KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK

Kasteelpark Arenberg 10, 3001 Leuven (Heverlee)

) R
0'70%50;5&19‘%\\

%

LS-SVM Regression Modelling and its Applications

Promotoren:

Prof. dr. ir. J. Vandewalle
Prof. dr. ir. J. Suykens

Proefschrift voorgedragen tot
het behalen van het doctoraat

in de toegepaste wetenschap-
pen

door

Jos De Brabanter

June 2004



KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK
Kasteelpark Arenberg 10, 3001 Leuven (Heverlee)

LS-SVM Regression Modelling and its Applications

Jury:
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.

U.D.C. 519.233.5

dr.
dr. i
dr.
dr.
dr.
dr.
dr.
dr.
dr.

P. Verbaeten, voorzitter

ir. J. Vandewalle, promotor
ir. J. Suykens, promotor

ir. S. VanHuffel

ir. A. Barbé

J. Beirlant

D. Bollé

N. Veraverbeke (LUC)

L. Gyorfi (Budapest Univ.)

June 2004

Proefschrift voorgedragen tot
het behalen van het doctoraat
in de toegepaste wetenschap-
pen

door

Jos De Brabanter



iii

(©Katholieke Universiteit Leuven — Faculteit Toegepaste Wetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd en/of
openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektron-
isch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming
van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

ISBN 90-5682-521-6

UDC 519.233.5

D/2004/7515/58



iv



Voorwoord

De jaren studie en onderzoek aan het departement elektrotechniek waren een
interessante en leerzame periode, waarin tal van interessante onderzoeksuit-
dagingen geformuleerd en opgelost werden. Tijdens deze periode heb ik ook
de gelegenheid gehad met vele mensen samen te werken aan publicaties. Bij
het begin van dit proefschrift wil ik hen graag bedanken voor de constructieve
bijdragen en de aangename werksfeer.

In de eerste plaats dank ik mijn beide promotoren, prof. dr. ir. Joos
Vandewalle en prof. dr. ir. Johan Suykens. Prof. dr. ir. Joos Vandewalle
wil ik bedanken voor de inleiding tot neurale netwerken. Tegelijk ben ik hem
dankbaar voor de vrijheid om me te verdiepen in statistische toepassingen. Prof.
dr. ir. Johan Suykens ben ik vooral dankbaar voor het voorstellen van talrijke
boeiende onderzoeksopdrachten. Hij bracht me de basisprincipes van support
vector machines bij. De interne technische discussies waren bijzonder leerrijk en
productief. Beide promotoren samen waren een steun en stimulans voor mijn
onderzoek.

De assessoren van het leescomité, Prof. dr. ir. Sabine Van Huffel, Prof.
dr. ir. André Barbé, Prof. dr. Jan Beirlant en Prof. dr. Desiré Bollé, wil ik
bedanken voor hun begeleiding gedurende de vier onderzoeksjaren en voor hun
opbouwende kritiek in verband met het verbeteren van de tekst.

Prof. dr. Noél Veraverbeke (LUC) ben ik erkentelijk omdat hij onmiddellijk
bereid was deel uit te maken van de jury. It is for our research group and
in particular for myself a big honour that prof. dr. Laszl6 Gyorfi wants to
participate in the jury. Tenslotte wil ik prof. dr. P. Verbaeten bedanken voor
het waarnemen van het voorzitterschap van de examencommissie.

Tevens wil ik Prof. dr. Dirk Timmerman, Prof. dr. Ignace Vergote en dr.
Dirk Amant bedanken van de afdeling gynaecologie-verloskunde van het U.Z.
Leuven waarmee op regelmatige basis is samengewerkt. In dit verband zou ik
hier ook Prof. dr. ir. Sabine Van Huffel willen vermelden voor de aangename
samenwerking.

Ook de collega’s van de onderzoeksgroep wil ik bedanken voor de aangename
werksfeer. Hierbij denk ik dan vooral aan de directe collega’s Bart, Kristiaan en
Luc. Zeker mag ik mijn collega’s binnen de bio-informaticagroep en SCD niet
vergeten, die altijd klaar stonden als ik hulp nodig had. Een speciale vermelding
verdienen zeker Tony, Frank, Patrick, Lieveke, Andy en Lukas. Ida, Pela, Ilse
en Bart wil ik bedanken omdat ze altijd klaar stonden om praktische vragen



vi

en problemen op te lossen. Tevens ben ik de Katholieke Universiteit Leuven
erkentelijk voor de financi€le steun.

Tenslotte wil ik benadrukken dat dit proefschrift er ook gekomen is dankzij
de steun van mijn familie, waarbij ik bij deze gelegenheid vooral mijn echtgenote
en zoon Kris wil bedanken.

Jos De Brabanter
Leuven, juni 2004



Abstract

The key method in this thesis is least squares support vector machines (LS-
SVM), a class of kernel based learning methods that fits within the penalized
modelling paradigm. Primary goals of the LS-SVM models are regression and
classification. Although local methods (kernel methods) focus directly on esti-
mating the function at a point, they face problems in high dimensions. There-
fore, one can guarantee good estimation of a high-dimensional function only if
the function is extremely smooth. We have incorporated additional assumptions
(the regression function is an additive function of its components) to overcome
the curse of dimensionality.

We have studied the properties of the LS-SVM regression when relaxing
the Gauss-Markov conditions. It was recognized that outliers may have an
unusually large influence on the resulting estimate. However, asymptotically
the heteroscedasticity does not play any important role. We have developed a
robust framework for LS-SVM regression. It allows to obtain a robust estimate
based upon the previous LS-SVM regression solution, in a subsequent step. The
weights are determined based upon the distribution of the error variables. We
have shown, based on the empirical influence curve and the maxbias curve,
that the weighted LS-SVM regression is a robust function estimation tool. We
have used the same principle to obtain an LS-SVM regression estimate in the
heteroscedastic case. However, the weights are then based upon a smooth error
variance estimate.

Most efficient learning algorithms in neural networks, support vector ma-
chines and kernel based learning methods require the tuning of some extra tun-
ing parameters. For practical use, it is often preferable to have a data-driven
method to select these parameters. Based on location estimators (e.g., mean,
median, M-estimators, L-estimators, R-estimators), we have introduced robust
counterparts of model selection criteria (e.g., Cross-Validation, Final Prediction
Error criterion).

Inference procedures for both linear and nonlinear parametric regression
models in fact assume that the output variable follows a normal distribution.
With nonparametric regression, the regression equation is determined from the
data. In this case, we relax the normality assumption and standard inference
procedures are no longer applicable in that case. We have developed a ro-
bust approach for obtaining robust prediction intervals by using robust external
bootstrapping methods.

Finally, we apply LS-SVM regression modelling in the case of density esti-
mation.
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Korte Inhoud

Dit proefschrift handelt over de kleinste kwadraten support vector machines
(LS-SVM), een klasse van kernel gebaseerde leermethoden die behoren tot het
regularizeerd modellerings paradigma. Voornaamste doelen van LS-SVM mod-
ellen zijn regressie en classificatie. Hoewel lokale methodes zich onmiddellijk
focussen op de schatting van de functie in een punt, ondervinden zij proble-
men in hoge dimensies. Daarom kan men enkel een goede schatting van een
functie bekomen in hoge dimensies als de functie extreem glad is. We hebben
bijkomende veronderstellingen toegevoegd (de regressie functie is een additieve
functie in zijn componenten) om de vloek van de dimensionaliteit te overwinnen.

De eigenschappen van LS-SVM regressie werden bestudeerd in geval de
Gauss-Markov voorwaarden niet vervuld zijn. Uitschieters kunnen een abnor-
maal grote invloed hebben op de resulterende schatting. Maar asymptotisch
heeft de heteroscedasticiteit geen belangrijke invloed. Een kader voor de LS-
SVM regressie werd ontwikkeld. Dit laat toe een robuuste schatting te bekomen
gebaseerd op een voorgaande LS-SVM oplossing, in een volgende stap. De
daartoe ingevoerde gewichten zijn gebaseerd op de kansverdeling van de fout-
variabelen. Via de empirische invloeds curve en de maxbias curve hebben we
aangetoond dat de gewogen LS-SVM regressie een robuuste schattingstechniek
is. Hetzelfde principe werd toegepast om een LS-SVM schatting te bekomen
in het heteroscedastisch geval, waarbij dan de gewichten gebaseerd zijn op een
gladde foutvariantie schatting.

De meest efficiente leeralgoritmen in neurale netwerken, support vector ma-
chines en kernel gebaseerde leermethoden vereisen de bepaling van extra leerpa-
rameters. Bij praktisch gebruik wordt de voorkeur gegeven aan data-gedreven
methodes om deze parameters te selecteren. Gebaseerd op lokatie schatters (vb.
mediaan, M-schatters, L-schatters, R-schatters) hebben we robuuste equivalente
modelselectie criteria (bvb. Cross-Validatie, Final Prediction Error Criterion)
geintroduceerd.

Inferentie procedures voor beide lineaire- en niet lineaire parametrische re-
gressie modellen veronderstellen een normaal onderliggende kansverdeling voor
de uitgangsvariabelen. Bij niet-parametrische regressie wordt de regressie vergeli-
jking afgeleid van de data. In dit geval wordt de veronderstelling van nor-
maliteit afgezwakt en de standaard inferentieprocedures kunnen niet meer wor-
den toegepast in dat geval. Door gebruik te maken van robuuste External
Bootstrapping methodes hebben we een robuuste manier ontwikkeld tot het
bekomen van robuuste prediktie intervallen.

Ten slotte hebben we LS-SVM regressie gebruikt als kansdichtheid schatter.
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Samenvatting

Modellering en
toepassingen van LS-SVM
regressie

Hoofdstuk 1: Inleiding

In 1896, publiceerde Pearson zijn eerste verhandeling i.v.m. correlatie en re-
gressie in de Filosofische Transacties van de Koninklijke Maatschappij van Lon-
den. In feite werden de belangrijkste ideeén van het parametrische paradigma
ontwikkeld tussen 1920 en 1960 (zie Fischer, 1952). Tijdens deze periode,
werd de methode van maximum waarschijnlijkheid voor het schatten van pa-
rameters geintroduceerd. Nochtans, toonde Tukey aan dat echte problemen
niet door klassieke statistische verdelingsfuncties kunnen worden beschreven.
Bovendien construeerden James en Stein (1961) een geregulariseerde schatter
van het gemiddelde (normaal verdeelde vectoren) dat voor om het even welk
vast aantal observaties uniform beter is dan de raming door de steekproef. Deze
moeilijkheden met het parametrische paradigma en verscheidene ontdekkingen
(samengevat in de volgende 4 punten) die in de jaren ’60 worden gemaakt,
waren een keerpunt in de statistiek en leidden tot een nieuw paradigma: (7)
Het bestaan van hoge snelheid, goedkope gegevensverwerking. (ii) De theorie
van slecht-gestelde problemen. (i7i) De generalisatie van het glivenko-cantelli-
Kolmogorov theorema. (iv) De controle van de capaciteit.

Een nieuwe richting werd aangekondigd, de zogenaamde ” gegevensanalyse”.
Aan het eind van de jaren '60, werd de theorie van de Empirische Minimaliser-
ing van het Risico (ERM) voor het classificatie probleem geconstrueerd (Vap-
nik en Chervonenkis, 1974). Binnen 10 jaar, werd de theorie van het ERM
principe eveneens veralgemeend voor reeksen van functies (Vapnik, 1979). Het
idee van het minimaliseren van de testfout door twee tegenstrijdige factoren

XV
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te controleren werd geformaliseerd door een nieuw principe, het Minimaliseren
van het Structureel Risico (SRM). De Support vector methode realiseert het
SRM principe. De SVM voor het schatten van functies werd geintroduceerd
door Vapnik (1995). Kleinste kwadraten support vector machines (LS-SVM)
(Suykens en Vandewalle, 1999; Suykens et al, 2002) zijn herformuleringen van
de standaard SVM die leiden tot het oplossen van lineaire systemen voor clas-
sificatietaken en regressie. Naast zijn lange geschiedenis, is het probleem van
regressieschatting vandaag nog steeds aan de orde.

Structuur van de thesis

Deel I behandelt de methoden en technieken van niet-parametrische regressie
modellering. Hoofdstuk 2 introduceert het probleem van de regressiefunctie
schatting en beschrijft belangrijke eigenschappen van de regressieramingen. In
hoofdstuk 3 verklaren wij support vector machines. In Hoofdstuk 4 beschri-
jven wij methoden (bvb. cross-validation en Final Prediction Error criterium)
voor prestatiebeoordeling. Hoofdstuk 5 bespreekt de Jackknife en bootstrap
technieken.

In Deel II beschouwen we het probleem van hoog-dimensionale data, het
heteroscedastische geval en het probleem van de waarschijnlijkheidsdichtheid
schatting. Hoofdstuk 6 bespreekt belangrijke kenmerken van hogere dimension-
ale problemen. In Hoofdstuk 7 beschrijven wij methoden voor het schatten van
de foutvariantie. In Hoofdstuk 8 gebruiken wij de LS-SVM regressie modellering
voor kansdichtheid schatting.

Deel IIT verstrekt een inleiding tot methoden van robuuste statistiek. In
Hoofdstuk 9 bekijken wij diverse maten van robuustheid (bvb. invloedsfunctie,
maxbias curve). Daarnaast introduceren wij een robuuste versie van de LS-
SVM. In Hoofdstuk 10 construeren wij een gegeven-gedreven lossfunctie voor
regressie. Hoofdstuk 11 beschrijft robuuste tegenhangers van modelselectie cri-
teria (bvb. cross-validation en Final Prediction Error criterium). Hoofdstuk
12 illustreert inferentie met niet-parametrische modellen. Wij bespreken een
robuuste methode voor het verkrijgen van robuuste voorspellingsintervallen. In
Hoofdstuk 13 worden de belangrijkste resultaten van deze thesis samengevat en
de onderwerpen voor verder onderzoek worden aangehaald.

Bijdragen

De belangrijkste methode in deze thesis is de LS-SVM, een voorbeeld van het
geregulariseerde modellerings paradigma. Wij hebben een nieuwe methode,
componentwise LS-SVM geintroduceerd, voor het schatten van modellen die
uit een som van niet-lineaire componenten bestaan (Pelckmans et al, 2004).

We hebben het idee van de ruisvariantie schatter geintroduceerd door Rice
(1984) veralgemeend voor multivariate data. We hebben de eigenschappen
van de LS-SVM regressie bestudeerd bij afgezwakte Gauss-Markov condities.
Kwadratische residuen plots werden voorgesteld om de heteroscedasticiteit te
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karakteriseren.

In LS-SVM’s worden de oplossing gegeven door een lineair systeem (geli-
jkheidsbeperkingen) i.p.v. een QP probleem (ongelijkheidsbeperkingen). De
SVM aanpak (Mukherjee en Vapnik, 1999) vereisen ongelijkheidsbeperkingen
voor kansdichtheid schattingen. Een manier om deze ongelijkheidsbeperkingen
te omzeilen, is het gebruik van regressie gebaseerde kansdichtheid schattingen.
We hebben de LS-SVM regressie gebruikt voor kansdichtheid schatting.

Wij hebben een robuust kader voor LS-SVM regressie ontwikkeld. Het kader
laat toe om een robuuste raming te verkrijgen die op de vorige LS-SVM regressie
oplossing wordt gebaseerd, in een opeenvolgende stap. De gewichten worden
bepaald welke gebaseerd zijn op de verdeling van de foutvariabelen (Suykens
et al, 2002). Wij hebben aangetoond, gebaseerd op de empirische invloeds-
functie en de maxbias curve, dat de gewogen LS-SVM regressie een robuuste
functieschatting is. Wij hebben hetzelfde principe gebruikt om een LS-SVM
regressieraming in het heteroscedastisch geval te verkrijgen. Nochtans zijn de
gewichten nu gebaseerd op een gladde raming van de foutvariantie.

Thans bestaat er een variatie van loss functies (bvb., least squares, least
absolute deviations, M-estimators, generalized M-estimators, L-estimators, R-
estimators, S-estimators, least trimmed sum of absolute deviations, least median
of squares, least trimmed squares). Anderzijds brengt dit de data analyst in een
moeilijke situatie. Een idee voor deze situatie, voorgesteld in deze thesis, is als
volgt. Gegeven de data, de methode kan gesplitst worden in twee hoofddelen:
(i) opbouwen van een robuust niet parametrisch regressie model en berekenen
van de residuen, en (i7) de foutverdeling via robuuste bootstrap bekomen en
bepalen van de loss functie (in een maximum likelihood omgeving).

Meest efficiente leeralgoritmen in neurale networken, support vector ma-
chines en kernel based methoden (Bishop, 1995; Cherkassky et al., 1998; Vapnik,
1999; Hastie et al., 2001; Suykens et al., 2002b) vereisen de bepaling van extra
leerparameters. In praktijk wordt de voorkeur gegeven aan data-gedreven meth-
oden voor het selecteren van de leerparameters. Gebaseerd op locatie schatters
(bvb. mediaan, M-schatters, L-schatters, R-schatters), hebben we de robuuste
tegenhangers geintroduceerd van modelselectiecriteria (bvb. Cross-Validation,
Final Prediction Error criterion).

Bij niet-parametrische regressie wordt de regressie vergelijking bepaald via
de data. In dit geval kunnen de standaard inferentie procedures niet toegepast
worden. Daarom hebben we robuuste voorspellingsintervallen ontwikkeld
gebaseerd op robuuste bootstrap technieken.



Hoofdstuk 2: Model Opbouw

De beschrijving betreffende de drie paradigma’s in niet-parametrische regressie
is gebaseerd op (Friedman, 1991).

Parametrische modellering

De klassieke benadering voor het schatten van een regressiefunctie is de para-
metrische regressieschatting. Men veronderstelt dat de structuur van de re-
gressiefunctie gekend is en slechts afhankelijk is van enkele parameters. Het
lineaire regressiemodel verstrekt een flexiebel kader. Nochtans, zijn de lineaire
regressiemodellen niet aangewezen voor alle situaties. Er zijn vele situaties waar
de afhankelijke veranderlijke en onafhankelijke variabelen door een bekende niet-
lineaire functie verwant zijn.

Laat F de klasse zijn van lineaire combinaties van de componenten x =
(@@, .., 2@)" e RY,

d
F = {m . m(as) :60 +Zﬁlx(l)7 ﬁOa"'aﬁd GR} .

=1

Men gebruikt de data D,, = {(z1,41) , ..., (Zn, yn)} om de onbekende parameters
0o, ..., Ba € R te schatten door gebruik te maken van het kleinste kwadraten
principe:

n d 2
3 A . 1
(607 ~~~7ﬂd) = argmin g <yk_ _ /60 + Zﬁlxl(cl)> ,
1

ﬁos"'n@deR k= =1

hierin is xg) de Ith component van z, € R% k = 1,....n en de schatting is

gedefinieerd als

d
My () = Bo + Z ﬁAlfL‘(l).

=1

Nochtans, hebben de parametrische schattingen een nadeel. Ongeacht de data,
kan een parametrische raming de regressiefunctie niet beter benaderen dan de
beste functie met de veronderstelde parametrische structuur. Deze inflexibiliteit
betreffende de structuur van de

regressiefunctie kan vermeden worden door niet-parametrische regressieschat-
tingen.
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Niet-parametrische modellering
Lokale averaging en lokale modellering

Een voorbeeld van local averaging schatting (kernel methoden) is de Nadaraya-
Watson kernel schatting. Per definitie

m(e) = EIY X 2] = [yfvix (wlo)dy
fXY (:L'a y)
= [ y=—F—dy,
/ fx ()
hierin zijn fx (), fxy(2,y) en fy|x (y|r) de marginale kansdichtheid van X, de
samengestelde kansdichtheid van X en Y, en de voorwaardelijke kansdichtheid

van Y gegeven X, respectievelijk. Laat K : R? — R de kernelfunctie zijn en
laat h > 0 de bandbreedte zijn. De Nadaraya-Watson kernel schatter is gegeven

door
9= s ey

Globale modellering

Men moet de set van functies beperken over de welke men de empirische Lo risk
functionaal minimaliseerd. De globale modellering schatting is dan gedefinieerd
als

. 1« 5

1 () = arg min l” kz::l (f () — i) 1

en minimaliseert de empirische Lo risk functionaal.

Gepenaliseerde modellering

In plaats van de set van functies te beperken, voegt de gepenaliseerde kleinste
kwadraten schatting expliciet een term bij de functionaal dewelke moet gemi-
nimaliseerd worden. Laat r € N, A,, > 0 en laat de univariate gepenaliseerde
kleinste kwadraten schatting gedefinieerd worden door

. RN
() = arg_min |- ; (f () = 98)* + Ao ()| 5
hierin is J,,,, (f) = [ (f (u))* du en C*(R) is de set van alle v keer differen-
tieerbare functies f : R — R. Voor de penalty term, v = 2, de minimum wordt
bereikt door een cubic spline met knots in de x’s.
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Hoofdstuk 3: Kernel Geinduceerde Kenmerken-
ruimte en Support Vector Machines

In dit hoofdstuk geven wij een kort overzicht over de formuleringen van de
standaard Vectormachines (SVM) zoals die door Vapnik werden geintroduceerd.
Wij bespreken niet-lineaire functieschatting door SVMs die gebaseerd zijn op de
Vapnik -e-insensitive kost. Daarna verklaren wij de basismethoden van kleinste
kwadraten Vectormachines (LS-SVMs) voor niet-lineaire functieschatting.

LS-SVM regressie

Gegeven een training set gedefinieerd als D,, = {(zg,yx): =r € X,yr €
k =1,...,n} met grootte n in overeenstemming met

yk:f(xk)+ek7 k:17"'7n7
waar Eleg|X =zx] = 0, Varler] = 0% < oo, m(z) een ongekende gladde
functie is en Efyg|z = xi] = m(xy) . Het doel is de parameters w en b (primaire
ruimte) te bepalen welke de emprische risk functionaal
Ry (0,5) = Zn: (W (ax) +b) — w)”
n
k=1

minimaliseert met restrictie ||w|l, < a, a € Ry. Men kan het optimalisatie
probleem voor het bepalen van de vector w en b € R reduceren door het volgende
optimilisatie probleem op te lossen

, 1 1 o
min J (w,e) = inw + 5726i’
k=1

w,b,e
zodanig dat
yr =w o (k) + b+ e, k=1,..,n

Om het optimalisatieprobleem (in de duale ruimte) op te lossen definieert
men de volgende Lagrangiaan functionaal

L(w,b,e;a) = J(w,e) — Zak (whe (z) +b+er — yk) ,
k=1

met Lagrangiaan vermenigvuldigers o, € R (support waarden). De condities
voor optimaliteit zijn gegeven door

oL n

™ —OHw—kZ:)law(xk)

oL n

% —Oﬁkz::lak‘ =0

oL =0 — aj = vep, k=1,..,n
pe

— =0—wlp(xy)+b+tex=uyr, k=1,...,n
60zk
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Na eliminatie van w, e bekomt men de oplossing

0 | 1,TL1 b 0

1, | Q+ -1, {a]{y}’
v

met y = (y1, ...,yn)T, 1, =(1,.., l)T , o= (ag; ...;an)T en Qp = cp(xk)T o (xp)
voor k,l =1, ...,n. Overeenkomstig het Mercer’s theorema, het resulterende LS-
SVM model voor functie schatting wordt gegeven door

My (x) =

M=

e
Il

1

Support Vector Machines

Gegeven de training data (x1,91), ..., (Tn, yn), om een benadering van functies
te vinden met volgende vorm (z) = >} _, BxK (z,zx) + b, de empirische risk
functionaal

1 n
Rempwb EZ’U)@‘T’V +b)_yk‘
k=1

wordt geminimaliseerd rekening houdend met de restrictie |w||, < an, waarbij
|-|.de Vapnik e-insensitive kostfunctie is, en gedefinieerd wordt als

o, als |f (z) —y| <e,
If (z) —yl. = { |f () —y| —e, anders.

Na constructie van de Lagrangiaan functionaal en de condities voor optimaliteit
bekomt men het volgende duale probleem

[D] minJp (o, ) = — & Z (o — o) K (xg,x1)
@ kl 1
1 < .
9 (o — ay) (u — o) K (2, 21)
k=1
N
—e> (ar+ai)+ D>y (ar —af)
k=1

n
such that Z (o — af) =0, ag, o, € [0, c]
k=1

waar O = (o — o), k=1,...,n



Hoofdstuk 4: Model Beoordeling en Selectie

In dit hoofdstuk worden de belangrijkste methoden beschreven (cross-validation
en complexity criteria) voor model selectie. We beginnen dit hoofdstuk met
het bias-variantie evenwicht en model complexiteit. Tenslotte geven we een
parameter selectie strategie.

Introductie

Het meest efficiénte leeralgoritme in neurale netwerken, support vector ma-
chines en kernel gebaseerde methoden (Bishop, 1995; Cherkassky et al., 1998;
Vapnik, 1999; Hastie et al., 2001; Suykens et al., 2002b) vereisen de bepaling
van extra leerparameters, hier voorgesteld door . De leerparameter selectie
methoden kunnen ingedeeld worden in drie klassen:

(7) Cross validation en bootstrap.

(#4) Plug-in methoden.

(#43) Complexiteit criteria. Mallows’ C), (Mallows, 1973), Akaike’s informa-
tion criterion (Akaike, 1973), Bayes Information Criterion (Schwartz 1979) en
Vapnik-Chernovenkis dimensie (Vapnik, 1998).

Het typisch gedrag van de test en trainingsfout, wanneer de model complex-
iteit verandert, wordt weergegeven in Figuur 1. De trainingsfout vertoont een
dalende karakteristieck wanneer de modelcomplexiteit stijgt (Bishop, 1995) en
(Hastie et al., 2001). Bij overfitting zal het model zichzelf zodanig aanpassen
aan de traingsdata zodat het niet goed generaliseerd.

Bij een te lage modelcomplexiteit stijgt de bias en de generalisatie is slecht.
Om dit welgekend probleem te vermijden verdeeld men de data set D, =
{(zk,yx) : vk € X,yr € YV;k =1,...,n} indrie delen: een training set voorgesteld
door D,,, een validatie set voorgesteld door D, en een test set voorgesteld door
Dyest- De training set wordt gebruikt om de modellen te fitten; de validatie set
wordt gebruikt om de predictie fout voor de modelselectie te schatten; de test set
om de generalisatie fout van het eindmodel toe te kennen. De complexiteit cri-
teria en de cross-validatie methoden benaderen de validatiestap respectievelijk
analytisch en bij hergebruik van de sample.

