is
the attribute

� �
, than the next attribute from the list

�

(
� ���

 ) is considered in the next step of the algorithm.

In the case that the next attribute on the path
�

is not
the attribute

� �
, it is assumed that

� �
will be matched

later in the subtree.
Empirical results suggested that the average time

needed for the operation exists-specialisation does not
exceed 
 � � � # � # �

, where � is a constant between 1
and 3.

5.1.2. Missing values and noise
fdep incorporates simple mechanisms for handling

incomplete and/or incorrect data. ! First, the unknown
attribute values are in fdep treated as separate values
which do not match any of the legal attribute values.
Hence, the unknown attribute values are not used when
generating the negative cover. For example, the tuples
� � 
��

�

�� � 
 � and � � 
��

"
� � + � (‘?’ denotes unknown value),

which have the schema � � �
�

�
� �

, yield the invalid de-
pendency

� � �
. Since we do not know if dependen-

cies
� � �

and
� � � �

are valid (invalid), we simply
do not take them into account when the invalid depen-
dencies contradicted by a given pair of tuples are enu-
merated.

Secondly, fdep implements a simple method for
treating noisy data. During the generation of negative
cover, the program counts the number of pairs of tu-
ples which are the evidence for the contradiction of an
invalid functional dependency. The user can define a
threshold



which represents a number of (permitted)

contradictions of an functional dependency which are
treated as noise. Hence, if a functional dependency is
contradicted by � pairs of tuples, and �$# 


, then
we treat this dependency to be valid. In fdep we use
the percentage to specify the number of permitted con-
tradicting pairs of tuples. For example, if the threshold
for the permitted contradicting pairs of tuples in a re-
lation with � tuples is ' , then the number of permitted

%
See [15] for an approach to the related issue of approximate de-

pendency inference.
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contradictions is � � ��� 8 
 � � '�� 	���� . The experiments
presented below include some results obtained when
the threshold is used for eliminating the noise in data.

5.2. Algorithms for inducing multivalued
dependencies

The algorithms for induction of multivalued depen-
dencies were implemented in a prototype written in
Sicstus Prolog; the prototype is referred to as mdep.
The main intentions with the prototype were to study
the properties of the presented algorithms and, in par-
ticular, to study the enumeration methods for the gen-
eration of hypotheses (multivalued dependencies) and
the data structures for the representation of the sets of
multivalued dependencies. This sub-section presents
the work in progress.

For practical reasons, the multivalued dependencies
are in the prototype represented using the dependency
basis [1]. For a given set of attributes

�
, the depen-

dency basis of
�

with respect to the set of all multival-
ued dependencies valid in a relation, written 	 � � � �

,
is a set composed of pairwise disjoint sets of attributes
! � 
 ���������

� � %
such that the right-hand side

�
of an

arbitrary valid multivalued dependency
�����	�

is the
union of some sets from 	 � � � �

. The definition of the
dependency basis and the presentation of its properties
can be found in [1, 32].

The most important reason for using the dependency
basis in our prototype is the efficient representation
of dependencies. Namely, for a given left-hand side
of the multivalued dependency, there exists a single
dependency basis 	 � � � �

which determines all valid
multivalued dependencies. As a consequence, a set of
multivalued dependencies can be represented in a tree
which is defined similarly to the above presented FD-
tree. Furthermore, the dependency basis can serve as a
suitable base for the definition of a method for enumer-
ating multivalued dependencies. A detailed descrip-
tion of the use of the dependency basis in the algo-
rithms for inducing multivalued dependencies is pre-
sented in [30].

In comparison to the algorithms for discovery of
functional dependencies, in the multivalued case the
space of hypotheses is more complex in terms of the
relationships among the hypotheses and in terms of
the number of possible multivalued dependencies. The
program mdep can be used to induce multivalued de-
pendencies from relations which contain up to 10 at-
tributes and only few hundred of tuples. For exam-
ple, mdep needs about 4 minutes on an HP4000 work-

station to compute the satisfied multivalued dependen-
cies from the Lenses database [31] which includes 6
attributes and 150 tuples. However, the results show
that the prototype can serve as a basis for the develop-
ment of a system which can induce multivalued depen-
dencies from larger relations.