Cross-validatie
Leave-one-out cross-validatie score functie

De kleinste kwadraten cross-validatie keuze van 6 voor de LS-SVM schatters
gebaseerd op het gemiddelde van de gekwadatreerde predicitiefout is de mini-
mizer van

3

1 n
1nfC’V —Z (y — R (1 0))2.
k=1
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High bias Low bias
Low variance High variance
-
o
= Test sample
[}
o
S b
£=]
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h=1
L
o
Training sample
low high

Model complexity

Figure 1: Gedrag van de test sample en training sample fout in functie van de
model complexiteit.

Generalized cross-validatie score functie
De generalized cross-validatie score is gegeven door

LY (=i @36))”

GOV ) = = L w50))°

Hierin is S(#) de smoother matrix. Zoals bij de gewone cross-validatie, de GCV
keuze van de leerparameters worden dan verkregen bij het minimaliseren van de
functie GCV () over 6.

V-fold cross-validatie score functie

We beginnen de data willekeurig te verdelen in V' disjunct sets van ongeveer
gelijke grootte. De grootte van de v9® groep wordt voorgesteld door m, en
veronderstelt dat |n/V] < m, < [n/V] + 1 voor alle v. Voor elke verdeling
passen we Leave-one-out toe en maken het gemiddelde van deze schattingen.
Het resultaat is de V-fold cross-validatie schatting van de predictie fout

v e
CVy—fora (0) = % > ni (yk — ;™) (ax, 9))2~
v=1 k=1 v

hierin stelt f (=mv) het verkregen model gebaseerd op de data welke niet behoren
tot de groep v.
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Complexiteit criteria
Final Prediction Error (FPE) criterium

Laat P een eindige set van parameters zijn. Voor a € P, laat Fj3 een set van
functies zijn

d
Fp = {m im (2, 8) = Po+ > _ B, x € R and B € P},
1=1

laat Q,(3) € RT een complexiteitsterm voor Fj zijn en laat m, een schatter
zijn van m in Fg. De leerparameters worden zodanig bepaald zodat de cost
functie gedefinieerd als

Ts(N) = =3 L (ye. i (24 ) + M (Qu(B)) 62

k=1

S|

n

zijn minimum bereikt. Hierin is >, _; L(yx, iy (z5; 3)) de som van de geschatte
kwadratische fouten, Q,(3) € R* is een complexiteitsterm, A > 0 is een cost
complexiteits parameter en de term 62 is een schatting voor de error variantie.
The Final Prediction Error criterium is enkel afthankelijk van m,, en de data.

Vapnik-Chervonenkis dimensie

De Vapnik-Chernovenkis theorie geeft een andere meting van de complexiteit
dan het effectief aantal parameters en geeft de hierbij behorende begrenzingen.
Veronderstel dat we een klasse van functies hebben

fn,g:{m:m(x,ﬂ), zeR? enﬂGA},

waarin A een parameter vector set is en beschouw de indicator klasse

Ipr = {I T (m(z,f)—7), R, BcAenTe (infm(m,ﬁ),supm(x,ﬂ)) } )

De VC-dimensie (Vapnik, 1998) van reéle waarde functies 7, g is gedefinicerd
als de V' C-dimensie van de indicator klasse Zg . De V' C-dimensie van de klasse
Fp is gedefinieerd als het grootste aantal punten welke kunnen gescheiden wor-
den door elementen van F,, g.

Als D, = {(x1,91), .., (Tn,yn)} past, gebruik makende van een functie
klasse F,, 3 met VC-dimensie h, met probabiliteit (1 — o) over de training sets,
zal de volgende ongelijkheid

R(f) < R”—(f)

(1-evEm),

h (log (22) +1) — log (&
€l0) - oy P08 () +1) o (5)
en a; = ag = ¢ = 1 (Cherkassky en Mulier, 1998). Deze begrenzingen zijn

gelijktijdig van toepassing voor alle elementen van 7, .

gelden, waarin
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Smoother

2 .

o matrix Opmerkingen

. . . . Grote variantie

Leave-one-out | niet nodig | niet nodig .
lage bias

V-fold-CV niet nodig | niet nodig lage Varla'untle

grote bias

GCV niet nodig nodig *)

AIC nodig nodig

BIC nodig nodig

SRM niet nodig | niet nodig

Table 1: De strategie voor het selecteren van een goede leer parameter vector.
(*): Voor een gegeven data set, GCV selecteert altijd dezelfde leer parameter
vector, ongeacht de grootte van de ruis.

Keuze van de leerparameters

De strategie, voor het selecteren van een goede leerparameter vector, is het ge-
bruik maken van één of meerdere selectie criteria. De keuze van het gebruikte
criteria is afhankelijk van de situatie. Tabel 1 geeft een samenvatting van ver-
schillende situaties.

Als 0% onbekend is en geen aanvaardbare schatter is beschikbaar, kan GCV of
cross-validatie gebruikt worden aangezien zij geen schatting van de error vari-
antie vereisen. Het gebruik van de cross-validatie zal leiden tot meer rekenwerk
dan GCV. In de praktijk is het mogelijk om twee of meer risk schattingen te
berekenen.
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Hoofdstuk 5: De Jackknife en de Bootstrap

We beginnen dit hoofdstuk met de Jacknife. Vervolgens bespreken we de boot-
strap als een algemene tool voor het toekennen van statistische nauwkeurigheid.

De Jackknife

De Jackknife schatter werd voorgesteld door (Quenouille, 1949) en benoemd
door (Tukey, 1958). Deze techniek verlaagt de bias van een schatter (de Jack-
knife schatter). De procedure is als volgt. Laat X7, ..., X,, een willekeurig sample
zijn met grootte n van een onbekende waarschijnlijkheidsverdeling F'. Gebruik
makend van de geobserveerde waarden x1, ..., T, is men geinteresseerd in een
bepaalde statistic T(F). Laat T(F),) een schatter zijn voor T'(F). Verdeel het
willekeurig sample in r groepen met grootte [ = 7 observaties. Verwijder groep
per groep, en schat T(F) gebaseerd op de overblijvende (r — 1)1 observaties,
gebruik makend van dezelfde voorgaande schattings procedure met een sample
grootte n. Stel de schatter van T'(F') verkregen met de i%® groep te verwijderen
door T(F(l-)). Voor ¢ = 1,...,r, van pseudowaarden

Ji = TT(Fn) — (’I“ — 1) T(F(z)),

en beschouw de Jackknife schatter van T'(F') gedefineerd door

J (T(ﬁ’n)> - % Z (rT(Fn) —(r—1) T(F@-)))

1=

=T(F,) — (r— 1) T(Fg)
waar T(Fiy) = L7 T(Fj).

De Bootstrap

De bootstrap is een methode voor het schatten van de parameterdistributie door
herbemonstering van de data. Een zeer goede inleiding tot de bootstrap kan
gevonden worden in het werk van (Efron en Tibshirani, 1993). In vele situaties
zijn aanpassingen mogelijk, door het wijzigen van herbemonsteringsschema of
door wijziging van andere aspecten van de methode. Het bootstrap principe is
geillustreerd in het volgende algoritme (bootstrap principe).

Algoritme 1 (bootstrap principe).

(i) Van X = (z1,...z5), bepaal de schatter T, (F},).

(ii) Construeer de empirische verdeling, F,, welke gelijke probabiliteit 1/n aan
iedere observatie toekent (gelijk verdeelde willekeurige bemonstering).

(iii) Van de geselecteerde F,,, ;neem een sample X* = (x5, ...x%), genaamd het
bootstrap sample.

(iv) Benader de verdeling van J,(X,T(F)) door de verdeling van J (X *,T(F,))
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Figure 2: De L, penalty familie voor p = 2,1 en 0.6.

Hoofdstuk 6: LS-SVM voor Regressie Schatting

In dit hoofdsuk introduceren we een nieuwe methode, componentsgewijze LS-
SVM, voor de schatting van additieve modellen (Pelckmans et al., 2004).

Componentsgewijs LS-SVM regressie modellering

Beschouw de geregulariseerde kleinste kwadraten cost functie gedefineerd als

@ ) _ A 2 i 1
A (w0) =330 (w0 < 1500
=1

hierin is L(w(i)) een penalty functie en A € Rar gedraagt zich als een regularisatie
parameter. We stellen AL (-) voor door Ly(-), zodat het afhankelijk is van .
Voorbeelden van penalty functies zijn:

() De L, penalty functie LY (w(i)) = ||w(i) Hi leidt tot een bridge regressie
(Frank en Friedman, 1993; Fu, 1998). Het is bekend dat de Lo penalty functie
resulteert in ridge regressie. Voor de L penalty functie is de oplossing de soft
thresholding regel (Donoho en Johnstone, 1994). (zie Figuur 2).

(#4) Wanneer de penalty functie gegeven is door

L (0) =22 = ([u®] = 3) 1100

(zie Figuur 3), de oplossing is een hard-thresholding regel (Antoniadis, 1997).

<A}
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Figure 3: Hard thresholding penalty functie.

De L, en de hard thresholding penalty functies voldoen tegelijkertijd niet aan
de condities voor unbiasedness, sparsity en continuity (Fan and Li, 2001). De
hard thresholding heeft een discontinue cost oppervlak. De enige continue cost
oppervlak (gedefinieerd als de cost functie geassocieerd met de oplossingsruimte)
met een thresholding regel in de L,-familie is de L; penalty functie, maar de
resulterende schatter is opgeschoven met een constante A. Om deze ongemakken
de vermijden, (Nikolova, 1999) definieert de penalty functie als volgt

(4)
@Y _ aX ||w Hl
L)\,a (w ) = 41 Ta Hw(’)Hl’

met a € R . Deze penalty functie gedraagt zich nogal gelijkaardig als de
Smoothly Clipped Absolute Deviation (SCAD) penalty functie voorgesteld door
(Fan, 1997). De Smoothly Thresholding Penalty (TTP) functie Ly, (w(®) ver-
betert de eigenschappen van de L; penalty functie en de hard thresholding
penalty functie (zie Figuur 4), zie (Antoniadis en Fan, 2001).

De onbekenden a en A gedragen zich als regularisatie parameters. Een aan-
vaardbare waarde voor a werd afgeleid in (Nikolova, 1999; Antoniadis en Fan,
2001) als a = 3.7. Het componentsgewijze regularisatie schema wordt gebruikt
voor de emulatie van de penalty functie Ly , (w(®)

w(®) b,ep

d n
. 1 )
i (@) ) S E L ( (Z)) 7 § 2
min J (w N 3 2 Na (W + 5 2 er,
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Figure 4: De getransformeeerde L; penalty functie.

zodat

d
Yp = Zw(i)Tgai (x,(;)) +b+er, k=1,...,n.
i=1

welke niet convex wordt. Voor praktische toepassingen, wordt de iteratieve
aanpak gebruikt voor het oplossen van niet convexe cost functies (Pelckmans
et al., 2004). De iteratieve aanpak is gebaseerd op de graduated non-convexity
algoritme zoals voorgesteld in (Blake, 1989; Nikolova, 1999; Antoniadis en Fan,
2001) voor de optimisatie van niet convexe cost functies.
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Hoofdstuk 7: Foutvariantie schatting

In dit hoofdstuk generaliseren we het idee van de niet-parametrische ruisvari-
antie schatter (Rice, 1984) voor multivariate data gebaseerd op U-statistics en
differogram modellen (Pelckmans et al., 2003). In het tweede deel van het
hoofdstuk bestuderen we het gebruik van LS-SVM regressie in geval van het-
eroscedasticiteit.

Homoscedastische foutvariantie

Een voorbeeld van een variantie schatter o2 werd door Rice (1984) als volgt
voorgesteld

nfl Z yk+1_yk
k=1

Vervolgens zullen we het idee van Rice (1984) generaliseren voor multivariate
data.

Definitie 2 (U-statistic). Laat g : R' — R een symmetrische functie zijn. De
functie

Un:U(g7XlaaXn):(7—L Z g(Xi17"'7Xil)a l<TL, (1)

l) 1<i1 <. < <n,
Waar Y o o ci<pn de sum over () combinaties van | verschillende elementen
{i1,...;it} van {1,...,n} is, wordt een U-statistic van orde I met kernel g ge-

noemd.

Definitie 3 (Differogram). De differogram YT : R — R wordt gedefinieerd door
1

waar Azi; = ||v; — x5y, Ayi; =y — y;ll, € RY is. Geligkaardig als in de
variogram, geeft de intercept %E [Ay;j |Az = Az;; = 0] de ruisvariantie weer.

Differogram modellen gebaseerd op Taylor reeksontwikkeling

Beschouw de één-dimensionaal Taylor reeksontwikkeling van orde r in het center
r; €R

s 1 ,
T, (ay =) = m(2) + Y 3V 0m (0, = 2) + 0 (& —2)™).
=1 "

2
waar Vm (r) = %m, V2m (z) = %m”;, enz. voor | < 2. We beschouwen de rd®

orde Taylor reeksbenadering van het differogram model met center z; = 0 in
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het geval Ax — 0. De differogram wordt gegeven door

T (Az,a) =ag + ZalAl:U, ag, ...ar € Ry,
=1

waar de parameter vector a = (ag, a1, ..., aT)T € Rfl wordt verondersteld uniek
te zijn. De variantie functie ¥ van de schatter kan begrensd worden als volgt

- 2
9 (Az,a) = F [(Ay - T (Az,a) \Aas)Q] = (Ay —ap — ZalAlx AJC)

=1

. 2
<FE <a0+ZaZAlz|Ax> +E [(Ay\A:c)Q}

=1

, 2
=92 (ao + ZalAla:> ,

=1

steunend op de driehoeksongelijkheid en het differogram model. Volgende kle-
inste kwadraten methode kan worden gebruikt

A . n C 2
a=arg min J (a) = Ay — T (A, ),
gaeRfjl (@) %ﬁ(Awijja)( yij — T (Azij, a))

waar de constante ¢ € Rg de wegingsfunctie normaliseert zodanig dat
> i< Far e = 1. De functie Y (Az;j,a) : Ry — Ry wordt als correctie ge-
bruikt voor de heteroscedastische variantie structuur.

De differogram voor het schatten van de ruisvariantie

Gebaseerd op het differogram kunnen we de foutvariantie schatten. Bijvoor-
beeld, laat r = 0, de 09¢ orde Taylor polynomiaal van m in het punt z; en
geevalueerd in het punt x; wordt gegeven door Ty (z; — ;) = m(x;) en de
variantie schatter is

OA-S = U (ga €1, "'76n)

=U(g;(y1 —m(z1),..., (y1 —m(21))
1 1

waar de benadering verbeterd als x; — x;. Om dit te corrigeren kan men vol-
gende kernel g; : R? — R gebruiken

1 c
i) = = Ay ——
91 (vin95) = 3 Yiig (Axij, a)
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waar de constante ¢ € RY gekozen wordt zodanig dat de som van de gewogen

termen constant zijn 2c¢ (Z?q m) = n (n — 1) . De variantie schatter wordt
= ij

1 1 . c
be = ———— ~ | Ay - Alg | ———
Te n(n—1) Z 2 ( Yis ;al * U (Az;j)

1<i<j<n

Heteroscedastische foutvariantie
Kernel smoothing van lokale variantie schatters

Om de heteroscedasticiteit te schatten, maken we gebruik van kernel gebaseerde
lokale variantie schatters. We veronderstellen dat: (i) De foutvariabelen e,
k = 1,..,n zijn onafhankelijk, E [e;] = 0, E [e}] = 02 () waar z = (z of y)
en E [|e,§|ﬂ < M < oo, 7> 1. (i) m € C®(R), en (iii) 0% (z) € C (R).
Beschouw het regressie model

v =02 (zp) +ep, k=1,..,n

waar vy de initiele variantie schatters zijn. Om consistente schatters te bekomen
(Miiller en Stadtmiiller, 1987), maken we gebruik van de Nadaraya-Watson

schatter
z zk

K)o
-y Gl

l 1 h

waar K de kernel functie is en h de bandbreedte is zodanig dat h — 0, nh — oo
als n — oo.

LS-SVM regressie schatting

Om een schatting te bekomen (heteroscedastisch geval) gebaseerd op de voor-
gaande LS-SVM oplossing, in een opeenvolgende stap, weegt men de foutvari-
abelen e, = ay, /7 door wegingsfactoren ¥y, . Dit leidt tot volgend optimalisatie
probleem:

1 *T % 1 - *2
S T (we%) = sww +§v;ﬁkek (3)

zodat y, = w*Tp (zy) +b* + €, k=1,..,n. De Lagrangiaan wordt gecon-
strueerd op een gelijkaardige manier als voordien. De ongekende variabelen
voor dit gewogen LS-SVM probleem worden voorgesteld door het symbool .
Tengevolge van de condities voor optimaliteit en eliminatie van w*,e* bekomt
men het Karush-Kuhn-Tucker systeem:

[1(1 szlfw } [2]:[2]
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waar de diagonaal matrix V., wordt gegeven door V, = diag {#, e #} De

gewichten
1

~ 62 (21)

worden bepaald gebaseerd op de lokale foutvariantie schatter. Gebruik makend
van deze gewichten kan er gecorrigeerd worden in geval van heteroscedasticiteit.

g , k=1,...,n, (4)



XXX1V

Hoofdstuk 8: Kansdichtheid schatting

In dit hoofdstuk bespreken we de regressie kijk op de kansdichtheid schatting.
Vervolgens gebruiken we de LS-SVM regressie modellering in het geval van
kansdichtheid schatting.

Veronderstel dat Xj, ..., X,, willekeurige variabelen zijn welke onafhanke-
lijk en identiek verdeeld zijn volgens een welbepaalde probabiliteitsverdelings-
functie F', waarin F' € F, een familie van waarschijnlijkheidsverdelingsfunc-
ties en waarschijnlijkheids kansdichtheidsfunctie f. De waarschijnlijkheidskans-
dichtheidsfunctie (pdf), welke volgende eigenschappen heeft f(z) > 0, f is staps-
gewijs continue en [ f(z)dx = 1, is gedefineerd als

F(xz)= /io f(w)du.

Het probleem is een rij van schatters fn () van f(z) op te bouwen gebaseerd op
de sample x4, ..., ,,. Omdat niet vertekende schatters niet bestaan voor f (Rao,
1983), is men geinteresseerd in asymptotisch niet vertekende schatters fn (x)
zodanig dat

lim Eres, [fu(@)] = f(@), Vo

Support Vector Methode voor kansdichtheidschatting

De SVM aanpak (Mukherjee en Vapnik, 1999) beschouwd het probleem van
pdf schatting als een probleem om F (z) = ffoo f(u)du op te lossen waar in

plaats van F' (z) men een plug-in schatter £, () gebruikt, de empirische verdel-
ingsfunctie. Het oplossen van Tf = F met benaderende F, (2) is een slecht
gesteld probleem. Methoden voor het oplossen van slecht gestelde problemen
werden voorgesteld door (Tikhonov, 1963) en (Philips, 1962). Het oplossen van
F(z)= f_Too f(u)du in een set van functies behorende tot een reproducerende
kernel Hilbert ruimte, gebaseerd op de methoden voor het oplossen van slecht
gestelde probelemen voor welke SVM technieken kunnen aangewend worden.
Men minimaliseert

min Z?,j:l 19119]K (l‘i, Zj, h)
st. |Ep(z) — E?Zl 0 [*. K(zj,u,h)du <k 1<i<m,
¥9; >0en > ' U, =1, S

waarin k, de bekende nauwkeurigheid is van de benadering van F (x) door
F, (z) (Mukherjee en Vapnik, 1999). Om een oplossing te bekomen als een
samenstelling van waarschijnlijkheidsdichtheidsfuncties moet de kernel een waarschi-
jnlijke dichtheidsfunctie zijn en ¢; > 0, Y | ¥; = 1. Gewoonlijk zijn de meeste
¥; waarden in de SVM schatting gelijk aan nul en men bekomt een sparse schat-
ter van een waarschijnlijkheidsdichtheidsfunctie. Een typische eigenschap van

de SVM is dat de oplossing wordt gekarakteriseerd door een convex optimalisatie
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probleem, meer bepaald een kwadratisch programmeer (QP) probleem: in de
LS-SVM wordt de oplossing gegeven door een lineair stelsel (gelijkheidsrestric-
ties) in plaats van een QP probleem (ongelijkheidsresitricties). De SVM aanpak
(Mukherjee en Vapnik, 1999) vereisen ongelijkheidsrestricties voor dichtheid-
schatting. Een mogelijkheid om deze ongelijkheidsresitricties te omzeilen is ge-
bruik te maken van de regressie gebaseerde dichtheidsschatting aanpak. In deze
aanpak kan men de LS-SVM regressie gebruiken voor kansdichtheidschatting.

Smoothing parameter selectie

Beschouw de Parzen kernel dichtheidsschatter. De vorm van de kernel is
niet belangrijk (Rao, 1983). Een belangrijk probleem is het bepalen van de
smoothing parameter. In de kernel dichtheidsschatting, heeft de bandbreedte
een veel groter effect op de schatter dan op de kernel zelf. Er zijn vele methoden
voor smoothing parameters selectie (bvb., least-squares cross-validation, least
squares plug-in methods, the double kernel method, L; plug-in methods, etc.).
In deze thesis gebruiken we een combinatie van cross-validatie en bootstrap voor
het bepalen van de bandbreedte voor de Parzen kernel schatter.

Regressie kijk op de dichtheidsschatting

De kernel schatter heeft een nadeel wanneer gebruik gemaakt wordt van lange
staart verdelingen. Een voorbeeld, gebaseerd op de data set aangehaald door
(Copas en Fryer, 1980), van dit nadelig gedrag wordt voorgesteld in Figuur 5 en
Figuur 6. De data set geeft de lengte van behandeling van controle patiénten in
een zelfmoordstudie. De schatter weergegeven in Figuur 5 is ruisgevoelig in de
rechter staart, terwijl de schatter weergeven in Figuur 6 gladder is. Noteer dat
de data waarden positief zijn, de schatting weergegeven in Figuur 6 behandelt
de data als observaties in het interval (—oo, 00) .

Om deze moeilijkheid te behandelen, werden verschillende adaptieve meth-
oden voorgesteld (Breiman et al., 1977). Logspline kansdichtheidsschatting,
voorgesteld door (Stone en Koo, 1986) en (Kooperberg en Stone, 1990), volgt
de staart vloeiend van de kansdichtheid, maar de implementatie van het algo-
ritme is enorm moeilijk (Gu, 1993). In dit hoofdstuk ontwikkelen we een kans-
dichtheidsschatting gebruik makend van de LS-SVM regressie. De voorgestelde
methode heeft bijzondere voordelen ten opzichte van de Parzen kernel schatters,
wanneer schattingen zich in de staart bevinden.

Ontwerpen van regressie data

Veronderstel zi,...,2, is een willekeurig sample afkomstig van een continue
waarschijnlijkheidsdichtheidsfunctie f(z). Laat Ag(2), ¥ = 1,...,s het bin
interval zijn, laat h = (ag+1(2) — ax(z)) de bin breedte zijn. Laat Uy het aantal
sample punten zijn die in het bin interval Ay liggen. De histogram wordt dan
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Figure 5: Kernel schatting voor zelfmoord data (Bandbreedte: h =10). De
schatting is ruisgevoelig in de rechter staart.
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Figure 6: Kernel schatting voor zelfmoord data (Bandbreedte: h =80). De
schatting is gladder dan in Figuur 5. De data waarden zijn positief, alhoewel de
dichtheidsschatting de data als observaties in het interval (—oo, 00) behandelt.
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gedefineerd als

. Uy 1 —
(2) = — = Itay apir) (26)  voor 2z € Ay,
k=1

waarin Uy een binominale verdeling heeft, Uy, «~Bin(npg(2), npi(2) (1 — pr(2)))
(Johnson et al., 1997). De optimale keuze voor h vereist kennis van de on-
derliggende kansdichtheidsfunctie f, (Tukey, 1977) en (Scott, 1979). Praktisch

is de smoothing parameter van de vorm h* = ¢3.55n% (Scott, 1979).

LS-SVM en dichtheidsschatting

Laat xj, de onafhankelijke variabele, het center van Ay, k = 1, ..., s zijn. Laat
Yk, de afhankelijke variabele, de proportie van de data zj liggend in het interval
Ay gedeeld door de bin breedte h,. Gebruik makend van Taylor’s expansie,
fEO=fER+E=2Ff(2)+0 (h?), voor £ € Ay. Er kan worden berekend
dat

T 1
Blnl =7 @)+ 0, Varlul = L6 4o (1),
nhy, n
De ruis inherent aan het histogram varieert in functie van zijn hoogte. Dus, kan
men het kansdichtheidschattingsprobleem bekijken als een heteroscedastisch niet
parametrisch regressie probleem, gedefinieerd als

yr =m(xx) + ek, ex= ex[n(m(zy),zs)]

waarin e, onafhankelijk en identiek verdeeld zijn. De functie n (g (x) , xx) drukt
de mogelijke heteroscedasticiteit uit en m : R* — R is een onbekende gladde
functie welke we wensen te schatten. Noteer dat asymptotisch de heteroscedas-
ticiteit geen enkele rol speelt aangezien de smoothing lokaal wordt en dusdanig
de data in een klein venster bijna homoscedastisch wordt. De kensdichtheid-
schatter wordt gedefinieerd door

waarin de constante C een normalisatie constant is zodanig dat f (z) integreerd
naar 1 en my, (xy) is de LS-SVM regressie smoother.



Hoofdstuk 9: Robuustheid

In de voorgaande hoofdstukken werden basismethoden voor LS-SVM regressie
modellen bestudeerd. Het gebruik van de kleinste kwadraten en gelijkheidsre-
stricties resulteren in een eenvoudige formulering, maar deze eenvoudige mod-
ellen hebben het nadeel dat ze niet robuust zijn. In dit hoofdstuk bespreken we
het robuust maken van de LS-SVM modellen door gebruik te maken van meth-
oden voorkomende in de robuuste statistiek. Gewogen LS-SVM versies worden
geintroduceerd om te kunnen omgaan met data waarin uitschieters in voorkomen
(De Brabanter et al., 2002). Om de robuustheid te meten van deze schatters
maken we gebruik van de empirische invloedfuncties en maxbias curves.

Robuustheidmetingen
Empirische invloedfuncties

De meest belangrijke empirische versies van invloedfuncties zijn de sensitiviteits-
curve (Tukey, 1970) en de Jackknife (Quenouille, 1956) en (Tukey, 1958).

De sensitiviteitscurve Er zijn twee versies, één met toevoeging en één met
vervanging. In het geval van toevoeging van een observatie, start men met
de sample (21, ...,2,_1). Laat T(F) een ’statistic’ zijn en laat T(F,_;) =
T (z1,...,7,_1) de schatter zijn. De verandering van de schatting wanneer de n®
observatie x,, = & wordt toegevoegd is T (1, ..., Tpn—1,2) =T (21, ..., Zpn—1) . Men
vermenigvuldigt de verandering met n en het resultaat is de sensitiviteitscurve.

Definitie 4 (sensitiviteitscurve) Men bekomt de sensitiviteitscurve als men F
vervangt door F,_1 en € door % in de invloedsfunctie:

) - T {(";1) Fo_q+ %A,} -T (Fn_l)

1
n

=n-1)T (an1) +T(A;) —nT (anl)

=n[T, (T1,., Tn-1,2) — Tn-1 (1, .ce; Tp—1)] .

Jackknife benadering Een andere aanpak voor het benaderen van de IF,
maar enkel gebruik makend van de sample waarden z1, ..., x,, is de Jackknife.

Definitie 5 (De Jackknife benadering). Men bekomt de sensitiviteitscurve als
men I vervangt door F,, en —(nil) voor € in de invloedsfunctie

T [(%) F, - ﬁAm} —T(F,)
- DT () T(An) — T (E)

= (n — ].) [Tn (.’bl, ,l’n) — Tn,1 (1’1, ey Li—1, Lj4-1, ,il'n)] .

Jir (v, T, Fy,) =
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Figure 7: De effecten van een uitschieter (y-richting). Schatting van de sinc
functie door LS-SVM regressie.

Residuals en uitschieters in Regressie
Kernel gebaseerde regressie

Herinner dat de LS-SVM regressie schatter wordt gegeven door

T () = zn:dkK (x _hx’“) T,

waarin ¢y € R en b € R. Figuur 7 laat de effecten zien van een uitschieter in de
y-richting voor de LS-SVM regressie schatting.

De analyse van de robuustheidseigenschappen van kernel gebaseerde schat-
ters worden in termen van de geschatte regressiefunctie uitgedrukt. Laat (z;, y?)
een uitschieter zijn (y-richting) en laat A de invloedsregio zijn. In dit geval heeft
de uitschieter een kleine invlioed op de schatter M., (x;) wanneer (z;, 1, (z;)) € A
en heeft geen invloed als (z;, M, (x;)) ¢ A. De residuen van de LS-SVM regressie
schatting zijn zeer nuttig als uitschieter detectors.

We tonen de sensitiviteitscurve (één met vervanging) voor (z,m,(z)) € A
en (x;,my(z;)) ¢ A in Figuur 8. Het meest belangrijkste aspect is dat de
sensitiviteitscurve van de 7, (x) onbegrensd wordt (x € A) voor beide y — oo
en y — —oo, waarbij de 7, (z;) constant blijft (z; ¢ A).
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Figure 8: Empirische invloedsfunctie van m,(z) als functie van (z — ;). De
invloedscurve (in stippelijn) is onbegrensd in R, waarbij in de andere regio’s de
invloedscurve begrensd blijft in R.
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Gewogen LS-SVM

Om een robuuste schatter gebaseerd op een voorgaande LS-SVM oplossing te
bekomen, in een volgende stap, kan men de foutvariabelen ey, = /7y wegen met
wegingsfactoren vy (Suykens et al., 2002). Dit leidt tot volgend optimalisatie
probleem:
min 7 (w°,e%) = leTw" —|—1 iv o2
w©,b°,e® ’ o 2 27 Kk
k=1

zodat yr, = w°To (z) +0° + €5, k =1,..,n. De Lagrangiaan wordt gecon-
strueerd op een gelijkaardige manier als voordien. De ongekende variabelen voor
het gewogen LS-SVM probleem worden aangeduid met het o symbool. Vanuit
de condities van optimaliteit en eliminatie van w®,e® bekomt met het Karush-
Kuhn-Tucker systeem:

0| 1 w1 [0
ln‘Q+D,Y a’ Ty

waarbij de diagonaal matrix D, wordt gegeven door D, = diag {’7%1’ ey Wl} }

De keuze van de gewichten v worden bepaald gebaseerd op de foutvariabelen
er = ay /v vanuit het (ongewogen) LS-SVM geval. Robuuste schatters worden
dan verkregen (Rousseeuw en Leroy, 1986) bvb. door

1 als |ex/8| < 1
v = % als ¢; <lex/5| < e
10~ anders

waar § = 1.483 MAD (ex) een robuuste schatting van de standaard afwijking
van de LS-SVM foutvariabelen e; is en MAD staat voor de median absolute
deviation. De constanten cy, co worden typisch als ¢; = 2.5 en ¢, = 3 gekozen
(Rousseeuw en Leroy, 1987). Gebruik makend van deze wegingen kan men
corrigeren voor uitschieters (y-richting).

Ten eerste, tonen we de sensitiviteitscurve voor (z,m2(z)) € A en
(xi,m2(x;)) ¢ A in Figuur 9. Het meest belangrijkste aspect is dat de sen-
sitiviteitscurve voor m (z) onbegrensd wordt (x € A) voor beide y — oo en
y — —o0, waarbij de i (z;) constant blijft (z; ¢ A).

Ten tweede, berekenen we de maxbias curve voor beide LS-SVM en gewogen
LS-SVM ten opzichte van een test punt. Gegeven 150 ”"good” observaties
{(z1,91) ,---s (T150, Y150) } Welke voldoen aan de relatie

yr = m(zk) +er, k=1,..,150,

waar ey, ~ N(0,1%). Laat A een bepaalde regio (43 data punten) zijn en laat x
een test punt van die regio zijn (Figuur 10). Dan beginnen we met de data te
contamineren in de regio A. Bij elke stap verwijderen we één ”good” punt in de
regio A en vervangen we het door een "bad” punt (z;,ys) . We herhalen dit tot
de schatting waardeloos wordt. Een maxbias curve wordt getoond in Figuuur
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Figure 9: Empirische invloedsfunctie van m,(z) als functie van (xr — ;). De
invloedscurve is begrensd in R.
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Figure 10: Gegeven 150 training data (Wahba, 1990). Beshouw de regio .4
tussen x = 1 en x = 2. In elke stap wordt de data in de regio A gecontami-
neerd door goede punten (aangeduid door “0”) te vervangen door slechte punten
(aangeduid door “x”).
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Figure 11: Maxbias curves voor de LS-SVM regressie schatter m, (z) en de
gewogen LS-SVM regressie schatter ms, (x) .

11 waarbij de waarden van m,(z) en 2 (z) getekend zijn als functie van het
aantal uitschieters in de regio A. De maxbias van s (x) stijgt zeer langzaam
in functie van het aantal uitschieters in de regio A en blijft begrensd tot het
rechtse breekpunt. Dit geldt niet voor 7, (x) met 0% als breekpunt.
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Hoofdstuk 10: Data-gedreven Kostfuncties voor
Regressie

Thans bestaat er een variatie van kostfuncties (bvb., least squares, least absolute
deviations, M-estimators, generalized M-estimators, L-estimators, R-estimators,
S-estimators, least trimmed sum of absolute deviations, least median of squares,
least trimmed squares). Anderzijds brengt dit de data analyst in een moeilijke
situatie.

Een idee voor deze situatie, voorgesteld in deze Sectie, is als volgt. Gegeven
de data, de methode kan gesplitst worden in twee hoofddelen: (i) opbouwen van
een robuust niet parametrisch regressie model en berekenen van de residuen,
en (ii) de foutverdeling via robuuste bootstrap bekomen en bepalen van de
kostfunctie (in een maximum likelihood omgeving).

Robuuste niet parametrische regressie modellen

De Nadaraya-Watson kernel schatter is niet robuust. Gebaseerd op het func-
tionaal kader (Ait-Sahalia, 1995) zullen we de invloedsfunctie van de schatter
bepalen om deze niet robuutsheid te verifieren. Naar anologie met Hampel’s
invloedsfunctie (Hampel, 1994) en gebaseerd op het Generalized Delta theorem,
de invloedsfunctie van de Nadaraya-Watson kernel schatter wordt gedefinieerd
als

IF ((zr,yx); T, Fxy) = m/ylf <Ihxk> K (yhyk> dy—
fX(xl)hqu (ac —hxk> m (z)
= ftonas (i e (252 o).

De invloedsfunctie is niet begrensd voor y in R. Gebruik makende van dalende
kernels, kernels zodat K(u) — 0 als u — oo, de invloedsfunctie is begrensd
voor x in R. Gemeenschappelijke keuzes voor dalende kernels zijn: K(u) =
max ((1 —u?),0), K(u) =exp— (u?) en K(u) = exp (—u).

Naar analogie (Boente en Fraiman, 1994), zijn we geinteresseerd in de L-
robuuste Nadaraya-Watson kernel schatter. De invloedsfunctie voor de schatter
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Tr, (FXY) is gegeven door

IF ((xg,yk) T, Fxy) = Spxy T (FXY - FXY)

-/ (mi” " (e (F57) - s @) au
~ak (x_xk>/f xF;\X ))K<FY_|X (Z)yk>du

" d—1
+/ f (x ?E | (u )) 836(1?...85(’(1*1) (x Fyix (u)) du

Y|X

De invmoedsfunctie is begrensd voor y in R en Fy‘ x is gedefinieerd als

T—Tp )

i K
h T ,
PY|X E 421 ; (T tl) [Yi <y]

waarin K de Gaussiaanse kernel is. De trimming parameter werd gelijk gesteld
aan 2.5%.

Berekenen van de kostfunctie

Laat f (y,m (x)) het ruismodel zijn en laat L (y,m (z)) de kostfunctie zijn. In
een maximum likelihood omgeving, voor symmetrische kansdichtheidsfunctie
f(y,m(z)), een zekere kostfunctie is optimaal voor een gegeven ruismodel zo-
danig dat de kostfunctie gelijk is aan

L(y.m(z))=—> _log f (yx —m (xx)).
k=1

Nauwkeurigheid van de kostfunctie

De robuustificatie van de residual bootstrap is gebaseerd op een controle mecha-
nisme in het herbemonsteringsplan, bestaande uit een verandering van de herbe-
monsteringswaarschijnlijkheden, door identificatie en weging van deze data pun-
ten die de functie schatter beinvloeden (zie hoofdstuk robuust predictie inter-
vallen).
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Hoofdstuk 11: Robuuste leerparameter selectie

In dit hoofdstuk bestuderen we robuuste methoden voor het selecteren van leer
parameters door cross-validatie en de final prediction error (FPE) criterium.
Voor het robuust schatten van leerparameters worden robuuste locatieschatters
zoals het getrimde gemiddelde gebruikt.

Robuuste V-fold Cross-validatie Score Functie

De algemene vorm van de V-fold cross-validatie score functie wordt gegeven
door

14
CVV_fold (0) = Z % / L (Z, F(n—mu) (Z)> dqu (Z) :
v=1

Een nieuwe variant van de de klassieke cross-validatie score functie gebaseerd
op het getrimde gemiddelde wordt geintroduceerd. De robuuste V-fold cross-
validatie score functie wordt dan geformuleerd als

Rob t F~(1-52)
CVyolsst (0 Z / L z F—m,) (2 ))dFmv (2).

v=1

Laat f Robust (73 0) een robuuste regressieschatting zijn, bijvoorbeeld de gewogen
LS-SVM (Suykens et al., 2002). De kleinste kwadraten robuuste V-fold cross-
validatie schatting is gegeven door

2

Robust My (=m,) 5
CVy255a ( Z Zm — Lm 5] (yk - Robust(xkﬁ))mv(k)

v=1

Ty (1 Lo 2 01 (U = Pz (25.6))2),

waar (yg — f é;g;’;i(xk, 9))727%( ) een geordende statistic is en de indicator functie
Itqp)(2) = 1 als a < z < b en anders 0.

Robuuste Generalized Cross-validatie Score Functie

De GCV kan geschreven worden als

1 « 1 —
GCV(0) = — = - 2
)= S L) = >k,
k=1 k=1
waar ¥ gedefinieerd is als

B yr — f*(xx;0) B "
= (1(1/Zk”k)”(5*)>7 Bl
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waar f*(xy;0) de gewogen LS-SVM is, de weging van f*(xy;6) overeenstem-
mend met {zx, yr} wordt voorgesteld door vy. Gebruik makend van de (0, 52) -
getrimde gemiddelde, de robuuste GCV wordt gedefinieerd door

n—|npB2]
1 2
GCV,opust(0) = m Z I[ﬁn(l),ﬁn(n—tnﬁzn](ﬁ )
k=1

waar I[. 1(-) een indicator functie is.

e

Robuust Final Prediction Error (FPE) criterium

De model parameters, § worden zodanig bepaald dat de generalized Final Pre-
diction Error (FPE) criterium gedefinieerd als

Jo(0) = LRSS + (1 + M) &2,
n n—tr(S(0)) — 2

minimaal is. Een natuurlijke aanpak om het Final Prediction Error (FPE)

criterium Jx(0) te robuustifiéren is als volgt:

(7). Een robuuste schatter ms, (x,6) gebaseerd op (bvb. M-schatter (Hu-
ber, 1964) of gewogen LS-SVM (Suykens et al., 2002)) vervangt de LS-SVM
Mo, (,0) .

(i7). De RSS = L30  (yr — 1w (2330))? vervangen door een robuuste
tegenhanger RS S, opust- Laat & = L(e) een functie van een willekeurige variabele
e zijn. Een realisatie van de willekeurige variabele e wordt gegeven door e, =
(yx — 1y, (21;0)), k =1,...,n, en de LRSS = J;(6) kan geschreven worden als
een locatie probleem

Ji(0) = %ZL(%) = %ka,
k=1

k=1

waar & = €7, k = 1,...,n. Gebruik makend van (0, 32) - getrimde gemiddelde,
de robuuste J;(0) wordt gedefinieerd als

n—|npB2]

robust _ 1
Jl (9) T Lnﬁ2J kz:l gn(k)v

waar &n(1); - &n(n)s €k = (Yr — My, (13 0)) en my (zx,0) is een gewogen repre-
sentatie van de functie schatter.

(ii7) . De variantie schatter 62 wordt vervangen door de corresponderende
rubuuste tegenhanger 62 Beschouw het NARX model (Ljung, 1987)

e,robust*
gy =fyt—1), ..yt —q)ult—1),.. ult—p)).

In praktijk, is het meestal het geval dat enkel de geordende data y(k) met de
discrete tijdsindex k, gekend is. De variantie schatter voorgesteld door (Gasser
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et al., 1986) wordt gebruikt

52 4y (1) = —— 5~ W= Doty + Db —y()*

_ 2 2
n 2t=2 a®+b4+1

t+1)—y(t t)—y(t—1 .
m en b= % Laat ¢ = L (9) een functie van een

willekeurige variabele zijn, een realisatie van de willekeurige variabele ¢ wordt
gegeven door

waar a =

(y(t —Da+yt+1)b—y(t))

vaZz+b%+1
De variantie schatter kan nu geschreven worden als een gemiddelde van willekeurige
samples 97, ...,92 (een locatie probleem):

1 n—1
A2
O-e - n_2];2<k7

waar (, = 97, k = 2,...,n — 1. Gebruik makend van (0, 3;) - getrimde gemid-
delde, de robuuste (ﬁﬂ,dmst word gedefinieerd door

T =

1 m—|mpz |
~2
Ue Trobus = b
robust = ] ; Cn(l)

waar m =n — 2.
De robuuste FPE criterium wordt gegeven door

2[tr(S* (vg,0)) +1] ' .5
J erouSZJ 0r0u8+ 1+ ) arons
C( )robust 1( Jrobust ( n — tr(S*(vg,0)) — 2 o

waar de smoother matrix S*(vg, ) nu gebaseerd is op de gewogen elementen v.
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Hoofdstuk 12: Robuuste Predictie Intervallen

In dit hoofdstuk introduceren we robuuste predictie intervallen voor LS-SVM
regressie gebaseerd op een robuuste externe bootstrap methoden.

Constructie van predictie intervallen

Waarschijnlijk één van de meest populaire methoden voor het construeren van
predictiesets is gebruik te maken van pivots (Barnard, 1949, 1980), gedefinieerd
als

Definitie 6 Laat X = (x1,...x,) een willekeurige variabele met een onbek-
ende samengestelde verdeling F' € F, en laat T(F) een reéle waarde parameter
zign. Een willekeurige variabele J(X,T(F)) is een pivot als de verdeling van
J(X,T(F)) onafhankelijk is van alle parameters.

Hall (1992) bewees dat pivot methoden, voor het probleem van bootstrap
predictie intervallen, moeten verkozen worden boven de niet-pivot methoden.
Het belangrijkste probleem voor het construeren van predictie intervallen bij
niet-parametrische regressie berust op het feit dat een consistente schatter van
m (z) noodzakelijk vertekend is (Neumann, 1995).

Robuuste Predictie Intervallen
Gewogen LS-SVM voor robuuste functie schatting

Smoother matrix voor predictie We vestigen de aandacht op de keuze

van een RBF kernel K(xp,x;;h) =exp {— lxk — scl||§/h2} In matrix vorm,

laat 0 = (h,'y)T en voor alle nieuwe input data gedefinieerd als Dy jest = {2 :
et e R I =1,..., s}

mn (xtest; 9) — Qtestdtram + 1nbt7>am

— |:Qtest (Zl _ Zl%zl> + an 21:| y

test train,
= S(z", 2" 0)y,

-1
waar ¢ = 117 [ Qtrain ;In 1,, 72 = (Q”"“”Jr%fn), Jnn een vierkante matrix

met alle elementen gelijk aan 1 is, Jg, is een s X n matrix met alle elementen
gelijk aan 1, y = (y1,. .. )T, 1, (216585 0) = (1hy, (21654 0), ... i, (25 9‘))T,
Q=K (zfrein ztest) zijn de elementen van de sxn kernel matrix en Q=

K (xirai”7 xf””") zijn de elementen van de n x n kernel matrix.



Robuuste bootstrap

Gegeven een willekeurig sample {(x1,y1), ..., (Tn, yn)} met gemeenschappelijke
verdeling F. Definieer voor elk paar (xy,yx) de residuen als é; = yx — i, (af) .
Gebaseerd op de residuen, gewichten werden als volgt gedefineerd

=0

waar ¥ (.) een functie is en § een robuuste schaalschatter is. Laat het bemon-
steringsschema van de uniforme bootstrap voorgesteld worden door punif =
(%, e %) en, laat p = (p1, ..., pn) het herbemonteringsschema van de gewogen
bootstrap zijn. Laat m het aantal data punten zijn met (vy # 1) en >, _; pp =
1. De hoeveelheid p;, [ = 1,...n — m, wordt gegeven door

1 i -w

= —+M, I=1,..n—m ;i=1,...m
n n—m

en de hoeveelheid p;, j =1, ...,m, wordt gegeven door

p; = 1-— DI 1—7,”1] s j:177m
’ ( l:zl ) ( Za‘l”)

Bepalen van robuuste predictie intervallen

Gegeven een LS-SVM functie schatter 1, » (2o), waar zo een nieuw input data
punt is, predictie intervallen worden geconstrueerd door gebruik te maken van
een pivot statistic. Laat J(m(zo), 7,1 (%0)) een pivot statistic zijn, gedefineerd
als
T, (2o) —m (20) — B (20)
1
(V (20))>
waar B(xg) de bias is en V(zg) de variantie is van de LS-SVM functie schatter
Mn.n (20). De asymptotische pivot J(m(zo), 7, (€0)) kan niet worden ge-
bruikt voor het bepalen van predictie intervallen omdat beiden B(zg) en V(z0)
ongekend zijn. We beschouwen een alternatieve methode die de verdeling van
de pivot schatten

T (m(zo), ivn,n (20)) =

b

T(m(zo), i (zo)) = "2 20) o o)

(V(@0))”

door een externe bootstrap methode. Men benadert de verdeling van de piv-
otal statistics T (m(zq), Mn,n (20)) door de corresponderende verdeling van de
gebootstrapte statistics

) . i (20) — 1, 6(0)
V(1. g (o), 055 ), (0)) = —2 o

(7 te0)’
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waar * bootstrap tegenhangers zijn.

Een natuurlijke aanpak voor het robuustifiéren van de pivotal
V(1 q(20), M5, 5, (20)) wordt bekomen door het vervangen van de LS-SVM func-
tieschatter door een robuuste functieschatter (de gewogen LS-SVM) en het ver-
vangen van de variantieschatter V* (o) door zijn robuuste tegenhanger V*° ()

Mh = 1 6(%0)

Z (1, (o), M7 (w0)) = I

(‘7*0 (1'0)) 2

Gegeven nieuwe input data gedefinieerd als D, 44, robuuste predictie inter-
vallen met 1 — « zijn gegeven door

Iz = [mz’h(ﬂio) + (V*° (ffo))% Qay2s> My, + (‘7*° (xo))% Q(l—a)/zs] ,

waar ), de a-quantile van de bootstrap verdeling van de pivotal statistic

Z(my, 4(x0), 115, (20)) is.
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Hoofdstuk 13: Besluit en verder onderzoek

In this thesis, we have given an overview of basic techniques for non-parametric
regression. In this chapter, we first give a chapter by chapter overview of our
contributions and the conclusions. Topics for further research are pointed out
in the second section of this chapter.

Besluit

De belangrijkste methode in deze thesis is de LS-SVM, een voorbeeld van het
geregulariseerde modellerings paradigma. Wij hebben een nieuwe methode,
componentwise LS-SVM geintroduceerd, voor het schatten van modellen die
uit een som van niet-lineaire componenten bestaan (Pelckmans et al, 2004).

We hebben het idee van de ruisvariantie schatter geintroduceerd door Rice
(1984) veralgemeend voor multivariate data. We hebben de eigenschappen
van de LS-SVM regressie bestudeerd bij afgezwakte Gauss-Markov condities.
Kwadratische residuen plots werden voorgesteld om de heteroscedasticiteit te
karakteriseren.

In LS-SVM’s worden de oplossing gegeven door een lineair systeem (geli-
jkheidsbeperkingen) i.p.v. een QP probleem (ongelijkheidsbeperkingen). De
SVM aanpak (Mukherjee en Vapnik, 1999) vereisen ongelijkheidsbeperkingen
voor kansdichtheid schattingen. Een manier om deze ongelijkheidsbeperkingen
te omzeilen, is het gebruik van regressie gebaseerde kansdichtheid schattingen.
We hebben de LS-SVM regressie gebruikt voor kansdichtheid schatting.

Wij hebben een robuust kader voor LS-SVM regressie ontwikkeld. Het kader
laat toe om een robuuste raming te verkrijgen die op de vorige LS-SVM regressie
oplossing wordt gebaseerd, in een opeenvolgende stap. De gewichten worden
bepaald welke gebaseerd zijn op de verdeling van de foutvariabelen (Suykens
et al, 2002). Wij hebben aangetoond, gebaseerd op de empirische invloeds-
functie en de maxbias curve, dat de gewogen LS-SVM regressie een robuuste
functieschatting is. Wij hebben hetzelfde principe gebruikt om een LS-SVM
regressieraming in het heteroscedastisch geval te verkrijgen. Nochtans zijn de
gewichten nu gebaseerd op een gladde raming van de foutvariantie.

Thans bestaat er een variatie van kostfuncties (bvb., least squares, least
absolute deviations, M-estimators, generalized M-estimators, L-estimators, R-
estimators, S-estimators, least trimmed sum of absolute deviations, least median
of squares, least trimmed squares). Anderzijds brengt dit de data analyst in een
moeilijke situatie. Een idee voor deze situatie, voorgesteld in deze thesis, is als
volgt. Gegeven de data, de methode kan gesplitst worden in twee hoofddelen:
(i) opbouwen van een robuust niet parametrisch regressie model en berekenen
van de residuen, en (ii) de foutverdeling via robuuste bootstrap bekomen en
bepalen van de kostfunctie (in een maximum likelihood omgeving).
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Meest efficiente leeralgoritmen in neurale networken, support vector ma-
chines en kernel based methoden (Bishop, 1995; Cherkassky et al., 1998; Vapnik,
1999; Hastie et al., 2001; Suykens et al., 2002b) vereisen de bepaling van extra
leerparameters. In praktijk wordt de voorkeur gegeven aan data-gedreven meth-
oden voor het selecteren van de leerparameters. Gebaseerd op locatie schatters
(bvb. mediaan, M-schatters, L-schatters, R-schatters), hebben we de robuuste
tegenhangers geintroduceerd van modelselectiecriteria (bvb. Cross-Validation,
Final Prediction Error criterion).

Bij niet-parametrische regressie wordt de regressie vergelijking bepaald via
de data. In dit geval kunnen de standaard inferentie procedures niet toegepast
worden. Daarom hebben we robuuste voorspellingsintervallen ontwikkeld ge-
baseerd op robuuste bootstrap technieken.

Verder onderzoek

Verder onderzoek is nodig om de kernel methoden robuuster te makent. Mogelijk
steunt dit verder onderzoek op twee peilers:

(1) bestaande robuuste methoden moeten worden bestudeerd voor het ge-
bruik in kernel gebaseerde methoden.

(2) Robuustifieren van de cost functies.

Verder moeten de robuuste eigenschappen van deze methoden theoretisch
worden bestudeerd. Hiervoor dienen de functionele benadering van Von Mises,
welke gebruikt wordt in de parametrische statistiek en leidt tot de invloeds-
functie en het asymptotisch breekpunt, uitgebreid te worden tot niet-lineaire en
niet-parametrische schatters.

Uiteindelijk zal men de ontwikkelde methoden toepassen op reele data sets.
In het bijzonder denken we aan gegevens uit de chemometrie en de bio-informatica,
omdat deze vaak vele variabelen bevatten en een klein aantal of juist een zeer
groot aantal observaties.
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Chapter 1

Introduction

In 1896, Pearson published his first rigorous treatment of correlation and regres-
sion in the Philosophical Transactions of the Royal Society of London. In this
paper, Pearson credited Bravais, (1846) with ascertaining the initial mathemat-
ical formulae for correlation. In his four-volume biography of Galton, Pearson
described the genesis of the discovery of the regression slope Pearson (1930).
Subsequent efforts by Galton and Pearson brought about the more general tech-
niques of multiple regression and the product-moment correlation coefficient. In
fact, the main ideas of the parametric paradigm were developed between 1920
and 1960 (see Fischer, 1952). During this period, the method of maximum likeli-
hood for estimating parameters was introduced. However, Tukey demonstrated
that the statistical components of real-life problems cannot be described only by
classical statistical distribution functions. In addition, James and Stein (1961)
constructed a biased estimator of the mean of random normally distributed
vectors that for any fixed number of observations is uniformly better than the
estimate by the sample mean. These difficulties with the parametric paradigm
and several discoveries (summarized in the next 4 items) made in the 1960s was
a turning point in statistics and led to a new paradigm:

(1) The existence of high speed, inexpensive computing has made it easy to
look at data in ways that were once impossible. Where once a data analyst was
forced to make restrictive assumptions before beginning, the computer power
now allows great freedom in deciding where an analyst should go. One area
that has benefited greatly from this new freedom is that of nonparametric den-
sity and regression estimation, or what are generally called smoothing methods.
Local regression modelling traces back to the 19th century. The work on local
modelling starts in the 1950’s with kernel methods introduced within the prob-
ability density estimation setting (Rosenblatt, 1956; Parzen, 1962) and within
the regression setting (Nadaraya, 1964; Watson, 1964). The aim of nonpara-
metric techniques is to relax the restrictive form of a regression function. It
provides a useful tool for validating or suggesting a parametric form. However,
nonparametric techniques have no intention of replacing parametric techniques.
In fact, a combination of them can lead to discovering many interesting findings
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that are difficult to accomplish by any single method.