6. Related work

Most of the published work on dependency discov-
ery has been done by Mannila and co-workers, who
concentrated on inferring functional dependencies [18,
14, 20]. There are a number of resemblances between
the algorithms of Mannila et al. and ours; however,
their algorithms make more use of the particulars of
functional dependencies, and are thus less easily gen-
eralised to other kinds of database constraints.

We will follow the survey in [20]. Algorithm 1 there,
a naive algorithm enumerating and testing all possible
fd’s in no particular order, is similar to our enumeration
Algorithm 1, restricted to fd-discovery. This is naive in
the sense that it does not make use of the generality or-
dering; like our Algorithm 1, it is intended as a starting
point for further discussion, rather than as a practically
feasible algorithm.

Algorithm 2 bears some resemblance to our top-
down Algorithm 2 restricted to fd’s; however, there are
some major differences. First of all, the algorithm of
Mannila and Räihä assumes the consequent attribute to
be fixed. This can be done because for fd’s the hypoth-
esis space consists of disconnected parts, one for each
consequent attribute. However, this is not true in the
general case; for instance, it is not true for mvd’s. Run-
ning the algorithm for each possible mvd consequent
separately would result in unnecessary duplication of
work.

The most important difference between the two al-
gorithms is that the loops iterating over all possible hy-
potheses and over all possible pairs of violating tuples
are interchanged. In our Algorithm 2, we pop a possi-
ble fd off the agenda and then iterate over all possible
pairs of tuples to see if this particular fd is satisfied. In
contrast, the algorithm of Mannila and Räihä consid-
ers every possible pair of tuples in turn and updates the
agenda accordingly. This means that their algorithm
is in fact more of a bottom-up algorithm. It is hard to
see, however, how to generalise this algorithm to other
kinds of dependencies, since the test for satisfaction of
a dependency is not relegated to a subroutine (as in our
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top-down algorithm), but hardwired into the top-level
algorithm itself.

The authors of [20] then proceed with an algorithm
based on transversals of hypergraphs. The algorithm
employs the notion of a necessary set, which seems to
be related to our negative cover. If

��� �
is refuted by

two tuples � 
 and � + , then the fd must be specialised
by adding an attribute on which � 
 and � + disagree to
the antecedent. Mannila and Räihä call the set of such
attributes a necessary set for

�
. For every satisfied fd� � �

,
�

must contain at least one attribute of each
necessary set for

�
. This means that we are only inter-

ested in minimal necessary sets, for which we compute
minimal hitting sets (or transversals).

Example 8 Consider again the relation ) from Exam-
ple 1, originally from [20]:� � � 	

0 0 0 0
1 1 0 0
0 2 0 2
1 2 3 4

The minimal necessary sets for
�

are
�

and
� 	 .

The minimal necessary sets for
�

are
�

and 	 .
The minimal necessary sets for

�
are
� 	 and

� 	 .
The minimal necessary sets for 	 are

�
and

� �
.

The most general dependencies are given by the mini-
mal hitting sets:

� � � �
,
� 	 � �

,
� 	 � � ,

� � � �
,

	 � � ,
� � � 	 , and

� � � 	 .

Clearly, the calculation of necessary sets is done
bottom-up. There also seems to be some relation be-
tween necessary sets and the negative cover, which
was computed in Example 3 as consisting of

� � �
,� 	 � �

,
� � ���

,
� 	 � � ,

� � �
,
� � �

,
� � � 	 ,

and
� � 	 . The antecedents of the first two and last

two violated fd’s correspond to necessary sets, while
also in the remaining cases there seems to be some re-
lation. However, it should be noted that the calculation
of a necessary set is is necessarily based on a different
pair of tuples than the calculation of the antecedent of
a violated fd, since in the first case the tuples are re-
quired to disagree on the attributes, while in the latter
case they are required to agree. Further investigations
are needed on this point.

Finally, Mannila and Räihä give an algorithm for
computing the most general satisfied dependencies
based on consecutive sorts. This top-down algorithm
is interesting because it maintains both a set of fd’s
known to be satisfied, and a set of fd’s known to be
violated, resembling our negative cover.

Recently, Mannila and Toivonen have generalised
the fd-discovery problem to the problem of “finding all
interesting sentences” [21]. The problem is stated in
general terms:

given a database r, a language � for expressing
properties or defining subgroups of the data, and an
interestingness predicate ( for evaluating whether
a sentence 
 � � defines an interesting subclass
of r. The task is to find the theory of r with re-
spect to � and ( , i.e., the set


�� ��� � � � (
��. ! 
 �

� # ( � � � 

�

is true
%
.