(#4) The theory of ill-posed problems. Tikhonov (1943), proving a lemma
about an inverse operator, described the nature of well-posed problems and
therefore discovered ways for regularization of ill-posed problems. 20 years later
Phillips (1962), Ivanov (1962), Tikhonov (1963) and Lavrentev (1962) came to
the same constructive regularization idea in a different form. The regularization
technique in solving ill-posed problems was not only the first indication of the
existence of non obvious solutions to the problems that are better than the
obvious solutions, but it also gave an idea how to construct these non obvious
solutions.

(#i1) The generalization of the Glivenko-Cantelli-Kolmogorov theory was con-
structed in the late 1960s (Vapnik and Chervonenkis, 1968; 1971). The theory
is based on new capacity concepts for a set of events (a set of indicator func-
tions). Of particular importance is the VC dimension of the set of events which
characterizes the variability of the set of events (indicator functions).

(tv) Capacity control makes it possible to take into account the amount of
training data. This was discovered in the mid-1970s for the classification prob-
lem and by the beginning of 1980, all of the results obtained for sets of indicator
functions were generalized for sets of real-valued functions (the problem of re-
gression estimation). Capacity control in a structured set of functions became
the main tool of the new paradigm.

A new direction was declared, the so-called ”data analysis,” where the goal
was to perform inference from the data, rather than using purely statistical
techniques. At the end of the 1960s, the theory of Empirical Risk Minimiza-
tion (ERM) for the classification problem was constructed (Vapnik and Cher-
vonenkis, 1974). Within 10 years, the theory of the ERM principle was gen-
eralized for sets of real-valued functions as well (Vapnik, 1979). It was found
that both the necessary and sufficient conditions of consistency and the rate of
convergence of the ERM principle depend on the capacity of the set of functions
implemented by the learning machine. It was also found that distribution-free
bounds on the rate of uniform convergence depend on the VC dimension (the
capacity of the machine), the number of training errors and the number of ob-
servations. Therefore, to find the best guaranteed solution, one has to make a
compromise between the accuracy of approximation of the training data and the
capacity of the machine that one uses to minimize the number of errors. The
idea of minimizing the test error by controlling two contradictory factors was
formalized by introducing a new principle, the Structural Risk Minimization
(SRM) principle. The support vector method realizes the SRM principle.

In 1963 the method of support vector machines (SVM) for constructing an
optimal hyperplane in the separable case was under investigation (Vapnik and
Lerner, 1963) and (Vapnik and Chervonenkis, 1964). In the mid-1960s, the
expansion of the optimal hyperplane on support vectors and the constructing
hyperplane in feature space using Mercer kernels were known. However, the
combination of the two elements was done 30 years later in an article by Boser,
Guyon and Vapnik (1992). After combining the support vector expansion with
kernel representation of the inner product, the main idea of the SVM was real-
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ized. The extension of the SV technique for nonseparable cases was obtained in
an article by Cortes and Vapnik (1995). The generalization of SVM for estimat-
ing real-valued functions was done by Vapnik (1995). Least Squares Support
Vector Machines (LS-SVM) (Suykens and Vandewalle, 1999; Suykens et al.,
2002) are reformulations to standard SVMs which lead to solving linear KKT
systems for classification tasks as well as regression. In (Suykens et al., 2002)
LS-SVMs have been proposed as a class of kernel machines with primal-dual
formulations in relation to kernel Fisher Discriminant Analysis (FDA), Ridge
Regression (RR), Partial Least Squares (PLS), Principal Component Analysis
(PCA), Canonical Correlation Analysis (CCA), recurrent networks and control.
The dual problems for the static regression without bias term are closely re-
lated to Gaussian processes (MacKay, 1992), regularization networks (Poggio
and Girosi, 1990) and Kriging (Cressie, 1993), while LS-SVMs rather take an
optimization approach with primal-dual formulations which have been exploited
towards large scale problems and in developing robust versions.

Besides its long history, the problem of regression estimation is of increasing
importance today. Stimulated by the growth of information technology in the
past 20 years, there is a growing demand for procedures capable of automati-
cally extracting information from massive high-dimensional databases. One of
the fundamental approaches for dealing with this “data-mining problem” is re-
gression estimation. Usually there is no prior knowledge about the data, leaving
the analyst with no other choice but a nonparametric approach.

1.1 Practical applications

Scientific data must be clean and reliable. While this is the case in the ma-
jority of physical, chemical and engineering applications, biomedical data rarely
possess such qualities. The very nature of biomedical objects is volatile and
irregular, as are the results of biomedical assessments collected in large biomed-
ical data sets. These data sets contain the results of tests which fluctuate with
the patient’s state, and the long term trends are difficult to distinguish from
the short term fluctuations, taking into account that these data sets rarely con-
tain reliable longitudinal components. The other typical problem is the large
number of incomplete records, for example, if certain tests are missing for some
individuals, then deleting such records may essentially reduce the power of the
ongoing calculations. Even mortality statistics, probably the most reliable type
of biomedical data, are not free from error: while the date of death is usually
known precisely, the date of birth can be biased.

There are three types of economic/financial data: Time series, cross-sectional
and pooled data. Time series data may be collected at regular time intervals,
such as daily (e.g. stock prices), monthly (e.g. the unemployment rate, the con-
sumer price index). Although time series data are used in many econometric
studies, they present some special problems. For example, most of the empirical
work based on time series data assumes that the underlying time series is sta-
tionary. The problem of heteroscedasticity is more common in cross-sectional
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than in time series data. In cross-sectional data, one usually deals with mem-
bers of a population at a given point in time, such as individual consumers,
industries, country, etc. Moreover, these members may be of different sizes (e.g.
small, medium, or high income). In time series data, on the other hand, the
variables lend to be of similar order of magnitude because one generally collects
the data for the same entity over a period of time. In the pooled data are
elements of both time series and cross-sectional data.

Next we describe several applications in order to illustrate the practical
relevance of regression estimation in both domains.

1.1.1 Biomedical data

Example 1 (The Stanford heart transplant program). Various versions of data
from the transplant study have been reported in a number of publications (Crow-
ley and Hu, 1977), (Fan and Gigbels, 1994) and (Akritas, 1996). The sample
consisted of 157 cardiac patients who where enrolled in the transplantation pro-
gram between October 1967 and February 1980. Patients alive beyond February
1980 were considered to be censored (55 in total). One of the questions of in-
terest was the effect of the age of a patient receiving a heart transplantation, on
his survival time after transplantation.

Example 2 Prognostic factors in 1545 patients with stage I invasive epithe-
lial ovarian carcinoma. A total of 1545 patients with invasive epithelial FIGO
stage I ovarian cancer were included in this study. The patient records of 6
existing databases were retrospectively reanalysed according to predefined crite-
ria. The Norwegian patient population consisted of 380 patients referred to the
Norwegian Radium Hospital between January 1, 1980, and July 1, 1988. The
277 Danish patients were treated between September 1981 and September 1986
and registered in the Danish Ovarian Cancer Study Group (DACOVA) register.
Canadian patients (n = 242) were treated at the Princess Margaret Hospital,
Toronto, between April 1, 1971 and December 31, 1982. The patients from
United Kingdom (n = 258) were referred to the Royal Mardsen NHS Trust Lon-
don between January 1980 and December 1994. The 267 Swedish patients were
referred to Radiumhemmet, Stockholm in the period 197/ —1986, and 121 Aus-
trian patients were treated at the First Department of Obstetrics and Gynecology
of the University of Vienna between December 1975 and June 1987. The aim
of the study is to prove (statistically) the importance of degree of differentiation
and cyst rupture in predicting relapse. For more details and results refer to
”Case studies”.

Example 3 (Endometria carcinome). The distinction between endometrial can-
cer patients with and without deep myometrial invasion is an important factor
that guides clinical management. Between September 1994 and February 2000
we collected ultrasound and histopathological data from 97 women with endome-
trial carcinoma (called the training set) and divided them into two groups (group
I: stage Ia and Ib — group II: stage Ic and higher). The transition between FIGO
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surgical stage Ib and Ic endometrial carcinoma is determined by the degree of
myometrial invasion (less or more than 50%) and is important in determining
the treatment schedule in many institutions. Accurate preoperative discrimina-
tion between group I and group IT would allow to identify high-risk patients who
might need pelvic and para-aortic lymphadenectomy. This might be important
because in many countries patients who need lymphadenectomy are referred to a
gynaecological oncologist while patients not needing lymphadenectomy are oper-
ated by the general gynaecologist or surgeon. For more details and results refer
to ”Case studies”.

1.1.2 Economic/financial data

Example 4 (Boston housing data set). Harrison and Rubinfeld (1978) consid-
ered the effect of air pollution concentration on housing values in Boston. The
data consisted of 506 samples of median home values in a neighborhood with
attributes such as mitrogen oxide concentration, crime rate, average number of
rooms, percentage of nonretail businesses, etc. A regression estimate was fitted
tot the data and it was then used to determine the median value of homes as
a function of air pollution measured by nitrogen oxide concentration. For more
details refer tot Harrison and Rubinfeld (1978) an Breiman et al. (1984).

Example 5 (loan management). A bank is interested in predicting the return
on a loan given to a customer. Available to the bank is the profile of the customer
including his credit history, assets, profession, income, age, etc. The predicted
return affects the decision as to whether to issue or refuse a loan, as well as the
conditions of the loan. For more details refer to Krahl et al. (1998).

Example 6 (Interest rate data). Short-term risk-free interest rate play a funda-
mental Tole in financial markets. They are directly related to consumer spending,
inflation and the overall economy. This data set concerns the yields of three-
month, siz-month and twelve-month treasury bills from the secondary market
rates (on Fridays). The data consist of 2386 weekly observations. For more
details refer to Anderson and Hund, 1997).

1.2 Structure of the thesis

Part I addresses in a general manner the methods and techniques of nonpara-
metric regression modelling. Chapter 2 introduces the problem of regression
function estimation and describes important properties of regression estimates.
An overview of various paradigms to nonparametric regression is also provided.
In chapter 3 we explain a tool (identification of nonlinear structure in data)
that uses a nonlinear mapping from the d-dimensional data space to an n-
dimensional feature space. The feature space can have many more dimensions
than the data space. This is essentially the approach of support vector machines.
A simple type of mapping that is used in support vector machines is one defined
by an inner product, called a kernel function. In addition, we discuss the least



8 CHAPTER 1. INTRODUCTION

squares support vector machine and the fixed size least squares support vector
machine. In Chapter / we describe the methods (e.g., Final Prediction Error
criterion, cross validation) for performance assessment. We begin the Chapter
with a discussion of the bias-variance tradeoff. Chapter 5 discuss the approach
of resampling plans. The resampling methods replace theoretical derivations
required in applying traditional methods in statistical analysis (nonparametric
estimation of bias, variance and more general measures of error) by repeat-
edly resampling the original data and making inferences from the resamples.
The most popular data-resampling methods used in statistical analysis are the
bootstrap and jackknife.

In Part IT we consider, the problem of high-dimensional data, the het-
eroscedastic case, the general problem of estimation of probability density func-
tions, and the problem of modelling with censored data. Chapter 6 discusses
important characteristics of higher dimensional problems. For example, the
asymptotic rate of convergence decreases with increasing input dimension when
the characteristic of smoothness remains fixed (Vapnik, 1998). Therefore, one
can guarantee good estimation of a high-dimensional function only if the func-
tion is extremely smooth. However, circumventing the curse of dimensionality
can be done by impose additional assumptions (additivity) on the regression
functions. There are several ways to approach estimation of additive models.
The iterative backfitting algorithm (Hastie and Tibshirani, 1990) is used to fit
an additive model. A great deal of effort has gone into developing estimators
of the underlying regression function while the estimation of error variance has
been relatively ignored. In Chapter 7 we describe methods for error variance es-
timation. For example, an estimator based on the LS-SVM regression modelling
and an estimator based on U-statistics. In Chapter 8 a brief summary is given
of the main methods for density estimation. We explain the connection between
categorical data smoothing, nonparametric regression and density estimation.
In addition we use the LS-SVM regression modelling for density estimation.

Part ITT provides an introduction and methods of robust statistics. Roughly
speaking, robustness is concerned with the fact that many assumptions com-
monly made in statistics (e.g., normality) are at most approximations to reality.
In Chapter 9 we look at various measures of robustness (e.g., influence function,
maxbias curve, breakdown point). The most important empirical versions of the
influence function are illustrated with several examples. Based on Huber robust
theory (Huber, 1964) we calculate a family of robust loss function for LS-SVM
regression modelling. We discuss the weighted LS-SVM formulation. Empirical
influence curves and maxbias curves are calculated for a comparison between
LS-SVM regression and weighted LS-SVM. In addition we introduce a robust
version of the fixed size LS-SVM. In Chapter 10 we construct a data-driven loss
function for regression. Chapter 11 describes location estimators. Based on
these location estimators, robust counterparts of model selection criteria (e.g.,
cross validation, generalized cross validation, Final Prediction Error criterion)
are developed. Chapter 12 illustrates inference for linear parametric models
and nonparametric models. We discuss a robust method, based on external
bootstrap technique, for obtaining robust prediction intervals.
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1. Applications of LS-SVM
I Regression Modeling

I1l. Robustifying LS-SVM
Regression Modeling

Figure 1.1: Structure of the thesis.

In Chapter 13 the main results of this thesis are summarized and topics
for further research are pointed out. The structure of the thesis is shown in
Figure 1.1. It shows the sequence of chapters needed to be covered in order to
understand a particular chapter.

1.3 Contributions

The key method in this thesis is least squares support vector machines, an
example of the penalized modelling paradigm. The primal-dual representation
is considered as an additional advantage. For large data sets it is advantageous
if one solve the problem in the primal space (Suykens et al., 2002). Figure 1.2
gives a general overview of our contributions. While the main goal of the first
LS-SVM formulation was to solve an ordinary least squares problem (LS-SVM
regression and LS-SVM classification), we have used the LS-SVM regression for
density estimation.

Although local methods (kernel methods) focus directly on estimating the
function at a point, they face problems in high dimensions. The asymptotic rate
of convergence decreases with increasing input dimension when the character-
istic of smoothness remains fixed (Vapnik, 1998). Therefore, one can guarantee
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Statistical Problems
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Figure 1.2: A general overview of our contributions.

good estimation of a high-dimensional function only if the function is extremely
smooth. We have incorporated additional assumptions (the regression function
is an additive function of its components) to overcome the curse of dimension-
ality. There are several ways to approach estimation of additive models. The
iterative backfitting algorithm (Hastie and Tibshirani, 1990) was used to fit the
additive model. We have introduced a new method, componentwise LS-SVM,
for the estimation of additive models consisting of a sum of nonlinear compo-
nents (Pelckmans et al., 2004).

Model-free estimators of the noise variance are important for doing model
selection and setting learning parameters. We have generalized the idea of the
noise variance estimator introduced by Rice (1984) for multivariate data based
on U-statistics and differogram models. While the method of least squares (un-
der the Gauss-Markov conditions) enjoys well known properties, we have studied
the properties of the LS-SVM regression when relaxing these conditions. It was
recognized that outliers may have an unusually large influence on the resulting
estimate. However, asymptotically the heteroscedasticity does not play any im-
portant role. Squared residual plots are proposed to assess heteroscedasticity in
regression diagnostics.

A typical property of support vector machines (SVM) is that the solution is
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Figure 1.3: A robust framework for LS-SVM regression modelling.

characterized by a convex optimization problem, more specifically a quadratic
programming (QP) problem. But in LS-SVM’s the solution is given by a linear
system (equality constraints) instead of a QP problem (inequality constraints).
The SVM approach (Mukherjee and Vapnik, 1999) requires inequality con-
straints for density estimation. One way to circumvent these inequality con-
straints is to use the regression-based density estimation approach. We have
used the LS-SVM regression for density estimation.

We have developed a robust framework (Figure 1.3) for LS-SVM regression.
The framework allows to obtain a robust estimate based upon the previous LS-
SVM regression solution, in a subsequent step. The weights are determined
based upon the distribution of the error variables (Suykens et al., 2002). We
have shown, based on the empirical influence cure and the maxbias curve, that
the weighted LS-SVM regression is a robust function estimation tool. We have
used the same principle to obtain an LS-SVM regression estimate in the het-
eroscedastic case. However the weights are now based upon a smooth error
variance estimate.

At present, there exists a variety of loss functions (e.g., least squares, least
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absolute deviations, M-estimators, generalized M-estimators, L-estimators, R-
estimators, S-estimators, least trimmed sum of absolute deviations, least median
of squares, least trimmed squares). On the other hand, this progress has put
applied scientists into a difficult situation: if they need to fit their data with
a regression function, they have trouble deciding which procedure to use. If
more information was available, the estimation procedure could be chosen ac-
cordingly. We have proposed a method for such a situation: Given the data
the method can basically be split up into two main parts: (i) constructing a
robust nonparametric regression model and computing the residuals, and (i7)
finding the distribution of the errors via a robust bootstrap and computing the
loss function. Based on these distributions we can compute, in a maximum
likelihood sense, the loss function.

Most efficient learning algorithms in neural networks, support vector ma-
chines and kernel based methods (Bishop, 1995; Cherkassky et al., 1998; Vap-
nik, 1999; Hastie et al., 2001; Suykens et al., 2002b) require the tuning of some
extra learning parameters, or tuning parameters. For practical use, it is of-
ten preferable to have a data-driven method to select the learning parameters.
Based on location estimators (e.g., mean, median, M-estimators, L-estimators,
R-estimators), we have introduced robust counterparts of model selection crite-
ria (e.g., Cross-Validation, Final Prediction Error criterion).

Inference procedures for both linear and nonlinear parametric regression
models in fact assume that the output variable follows a normal distribution.
With nonparametric regression, the regression equation is determined from the
data. In this case, we relax the normal assumption and standard inference
procedures can not be strictly applicable. We have developed a robust approach
for obtaining robust prediction intervals by using robust external bootstrapping
methods.
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Chapter 2

Model building

A model is just an abstraction of reality and it provides an approximation of
some relatively more complex phenomenon. Models may be broadly classified
as deterministic or probabilistic. Deterministic models abound in the sciences
and engineering; examples include Ohm’s law, the ideal gas law and the laws
of thermodynamics. An important task in statistics is to find a probabilistic
model, if any, that exist in a set of variables when at least one is random, being
subject to random fluctuations and possibly measurement error. In regression
problems typically one of the variables, often called the response, output or
dependent variable, is of particular interest. The other variables, usually called
explanatory, input, covariates, regressor or independent variables, are primarily
used to explain the behavior of the response variable.

Consider the case of a quantitative output. Let X € X C R? denote a real
valued random input vector, and ¥ € )Y C R a real valued random output
variable, with joint distribution F'xy. In regression analysis one is interested to
find a measurable function f : X — ), such that f (X) is a ”good approximation
of Y. Since X and Y are random vectors, (f (X) —Y) is random as well. This
requires a loss function L (f (X),Y) for penalizing errors, and one can use the
L5 risk functional or mean squared error of f,

R(f) = E[L(f(X),V)] = E |(f (X) = V)’ (2.1)

which is to be minimized. There are two reasons for considering the Lo risk.
First, this simplifies the mathematical treatment of the whole problem. Second,
and more important, trying to minimize the Ly risk leads naturally to estimates
which can be computed rapidly. So, one is interested in a measurable function
m* : X — ), such that

m* (X) = arg_min_ B [( F(X)-v)?. (2.2)

Such a function can be obtained explicitly as follows. Let

m(z)=FE[Y|X =z], (2.3)

15
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be the conditional expectation, also known as the regression function. Thus the
best estimation of Y at any point X = z is the conditional mean, when the
best approximation is measured in mean squared error. Indeed, for an arbitrary
f:RY = R, one has

E(f(X) =m(X)) (m(X) - Y)]

= E[E[(f(X) —m(X)) (m(X) - Y)[X]]
= E[(f(X) —m(X)) E[(m(X) = Y) |X]]
= E[(f(X) —m(X)) (m(X) — m(X))]
=0

Hence,

Bl -y = [

[ (@) = m(X0))* dF (@) + B |(n(X) = ¥)*] 2

The first term is always nonnegative and is zero if f(xz) = m(x). Therefore,
m* (x) = m(z), i.e., the optimal approximation of Y by a function of X is given
by m (X).

In applications the distribution F'xy is usually unknown. Therefore it is
impossible to estimate Y using m(X). But it is often possible to observe data
according to the distribution Fxy and to estimate the regression function from
these data. In the regression function estimation problem one wants to use the
data D,, = {(z1,%1) , .-, (Zn, Yn)} in order to construct an estimate 7, : X — Y
of the regression function m. In general, estimates will not be equal to the
regression function. Several distinct error criteria, which measure the difference
between the regression function and an arbitrary estimate m,, are used: first,
the pointwise error,

d (1, m) = (1 (z) — m(z))®>  for some fixed z € X,

second, the supremum norm error,

doo (1i2n, m) = |11, — m||, = sup (11, (x) — m(x)) for some fixed set C' C R%,
zeC

and third, the L; (integrated absolute error) and Lo ( integrated squared error)
error, respectively defined as

dy (Mp,m) = /C |, (x) — m(x)| dz
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Figure 2.1: Greatest width d. (m, ). The vertical line drawn at the place
where the width is largest apart, the lenght of this arrow is do, (m, 7, ) and this
gives the distance between m and m, in C[a,b].

do (mn,m):/c(ﬁzn(z)fm(x))de,

where the integration is with respect to the Lebesgue measure, C' is a fixed
subset of R%. Another measure of the difference in 1, and m over the full range
of z is the the Hellinger distance

</C ()t - m(w)i)pdx)%

and p > 1is arbitrary. As an example, let [a,b] C R be a (nonempty) closed and
bounded interval and let 1,,, m € C'[a,b]. Figure 2.1 illustrates the meaning of
the distance function do (10, M) = SUpP,¢(4 ) [M(T) — 100 (2)|, M, 102, € C [, b]

b
and Figure 2.2 explains d; (m,, m) = / |m(x) — My, (z)| dt by the area between
a

the two curves.

Recall that the main goal was to find a function f such that the Lo risk
E|(f(X)- Y)ﬂ is small. The minimal value of this L risk is £ {(m (X) - Y)ﬂ )
and is achieved by the regression function m. One can show, given the data
Dy = {(€1,51) s (Tn,yn)}, that the Ly risk E [(mn (X) - Y)2] of an esti-
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Figure 2.2: d;y (m, ;) = area of the dashed portion.

mate m,, is close to the optimal value if and only if the Lo error

/ (i (&) — m(2))? dF () (2.5)
Rd

is close to zero. Therefore we will use the Lo error in order to measure the
quality of an estimate.

2.1 Assumptions and restrictions
We know from Section 2.1 that the regression function m satisfies
B |(m (X) = Y)*| =l B |(f (X) = ¥)*]

where the infimum is taken over all measurable functions f : X — ). This
is impossible in the regression function estimation problem, because the risk
functional to be optimized depends on Fxy.

Given empirical data D,, = {(x1,y1) , -+, (Tn, Yn)} , minimizing the empirical
L risk functional defined as

Remp () == > (f (@x) —yr)* (2.6)

k=1

S|

leads to infinitely many solutions: any function fn passing through the training
points D,, is a solution. In order to obtain useful results for finite n, one must
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"restrict” the solution to (2.6) to a smaller set of functions. Therefore one first
chooses a suitable class of functions F and then selects a function f: X — ),
where f € F,, which minimizes the empirical Lo risk functional, i.e. one defines
the estimate m,, by

S G (o) — ) = min =3 (F () — ). (27)
k=1

SN

my € F, and
n n FeFn T

Recall that the empirical data D,, = {(z1,¥1) , ..., (Tn, Yn)} can be written as
ye = m (k) + ex. (2.8)

One " assumes” that the error term e in the model has zero mean and constant
variance o2, that is, E[ey |X = 2;] = 0 and E [e;] = 0% < o0, and that the
{er} are uncorrelated random variables.

The design points 1, ..., z,, are random, typically far from beign uniformly
distributed as in the fixed design, but we ” assume” that z1, ...z, could be mea-
sured accurately and yq, ..., y, would not have the same accuracy. Otherwise,
if the x4, ...z, are measured with error the true values of 1, ...z, are unknown
and a random-regressor (errors-in-variables) model is needed.

For most systems, as represented in Figure 2.3, the input-output pairs (X,Y)
will not have a deterministic relationship yr = m (zy). Generally there will
be other unmeasurable variables ¢, ..., ¢, that also contribute to Y, including
measurement errors.

The additive error model (2.8) ”assumes” that one can capture all these
departures from a deterministic relationship via the error e.

The average Lo risk functional E [(mn — m)ﬂ = E [ () — m(x))? dF (z)
is completely determined by the distribution of the pair (X,Y’) and the regres-
sion function estimator 7,,. There exist universally consistent regression esti-
mates (e.g., kernel estimates, neural networks estimates, radial basis function
networks estimates,...), but it is impossible to obtain a nontrivial rate of con-
vergence results without imposing strong ” restrictions” on the distribution of
(X,Y), by imposing some smoothness conditions on the regression function de-
pending on a parameter 7 (e.g., m is 7 times continuously differentiable). For
classes F,, where m is 7 times continuously differentiable, the optimal rate of
convergence will be n- T

The estimation of a regression function is very difficult if the dimension of
the design variable X is large. The phenomenon is commonly referred to as the
curse of dimensionality (Bellman, 1961). There are many manifestations of this
problem, and we will examine a few here. This material is available in scattered
references (see Kendall, 1961), for example.

Optimal rate of convergence for the estimation of a x continuously differ-
entiable regression function covergence to zero rather slowly if the dimension d
of X € R? is large compared to x. The only possibility is to impose additional
” assumptions” on the regression function.
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r Model I - i
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Figure 2.3: General model. Some of the variables (1), ..., 2(®) are controllable,
whereas other variables ¢(!), ..., ¢ are uncontrollable.

2.2 Classes of restricted regression estimators

The description concerning the three paradigms in nonparametric regression
is based on (Friedman, 1991) and (Gyorfi et al., 2002). The kernel estimate
is due to (Nadaraya, 1964; 1970) and (Watson, 1964). The principle of least
squares (global modelling) is much older. For historical details we refer to (Hald,
1998; Farebrother, 1999; Stigler, 1999). The principle of penalized modelling, in
particular, smoothing splines, goes back to (Whittaker, 1923; Schoenberg, 1964;
Reinsch, 1967).