This problem can be instantiated to finding all fd’s� � �
over a relation scheme � that are satisfied by a

given relation ) as follows: � . ! � # � : � %
, and

( � ) �
� �

iff
��� �

is satisfied by ) .
Mannila and Toivonen now give a general algorithm

for constructing

�� ��� � � � (

�
by employing a speciali-

sation relation � that is monotone with respect to ( ,
i.e. if ( � � � 


�
( 
 is interesting) and 
 6 � 
 ( 
 6 is less

special than 
 ), then ( � � � 

6 �

( 
 6 is interesting). Given
this specialisation relation, their algorithm enumerates
sentences from general to specific in order to find all
sentences that satisfy the interestingness predicate. In
the case of fd-discovery the specialisation relation of
Mannila and Toivonen coincides 
	� with our generality
ordering, so that their algorithm actually enumerates
functional dependencies from weak to strong, starting
with largest antecedents. Alternatively, one could rede-
fine the interestingness predicate so that ( � ) �

� �
stands

for “
� � �

is violated by ) ”. Consequently, the algo-
rithm of Mannila and Toivonen would find the set of
violated fd’s (the maximal negative cover).

Like our algorithms, the algorithm of Mannila and
Toivonen abstracts away from the particulars of the
induced sentences. One difference between their ap-
proach and ours is that they don’t attempt to find a
cover for the set of interesting sentences, but simply
output all of them. It would however not be difficult
to adapt their algorithm in this sense. Another differ-
ence is that they only consider a generate-and-test ap-
proach, since a bottom-up approach requires assump-
tions about the nature of the induced sentences.

A slightly different approach to the discovery of
functional dependencies is taken by Huhtala and his
colleagues [13]. Levelwise search [22] of the lattice of
attribute sets is used for the enumeration of hypotheses.

��

That is, while we call the most easily refuted dependencies

‘most general’, they call the most easily satisfied sentences ‘most
general’.
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When the algorithm is processing a set of attributes
�

then all the dependencies
� 8 � � �

, where
� � �

,
are tested. Testing the validity of hypotheses is based
on partitions. A partition of ) under

�
is the set of

equivalence classes of tuple identifiers defined with re-
spect to the values of attributes from

�
. The partitions

are built incrementally in accordance with the traversal
of the search algorithm through the lattice. The actual
test of the validity of a hypothesis (functional depen-
dency) is reduced to a simple comparison of the sizes
of the partitions which are computed at the previous
level and at the current level of the lattice.

In order to optimize the number of considered hy-
potheses, the space of hypotheses is pruned. As in
the case of the computation of partitions, pruning in
TANE algorithm takes advantage of the information
computed at the previous levels of the lattice. There
is a slight difference between fdep and TANE in the
way the search space is pruned. fdep uses the gen-
erality ordering as the only means for pruning, while
TANE uses the generality ordering and some addi-
tional criteria for pruning the search space. These cri-
teria prune the dependencies

��� �
, where an attribute� � �

depends on some subset of
� 8 �

, and the
dependencies which include a super-key on the left-
hand side. Such dependencies are in fdep filtered af-
ter the complete positive cover is computed. The fil-
tering algorithm simply removes all dependencies for
which there exists a more general dependency in the
positive cover.

7. Experiments

In this section we describe some empirical results re-
garding the efficiency of our fdep system. The exper-
iments were done on a set of databases including the
databases available from the UCI Machine Learning
Repository [31], and the set of medical databases orig-
inating from University Medical Center at University
of Ljubljana. All experiments were done on a Pentium
II Personal Computer with 64MB of dynamic memory,
operating under the LINUX operating system.

In Section 7.1 we describe our experiments to com-
pare the different algorithms proposed in this paper. In
Section 7.2 we compare the performance of two of our
algorithms with TANE [13], currently the most effi-
cient fd-discovery system to be found in the literature.
In Section 7.3 we discuss the utility of the discovered
fds in some domains.