2.2.1 Parametric modelling

The classical approach for estimating a regression function is the parametric re-
gression estimation. One assumes that the structure of the regression function
is known and depends only on finitely many parameters. The linear regression
model provide a flexible framework. However, linear regression models are not
appropriate for all situations. There are many situations where the dependent
variable and the independent variables are related through a known nonlinear
function. It should be clear that in dealing with the linear and nonlinear re-
gression models the normal distribution played a central role. There are a lot
of practical situations where this assumption is not going to be even approxi-
mately satisfied. The generalized linear model was developed to allow us to fit
regression models for dependent data (y € R*,y € N or y € {0,1}) that follows
a general distribution called the exponential family.
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As an example, consider the linear regression estimation. Let F be the class of
. . . T .
linear combinations of the components of x = (x(l), e x(d)) €RY, ie.,

d
F= {m im(z) = Bo+ > _ B, Bo, ... B € R} : (2.9)
1=1
One use the data D,, = {(z1,91), ..., (Tn, yn)} to estimate the unknown param-

eters fo, ..., B4 € R, e.g. by applying the principle of least squares:

2

n d
(BO, ...,Bd) = argmin 1 Z (yk = Bo+ Zﬁzxg)> , (2.10)

BO7~~;ﬂdeR n k=1 =1
where x,(j) denotes the Ith component of z;, € R, k = 1,...,n and the estimate
is defined as

d
() = o+ Y a®. (2.11)
=1

However, parametric estimates have a drawback. Regardless of the data, a
parametric estimate cannot approximate the regression function better than
the best function with the assumed parametric structure. This inflexibility
concerning the structure of the regression function is avoided by nonparametric
regression estimates.

2.2.2 Local averaging and local modelling

An example of a local averaging estimate (kernel methods) is the Nadaraya-
Watson kernel estimate. By definition

m(z)zE[mX:x]:/ny\X (y ) dy
[ fxy(z,y)
_/yifx(z) dy, (2.12)

where fx(z), fxy(z,y) and fy|x (y|v) are the marginal density of X, the joint
density of X and Y, and the conditional density of Y given X, respectively. Let
K : R? — R be a function called the kernel function and let » > 0 be the
bandwidth or smoothing parameter. A product kernel estimate of fxy (z,y) is

s 1 T — Tg Y=Yk

=1

while a kernel estimate of fx(x) is

1 — T — T
K, [ —£).
a2 ()

fx(z) =
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Substituting into (2.12), and noting that [ K, (u)du = 1, yields the Nadaraya-
Watson kernel estimator

ZZ; ' 2”‘{6’6 (2.13)

The Nadaraya-Watson kernel estimator is most natural for data using a random
design, as in (2.12) (when the design is a random sample from some distribution
having density fx). If the design is not random, but rather a fixed set of ordered
nonrandom numbers 1, ..., Z,, the intuition of (2.12) is lost, and a different
form of kernel estimator could be considered. An estimator intended for the
fixed design case is the Gasser-Miiller kernel estimator.

The second example of local averaging is the k-nearest neighbor estimate.
For X € R?, let {(2r): Yx)) },_, be a permutation of {(x;,y)}_; such that
Hac — ZTx(1) H <. < Hx — Tr(n) H . The k-nearest neighbor estimate is defined as

) RS
it () = 2> Un()- (2.14)
=1
Here % is a weight if z; is among the k-nearest neighbors of x, and equals zero
otherwise.

Basic calculus shows that the Nadaraya-Watson kernel estimator is the so-
lution to a natural weighted least squares problem, being the minimizer Gy of

2": (v — Bo)? < xl)-

=1

The Nadaraya-Watson kernel estimator corresponds to locally approximating
m(xz) with a constant, weighting values of Y corresponding to z;’s closer to
x more heavily. This suggests fitting higher order polynomials, since a local
constant usually makes sense only over a small neighborhood. The most popular
example of a local modelling estimate is the local polynomial kernel estimate.
Let g(x,3) : R — R be a function depending on parameters 3 € R%. For each
x € R, choose values of these parameters by a local least squares criterion

3 = arg min lZ(yl—9(96175))2K(x;$l>- (2.15)

d
BER =1

2.2.3 Global modelling

Least squares estimates are defined by minimizing the empirical Lo risk func-
tional over a general set of functions F,,. This leads to a function which interpo-
lates the data and hence is not a reasonable estimate. Thus one has to restrict
the set of functions over which one minimizes the empirical Lo risk functional.
The global modelling estimate is defined as

my, (+) = arg Helg}l ln Z (k) — yr) 1 (2.16)
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and it minimizes the empirical Lo risk functional.
As an example, consider neural networks (multilayer perceptrons with one
hidden layer) regression function estimators. Given a training set D,, = {(z1,y1) ,
o (T, yn)} the parameters of the network are chosen to minimize the empirical
L5 risk functional. However, in order to obtain consistency, one restricts the
range of some of the parameters. Thus one minimizes the empirical Lo risk
functional for the class of neural networks

h h
Fo = {Zﬂzg (wfz+b)+Bo:heN, w eRY beR, Y [B] < an},
=1 =0
(2.17)
where g : R — [0, 1] is a sigmoidal function (or often tanh) and wy, ..., wy, € RY,
b1,....bp € R, By, ..., 0n € R are the parameters that specify the network and
obtain m,, € F,, satisfying

17L
£ o) = i [ 137 o) y] 219

4 2
Ifh%oo,a,beooandMAOthenEfm m (z))*>dF(z) — 0

(n — o) for all distributions of (X,Y) with E [Y?] < Lug051 and Zeger,
1995).

2.2.4 Penalized modelling

Instead of restricting the class of functions, penalized least squares estimates
explicitly adds a term to the functional to be minimized. Let r € N, A, > 0
and let the univariate penalized least squares estimate be defined as

My, () = arg min [ Z (2) — Y&)” + An Jnv(f)l, (2.19)

FeCT(®) | m

where J,,., (f) = [ (f* (u))? du and CV(R) is the set of all v times differentiable
functions f : RY — R. For the penalty term, v = 2, the minimum is achieved
by a cubic spline with knots at the z;’s. In the multivariate case, the estimate
is given by

mn() = arg min ll Z xk yk) + /\an U (f)‘| ) (220)
=1

FeWV(ra) [n

v 2
where Jno (f) = 225, iveti,.a) Jza (aflfi((};l) du is the penalty term for

the roughness of the function f : R? — R, \,, > 0 is the smoothing parameter of
the estimate and WY (R?) is the Sobolev space consisting of all functions where
weak derivatives of order v are contained in L?(R?) (Kohler and Krzyzak, 2001).
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Chapter 3

Kernel Induced Feature
Spaces and Support Vector
Machines

In this Chapter we give a short overview on the formulations of standard Sup-
port Vector Machines as introduced by Vapnik. We discuss nonlinear function
estimation by SVMs based on the Vapnik e-insensitive loss function. Next we
explain basic methods of Least Squares Support Vector Machines (LS-SVMs)
for nonlinear function estimation. Finally we discus an approach in order to
solve LS-SVM problems for function estimation in the case of large data sets.
A technique of fixed size LS-SVM is presented.

3.1 Primal and dual representation

Let X € X C R denote a real valued random input vector, and Y € Y C R a
real valued random output variable and let ¥ C R™/ denote a high-dimensional
feature space. A key ingredient of the support vector machine is the following:
It maps the random input vector into the high-dimensional feature space ¥
through some nonlinear mapping ¢ : X —W. In this space, one consider the
class of linear functions

Fo={f:fl@)=wTp@)+b:p: X -V, weR™, bcR}. (3.1)

However, even if the linear function in the feature space (3.1) generalizes well
and can theoretically be found, the problem of how to treat the high-dimensional
feature space remains. Note that for constructing the linear function (3.1) in
the feature space ¥, one does not need to consider the feature space in explicit
form. One only replaces the inner product in the feature space ¢ (z1)" ¢ (2;)
with the corresponding kernel K (xy, z;) satisfying Mercer’s condition.

25
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Theorem 7 (Mercer, 1909). Let K € L?(C), g € L*(C) where C is a compact
subset of RY and K (t,2) describes an inner product in some feature space. To
guarantee that a continuous symmetric function K has an expansion

K(t,z) = ardx (t) ok (2)
k=1

with positive coefficients ap > 0, (i.e., K(t,z) describes an inner product in
some feature space), it is necessary and sufficient that the condition

/ / K(t,2)g(t)g(z)dtdz > 0
cJC

be valid for all g € L*(C).

Assume w = Y, _, B (z1) and based on Mercer theorem, the class of linear
functions in feature space (3.1) has the following equivalent representation in
input space X :

7X={fif(ﬂf)=ZﬁkK(w,wk)+b: beR, ﬁkeR}. (3.2)

k=1

where xj, are vectors and K (z,xy) is a given function satisfying Mercer’s con-
dition.

3.2 LS-SVM regression

3.2.1 The unweighted case

Consider now the case where there is noise in the description of the functions.
Given a training set defined as D,, = {(ak,yx): zx € X,yp €YV; k=1,..,n}
of size n drawn i.i.d. from an unknown distribution Fxy according to

Yo = m(zy) + ek, k=1, ..,n, (3:3)

where e, € R are assumed to be i.i.d. random errors with Efey | X = x] = 0,
Var[ex] = 02 < 0o, m(z) € Fy is an unknown real-valued smooth function
and Elyk|x = xx] = m(zx) . Our goal is to find the parameters w and b (primal
space) that minimize the empirical risk functional
1< 2
Remp (w,0) = — > ((w" (k) +b) = vx) (34)

n
k=1

under constraint ||wl|, < a, a € R;. One can reduce the optimization problem
of finding the vector w and b € R to solve the following optimization problem

w,b,e

1 I
min J (w,e) = §wTw + 5’}/26%, (3.5)
k=1
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such that
Yk = wTQD (zk) +0+ €k, k= 1,..5n

Note that the cost function J consists of a RSS fitting error and a regulariza-
tion term, which is also a standard procedure for the training of MLP’s and is
related to ridge regression (Golub and Van Loan, 1989). The relative impor-
tance of these terms is determined by the positive real constant . In the case
of noisy data one avoids overfitting by taking a smaller v value. SVM problem
formulations of this form have been investigated independently in (Saunders et
al., 1998) (without bias term) and (Suykens and Vandewalle, 1999).

To solve the optimization problem (in the dual space) one defines the La-
grangian functional

L(w,be;a) =T (w,e) — Zak (ngo (k) + b+ ex — yk) , (3.6)
k=1

with Lagrangian multipliers ay € R (called support values). The conditions for
optimality are given by

oL n

%zoﬂw:kglakga(zk)

% =0— Z Qp = 0

9b k=1 (3.7)
oL

7:04>01k:'76k7 k:l,...,n

i

— =0—wlp(zg)+b+tex=uyr, k=1,...,n

8041C

After elimination of w, e one obtains the solution

0] 1
n b 0
L | o+l [oz ][y} (3.8)
Y

)T

with y = (y1, ...,yn)T 1, =(1, .., 1)T ya = (ag;.. an)T and Qg = o (zx)" @ (z1)
for k, 1 =1,...,n. According to Mercer’s theorem, the resulting LS-SVM model
for function estimation becomes

i () = Y 6K (,25) + b, (3.9)
k=1
)

where &, b are the solution to (3.8

1 -1
13; (Q + —In> y

B

1 1
17 <Q + In> 1,

0

&= (Q + %In)_l (y - 1nl3) . (3.11)

(3.10)
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3.2.2 Smoother matrix

In this thesis, we focus on the choice of an RBF kernel K (xy,x;; h) =
exp {— lxx — a:l||§ /hz}. Let 6 = (h,v)" and for all training data {Zr, yr}i_q,
one has

m, = Qa+1,0b

= {Q (Z—l — Z—lﬁz—l) + ﬁz—l} y
C

c

= S(0)y, (3.12)

—1
1
where ¢ = 17 (Q + —In> ln, Z=(Q+ %In)7 Jp is a square matrix with all
Y
elements equal to 1, y = (y1,...,¥»)" and m, = (M, (z1), ..., %, (2,))T. The
LS-SVM for regression corresponds to the case with fy defined by (3.12) and

SO =0z "'- 710N 51 + In g1, (3.13)
C C

Therefore, the LS-SVM for regression is an example of a linear smoother. This
is because the estimated function in (3.12) is a linear combination of the y.
The linear operator S(#) is known as the smoother matrix. Linear operators
are familiar in linear regression (least squares fitting), where the fitted values g
can be expressed as linear combinations of the output (dependent) variable y
with the elements of the matrix that involves only the observations on the input
(independent) variable u. Here the linear operator H(u) = u(u®u) " tu” is a
projection operator also known as the hat matrix in statistics. There are some
important similarities and differences between the hat matrix H(u) and the
smoother matrix S(6). Both matrices are symmetric, positive semidefinite and
the hat matrix is idempotent (S? = S) while the smoother matrix S(8)7S(6) <
S(0), (meaning that STS—S < 0 is negative semidefinite). This is a consequence
of the shrinking nature of S(#). The trace of H(u) gives the dimension of the
projection space, which is also the number of parameters involved in the fit. By
analogy one defines the effective degrees of freedom of the LS-SVM for regression
(effective number of parameters) to be

derr(0) =tr[S(9)]. (3.14)
Another important property of the smoother matrix, based on an RBF kernel,
is that the tr[S(6)] < n, except in the case (h — 0, v — o0) where tr[S(6)] — n.
3.3 Support Vector Machines

Given training data (z1,41),..., (Zn,Yn), to find an approximation of functions
of the form f(z) =Y ;_, BxK (x,xy) + b that are equivalent (in feature space)
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to the function f(z) = w”y (), one minimize the empirical risk functional in
feature space

1 n
Remp (w, ) EZ| wlp xk)—I—b)—yk‘ (3.15)
k=1

subject to the constraint ||w||, < a,, where |-|_is the Vapnik e-insensitive loss
function defined as

o _ 01 if |f(.’E) - y‘ < €,

otherwise.

This optimization problem is equivalent to the problem of finding w,b that
minimizes the quantity defined by slack variables &, &5, k=1,...,n

[Pl min Jp (w,&,¢%) =itwTw+e) ) (& +&)

w,b,&,8*
yr —wlo () —b<e+&,, k=1,..,n
such that wlo () +b—yp <e+&, k=1,..,n
&k & >0, k=1,..,n.
(3.17)
After constructing the Lagrangian functional and conditions of optimality one
obtains the following dual problem

[D]glégJD (o, " =-3 Z ar —ay) (g — o)) K (zg, @)
kl 1
-5 Z o — o) (u — af ) K (wk, 1) (3.18)
kl 1
N N
—e> (ak+ai)+ Y k(o —f)
k=1 k=1

such that Z (o — ) =0, ag, o, € [0, c]
k=1

where 0y = (o —af), k=1,...,n.

3.4 Fixed-size LS-SVM

3.4.1 Estimation in primal weight space

For large data sets it is often advantageous if one could solve the problem in the
primal space (Suykens et al., 2002). However, one would then need an explicit
expression for some nonlinear mapping ¢ : X —W. Let z, € R%, k= 1,...,n be
a random sample from an unknown distribution Fyx (x). Let C' be a compact
subset of R%, let V = L2 (C) and let M (V, V) be a class of linear operators from
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V into V. Consider the eigenfunction expansion of a kernel function

Z Xidi (x) 6 (1), (3.19)

where s < 0o, K (z,u) € V, \; € C and ¢; € V are respectively the eigenvalues
and the eigenfunctions, defined by Fredholm integral equation of the first kind

(Tés) ( /mtm ) dFy ()
= Xigi (1), (3.20)

where T € M (V, V).

One can discretize (3.20) on a finite set of evaluation points {z1,...,z,} € C
with associated weights vy, € R, k = 1,...,n. Define a quadrature method @,
necN

Qn = znjvkl/) (k) - (3.21)
k=1

Let v, = %, k =1,...,n, then the Nystrom method approximates the integral
by means of ), and determines an approximation ¢; by

1 n
i (t 5;—: (z1,t) ¢i (z1), Vt € C. (3.22)

Let t = z;, in matrix notation one obtains then

QUnxn = Un><nAn><na (323)

where Q; = K (x1, ;) are the elements of the kernel matrix, Upxrn, = (1, ..., un)
is a n X n matrix of eigenvectors of Q and A, x, is a n x n diagonal matrix of
nonnegative eigenvalues in a decreasing order. Expression (3.22) delivers di-
rect approximations of the eigenvalues and eigenfunctions for the z, € RY,
k=1,...,n points

¢i (xj) ~ \/ﬁuli)n (324)
and

Ai%

)\’i,ny (325)

S|

where J; ,, are the eigenvalues of (3.22) and \; are the eigenvalues of (3.20). Sub-
stituting (3.24) and (3.25) in (3.22) gives an approximation of an eigenfunction
evaluation in point t € C

i (t) ~ ;/ﬁ > K (k1) tgin. (3.26)
hn o
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One obtains, based on the Nystrom approximation, an explicit expression for
the entries of the approximated nonlinear mapping ¢; : X —WU :

= \/)‘774(51 (z)
1

3

K(xg,x). (3.27)

In order to introduce parsimony, one chooses as fixed size npg (nps < n)
for a working subsample. A likewise npg-approximation can be made and the
model takes the form

y(x) = w%(x) b

= sz Zuk}l ngs ka,,.’L') + b. (328)

One can solve now the following ridge regression problem in the primal weight
space with unknowns w € R"7s b € R

nFS nFs 2
mln = Z wi +y= Z (yk - Z (w;p; (zg) + b)> . (3.29)

=1

This approach gives explicit links between primal and the dual space represen-
tation.

3.4.2 Active selection of a subsample

In order to make a more suitable selection of the subsample instead of a random
selection, one can relate the Nystrom method to an entropy criterion. Let
zp € RY k=1,....,n be a set of input samples from a random variable X € R<.
The success of a selection method depends on how much information about
the original input sample 2, € R?, k = 1,...,n, is contained in a subsample
T; € R4, j=1,..,nprs (nps < n). Thus, the purpose of a subsample selection
is to extract nps (nps < m) samples from {z1,...,z,}, such that H, ., (X),
the information or entropy of the subsample becomes as close to H,(X), the
entropy of the original sample.
One estimates the density function f (x) by the kernel density estimation

fl2) = hanF:SK(:””T’“) (3.30)

nFS

where h denotes the bandwidth and the kernel K : RY — R satisfies [, K (u)du =
1. When the differential entropy (Shannon, 1948) defined by

Hs(X)=FE [f log f (:L'(l), ...,w(d))}
—/.../f(x(l),...,x(d))logf(:r(l),...,m(d))dx(l)...da:(d) (3.31)
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is used along with the kernel density estimate f (z), the estimation of the en-
tropy Hp,..s (X) becomes very complex. But Renyi’s entropy of order ¢ = 2
(also called quadratic entropy) leads to a simpler estimate of entropy Hy, .o r2 (X) .
Renyi’s entropy of order ¢ is defined as:

1
—4q

Hpqe (X) = T log/f(x(l), a2z dx D > 0,41 (3.32)
The differential entropy can be viewed as one member of the Renyi’s entropy
family, because limy_,1 Hrq (X) = Hg (X). Although Shannon’s entropy is the
only one which possesses the properties (e.g., continuity, symmetry, extremal
property, recursivity and additivity) for an information measure, the Renyi’s
entropy family is equivalent with regards to entropy maximization. In real
problems, which information measure to use depends upon other requirements
such as ease of implementation. Combining (3.30) and (3.32), Renyi’s quadratic
entropy estimator becomes

1 NFps NFs T
Hiyps,ro (X) = —log N2 p2d ZZK h
Fs k=1 I=1

L o7
One chooses a fixed size npg (nps < n) for a working set of data points and
actively selects points from the pool of training input samples as a candidate for
the working set. In the working set a point is randomly selected and replaced
by a randomly selected point from the training input sample if the new point

improves Renyi’s quadratic entropy criterion. This leads to the following fixed
size LS-SVM algorithm as introduced in (Sukens et al., 2002)

(i) Given a training set D,, = {(x1,91) , .-, (Tn, Yn)}, construct a standardized
—FEl[z]
a\:/ar[f] ’
working set Wy, ={%:%; € X;j=1,....,nps < n} C S,.

input training set S,, = {a? (X = I € X, k=1, ,n} , choose a

(ii) Randomly select a sample point * € W, and ** € S,,, swap(Z*, T**) .

If H’VIF‘S,R2 (-ila---i‘nps—l;j**) > HnFS,RQ (.fl,...i‘:,...i‘nps) then z** €
Whpe and & & Wi,o, 7 € Sp.

(iii) Calculate H,, ¢ ro (%) for the present W, ..
(iv) Stop if the change in entropy value (3.33) is small.

(v) Estimate w, b in the primal space after estimating the eigenfunctions from
the Nystrom approximation. according to (3.29).



Chapter 4

Model Assessment and
Selection

In this Chapter we describe the key methods (cross-validation and complexity
criteria) for performance assessment. We begin the chapter with a discussion of
the bias-variance tradeoff and model complexity. Finally, we give a strategy for
selecting a good learning parameter vector.

4.1 Introduction

Most efficient learning algorithms in neural networks, support vector machines
and kernel based methods (Bishop, 1995; Cherkassky et al., 1998; Vapnik, 1999;
Hastie et al., 2001; Suykens et al., 2002b) require the tuning of some extra
learning parameters, or tuning parameters, denoted here by 6. The tuning
parameter selection methods can be divided into three broad classes:

(1) Cross validation and bootstrap.

(74) Plug-in methods. The bias of an estimate of an unknown real-valued
smooth function is usually approximated through Taylor series expansions. A
pilot estimate of the unknown function is then ”plugged in” to derive an esti-
mate of the bias and hence an estimate of the mean integrated squared error.
The optimal tuning parameters minimize this estimated measure of fit. More
complete descriptions of these approaches are given in (Héardle, 1989).

(#43) Complexity criteria. Mallows’ C,, (Mallows, 1973), Akaike’s informa-
tion criterion (Akaike, 1973), Bayes Information Criterion (Schwartz 1979) and
Vapnik-Chernovenkis dimension (Vapnik, 1998).

Figure 4.1 shows the typical behavior of the test and training error, as model
complexity is varied (Bishop, 1995) and (Hastie et al., 2001). The training error
tends to decrease whenever one increases the model complexity.

However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well. In contrast, if the model is not
complex enough, it will underfit and may have large bias, again resulting in

33
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High bias Low bias
Low variance High variance
o
o
= Test sample
[}
=
S - *
=
L2
b=
1<
o
Training sample
low high

Model complexity

Figure 4.1: Behavior of test sample and training sample error as the model
complexity is varied.

poor generalization. To avoid this well-known problem, one divides the data set
Dy = {(zk,yk) : xp € X,yp € Y; k=1,...,n} into three parts: a training set
denoted by D,,, a validation set denoted by D,,, and a test set denoted by Dycs:.
The training set is used to fit the models 7, (prediction model); the validation
set is used to estimate prediction error for model selection; the test set is used
for assessment of the generalization error of the final model. The test data
are completely left untouched within the training and validation process. The
complexity criteria and cross-validation methods approximate the validation
step respectively analytically and by sample re-use methods.

As in Chapter 2, assume that the empirical training data D,, can be written
as yr = m(zy) + ex where Ee, |X =] = 0 and E [e}] = 0% < co. The
expected generalization error, based on the Lo risk functional, of m,, (z™¢") is
given by

R (a7) = B [y (2") ~ V]
= 02+ (E [ty (2") — m (a"")])°
+ E [ty (2") = E [, ("))
= 02 + bias® [, (2] + Var [y, (2™)] (4.1)
where ™" € Dyeqt. Note from (4.1), called the prediction error decomposition,

that the expected loss or risk functional of using 1, (") to predict y is the
sum of the variances of M, (") and y plus the squared bias. The variance
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of y is beyond our control and is known as the irreducible error. However, the
bias and variance of m,, (") are functions of our estimator and can therefore
potentially be reduced.

The complexity criteria estimate the generalization error via an estimate of
the complexity term and then add it to training error. In contrast, the cross-
validation and bootstrap methods, are direct estimates of the generalization
error. The tuning parameter selection methods (e.g., Cross-validation, Com-
plexity criteria) used in this thesis are described in the following sections.

4.2 Cross-validation

4.2.1 Leave-one-out cross-validation score function

Next, we will motivate the cross-validation procedure as the 6 selection rule.
Let the distance drgg (m (), M, (x;0)) denote the integrated squared error
measure of accuracy for the estimator m,, (z;6). Write

drsg (m(x),m, (x;0)) = / (m (z) — 1hy, (2:0))? g (z) da
— [w? @ g@)do+ [ @:0)g (@) do
-2 / m (z) My, (x;0) g (x) dz. (4.2)

Since the first term is independent of #, minimizing this loss is equivalent to
minimizing

Q= /mi (z;0) g (x) dx — 2/m (x) iy, (x;0) g (v) dz. (4.3)

But this cannot be realized in practice because this quantity depends on the
unknown real-valued function m (z) and ¢ (z) the density function over the
input space. The first term of (4.3) can be computed entirely from the data,
and the second term of (4.3) may be written as

Qe = [[m )i (2:6) g ) di = By v (536) 3], (4.4)

If we estimate (4.4) by n=! >} _, Y1, (z; 0), the selection rule will be a biased
estimator of dygg (m (x) , M, (x;6)). The reason for the bias in the selection rule
is that the observation yy, is used in 1, (zx; ) to predict itself. This is equivalent
to considering the apparent (resubstitution) estimate of the prediction error
(Hastie et al., 2001). There are several methods to find an unbiased estimate of
drsg (m(x) 1y, (z;0)), for example: a plug-in method, leave-one-out technique
and a modification such that bias terms cancel asymptotically. We will use here
the leave-one-out technique, in which one observation is left out. Therefore, a
better estimator for (4.4) instead of n™! Y| yprhy, (zx; ) will be
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Z n xka ) ) (45)

k=1

SM—‘

where mE{’“) (zx;0) denotes the leave-one-out estimator with point & left out

from the training. Similarly, the first term of (4.3) may be approximated by

n

Q) = % > (i (xk;e))z. (4.6)

k=1

From (4.5) and (4.6), the cross-validation function is

_ %Zn: (yk () xk;g))Q. (4.7)
k=1

The above motivation is related to some ideas of (Rudemo, 1982) and (Bowman,
1984). In the context of kernel smoothing this score function for finding the
bandwidth was proposed by (Clark, 1975). (Wahba and Wold, 1975) proposed
a similar technique in the context of spline smoothing. The least squares cross-
validated choice of 6 for the LS-SVM estimates, based on the average squared
prediction error, is the minimizer of

1 n
me’V ,g ye — T (21 0))2. (4.8)
k=1

3

4.2.2 Generalized cross-validation score function

The GCV criterion was first proposed by (Craven and Wahba, 1979) for the use
in the context of nonparametric regression with a roughness penalty. However,
(Golub, Heath and Wahba, 1979) showed that GCV can be used to solve a
wide variety of problems involving estimation of minimizers for (4.3). In the
leave-one-out cross-validation it is necessary to solve n separate LS-SVM’s, in
order to find the n models ', ™ (zg;0). From (3.12), the values of the LS-SVM

My, (xx;0) depend linearly on the data yi. We can write the deleted residuals

Yk — m%"“’ (zk; 0) in terms of y, — 1y, (zx;0) and the k-th diagonal element of

the smoother matrix S(#). The CV score function satisfies

CV(@):EX":<W)Q (4.9)
n =1 1-— Skk (0) ’ '

where 77, (25;6) is the LS-SVM calculated from the full data set {(zx, yx)}p_,
and sy (0) is the k-th diagonal element of the smoother matrix. The proof of
(4.9) is identical to the one obtained in the development of the PRESS criterion
for deciding about the complexity for parametric multivariate regression; see
(Cook and Weisberg, 1982). Assuming that tr[S(6)] < n and s;; < 1, Vi, the
basic idea of generalized cross-validation is to replace the factors 1 — sk (6) by
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their average value, 1 — n='tr[S()] . The generalized cross-validation score
is then constructed, by analogy with ordinary cross-validation, by summing
the squared residuals corrected by the square of 1 — n=1tr[S(6)] . Since 1 —
n~1tr[S(0)] is the same for all k, we obtain

1300, Uk — 1 (2130))
GOV (0) = ~ T [5(9)])2 . (4.10)

As in ordinary cross-validation, the GCV choice of the tuning parameters is
then carried out by minimizing the function GCV () over 6.