7.1. Comparison of the top-down, bi-directional and
bottom-up fd-algorithms

The parameters which were observed in experiments
are: the number of relation tuples

# ) # , the number of
attributes

# � #
describing the relation, the percentage of

permitted contradicting pairs of tuples � � , the number
of dependencies in the negative cover � ��� � , the number
of dependencies which form the positive cover 
�
 ������� ,
the CPU time used for construction of the negative
cover � 
 , the CPU time � + used for construction of the
positive cover using the bi-directional algorithm, and
the CPU time ��� used for construction of the positive
cover using the bottom-up algorithm. The top-down al-
gorithm is not included in the experiments because the
time for the computation of a positive cover exceeds 2
hours in all cases. The CPU time is measured using the
UNIX time command; we report the CPU time used
by a process.

The results of our experiments are presented in Ta-
ble 1. The first thing to note is that the bottom-up algo-
rithm significantly outperforms the bi-directional algo-
rithm in all experiments. The main reason for this lies,
as already stated above, in the method for the enumer-
ation of the hypotheses. The enumeration used in the
bottom-up algorithm considers each particular invalid
dependency only once. Further, it generates only those
hypotheses which are necessary to avoid contradiction
of each particular invalid dependency. The enumera-
tion used in the bi-directional algorithm can be seen as
depth-first traversal of the space of hypotheses which
is organized in a lattice. Even though the specialisation
of refuted dependencies is based on the invalid depen-
dencies, which heavily reduces the number of gener-
ated hypotheses, the same hypothesis can be generated
more than once.

Secondly, in all experiments the time needed to com-
pute the negative cover is greater than the time needed
to compute the positive cover from the negative cover
using the bottom-up algorithm. Since generation of in-
valid dependencies from a pair of tuples requires con-
stant time, the complexity of the algorithm for the com-
putation of the negative cover is dictated by the com-
plexity of enumeration of all pairs of tuples from the
input relation which is 
 ��� + � where � is the number of
relation tuples. For this reason, the algorithm may be

� �
These covers are minimal in the sense that they don’t contain

two fds such that one entails the other, but some fds may be redun-
dant because they are entailed by two or more other fds in the cover.
Our cover is a positive border as defined by [22].
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Domain
� ��� � ��� ��� � �
	�� ��
���� � � � � � �

Rheumatology 362 17 0 507 1061 7.8 27.3 0.3
Rheumatology 362 17 0.01 2625 3159 9.2 577.5 1.5
Rheumatology 362 17 0.1 4970 5150 15.8 1859.1 2.0
Rheumatology 362 17 1 4022 4326 40.5 509.4 1.2
Rheumatology 362 17 3 2463 2967 60.9 133.0 0.6
Rheumatology 362 17 5 1744 2249 70.8 50.6 0.4
Primary tumor 339 18 0 141 224 4.7 1.75 0.1
Primary tumor 339 18 0.01 1110 1971 4.8 651.9 1.4
Primary tumor 339 18 0.1 4522 6355 9.1 19701.8 4.1
Primary tumor 339 18 1 5789 6641 26.0 8998.1 3.0
Primary tumor 339 18 3 3767 4965 42.6 2488.5 1.6
Primary tumor 339 18 5 2142 3412 49.7 347.8 0.8
Lymphography 148 19 0 883 2727 2.3 86.7 1.3
Lymphography 148 19 0.01 1971 5490 2.6 564.9 2.9
Lymphography 148 19 0.1 6362 13809 6.0 2285.4 6.5
Lymphography 148 19 1 5952 11794 19.7 679.3 2.9
Lymphography 148 19 3 2774 6053 28.8 117.5 1.0
Lymphography 148 19 5 1590 3766 32.4 34.2 0.5
Hepatitis 155 20 0 1151 4480 2.0. 110.9 1.4
Hepatitis 155 20 0.01 1338 4597 2.1 199.0 1.4
Hepatitis 155 20 0.1 1359 3327 2.9 250.6 0.9
Hepatitis 155 20 1 2264 3206 5.9 166.8 1.4
Hepatitis 155 20 3 2619 3820 10.1 305.8 1.5
Hepatitis 155 20 5 2225 3480 12.8 250.5 1.1
Wisconsin breast cancer 699 11 0 48 48 5.1 0.01 0.03
Wisconsin breast cancer 699 11 0.01 58 108 5.1 0.02 0.04
Wisconsin breast cancer 699 11 0.1 57 70 5.2 0.01 0.02
Wisconsin breast cancer 699 11 1 120 187 5.3 0.02 0.07
Wisconsin breast cancer 699 11 3 130 200 5.3 0.03 0.07
Wisconsin breast cancer 699 11 5 112 227 5.3 0.01 0.08
Annealing data 798 39 0 375 1584 13.0 17.6 0.3
Annealing data 798 39 0.01 719 2007 13.6 52.8 0.5
Annealing data 798 39 0.1 422 1504 14.3 9.1 0.25
Annealing data 798 39 1 163 724 15.1 0.8 0.08
Annealing data 798 39 3 90 497 15.7 0.4 0.04
Annealing data 798 39 5 68 443 16.0 0.2 0.05

Table 1
Comparison of the runtimes of the bi-directional and bottom-up fd-algorithms for various datasets, and the impact of the noise threshold on the
size of covers and on the computation time of algorithms.

of limited practical use for the discovery of dependen-
cies from very large relations (depending on the num-
ber and the type of attributes, as well).

Table 1 shows that in most cases, the time for com-
puting the negative cover increases with the increase
of the noise threshold. One of the reasons for this is
the increased number of invalid dependencies in the
negative cover which appears because of the relaxed
condition for the invalid dependencies. In particular,
the size of the negative cover increases when the ac-
tual invalid dependencies are dispersed into a num-
ber of more general invalid dependencies. Further-
more, when the noise threshold is greater than zero,
the time for computing the negative cover includes the
time used for eliminating “weak” invalid dependencies
from the negative cover. The most expensive operation
involved in filtering of the negative cover is counting

the pairs of tuples which are the evidence for the con-
tradiction of a given invalid dependency.

Furthermore, the time needed to compute the posi-
tive cover from the negative cover depends consider-
ably on the noise threshold. At the beginning, the time
increases very quickly as the algorithm treats a higher
percentage of contradicting tuples as noise. After this,
the time for the computation of the positive cover
slowly decreases (as the threshold increases). The in-
crease of the computation time can be explained by
the increased number of functional dependencies in the
positive cover. Similarly as was the case for the neg-
ative cover, the increase of the noise threshold causes
the increase of the number of specific valid depen-
dencies which are otherwise contradicted by a small
number of pairs of relation tuples. In other words,
the actual dependencies are dispersed into a number of
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Domain
� ��� � � � ��
����

fdep:
� � � � � fdep:

� � � � � Tane Tane/MEM

Abalone data 4177 9 137 155.5 155.5 0.24 0.16
Annealing data 798 39 1584 30.6 13.3 * *
Hepatitis 155 20 4480 112.9 3.4 15.4 11.6
Horse colic 300 28 81638 � 72.3 * *
Lymphography 148 19 2727 89.0 3.6 23.6 20.1
Primary tumor 339 18 224 6.4 4.8 29.0 28.6
Rheumatology 362 17 1061 35.1 8.1 6.0 5.6
Wisconsin breast cancer 699 11 48 5.2 5.2 0.25 0.22

Table 2
Empirical comparison of algorithms. The symbol � denotes that the time for the computation of positive cover exceeds 2 hours. The asterix
denotes that the program is unable to compute the positive cover due to the amount of the system memory required.

(weaker) valid dependencies. The decrease of the com-
putation time in the second phase is a consequence of
the decreased number of invalid dependencies in the
negative cover as well as the shape of these invalid de-
pendencies; only a small number of very specific in-
valid dependencies supported with the large number
of contradicting pairs of tuples remain in the negative
cover. As a consequence, the positive cover contains a
small number of very general valid dependencies.

7.2. Comparison with TANE

The comparison of the performance of the bi-
directional and bottom-up algorithms with the TANE
algorithm [13] for discovery of functional dependen-
cies from relations is presented in Table 2. The TANE
algorithm was chosen for comparison because it is
publicly available as well as because of its perfor-
mance – as presented in [13], the TANE algorithm per-
forms better than most existing implementations of al-
gorithms for discovery of functional dependencies. Ta-
ble 2 presents two versions of the TANE algorithm: the
version denoted Tane which uses file representation
of the relation, and the version denoted Tane/MEM
which represents relations in the dynamic memory.