4.2.3 V-fold cross-validation score function

In general there is no reason that training sets should be of size n—1. There is the
possibility that small perturbations, when single observations are left out, make
CV (0) too variable, if fitted values m,, (x;6) do not depend smoothly on the
empirical distribution F}, or if the loss function L (y, i, (2;6)) is not continuous.
These potential problems can be avoided to a large extent by leaving out groups
of observations, rather than single observations. We begin by splitting the data
randomly into V' disjoint sets of nearly equal size. Let the size of the vth
group be m, and assume that [n/V] < m, < |[n/V] 41 for all v. For 7 real,
|n] denotes the greatest integer less or equal to 7. For each such split we apply
(4.7), and then average these estimates. The result is the V-fold cross-validation
estimate of prediction error

1% Moy
CVy_to1a (0) = Z % Z mi (yk — ™) ($k,9))2> (4.11)
k=1""

v=1

where f(*mv) represents the model obtained from the data outside group wv.
Practical experience suggests that a good strategy is to take V' = min (y/n, 10),
because taking V' > 10 may be computationally too expensive when the predic-
tion rule is complicated, while taking groups of size at least y/n should perturb
the data sufficiently to give small variance of the estimate (Davison and Hink-
ley, 1997). The use of groups will have the desired effect of reducing variance,
but at the cost of increasing bias. According to (Beran, 1984), (Serfling, 1984)

and (Burman, 1989), the bias of CVi/_ ro14 (8) = ag {(V -1t n_l}, for V.=n
(leave-one-out) the bias is of order O (n_2), but when V' is small, the bias term

is not necessarily very small. The term ag, depending on L and F,, is of order
the number of parameters being estimated. For LS-SVM, ag becomes a constant
multiplied with the number of effective parameters (see (3.14)). Therefore, if the
number of effective parameters is not small, the CVy_ ;o4 (0) is a poor estimate
of the prediction error. But the bias of CVy_ o4 (0) can be reduced by a simple
adjustment (Burman, 1989). The adjusted V-fold cross-validation estimate of
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prediction error is

CV\?ijfold (0) = CVy—pora (0) +

n

1 . Y My 1 A~ (—my) -0 2
HZ(Z‘/k — T (2330 27 n (yk — My (3 )) :

k=1 v=1 k=1

The bias of C’V“,“ijfold 0) =~ a; {(V -1t n_z} , for some constant a; depending
on L and F,. The CV‘?ijfold (0) has a smaller bias than C'Vy/_ 44 (0) and works

better asymptotically as n increases. The C’V‘ﬁijfol 4 (0) is almost as simple to
calculate, because it requires no additional LS-SVM fits.

4.3 Complexity criteria

4.3.1 Final Prediction Error (FPE) criterion, Mallows’ C,,
AIC and BIC

Let P be a finite set of parameters. For o € P, let Fg be a set of functions

Fp = {m m(z,[) = ﬂ0+251x(l), r € R? andﬂEP} (4.13)

=1

let Q,(8) € RT be a complexity term for Fz and let 772, be an estimator of m in
F3. The learning parameters are chosen to be the minimizer of a cost function

defined as

)= 237 L (oot (213 8)) + A (@n(8)) 8 (4.14)
k=1

3

where >} L(yk, M (xk; 8)) is the residual sum of squares (RSS), Q,(8) € R
is a complexity term, A\ > 0 is a cost complexity parameter and the term 62 is
an estimate of the error variance. The Final Prediction Error criterion depends
only on m,, and the data. If m,, is defined by minimizing the empirical Ly risk
over some linear vector space Fp of functions with dimension dg, then Jg(\)
will be of the form:

e Let A\ =2and Q,(a) =n"1dg

Cp(N) = %RSS +2 (%) 62, (4.15)

The Akaike information criterion (AIC) is a similar but more generally ap-
plicable estimate when a log-likelihhood loss function is used. For the Gaussian
model (with variance 02 = 62 assumed known), the AIC statistic is equivalent

to Cp.
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e Let A =logn and Q,(8) = n"'ds
1 dg\ .2
BIC(A) = —RSS + (logn) | — | 6¢
n n
e Let A =loglogn and Q,(3) = n~'dg
1 dg\ .o
Ji(A) = ERSS + (loglogn) gl Lt

which has been proposed by (Hannon and Quinn, 1979) in the context of
autoregressive model order determination.

The AIC was originally designed for parametric models as an approximately
unbiased estimate of the expected Kullback-Leibler information. For linear re-
gression and time series models, (Hurvich and Tsai, 1989) demonstrated that in
small samples the bias of the AIC can be quite large, especially as the dimension
of the candidate model approaches the sample size (leading to overfitting of the
model), and they proposed a corrected version, AICC, which was found to be
less biased than the AIC. The AICC for hyperparameter selection is given by

AICCs () = %RSS + (1 + %) 52 (4.16)

where A =1 and Q,(8) =1+ i(_dé;ﬁ.
For 0 € Q, let F,, 9 be a set of functions

Fno= {m:m(x,ﬁ), zeR? yeR™ 0e Qand i, (é) :S(é)y},
(4.17)
let @Q,(0) € RT be a complexity term for F, o and let m, be an estimator
of m in F, . For example, regression spline estimators, wavelet and LS-SVM

estimators are linear estimators , in the sense that i, (6) = S(6)y, where the
matrix S(6) is called the smoother matrix and depends on x € D,, but not on
y. Based on (Moody, 1992) and by analogy, the learning parameters are chosen

to be the minimizer of a more generalized cost function defined as

JCy(N) = %RSS+ (1 + %) 62 (4.18)

Each of these selectors depends on S(6) through its trace (tr(S(0)) < n — 2),
which can be interpreted as the effective number of parameters used in the fit.

4.3.2 Vapnik-Chervonenkis dimension

A difficulty in using (4.18) is the need to specify the number of parameters
(or complexity) used in the fit. The Vapnik-Chernovenkis theory provides an
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other measure of complexity than the effective number of parameters, and gives
associated bounds. Suppose we have a class of functions

Fop={m:m(z,8), z € R and B € A}, (4.19)

where A is some parameter vector set and consider the indicator class

Ipr = {I T (m(z,f)—7), R fecAand T € <infm(x,ﬂ),supm(x,/6’)> } .

(4.20)
The VC-dimension (Vapnik, 1998) of real-valued functions F,, 5 is defined to be
the V' C-dimension of the indicator class Zg . The V C-dimension of the class Fg
is defined to be the largest number of points that can be shattered by members
of fnﬁ.

Example 8 Let the class of functions be defined as

d
[z, 8) = o+ Zﬂl;v(l)

=1

and I (Bo + Prx —7) is the linear indicator function. The VC-dimension
of the class m(x,3) is equal to the number of parameters (d+ 1) of the set of
functions.

Example 9 Let the class of functions be defined as

f(z, ) = sin (Bz)

and I (sin (Bz) — 7) is the indicator function. This class of functions has only
one parameter, but it has infinite VC-dimension .

If one fits D,, = {(z1,91) , ---, (Tn, yn) } using a class of functions F,, 3 having
V C-dimension h, with probability (1 — «) over the training sets, the inequality

Ro (/)
R(f) <t
(1-evEm),

is valid, where

¢ (n) - a h (log (%) + 1) — log (%) 7

n

and a3 = az = ¢ = 1 (Cherkassky and Mulier, 1998). These bounds hold
simultaneously for all members of F,, 3.
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4.4 Choosing the learning parameters

Loader (1999) has studied, in the context of kernel density and kernel regression,
a wide range of smoothing parameters on both real and simulated data. The
plug-in approaches have fared rather poorly while cross-validation and AIC
produce good estimators. For practical use, it is often preferable to have a
data-driven method to select learning parameters. For this selection process,
many data-driven procedures have been discussed in the literature. Commonly
used are those based on the cross-validation criterion of Stone (Stone, 1974)
and the generalized cross-validation criterion of Craven and Wahba (1979). One
advantage of cross-validation and generalized cross-validation over some other
selection criteria such as Mallows’ C},, Akaike’s information criterion is that
they do not require estimates of the error variance. This means that Mallows’
Cp, Akaike’s information criterion require a roughly correct working model to
obtain the estimate of the error variance. Cross-validation does not require this.
The motivation behind cross-validation is easily understood, see (Allen, 1974)
and (Stone, 1974). Much work has been done on the ordinary or leave-one-out
cross-validation (Bowman, 1984) and (Hérdle and Marron, 1985). However, the
difficulty with ordinary cross-validation is that it can become computationally
very expensive in practical problems. Therefore, (Burman, 1989) has introduced
V-fold cross-validation. For more references on smoothing parameter selection,
see (Marron, 1987, 1989) and (H&rdle and Chen, 1995).

For a comparison of cross-validation with other sample re-use techniques
(e.g., bootstrap methods) see (Efron, 1982). The bootstrap procedures are
nothing more than smoothed versions of cross-validation, with some adjustments
made to correct for bias. The improvement of the bootstrap estimators over
cross-validation, in the dichotomous situation where both y and the prediction
rule are either 0 or 1, is due mainly to the effect of smoothing. In smoother
prediction problems, when y and the prediction rule are continuous, there is
little difference between cross-validation and bootstrap methods.

The strategy, for selecting a good learning parameter vector, is to choose

one (or more) of the selection criteria. The choice of which criterion to use will
depend on the situation. Table 4.1 summarizes some characteristics of a number
of situations.
If 02 is unknown and no reasonable estimate is available, GCV or cross-validation
can be used since they do not require estimation of the error variance. The use
of cross-validation will involve more computational labor than GCV. In practice
it may be feasible to compute two or more risk estimates. By computing two or
more of the measures one obtains some basis for comparison.
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0.2

Smoother
matrix

Remarks

Leave-one-out

not required

not required

High variance

low bias
V-fold-CV not required | not required lo}vﬁg\,}? rl;a;lsce
GCV not required required (*)
AIC required required
BIC required required
SRM not required | not required

Table 4.1: The strategy for selecting a good learning parameter vector. (*): For
a given data set, GCV always selects the same learning parameter vector, no
matter whether the magnitude noise is 100 or is just 0.01.



Chapter 5

The Jackknife and the
Bootstrap

Kernel based methods (e.g. Nadaraya-Watson estimator, Support Vector Ma-
chines,...) are effective methods for function estimation in a flexible nonpara-
metric way (without making assumptions about its shape). For example, pre-
diction intervals are an important approach to get an impression about the
accuracy that can be expected for a particular estimator. A classical way of
constructing prediction intervals for an unknown regression function consists of
using the limit distribution of the properly normalized difference between the
regression function and some estimator. However, the traditional approach to
statistical inference in complicated independent identically distributed (i.i.d.)
data problems (support vector machines, kernel based methods) is difficult to
mathematically analyse. The approach of resampling plans (Bootstrap, Jack-
knife, Balanced repeated replications, subsampling, ...) is a computationally
attractive alternative. A second example is the potential of the Jackknife in
obtaining empirical influence functions. The resampling methods replace theo-
retical derivations required in applying traditional methods in statistical anal-
ysis (nonparametric estimation of bias, variance and more general measures of
error) by repeatedly resampling the original data and making inferences from
the resamples. The most popular data-resampling methods used in statistical
analysis are the bootstrap (Efron, 1979) and jackknife (Quenouille, 1949; Tukey,
1958).

We begin the Chapter with a discussion of the Jacknife. Next we describe
the bootstrap as a general tool for assessing statistical accuracy and then show
how it can be used in the regression context. Bootstrap algorithms (paired
bootstrap, residual bootstrap and external bootstrap) are given in the context
of kernel regression.

43
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5.1 The Jackknife

The Jackknife estimator was introduced by (Quenouille, 1949) and named by
(Tukey, 1958). This technique’s purpose is to decrease the bias of an estimator
(the Jackknife estimator). The procedure operates as follows. Let Xi,..., X,
be a random sample of size n from an unknown probability distribution F.
Having observed values 1, ..., z,, one is interesed in some statistic T'(F’). Simple
examples are the mean p = [ @dF(z) and the variance 0? = [ (z — )2 dF (z).
Let T(Fn) be an estimator of T'(F'). Divide the random sample into r groups
of size | = I observations each. Delete one group at a time, and estimate
T(F) based on the remaining (r — 1)1 observations, using the same estimation
procedure previously used with a sample of size n. Denote the estimator of
T(F) obtained with the ith group deleted by T(F (1)), called a Jackknife statistic
(t=1,..,7). Fori=1,...,r, form pseudovalues

Ji = rT(Fy) = (r = 1) T(F), (5.1)

and consider the Jackknife estimator of T'(F') defined by

7 (1) = 130 (4T - - D T(E)

=T(F,) = (r = 1) T(Fy) (5.2)

where T(F(i)) =1y, T(F(Z-)). Note that the Jackknife estimator can be writ-
ten as A . . o

J(T(E) =T(F) + (= 1) (T(Fy) = T(Fa) ) (5.3)
which shows the estimator .J (T(ﬁn)) as an adjustment to T'(F),), with the
amount of adjustment depending on the difference between T'(F,) and T(F‘(i)).
The special case [ =1 is the most commonly used Jackknife, in which case

J (T(Fn)) = nT(F,) — (n— 1) T(Fy). (5.4)

Tukey (Tukey, 1958) suggested how the recomputed statistics T(F(i)) could
also provide a nonparametric estimate of the variance.

5.2 The Bootstrap

The bootstrap is a method for estimating the distribution of an estimator or
statistic by resampling the data. Under mild regularity conditions, the boot-
strap yields an approximation to the distribution of an estimator or statistic that
is at least as accurate as the approximation obtained from first-order asymp-
totic theory. Thus, the bootstrap provides a way to substitute computation
for mathematical analysis if calculating the asymptotic distribution of an es-
timator or statistic is difficult. The bootstrap is often more accurate in finite
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samples than first-order asymptotic approximations but does not have the al-
gebraic complexity of higher-order expansions. Thus, it can provide a practical
method for improving upon first-order approximations. An excellent introduc-
tion to the bootstrap may be found in the work of (Efron and Tibshirani, 1993).
More theoretical properties may be found in the work of (Hall, 1992) and (Davi-
son & Hinkley, 1997). Over the past decade bootstrap methods have become
widely used in statistical applications. But as with any statistical procedure, it
is important to be clear about the assumptions that underlie the validity and ac-
curacy of bootstrap calculation. There are several situations in which standard
bootstrap calculations and methods (Algorithm 1) do not give reliable answers.
In many situations correction actions is possible, by modifying the resampling
scheme or by modifying some other aspect of the method. We briefly list some
problem situations:

(). Inconsistency of bootstrap method. The combination of model, statistic
and resampling scheme may be such that bootstrap results fail to approximate
the required properties. Cases of bootstrap inconsistency include the sample
maximum (Politis and Romano, 1994), kernel estimates for densities and for
regression curves (Héardle and Bowman, 1988).

(ii). Effect of data outliers. Outliers influence not only the estimator but
also the resampling properties. Depending upon the resampling model used, an
outlier may occur with variable frequency in bootstrap samples, and the effect
of this may be hard to anticipate even if the estimator itself is not affected.

5.2.1 The bootstrap approximation

Let X = (21, ...z,) be a sample of n (i.i.d.) random variables on a probability
space (€2, A, P), where ) is a sample space (a set of observations), A is a o-field
of subsets of 2 and P is a probability distribution or measure defined on the
elements on A. P is assumed to belong to a certain collection P of distributions.
For example, interest might focus on some parameter T'(P). An estimator T}, (P)
is suggested and an estimated variance is desired, or possibly an estimator of
bias of T),(P) as an estimate of T'(P). Another goal is to construct a confidence
region for T'(P).

The problem of estimating the entire cumulative distribution function leads
to considering a random variable J (X, T'(P)), which is some functional depend-
ing on both X and T'(P). The idea is that confidence intervals could be con-
structed if the distribution of J(X,T(P)) were known. For example, an esti-

mator T,,(P) of a real-valued parameter T'(P) might be given so that a natural
choice is J(X,T(P)) = |Tn(P) —T(P)| /S,, where S, is an estimate of the
standard deviation of T}, (). For estimating the sampling distribution of T, (),
set J (X, T(P)) = T, (P).

In general, the sampling distribution of J (X, T (P)) under P is required and
is defined by

H (x,P) =Prob{J (X, T(P)) < z} (5.5)
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Based on the data X, P is estimated by some probability mechanism P. The
bootstrap approximation to the distribution of J(X,T(P)) under P is the dis-
tribution (conditional on z) of J(X*, T(P)) where X* are (i.i.d.) from P

Hyoot (1) = H(z, P) = Prob* {j(X*, T(®) <« |X} (5.6)

where Prob* {-|X } denotes the conditional probability for given X.

Usually, the explicit form for Hp,o(z) is not available and a stochastic ap-
proximation to Hpeet() is necessary, a Monte Carlo approximation to Hpeet ()
is

B
(B) (y — L
Hypor () = B Zl{j(x;,T(@))gx}a (5.7)
b=1

where Iy is an indicator function which outputs the value 1 if the event
{j(Xg‘,T(IE”)) < ;U} occurs and X, b = 1,...,B are independent bootstrap

samples from P. The bootstrap principle is illustrated in algorithm ......

Algorithm 10 (bootstrap principle).

(i) From X = (x1,...x,), calculate the estimate T,,(P).

(ii) Construct the empirical distribution, P, which puts equal mass 1/n at each
observation (uniformly random sampling with replacement).

(iii) From the selected P, draw a sample X* = (2%, ...xz*), called the bootstrap
sample.

(iv) Approximate the distribution of J,(X,T(P)) by the distribution of
J(X*,T(P))

Simulation of independent bootstrap samples and their use is usually easily
programmed and implemented (Algorithm ...). But sometimes the statistic is
very costly to compute or the procedure will be repeated many times. More
sophisticated Monte Carlo techniques exist that reduce the number of simula-
tions needed to obtain a given precision. They are discussed in books on Monte
Carlo methods, such as (Hammersley and Handscomb, 1964; Fox and Schrage,
1987; Ripley, 1987; Niederreiter, 1992). Balanced bootstrap simulation was
introduced by (Davison, Hinkley and Schechtman, 1986). Linear approxima-
tions were used as control variates in bootstrap sampling by (Davison, Hinkley
and Schechtman, 1986), a different approach was taken by (Efron, 1990). Im-
portance resampling was suggested by (Johns, 1988) and (Davison, 1988), and
was exploited by (Hinkley and Shi, 1989) in the context of iterated bootstrap
confidence intervals. (Hall and Wood, 1993) describe algorithms for balanced
importance resampling. The saddlepoint method, which eliminates the need for
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simulation, is used by (Davison and Hinkley, 1988; Daniels and Young, 1991;
Wang, 1993; DiCiccio, Martin and Young, 1992, 1994). Other methods applied
to bootstrap simulation include antithetic sampling (Hall, 1989) and Richardson
extrapolation (Bickel and Yahav, 1988). Here we will use only the bootstrap
method as introduced by (Efron, 1979).

Example 11 Consider the following example in which it is desired to estimate
the mean squared error (MSE) of a parameter. Let X = (x1,...x,) denote the
data set of N (i.i.d.) observations from an unknown distribution F and let
T, (F) be an estimator of an unknown parameter T(F). The MSE of T, (F) as
an estimator of T(F) is

MSE (T,(F)) = B (T.(F) - T(F))2 = Var (Tu(F)) + (bias (Tn(F)))2 ,
The bias of Ty(F) is defined as (5.8)

bias (Tn(F)) -y (Tn(F)> —T(F)
- /de (z, F) — T(F), (5.9)

where H (z, I') is given by (5.5) with J = T,,(F). We can substitute the unknown
F and T(F) in (5.9) by their F' and T,,(F), respectively, and obtain the bootstrap
esttmator

bias* (Tn(ﬁ)) - / wdH (asF) T (E). (5.10)

When the integral in (5.10) has no explicit form, we can use the Monte Carlo
approximation

bias|p, (Tn(ﬁ)) - / vdH p) (xF) T (F)
= %ézﬂ;,b(ﬁ) — T (F). (5.11)

The variance of T, (F) is defined as
Var (1,(F)) = / {Tn(m) _ / T, (2)dF (a:)rdF @).  (5.12)

Substituting F for F in (5.12), we obtain the bootstrap variance

Var* (Tn(F)> = / [Tn(:c) / Tn(x)dﬁ(x)rdﬁ(z). (5.13)
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B: 10 100 500 1000 2000 5000 10000
s.ep | 0.0959 | 0.1282 | 0.1291 | 0.1280 | 0.1277 | 0.1277 | 0.1275

Table 5.1: The bootstrap estimate of standard error for the sample correlation
coefficient (0.1147). A run of 100000 bootstrap replications gave the tabled
values as B increased from 10 to 10000.

When the right-hand side of (5.12) is not a simple analytic expression, we
cannot evaluate Var (Tn(ﬁ)) exactly, even if F' is known. Monte Carlo tech-

niques can be used to approximate Var (Tn(ﬁ)> numerically

2
B
b=

B
Varig (Tu(F)) = % S\ T, () - % Zl T S (F) (5.14)
1 j=

The Monte Carlo approzimation of the MSE
MSEp) (Tu(F)) = Varly (Tu(F)) + [biass) (Tn(ﬁ))r
- %XB: [734(F) - Tn(F)r. (5.15)

We can see in this theoretical example, that the bootstrap is a mizture of two
techniques: The substitution principle and the numerical approximation.

Example 12 As a second example consider the sample correlation coefficient
between two groups g1 and gs both of size n = 15. The sample correlation coeffi-
cient p = 0.7764. The textbook formula for the standard error of the correlation

a2
coefficient is (\1/43) Substituting p = 0.7764 gives a value of 0.1147. Table 5.1

n
shows the bootstrap estimate of standard error for B bootstrap replications rang-
ing from 10 to 10000.

We can look at the bootstrap data graphically, rather than relying entirely
on a single summary statistic like the standard error denoted by 5.ep. Figure
5.1 shows the histogram of p for 2000 samples of size n = 15 drawn from the
original sample.

5.2.2 Resampling schemes for regression models
Bootstrapping pairs and bootstrapping residuals

In general, there are two types of xj: deterministic 2, (fixed design) and random
xy, (random design). In the former case, the ey are assumed (i.i.d.) with mean
zero and variance o2, in the latter case, the (zx,yx) are assumed (i.i.d.) and
E ek |zx] = 0. Depending on whether or not the z; are random there are
different resampling schemes in this problem:
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bootstrap replications

Figure 5.1: Histogram of 2000 bootstrap replications of p*, from the second
example (two groups of size n = 15).

(a) . The paired bootstrap seems to be a natural procedure when the xj are
random and (xg, yx) are (i.i.d.) from an unknown multivariate distribution F. In
this case, P = F'xy and can be identified by the joint distribution of (z,yx) and
estimated by the empirical distribution function putting mass n=! to (zx,ys)-
The bootstrap data are generated from this empirical distribution F Xy -

Algorithm 13 (The paired bootstrap).

(i) The unknown probability model P was taken to be Fxvy .

(ii) The bootstrap data are generated from this empirical distribution a Xy :
probability + on (i, yi).

(ii) Calculate the bootstrap estimates 1 (xy) based on {(z, y5)}e_y -

(iv) This whole process must be repeated B times.

(b) . The bootstrap based on residuals was proposed by Efron (Efron, 1979).
The xj, are nonrandom and ey, ..., e, are (i.i.d.) from an unknown distribution
F, with zero mean. In this case, P can be identified as (m (x), F.). Let m, (xx)
denote the estimation of m (zy), then F. can be estimated by the empirical
distribution F, putting mass n~! to é, —n~! Z?Zl €;, where é;, =y — 1y, (21)
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is the k-th residual. P is now estimated by P = (1, (), F.). To generate boot-
strap data (xy,y;), we first generate (i.i.d.) data ej,...,e} from F. and then
define yi = 1y, (xr) + €}

Algorithm 14 (The bootstrap based on residuals)

(i) The unknown probability model P was taken to be yr = m(xg) + ey,
k=1,..n with ey, ..., e, independent errors drawn from some unknown
probability distribution F,.

(i) Calculate M, (x1), and the estimated errors (residuals) are é, = yi —
My, (Tk), from which was obtained an estimated version of F, : probability
1 A
S On €.

(ii) Bootstrap data {y;},_, were generated according to y; = 1, (z1) + €},
with €7, ..., e}, independent errors drawn from F, by Monte Carlo.

(w) Having generated {y;},_,, calculate the bootstrap estimates m}, () .

(v) This whole process must be repeated B times.

External bootstrap

However, the paired bootstrap generating (x},y;) from the empirical distribu-
tion Fxy of the pairs (z1,¥1), ..., (Zn,yn) works for linear models, nonlinear
models, generalized linear models and Cox’s regression model, but it does not
work for nonparametric regression models (Hardle, 1989). The bootstrap distri-
bution estimator based on (/M. —m,,) is inconsistent. A bias correction is needed
as (Hérdle and Bowman, 1988) did in the bootstrap based on residuals. Hérdle
(Hérdle, 1989) considered the application of the external or wild bootstrap. An
example where bootstrap breaks down and where wild bootstrap works is given
in (Hérdle and Mammen, 1993). Further discussions of wild bootstrap can be
found in (Liu, 1988), (Liu and Singh, 1992), (Zheng and Tu, 1988) and (Mam-
men, 1992a, 1992b). Here xy, ..., z, are deterministic or random, eq, ..., e, are
independent with mean zero and it is not assumed that they have the same
distribution.

Algorithm 15 (The external (wild) bootstrap).

(i) The unknown probability model P was taken to be yr, = m (xk) + ey, with
e1, ..., e, independent errors drawn from some unknown probability distri-
bution F,.

(ii) Calculate M, (x1), and the estimated errors (residuals) are é, = yi —
mn (ack) .
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(#i) Draw the bootstrap residuals €}, from a two-point centered distribution in
order that its second and third moment fit the square and the cubic power
of the residual éy. For instance, the distribution of éj, could be nljqe,) +
(1 =) Ijpe,) with n = 5'&5/57 a = %, b = %5 and O[5 being the
Dirac measure at x. Alternatively, one can choose €j, distributed as é;, =

2
€k (% + Z22_1) , with Z1 and Zs being two independent standard normal
random variables, also independent of éj.

(w) Having generated {y;},_,, calculate the bootstrap estimates m}, () .

(v) This whole process must be repeated B times.
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Chapter 6

LS-SVM for Regression
Estimation

Direct estimation of high dimensional nonlinear functions using a non-parametric
technique without imposing restrictions faces the problem of the curse of dimen-
sionality (Bellman, 1961). Several attempts were made to overcome this obsta-
cle, including projection pursuit regression (Friedmann and Stuetzle, 1981) and
additive regression modeling (Hastie and Tibshirani, 1990). These methods and
their extensions have become one of the widely used nonparametric techniques
as they offer a compromise between the somewhat conflicting requirements of
flexibility, dimensionality and interpretability.

In this chapter we begin our discussion of some manifestations of the curse
of dimensionality. The LS-SVM regression modeling, introduced in Chapter
3, is discussed in this context. We consider analysis-of-variance (ANOVA) de-
compositions and then introduce some structure by eliminating some of the
higher-order terms. Additive models assume only main effect terms. We de-
scribe iterative backfitting algorithms for fitting LS-SVM regression models.
We introduce a new method, componentwise LS-SVM, for the estimation of ad-
ditive models consisting of a sum of nonlinear components (Pelckmans et al.,
2004). New contributions are made in Section 6.3.

6.1 Low dimensional examples

Given a training set D,, = {(1,y1), .., (Tn,¥n)}, the problem is to estimate
the regression function on test data Diest = {(Tn+1, Ynt1) s o (Tr, Yr) } -
(1) Estimation of nonlinear regression functions. Consider the following

model

y=M+e (6.1)

]l

where z € R?. The values y,, are corrupted by noise with Normal distribution.
Figure 6.1 and Figure 6.2 show the LS-SVM regression estimation (z € R uni-

%)



56 CHAPTER 6. LS-SVM FOR REGRESSION ESTIMATION

1.2 T
- Test points
Estimated function
—— Original function

L
-15 -10 -5 o 5 10 15

Figure 6.1: The regression function and its estimation obtained from the data
(200 observations) with o = 0.1.

formly distributed in the region —15 < x < 15) corrupted by different levels
of noise. Figure 6.3 shows the LS-SVM regression estimation where z € R? is
defined on a uniform lattice on the interval [—15,15] x [—15,15].

(i) Estimation of linear regression functions. Consider the simple linear
regression model

y=L0o+pB1+e, (6.2)

where the values y; are corrupted by noise with Normal distribution with param-
eters N (0, 12). This model has one independent variable uniformly distributed
in the region 0 < =z < 1. Figure 6.4 shows the LS-SVM regression estimation
(linear kernel and RBF kernel) from 50 observations and the ordinary least
square estimator.

6.2 Curse of dimensionality

Let X be iid. distributed R%-valued random variable. If X takes values in a
high dimensional space (e.g. d is large), estimation the regression function is
difficult (Vapnik, 1998). The reason for this is that in the case of large d it is
not possible to densely pack the space of X with finitely many sample points,
even if the sample size n is very large. This fact is often referred to as the
“curse of dimensionality” (Bellman, 1961). There are many manifestations of
this problem, and we will examine a few here.

Consider a set of functions F € C* ([0, 1]d). For any function m € F the
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Figure 6.2: The regression function and its estimation obtained from the data
(200 observations) with o = 0.2.
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Figure 6.3: The regression function and its estimation obtained from the data
(120 observations) with o=0.1.
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Figure 6.4: The regression function and its estimations (LS-SVM with linear
kernel, LS-SVM with RBF kernel and ordinary least squares) obtained from the
data with o = 1.

optimal minimax rate of convergence, n-Ta (Vapnik, 1998; Gyorfi et al., 2002),
for the estimation m,, converges to zero rather slowly if the dimension d is large
compared to s. The asymptotic rate of convergence decreases with increasing
input dimension when the characteristic of smoothness remains fixed (Vapnik,
1998). Therefore, one can guarantee good estimation of a high-dimensional
function only if the function m (z) € F with s — co (extremely smooth).

6.2.1 Geometry of higher dimensions

The geometry of higher dimensions and statistical concepts is available in the
book by (Kendall, 1961), A course in the geometry of d dimensions. The book
gives numerous examples in which common statistical concepts are explained
by geometrical constructs. Some interesting consequences are:

(i) Tail probabilities of multivariate Normal. Assume the data, {z}};_, and
r;, € Re follow the standard d-dimensional normal distribution. The origin
(mode) is the most likely point and the contours of equal probability are spheres,

d
O o (—gote) a2l oS ed 6y)
i=1

where f(z) = (27r)7g exp (—%xT;v). The probability that a point is within the
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a\d | 1 3 5 7 9 10 15 20

0.01 | 0.0024 | 0.0266 | 0.1010 | 0.2379 | 0.4181 | 0.5123 | 0.8663 | 0.9803
0.02 | 0.0052 | 0.0498 | 0.1662 | 0.3484 | 0.5520 | 0.6460 | 0.9306 | 0.9930
0.05 | 0.0144 | 0.1120 | 0.3070 | 0.5407 | 0.7408 | 0.8160 | 0.9799 | 0.9989

Table 6.1: Around dimension 5 (a=0.01), the probability mass of a multivariate
Normal density starts rapidly migrating to the tails.

a% spherical contour may be computed by

Pr (% < a) =1-Pr(xj < —2loga). (6.4)

Equation (6.4) gives the probability that a random point will fall within the
tails. In Table 6.1, these probabilities are tabulated for several dimensions and
a. The consequence is that an observation in higher dimensions is more likely to
appear to be an outlier than one in lower dimensions. In a multivariate distribu-
tion whose density is the product of identical univariate densities, the relative
probability content within extreme regions becomes larger as the dimension
increases.

(#4) Given a uniformly distributed unit hypercube [0, l]d in d-dimensions.
Let zo € R? be a point of the unit hypercube and let ¢ denote a fraction of the
observations. Consider a hypercubical neighborhood A, about z, the fraction
of the volume of the observations contained in the neighborhood is given by

volume unit hypercube [—0,1]* 2 (1)
volume A, ¢

=

= (4. (6.5)
The fraction of the observations is shown in Figure 6.5. In dimension 5, to cap-
ture 1% of the observations, 9 (5,0.01) = 0.40. To form a ”local” neighborhood,
we must cover 40% of the range of each input variable.

6.2.2 Dimension reduction techniques

The estimation of a regression function is difficult if the dimension d of the input
variable = € R? is large. Circumventing the curse of dimensionality can be done
by imposing additional assumptions on the regression functions. Consider the
classical linear regression model

d
m (@) =Y fial) (6.6)

where 8 € R?. This restrictive parametric assumption can be generalized in
several ways.
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Figure 6.5: The edge length of the neighborhood hypercube needed to capture
a fraction of the volume of the observations, for different dimensions.

(¢) For additive models, one assumes that m(z) is a sum of univariate func-
tions m; : R — R applied to the components of z, i.e.,

d
m(z) = Zmi(x(i)). (6.7)

The additive model and its generalization have been investigated by (Breiman
and Friedman, 1981; Hastie and Tibshirani, 1990; Kohler, 1998). This assump-
tion will be used to simplify the problem of regression estimation.

(#4) In projection pursuit, ones assumes that m(z) is a sum of univariate
functions m; : R — R applied to projections of x onto various directions a; €
Rd

d
m(z) = Zmi(x, a;). (6.8)
i=1

Model (6.8) is an additive model, but in the derived features (z,a;). Projection
pursuit was proposed by (Friedman and Tukey, 1974) and specialized to regres-
sion estimation by (Friedman and Stuetzle, 1981). Note that a neural network
model with one hidden layer is of the same form as the projection pursuit model
(Hastie et al., 2001).

(#i1) Tree-based methods (Breiman et al., 1984) partition the input space
in regions and fit a simple model in each region. A modification of tree-based
methods is the multivariate adaptive regression splines (Friedman, 1991) and
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a variant of tree-based methods is the hierarchical mixtures of experts (Jordan
and Jacobs, 1994).

6.3 Additive LS-SVM regression modelling
6.3.1 Backfitting

There are several ways to approach estimation of additive models. The back-
fitting algorithm (Friedman and Stuetzle, 1981) and (Hastie and Tibshirani,
1990) is a general algorithm that enables to fit an additive model using any
regression-type fitting mechanism. Consider the following additive model

y=a+ Zd:mi (l'(i)) +e, (6.9)

where the errors e are assumed to be independent of the () E[e] = 0 and
the m;,7 = 1,...,d are univariate functions, one for each independent variable.
Implicit in (6.9) is the assumption that E [mi (x(i))] = 0, since otherwise there
will be free constants in each of the functions (Hastie and Tibshirani, 1990).
Based on the conditional expectation

y—a— Zmi (x(i)) ’X =20 | = m; (x(j)) , Vi=1,...d, (6.10)

i#]
the following iterative algorithm for computing all m; is given by

Algorithm 16 Backfitting algorithm. Let T : R — R be a smooth operator and
let T; [y |X = x(l)] denotes a smooth estimation of y given X = .

(i) Initialize
o 1¢ D\
a= gZyk and mggz( <>) i=1,..d (6.11)
where mH (x(l ), i = 1,...,d are fits resulting from a linear regression
[y |X =z )} .
(ii) For eachi=1,...,d, obtain

NONRON PSR e WY _ ‘ _ @
My (a: ) T | Sy —a ;mq ( ) k=1,. X =
(6.12)
and .
g (20) =m0 (29) - %;m;{; (7). (6.13)

(iii) Repeat (ii) until convergence.
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Dimension MSE R?
1 0.04322 | 0.91469
2 0.00506 | 0.90019
3 0.05280 | 0.89530
4 0.06481 | 0.87170
5 0.06571 | 0.87130
10 0.07880 | 0.84315
15 0.09417 | 0,81891
20 0.098867 | 0,80629

Table 6.2: Result of applying LS-SVM (RBF kernel) on 10.000 test data in
function of the input dimension.

6.3.2 Simulation examples
Example 1

Consider the following nonlinear regression model defined as

sin (27 [z],)

Ye = +ep, k=1,..,100 (6.14)

2m |||

where the values y;, are corrupted by noise with Normal distribution N (07 0.22)
and independent variables (1), ..., 2(19) are uniformly distributed in the region
|lz|]], < 1. Table 6.2 shows the MSE (on the test data) as a function of the

ZZ=1(yk_ﬁk)2

S ()7 & measure of fit.
k=1\¢ E

dimension and R? =1 —

Example 2

This example describes experiments with LS-SVM in estimating linear regres-
sion functions. We compare the LS-SVM (linear kernel and RBF kernel) with
ordinary least squares and additive LS-SVM (based on backfitting). Consider
the linear regression estimation from the data set D,, = {(z1,y1), -, (Zn,Yn)}
where z, € R'C and y;, € R. The regression model depends only on two coordi-
nates

10
e =22+ +03 2l + e (6.15)
=3

where the values yi are corrupted by noise with Normal distribution with pa-
rameters N (0,0.5%) and independent variables (1), ..., 210 are uniformly dis-
tributed in the region 0 < x < 1. Table 6.3 shows that the ordinary least squares,
LS-SVM (linear kernel) and backfitting LS-SVM (RBF kernel) give the same
results, which is 10% better than the LS-SVM (RBF kernel).
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Ordinary LS-SVM LS-SVM Backfitting
Least Squares (linear kernel) (RBF kernel) LS-SVM (RBF kernel)
0.0042 0.0042 0.0047 0.0042

Table 6.3: Results of comparision ordinary least squares, LS-SVM (linear kernel
and RBF kernel), and additive LS-SVM (based on backfitting).

Additive LS-SVM(RBF kernel)
LS-SVM (RBF kernel) Backfitting
Model 1 0.6881 0.3368
Model 2 0.1554 0.1172

Table 6.4: Results on test data of numerical experiments on the data sets of
example 3. Comparision of LS-SVM (RBF kernel) with additive LS-SVM (RBF
kernel).

Example 3

This example describes experiments with LS-SVM in estimating nonlinear re-
gression functions. We compare the LS-SVM (RBF kernel) to additive LS-SVM
(based on backfitting). For these regression estimation experiments we chose
the following regression functions (see Vapnik, 1998):

(7). “Model 1”7 (suggested by Friedman (1991)) considered the following
nonlinear regression function of 10 variables

10
ye = 10sin(rz(") + 20 ( 2) 0.5) +102 + 50 + 03l + e (6.16)
=5

This function depends on only 5 variables. In this model the 10 variables are
uniformly distributed in the region 0 < x < 1 and the noise is normal with
parameters N(0,12).

(1) . “Model 2” considered the following nonlinear regression function of 10
variables

ye = 10sin(rzMz <2))+20( “—05) +102 4520 +ozx tep. (6.17)

This function depends on only 6 variables. In this model the 10 variables are
uniformly distributed in the region 0 < x < 1 and the noise is Normal with
parameters N(0,12). Note that 6.17 is not an additive model. Table 6.4 shows
that backfitting LS-SVM (RBF kernel) outperforms the LS-SVM (RBF kernel).
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Figure 6.6: The L,, penalty family for p = 2,1 and 0.6.

6.3.3 Componentwise LS-SVM regression modelling
Consider the regularized least squares cost function defined as

d

I (w“%e) = %ZL (w(i)) + % En:ei, (6.18)
k=1

=1

where L(w(i)) is a penalty function and A € Rar acts as a regularization param-
eter. We denote AL (-) by Lx(+), so it may depend on A. Examples of penalty
functions include:

(i) The L, penalty function L (w®) = X ||w® Hz leads to a bridge regression
(Frank and Friedman, 1993; Fu, 1998). It is known that the Ly penalty function
results in the ridge regression. For the L; penalty function the solution is the
soft thresholding rule (Donoho and Johnstone, 1994). LASSO, as proposed
by (Tibshirani, 1996; Tibshirani, 1997), is the penalized least squares estimate
using the L; penalty function (see Figure 6.6).

(#4) When the penalty function is given by

L (w(i)) N2 (Hw(i)H1 _ /\>2]{||w<i>||1<x}

(see Figure 6.7), the solution is a hard-thresholding rule (Antoniadis, 1997).
As an example, the regularized least squares cost function with Lo penalty
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Figure 6.7: Hard thresholding penalty function.

function is given as (Suykens et al., 2002)

d n
1
min J (w;,e) = 5 Zw?wl + % Zei (6.19)
i=1 k=1

w;,b,ex
such that

d
Yp = Zw(i)Tgoi (:cg)) +b+e, k=1,...,n.
i=1

To solve the optimization problem (in the dual space) one defines the Lagrangian
functional

n d
LD, b,e; ) = T(w,e) =Y (Z w7 (o) + b+ ey - yk> .

k=1 i=1
(6.20)
oL oL oL oL
By taking the conditions for optimality 0@ 0, %= 0, Der =0, Dar =0

o \T .
and application of K* (x,(;),gcg.l)) = ¢ (x,(;)) ©; (xy)) , the dual problem is
summarized in matrix notation as

0] 17
n b 0

Tar T {_a }: [_y ] (6.21)
Y
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with y = (yy, . ,yn)T, = (1, )T, a = (ag; ...;an)T and € R™*" with
El IQ’ where chj K (ch), (z)) of all k,7 = 1,...,n. A new point

x € R? can be evaluated as

n

AkiK‘( O )+B, (6.22)

k=1 i=1

where & and b is the solution to (6.21).

The L, and the hard thresholding penalty functions do not simultaneously
satisfy the mathematical conditions for unbiasedness, sparsity and continuity
(Fan and Li, 2001). The hard thresholding has a discontinuous cost surface.
The only continuous cost surface (defined as the cost function associated with
the solution space) with a thresholding rule in the L,-family is the L; penalty
function, but the resulting estimator is shifted by a constant A\. To avoid these
drawbacks, (Nikolova, 1999) suggests the penalty function defined as

I (o) — M, 6.23
Aa (w ) — 1+a||w(’)||1’ ( . )

with @ € R . This penalty function behaves quite similarly as the Smoothly
Clipped Absolute Deviation (SCAD) penalty function as suggested by (Fan,
1997). The Smoothly Thresholding Penalty (TTP) function (6.23) improves
the properties of the L, penalty function and the hard thresholding penalty
function (see Figure 6.8), see (Antoniadis and Fan, 2001).

The unknowns a and A act as regularization parameters. A plausible value
for a was derived in (Nikolova, 1999; Antoniadis and Fan, 2001) as a = 3.7.
The transformed L; penalty function satisfies the oracle inequalities (Donoho
and Johnstone, 1994). One can plug-in the described semi-norm Ly 4 (-) to
improve the component based regularization scheme (6.19). The componentwise
regularization scheme is used for the emulation of this scheme

min J (w(i),e> = %iLk,a (w( ) %i (6.24)
i=1

(4)
w(®) beg 1

such that
yk—zw ( )+b+ek,k—1

which becomes non-convex. For practical applications, the iterative approach
is used for solving nonconvex cost-functions as (6.24) (Pelckmans et al., 2004).
The iterative approach is based on the graduated non-convexity algorithm as
proposed in (Blake, 1989; Nikolova, 1999; Antoniadis and Fan, 2001) for the
optimization of non-convex cost functions.
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Figure 6.8: The transformed L; penalty function.
Method Test Performance | Sparse components
LS-SVM (RBF kernel) 0.1110 0% recovered
Componentwise LS-SVM (6.19) 0.0603 0% recovered
STP and LS-SVM (6.24) 0.0608 100% recovered

Table 6.5: Results on test data of numerical experiments on the Friedman data
set. The sparseness is expressed in the rate of components which is selected only
if the input is relevant (100STP: Smootly thesholding penalized cost function.

6.3.4 Simulation examples
Simulation 1

To illustrate the additive model estimation method, a classical example was
constructed as in (Friedman, 1991). The data were generated according to

yr = 10sinc(z(V) + 2022 — 0.5)2 + 1027 + 52* —l—OZm +er, (6.25)

were e, ~ N(0,1), n = 100 and the input data X are randomly chosen from
the interval [0,1]!°. The described techniques were applied on this dataset and
tested on a test set. Furthermore, Table 6.5 reports whether the algorithm
recovered the structure in the data (if so, the measure is 100%).
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Figure 6.9: FExample of a toy data set consisting of four input compo-
nents (1), ..., z* where only the first one is relevant to predict the output
y =sinc (x(l)) . A componentwise LS-SVM regressor (dashed line) has good pre-
diction performance, while the L, penalized costfunction also recovers the struc-
ture iI(l )de data set as the estimated components corresponding with (), z(3)
and (¥,

Simulation 2

The data were generated according to
4
Y = sinc(a:,(cl)) + OZ x,(cl) + ex,
1=2

were ep ~ N(0,1), n = 150 and the input data 2@, 23 and 2™ are white
noise with 02 = 0.1. A componentwise LS-SVM regressor has good prediction
performance, while the L; penalized costfunction also recovers the structure in

de data set as the estimated components corresponding with 2, z(3) and z(*
Figuur (6.9).

6.4 Conclusion

The iterative backfitting algorithm for fitting LS-SVM regression is simple, al-
lowing one to choose a fitting method appropriate for each input variable. Im-
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portant is that at any stage, one-dimensional kernel regression is all that is
needed. Although consistency of the iterative backfitting algorithm is shown
under certain conditions, an important practical problem (number of iteration
steps) are still left. However the iterative backfitting algorithm (for large data
problems) fits all input variables, which is not feasible or desirable when a large
number are available. Table 6.4 shows that backfitting LS-SVM (RBF kernel)
outperforms the LS-SVM (RBF kernel).

Recently we have developed a new method, componentwise LS-SVM, for the
estimation of additive models consisting of a sum of nonlinear components (Pel-
ckmans et al., 2004). The method combines the estimation stage with structure
detection. Advantages of using componentwise LS-SVMs include the efficient
estimation of additive models with respect to classical practice, interpretabil-
ity of the estimated model, opportunities towards structure detection and the
connection with existing statistical techniques.
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Chapter 7

Error Variance Estimation
and its Application in
Regression Modelling

Model-free estimators of the noise variance are important for doing model selec-
tion and setting learning parameters. In this chapter we generalize the the idea
of the Rice estimator (Rice, 1984) for multivariate data based on U-statistics
and differogram models (Pelckmans et al., 2003). In the second part of this
chapter we study the use of LS-SVM regression in the heteroscedastic case.
Squared residual plots are proposed to assess heteroscedasticity in regression
diagnostics. Contributions are made in Section 7.1 and Section 7.2.

7.1 Homoscedastic error variance

Consider the regression problem where we have observations y, € R at design
points xj € R? for k = 1, ...,n, and the observations are assumed to satisfy

yp =m(zr) +ex, k=1,...,n. (7.1)

The ej, values are assumed to be uncorrelated random variables with zero means
and variance o2, and m : R — R a smooth function. A great deal of effort has
gone into developing estimators of the underlying regression model m while the
estimation of o2 has been relatively ignored. Estimation of o2 is also important,
it has applications to interval estimation of m (inference) and to choose the
amount of smoothing to be applied to the data. There are essentially two
different approaches to the estimation of o2 : (i) Model based estimators and
(ii) Another approach (model free estimators) to the problem of estimating o2
is to use the idea, common in time series analysis, of differencing the data to
remove local trends effects. See, for example, (Rice, 1984; Gasser et al., 1986;
Pelckmans et al., 2003).

71
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7.1.1 Model based error variance estimation

Any estimator 1, of m can be used to estimate o2 by suitably normalizing its
associated Residual Sums of Squares (RSS). See, for example, (Wahba, 1978,
1983) and (Cleveland, 1979). Consider a general class of variance estimators

0? : 2 is quadratic in the data, 62 > 0 and
V == ~92 2 . . . . . (72)
E [a } =c“ if m is a straight line
The conditions restrict the class of estimators to the form

7Ty

with y = (y1, ..., yn)T and @ is a symmetric n X n positive semi-definite matrix

(Buckley et al., 1988)
Under model (7.1),

o (m+e)T Q(m+e)

tr [Q]
(mTQm +2mTQe + eTQe)
= ) (7.4)
tr Q]
where m = (m (21),...,m(z,))" and e = (e1, ...,en)" . Hence quadratic esti-

mates of the variance are made up of three parts: a positive bias, %; a

natural estimator of o2, %, and a random perturbation, 2?;?@?5.

An estimator of the above type can be obtained using the LS-SVM regression
estimator. Recall that the LS-SVM regression estimator is of the class m, (0) =
S (0)y, with § € ©, representing some parameter vector set, and S is a smoother
matrix. For the LS-SVM regression estimator the residual sum of squares can
be written as

=yTy —mly — yTin, +mlm,

=yTy—y" ST (O)y—y"SO)y+y"ST(0)S(0)y
= yT (In ) (9))2 Y, (75)
where 7, = (M (21),...,m(x,))" . From (7.5) one can see that Q in (7.4) is
2

1
equal to (I, — S (0))”. The variance estimator, based on LS-SVM regression, is
now defined as

6% = . (7.6)




7.1. HOMOSCEDASTIC ERROR VARIANCE 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7.1: Error bars with 2 standard error bands.

7.1.2 Applications

(i) An application of inference, where 62 can be used, will be given. Con-

sider a simple example where m(X) = COSU;&%'Q)) with X ~ U0,1] and

e~N (0, 0.52) . The training sample consists of n = 200 pairs (z,yr) drawn
independently from this model. The error bars (given for some training points)
in Figure 7.1 represent the pointwise standard error of m,,, that is, the region

between 1y, (xr) £ 24/ Var [/, (xx)]. Since my,(z,0) = S (z,0) y,
Cov[thy,] = Cov [S (0) y]
= 5(0) Covly] S (6)"
= 5(0)6%1,5(6)" . (7.7)

The diagonal of the variance-covariance matrix contains the pointwise variances
at the training point .

Note that the standard error only reflects the difference between the 7, and the
mean of 1M, and not the difference between m,, and the m. The latter requires
knowledge of the training bias. To derive standard error for the prediction,
the equation (7.7), has to be modified to reflect both the additive noise in the
sample at the new point and the prediction error of the estimator.

(#4) Tuning parameter selection. Suppose, for example, that y = (y1,...,yn)" is
an n X 1 vector of observations, Xp is an n X d matrix of independent variables.
In the linear regression setting, the independent variables are related to the
response by y = Z + e, where Z = (1,, Xp) is the n x (d + 1) design matrix

)T
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including the constant term, 3 is a (d + 1) dimensional vector of parameters and
e is an n dimensional vector of errors such that E[e] = [0] and Var [e] = o2.
In the standard application of ridge regression (Hoerl and Kennard, 1970), the
constant term (intercept) of the fitted model is forced to be the mean of y by
centering all columns of the Xp matrix about their mean values. In addition, the
new independent variable columns are, typically, rescaled. The ridge regression

estimator is then given by

o _ T
Briage = (7 (AT A+ ely) " ATy) (7.8)

where A is the appropriate n x d ” Xp-matrix” after the centering and rescaling
procedure have been applied and ¢ > 0 (often called the shrinkage parameter)
Several properties of this estimator justify its consideration as an alternative
to the least squares estimator. For example, Hoerl and Kennard (1970) show
that there exists a range of ¢ values for which the total mean squared error for
the ridge estimator is smaller than the corresponding least squares quantity.
However, c¢ depends on the unknown parameters (B,;qqe and o2 and as such
cannot be determined (Thistead, 1978). Hoerl, Kennard and Baldwin (1975)
propose the use of

ds?
Cc = ATiA, (79)
B1sBLs
where BLS is a least squares parameter vector, 82 is an estimate of o2 defined

by

~ T A
(y - ZﬂLs) (y - ZﬁLs)

= T . (7.10)
Monte Carlo evaluation of some ridge estimators are given by (Wichern and
Churchill, 1977; McDonald and Galarneau, 1975; Beverley, 1980; Hoerl et al.,
1986). Setting tuning parameters in the nonparametric regression context de-
pend also on the error variance. Note that model based error variance estimators
can not be used because the estimators 52 depend on the tuning parameters,
see for example (7.6).