The results show that the TANE algorithm performs
better when the number of the attributes of the input re-
lation is small. In the case of the Wisconsin breast can-
cer and the Abalone data domains, the small number of
tuples coincides with the small number of dependen-
cies in the positive cover which results in a good per-
formance of the levelwise algorithm. When the num-
ber of attributes of the input relation increases, the per-
formance of fdep is better than the performance of the
TANE algorithm. The reason for this lies in the large
number of hypotheses which have to be considered by
the levelwise algorithm in the case that the number
of attributes is large – the set of generated hypothe-

ses includes dependencies from the most general sen-
tences to the most specific valid dependencies (positive
cover). fdep performs good if the relation has large
number of attributes, while, as pointed out in the previ-
ous section, its performance depends considerably on
the number of tuples in the input relation.

7.3. Utility of dependencies

Knowledge discovery algorithms like the ones pre-
sented in this paper typically output all valid rules
in a domain. This raises the question which of the
discovered rules are actually useful for a practical
task. While this is not the topic of this paper, we
have started work on quantifying the novelty of rules.
The novelty measure we used quantifies the extent to
which the null-hypothesis of statistical independence
between antecedent and consequent of an fd should be
rejected. We used this heuristic to rank the induced fds.

Here are some of the highest ranked rules in several
domains:
Lymphography:

[block_lymph_c,regeneration,lym_nodes_enlar,no_nodes]->[block_lymph_s]
[lymphatics,by_pass,regeneration,lym_nodes_enlar]->[lym_nodes_dimin]

Primary tumor:
[class,histologic_type,degree_of_diffe,brain,skin,neck]->[axillar]
[class,histologic_type,degree_of_diffe,bone_marrow,skin,neck]->[axillar]
[class,histologic_type,degree_of_diffe,bone,bone_marrow,skin]->[axillar]

Hepatitis:
[liver_firm,spleen_palpable,spiders,ascites,bilirubin]->[class]
[liver_big,liver_firm,spiders,ascites,varices,bilirubin]->[class]
[anorexia,liver_firm,spiders,ascites,varices,bilirubin]->[class]

Wisconsin breast cancer:
[uni_cell_size,se_cell_size,bare_nuclei,normal_nucleoli,mitoses]->[class]
[uni_cell_shape,marginal_adhesion,bare_nuclei,normal_nucleoli]->[class]
[uni_cell_size,marginal_adhesion,se_cell_size,bare_nuclei,normal_nucleoli]->[class]

Notice that in the last two domains the induced fds de-
termine the class attribute. If we wanted to run a ma-
chine learning algorithm to obtain a predictor for the
class attribute, such fds could be used to remove irrel-
evant attributes.
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8. Conclusions

In this paper we have addressed the problem of
discovering database dependencies from extensional
data. We have approached this problem from a ma-
chine learning perspective by viewing it as an induc-
tion problem. This enabled us to employ a major tool
from the computational induction field, viz. the gen-
erality ordering. We have distinguished between top-
down approaches, which embody a generate-and-test
approach, specialising dependencies that are found too
general, bottom-up approaches, that start by generalis-
ing from the data, and bi-directional approaches, that
mix elements from the two. We have developed practi-
cal algorithms, proved their correctness, and discussed
their implementation. We have also presented exper-
imental results, indicating that the pure top-down ap-
proach is infeasible, and the pure bottom-up approach
outperforms the bi-directional approach. In compari-
son with the TANE system, our fdep system performs
better for relations with many attributes.

Care has been taken so as to design the main al-
gorithms as general as possible, pushing details about
functional and multivalued dependencies to the lower
levels of specialisation and generalisation routines. In
this way, the algorithms may be adapted for other kinds
of dependencies or constraints. We have compared our
algorithms with other published algorithms for discov-
ery of functional dependencies, and found that there
are similarities as well as differences. These differ-
ences can partly be explained by our motivation to keep
the algorithms as flexible as possible, whereas algo-
rithms designed by others were not intended to go be-
yond fd-discovery. Yet, there does not seem to be a
major penalty to be paid for this flexibility in terms of
decreased effectiveness.

We suspect that our bottom-up approach through
negative covers is also applicable for other machine
learning tasks. For instance, suppose we know that
human(john) is true but woman(john) is false. From
this we can construct the clause woman(X):-human(X),
which is violated — we can consider it as a part of the
negative cover, and use it to construct a more specific
clause such as man(X);woman(X):-human(X). An ini-
tial attempt can be found in [9].
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