(#i7) Model selection. In the linear regression setting, a model selection problem
is a subset selection problem. One of the goals of subset selection procedures is
consistent selection i.e., picking the true underlying submodel with probability
tending to 1 as the sample size gets large. Let 7 be any non-empty subset of the
d independent variables. The Final Prediction Error (FPE) criterion (Akaike,
1970) can be used to estimate the prediction error and is defined as

1 d
Jr(A\) = —RSSz + A (I) O’?, (7.11)

n n
for a fixed positive value of a cost complexity parameter A\. The term o2 is
estimated by 8% (see (7.10)), the unbiased estimate of o2 under the full model
of degree d. The term RSS7 is the residual sum of squares for submodel Z and

d, is the number of independent variables in Z.
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In the nonparametric regression setting, a model selection problem consists
of two parts: (a) tuning parameter selection, and (b) subset selection. Suppose
we are only interested in tuning parameter selection. We can use a generalized
Final Prediction Error (FPE) criterion given by

Jo() = %RSS(G) A <M> o2, (7.12)

where the matrix S (é) is called the smoother matrix. Note that model based
error variance estimators can not be used because the estimators 52 depend on
the tuning parameters, see for example (7.6). Nonparametric estimates of the
error variance are a solution of this problem.

7.1.3 Model free error variance estimators

Rice (1984) and Gasser, Sroka & Jennen-Steinmetz (1986) have proposed esti-
mators of o2 based on first- and second-order differences of the y;.’s, respectively.
For example Rice suggested estimating o2 by

&2 =1 Z: Ykt1 — Uk)” - (7.13)

Gasser, Sroka & Jennen-Steinmetz has suggested a similar idea for removing
local trend effects by using

n—1
> rér (7.14)
k=2

:n—2

where € is the difference between y;, and the value at zj of the line joining
(zk—1,yr—1) and (@x4+1,Yk+1) - The ¢ are chosen to ensure that E [cié7] = o?
for all k& when the function m of (7.1) is linear. Note that one assumes that
1 < ... < Ty, T € R in both methods. Next we will generalize the idea of
(7.13) for multivariate data based on U-statistics.

U-statistic

Let X1, ..., X,, be independent observations on an unknown probability distribu-
tion function Fx. Let T(F) = f (z — E[X])? dF () be the statistic of interest.

For any unbiased estimator T'(F},) of T(F) there exists a U-statistic U, esti-
mating T'(F') based on the same n observations such that

Var [U,] < Var [T(Fn)] (7.15)

with equality if and only if U, = T(Fn) That means U-statistics are best in
variance under all unbiased estimators (Lee, 1990).
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Definition 18 (U-statistic). Let g : R' — R be a measurable and (without loss
of generality) symmetric function. The function

1
Up=U(g: X1, Xn) = e > 9(Xip,.. X3), 1<n, (7.16)

(”ll) 1<ip<...<yi<n

where Y3\ ;o i<y denotes the summation over the (7)) combinations of |

distinct elements {i1,...,41} from {1,...,n}, is called U-statistic of degree | with
kernel g.

Example 19 (i) T(F) = [ adF(x). For the kernel g(x) = x, the corresponding
U-statistic is

1 n
Up=U(g; X1, ..., X)) = 5Zx,€ (7.17)
k=1

the sample mean.

(ii) T(F) = [ (x — E[X])* dF(x). For the kernel g (x1,22) = ﬁﬂcgzﬁ =

% (x1 — x2)2 , the corresponding U -statistic is

2
Up=U(9;X1,....,. Xp) = nn—1) Z g (x4, x;)
1<i<j<n

1 n

—\2

Thn-1 Z (k= 7)
k=1

=52 (7.18)

where T = 23" 2y and s* is an unbiased estimator of T(F) = o*.
" 2=

Based on (7.13) and motivated by (7.15) a weighted U-statistic can be writ-
ten as

1

Un,v - Uv (g,yh 7yn> = m Z g(ylayj) Vlj
2/ 1<i<j<n
1 1 2
n (n _ 1) Z D) (yz y]) VZ]v (7 9)

1<i<j<n

where the random weights V;; will be based on the independent variables (;1:(1), e :c(d))
only.

Constructing weights based on density estimation

Consider the regression model as defined in (7.1). Assume that ey, ...,e, are
ii.d. with common probability distribution function F' belonging to the family

f{F:/xdF(x)O, 0</|xrdF(x)<oo}, reNpand 1 <r<4.
(7.20)
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The weights V;; are non-negative, symmetric and average to 1. Miiller, Schick
and Wefelmeyer (2003) suggested an error variance estimator given by

P LU N (R B 7]
”3*m > 5 Wi — ;) 2<ﬁ+f}>K< - J), (7.21)

1<i<j<n

where fl is defined as

= ﬁ Y K <xh%> Li=1,..,n. (7.22)

j=1.g#i

Let K : R? — R be a function called the kernel function and let A > 0 be a
bandwidth or smoothing parameter. The cross-validation principle will be used
to select the bandwidth h.

Constructing weights based on the estimated differogram

Definition 20 (Semi-variogram). Let {Zy, k € N} be a random process with
mean zZ, Var [Zx] < oo for all k € N and correlation function which only depends
on Axi; = |lx; — x4, for all i,j € N. It follows from the stationarity of the
process z1, 23, ..., that

SB[ 2)?] = o 77 (1= (i - 251,))
=n(Awzj), Vi, j, (7.23)

where o2 is the variance of the measurement observations, T2 is the variance
of the serial correlation component and h(-) is the correlation function (Diggle,
1990) and (Cressie, 1998). The function n(Ax;;) is called the semi-variogram,
and it only depends on the points () through Az;; = ||; — ;] -

In practice, the function n (Ax) is estimated from the scatter plot of the half-

squared differences @ versus the corresponding Ax;; = [|; — x|, . This
estimate is the sample semi-variogram 7 (Az;;) .

This is illustrated in Figure (7.2) for the case of exponential correlation.
Note that decreasing correlation function h(-) yield increasing semi-variograms
n (Az), with 1 (0) = o2, which converge to 02 + 72 as Az grows to infinity.

Definition 21 (Differogram). The differogram T : R — R is defined as
1
T (Azi;) = §E [Ayij Az = Azy;]  for Az — 0, (7.24)

where we define Axi; = |lx; — x5, Ayij = |lyi — y;ll, € RT which denote
the differences of two input variables and of the corresponding output variables.
Similar as in the variogram, the intercept %E [Ayij |Ax = Az;; = 0] gives the
variance of the noise.
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Figure 7.2: The semi-variogram with exponential correlation.

Differogram models based on Taylor series expansions

Consider the
one-dimensional Taylor series expansion of order r at center x; € R

Ty (2 —x;) =m(z) + Y %V(Z)m (z; — ) + 0 ((xj - Z-)’”“) . (7.25)
=1

where Vm (z) = %, V2m (z) = %ZZL, etc. for [ < 2.The rth order Taylor series
approximation of the differogram model is considered with center x; = 0 as one
is interested only in the case Az — 0. The differogram is given by

Y (Azx,a) = ag + ZalAl:c, ag, ...ar € Ry, (7.26)
=1

where the parameter vector a = (ao,al,...,ar)T € Rflis assumed to exist
uniquely. The parameter vector is enforced to be positive as the (expected)
differences should always be strictly positive. The variance function ¢ of the
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estimator can be bounded as follows

Y (Az,a) = F [(Ay - T (Ax,a) \Am)z] = (Ay —ap— ialAlx Aw)

=1

, 2
<FE (ao—i—ZalAlﬂAx) +F [(Ay\Aw)ﬂ

=1

, 2
=2 (ao + ZalAl;v> ) (7.27)

=1

where we apply the triangle inequality and the differogram model (7.24). This
bound may be rather rough, but one has to keep in mind that the function
Y (Az,a) only explains the data for Az — 0. Instead of deriving the parameter
vector a from the (estimated) underlying function m, they are estimated im-
mediately based on the observed differences Az;; and Ay;; fori <j=1,...,n.
The following weighted least squares method can be used

A . - C 2
a =arg min J (a) = ——— (Ay;; — YT (Axy,a))”, 7.28
£ i, 7 0= grme o Gus =Tyl (129

where the constant ¢ € R(j_ normalizes the weighting function such that

Z%j m = 1. The function ¥ (Axz;j,a) : Ry — Ry corrects for the het-
eroscedastic variance structure inherent to the differences. As the parameter
vector a is positive, the weighting function is monotonically decreasing and as
such represents always a local weighting function.

The differogram for noise variance estimation If the regression function
m where known, the errors ey, = yr—m (x},) were observable, the sample variance
based on the errors can be written as

62=U(gie1,....,en)

= oD L gla—e) (729

1<i<j<n

But the regression function m is unknown and we have only the data D,, =
{(z1,91) -, (Tn,yn)}. Based on the differogram, we can estimate the error
variance. As an example, let » = 0, the Oth order Taylor polynomial of m
centered at z; and evaluated at x; is given by Ty (z; — ;) = m(z;) and the
variance estimate is

= oo 2. Wi v;)? (7.30)
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where the approximation improves as z; — ;. To correct for this, one can use

a kernel g; : R2 = R
1 c
i) = = Ay ———— 31
g1 (y7y_]) ) Yij (szj> (73 )
where the decreasing weighting function V;; = m is taken from (7.27).

The constant ¢ € Rg_ is chosen such that the sum of the weighting terms are

constant 2c¢ (Z?Sj m) =mn(n — 1). The resulting variance estimator based
on (7.31) and (7.24) becomes

. 1 1 . c
b7 = nin—1) Z 3 <Ayij - ZazA%) wa) (7.32)

1<i<j<n =1

7.1.4 Simulations
Simulation 1

Consider a small simulation to study the bias and the variance of the error
variance estimators ( for small to medium sample size). The following functional

model was used:
cos (12 (x 4+ 0.2))

m(@) = z+0.2
where 2 ~ U [0,1]. The sample size was taken as n = 50, 100, 300, 700, 900 and
the noise is normal with parameters A (0,02). The results of the simulation
are described in table 7.1, table 7.2 and table 7.3 based on 10 realizations. The
third column gives the mean, the fourth the bias and the next the variance.

Figure 7.3 and 7.4 shows that the model based estimator and the model free
estimator are consistent estimators (n — oo, Var [&2] — 0).

)

Simulation 2: Noise Variance estimation and Model Selection

To randomize the design of underlying functions in the experiment, we consider
the following class of underlying functions

m() =Y aK (u,-), (7.33)
k=1

where & is an i.i.d sequence of uniformly distributed terms. The kernel is fixed
as K (x,x;) = exp (— lxk — xl||§) for any k,l = 1,...,n. Datapoints were gen-
erated as yr = m (z) + e for ¢ = 1,...,n where e; are n i.i.d samples. The
experiment compares results between using exact prior knowledge of the noise
level, a model-free estimate using the differogram and using data-driven methods
as V-fold cross-validation, leave-one-out, Mallows Cp statistic (Mallows, 1973;
De Brabanter et al., 2002). An important remark is that the method based
on the differogram is orders of magnitudes faster than any data-driven method
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o | n [ mean(6?) | bias (6°,6%) | var (6°)
0.1 | 50 | 0.10284 0.00284 0.00045
100 | 0.10183 0.00183 0.00024
300 | 0.10087 0.00087 0.00007
700 | 0.10101 0.00101 0.00003
900 | 0.10005 0.00005 0.00002
0.25 | 50 | 0.24025 0.00975 0.00273
100 | 0.25174 0.00174 0.00126
300 | 0.24648 0.00352 0.00032
700 | 0.25056 0.00056 0.00015
900 | 0.25012 0.00012 0.00013
1.0 50 0.95742 0.04258 0.06735
100 | 0.97867 0.02133 0.02275
300 | 0.97999 0.02001 0.00778
700 | 1.00343 0.00343 0.00376
900 | 1.00124 0.00124 0.00197

Table 7.1: LS-SVM estimate of the error variance: mean, bias and variance for
100 replications

o | n | mean(6?) | bias (c?,6%) | var (6%)
0.1 | 50 | 0.10216 0.00216 0.00062
100 | 0.09936 0.00064 0.00047
300 | 0.10057 0.00057 0.00009
700 | 0.10094 0.00094 0.00007
900 | 0.09935 0.00065 0.00003
0.25 | 50 | 0.24398 0.00602 0.00499
100 | 0.24756 0.00244 0.00211
300 | 0.24824 0.00176 0.00072
700 | 0.24971 0.00029 0.00035
900 | 0.25221 0.00221 0.00031
1.0 50 0.97256 0.02744 0.10880
100 | 0.98102 0.01898 0.03692
300 | 0.96707 0.03293 0.01185
700 | 1,01817 0.01817 0.00617
900 | 0.99598 0.00402 0.00337

Table 7.2: Estimate (Gasser et al., 1986) of the error variance: mean, bias and
variance for 100 replications
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o [ n [ mean(6?) | bias (c2,6%) | var (6?)
0.1 | 50 | 0.10256 0.00744 0.00055
100 | 0.10021 0.00021 0.00033
300 | 0.10040 0.00040 0.00008
700 | 0.10037 0.00037 0.00003
900 | 0.10042 0.00042 0.00002
0.25 | 50 | 0.24516 0.00494 0.00382
100 | 0.25438 0.00438 0.00158
300 | 0.24892 0.00108 0.00036
700 | 0.25235 0.00235 0.00016
900 | 0.25041 0.00041 0.00014
1.0 50 1.04489 0.04489 0.15244
100 | 1.03406 0.03406 0.03139
300 | 1.03586 0.03586 0.00981
700 | 1.02649 0.02649 0.00474
900 | 1.02173 0.02173 0.00026

Table 7.3: Estimate (based on the variogram) of the error variance: mean, bias
and variance for 100 replications
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Figure 7.3: Results (model based estimator) of the experiment based on 50
realizations for different numbers of samples.
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Figure 7.4: Results (model free estimator) of the experiment based on 50 real-
izations for different numbers of samples.

which makes it perfectly suited as a method for picking a good starting-value
for a local search based on a more powerful and computationally intensive way
to achieve good generalization. Experiments on the higher dimensional Boston
housing data (with standardized inputs and outputs) even suggest that the pro-
posed measure can be sufficiently good as a model selection criterion on its
own. For this experiment, one third of the data was reserved for test purposes,
while the remaining data were used for the training and selection of the regu-
larization parameter. This procedure was repeated 500 times in a Monte-Carlo
experiment. The kernel parameter was kept fixed in the experiments.

7.2 Heteroscedastic error variance

An excellent survey and discussion of the problems of heteroscedasticity (linear
regression) is given by Judge (Judge et al., 1980; Carroll and Ruppert, 1981;
Horn, 1981; Cook and Weisberg, 1983). One of the important assumptions of the
classical regression model is that the variance of each disturbance term e, k =
1,...,n conditional on the independent variables, is some constant F [e% \xk] =
0?2 <00, k=1,..,n.
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Differogram | 10-fold CV [ leave-one-out | C,, [ “true”
Toy example: 25 data points
mean(MSE) | 0.4385 0.3111 0.3173 0.3404 | 0.2468
s.e(MSE) 1.9234 0.3646 1.5926 0.3614 | 0.1413
Toy example: 200 data points
mean(MSE) | 0.2600 0.0789 0.0785 0.0817 | 0.0759
s.e(MSE) 0.5240 0.0355 0.0431 0.0289 | 0.0289
Boston Housing dataset
mean(MSE) | 0.1503 0.1538 0.1518 0.1522 | 0.1491
s.e(MSE) 0.0199 0.0166 0.0217 0.0152 | 0.0184

Table 7.4: Results from experiments on regularization constant tuning. The
experiment compares results when using the estimate based on the differogran
and from classical datadriven techniques as 10-fold cross-validation, leave-one-
out, Mallows Cp statistic of the hyper-parameters.

7.2.1 Error variance estimation
Detection of heteroscedasticity

Given a training set defined as D,, = {(xk,yk) cap €RY Yy €R; k=1, ,n} ,
the regression model can be represented as

Y = m(a:k) + ek, (7.34)

where the e; € R are assumed to be i.i.d. random errors e ~ N (0, 02) with
Elex |X = z] =0, Ele3 | X = x| = Varlex] = 0? < 0o and F [ege; |zg, 2] =0
for all k # [. Based on model (7.34), the LS-SVM regression estimator of m(xy,)
is

mn(xk) = Zsklyl, (735)
=1

where sy; is the klth element of the smoother matrix S. Violation of
Varlex | X = x1] = Ele? | X = x1] = 0 is called heteroscedasticity and the true
error covariance matrix can be defined as

Elee" |z] =7V, (7.36)

where e = (eq, ..., e,)T, 72 is the true scale parameter and V = diag (vy, ..., v,) .

The variance is a function of the independent variables The type of
the heteroscedastic regression model is given by

yr = m(zy) + ek, (7.37)

where vy = h(xy; 8) and the errors are assumed to be independent with
Elex |X = x] = 0. The variance function h (-) express the heteroscedasticity,
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72 is the unknown scale parameter and 3 is an unknown parameter vector. For
example, the variance may be modeled as 72h(xy; 3) = (1 + Brxk + ﬂgxi) 72,

Based on E[éy | X = x| = 0 where é, = y, — 71, (z1) and (7.36), the condi-
tional variance of the residuals given z is defined as

E[e1|X = ax] = Var[ér | X = 2]
= Var [(yx — mn(z)) |[X = 1]

(ST

=1

=Var

=Var | | vk — serve — > sy | |X = i

I#k
= (1 —spr)’ Var [y | X = x1] — Zslszar [y | X = 2]
1#k
= (1= spr) vk — Z st | T2 (7.38)

1#£k

and the conditional variance of the squared residuals given x is given by

Var [é} |zr] =2 (Var [é,]X = i ])?, k=1,...n. (7.39)
JFrom Eléy|X = xx] = 0 and (7.38), plotting é;* = 1_6;2“kk versus xy is

determined by

(7.40)

82 v,
Var e |X = ap] E[62|X = a4 = (W 2zttt o

(1- Skk-)2

The pattern of this plot is determined by E[é;2 |X = x| +V2Var [é | X = zi]
and if the second term of (7.40) is ignored, then Var [éy | X = zx| = vi. The
pattern of the squared residual plot can identify the weighting function wvy.

We present an example of a squared residual plot in assessing nonconstant
variance. Consider the following model

Y = M—i—ek, k=1,..,n, (7.41)
Ty

a one-dimensional sinc function. Errors were simulated from the normal dis-
tribution, with mean zero, variance v () 72 and 72 = 1. The true weighting
function v (zy) is |zx|. The squared residual plot (Figure 7.5) shows a noncon-
stant variance pattern.
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Figure 7.5: The data and the function (row 1). The squared (row 2) residual
plot for assessing the heteroscedasticity as vy, = exp(xg).

The variance is a function of the expected dependent variable The
type of the heteroscedastic regression model is given by

Y = m(:vk) + ek, (7.42)

where vy, = h(E [yx |X = z]; ) and the errors are assumed to be indepen-
dent with Efex |X = x| = 0. The variance function & (-) express as the het-
eroscedasticity, 72 is the unknown scale parameter and 3 is an unknown pa-
rameter vector. In this case, é; and M, (zx) are both random variables and the
joint density function must be calculated. Based on the central limit theorem
T (2r) = D1y Sy ~ N (m(xk), U;(M)) , and based on the assumption that

e ~N (0,02, ) , the joint density function of (€, 7, (2)) is given by

(é, 17m (%)) ~ N << 0 )( Var [é4] cov [éx, 1 (21,)] )72),

m(zy) cov [Ty (xg), éx]  Var [my,(zr)]
(7.43)
where
Var[éy] = Var [(yx — M (xr))]
= | (1 si)” vi — Z swvr | 7% (7.44)

1%k



7.2. HETEROSCEDASTIC ERROR VARIANCE 87

Var [, (zx)] = Var

n
Z Sklyl‘|
1=1

=D siVar [u]
=1

= Z syt (7.45)
=1
and
Ccov [mn(xk), ék] =F [mn(.rk)ék] —F [mn(.rk)] E [ék]
=F Z Sy | Yk — SkrYr — Z Sk
=1 1£k
-F Z Sklyl‘| E {yk — Spryr — Z SKIYL
=1 1k
= (Skkvk — Z silvl> 72 (7.46)
=1
and

cov [éx, T, (z1)] = cov [ (xr), éx] - (7.47)

For calculating E [é, |, (zx)] and Var [éy [, (xr)] we need the conditional

Te

density of é given g. This is a normal density with mean F [¢] 4+ p

2
T (@)
(1n(z) — E [y, (2)]) and the variance 72 (1 — p?) with —co < E [¢] < 00, —00 <
E [mp(x)] < oo and —1 < p < 1 the correlation coefficient.

Hence,

cov [my (g ), Ek]

E [éy, |[in(zx)] = E[€
i) = B[] 4 Tttt

(i (k) — m(zr))

Tl
Var [, (zr)]
_ covlinlan). &l () — ()

Var [m, ()]

(oo S )

a i syuit? (o) = m(a))
- (ﬁ - 1) (1 (ax) — miaz)) (7.48)
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and

Var [ég [, (z1)] = Var [é] (1 __(cov [ (1), é4])° )

Var [éx] Var [, (zx)]

2
S1..VE
= (1 - = 5 )vaQ.
Dol Sigvi

JFrom Var [u] = E [u] — (E [u])?, the conditional expectation of the squared
residuals given M, (xy) equals

E [} i (z1) ] = Var [é [ ()] + (B [er, [ (z1,)])? (7.49)
and the conditional variance of the squared residuals given m, (zy) is defined as
Var [é3 [ (zx)] =2 (Var (6, | X = x])?, k=1,..,n. (7.50)

In this case we plot éi versus 1My, (zy). The pattern of this plot is determined
by E[é;2|X = x| + V2Var [éx | X = x1]. The pattern of the squared residual
plot can identify the weighting function vg. As a second example, consider the
following model

cos(15(zy + 0.5))

= k=1,.. 7.51
Yk Tr 105 + ek, yeees Ty ( )

with  ~ U[0,1]. Errors were simulated from the normal distribution, with
zero mean, variance v (E [y |X = x1]) 72 and 72 = 1. The weighting function
v (Eyr | X = zx]) is exp (m (z1)) . The squared residual plot (Figure 7.6) shows
a nonconstant variance pattern.

Kernel smoothing of local variance estimates

Estimation of the local variance has been considered in the context of linear
regression with the aim of estimating optimal weights for weighted least squares
by (Carroll and Ruppert, 1982; Davidian and Carrol, 1987; Carrol et al., 1988;
Hooper, 1993; Welsh et al., 1994). Several parameter estimation methods for
dealing with heteroscedasticity in nonlinear regression are described by (Beal
and Sheiner, 1988). These include variations on ordinary, weighted, iteratively
reweighted, extended, and generalized least squares. See, for example, (Rice,
1984; Gasser et al., 1986; Pelckmans et al., 2003) for a constant variance estimate
in a nonparametric regression model.

For estimation heteroscedasticity in regression, we will use a kernel smoothed
local variance estimator. We assume that: (¢) The error variables ex, k =1,...,n
are independent, E [e;] =0, E [e}] = 02 (z) where z = (z or y) and in addition

E [|ek|2r] <M < oo, r > 1 (i) m e C®(R), and (iii) 02 (2) € C= (R).
Consider the regression model

v =02 (2) +ex, k=1,..,n (7.52)
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Figure 7.6: The data and the function (row 1). The squared (row 2) residual
plot for assessing the heteroscedasticity as vy, = exp(m(xy)).

where v, are the initial variance estimates. To obtain consistent estimators
(Miiller and Stadtmdiller, 1987), we apply the Nadaraya-Watson estimator

2 — K (5) v
62 (2) :Zz‘"(;(—(z_m)’ (7.53)

h

where K denotes the kernel function and the sequence of bandwidths A has to
satisfy h — 0, nh — oo as n — oo.

7.2.2 Estimation of the regression function

To keep things simple, consider univariate regression. The regression model is
defined as

Yk = Po + Brxk + ek, (7.54)

where Elex] =0, E {(ek)Q] =07 < oo and FE[ere)] = 0, Vk # 1. For example,

let /31 be the ordinary least squares estimator of ;. Heteroscedasticity does
not destroy the unbiasedness and consistency properties of 5’1. But Bl is no
longer minimum variance or efficient. A general approach to deriving accurate
estimates of (7 is weighted least squares. The idea behind weighted least squares
is that least squares is still a good thing to do if the target and the independent
variables are transformed to give a model with errors with constant variance. Let
B’f be the weighted least squares estimator of 8;. On average, Bf will be closer



90 CHAPTER 7. ERROR VARIANCE ESTIMATION

to the true regression coefficient than are the ordinary least squares estimates.
Hypothesis tests, such as t-test and F-tests, follow the assumed distributions
and are thus proper tools for inference. Examples can be found in (Sen and
Srivastava, 1997; Neter et al., 1990).

LS-SVM regression estimate

In order to obtain an estimate (heteroscedastic case) based upon the previous
LS-SVM solution, in a subsequent step, one can weight the error variables e =
ay /v by weighting factors ¥, . This leads to the optimization problem:

1 1 &
min J (w*,e*) = —w T w* + 5’)’219]6622 (7.55)

w* b*,e* 2
k=1

such that y, = w*T ¢ (z3,) +b* +ej, k=1,..,n. The Lagrangian is constructed
in a similar way as before. The unknown variables for this weighted LS-SVM
problem are denoted by the * symbol. From the conditions for optimality and
elimination of w*, e* one obtains the Karush-Kuhn-Tucker system:

el [5]-R] o

where the diagonal matrix V, is given by V., = diag {#, e # } The weights

1

, k=1,..,n, (7.57)
are determined based upon the smoothing error variance estimator (7.53). Using
these weightings one can correct for heteroscedasticity. This leads us to the
following algorithm:

Algorithm 22 (heteroscedastic LS-SVM).

1. Given training data D = {(x1,91) .., (Tn,Yn)}, find an optimal (h,~y)
combination (e.g., by cross-validation, FPE criterion) by solving linear systems
(Chapter 3, (5.8)).

2. Estimate the variance and determine the weights 9 = %

3. Solve the weighted LS-SVM (7.56).

7.2.3 Simulations

In these examples we illustrate the method of weighted LS-SVM (heteroscedastic
case).

Simulation 1

Consider the following model

Y = Smggix’“) Yen, k=1,..n, (7.58)
k
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Figure 7.7: Both estimated regression functions (dashed line) and (doted line)
were obtained from the heteroscedastic LS-SVM regression fit and from the
LS-SVM regression fit respectively. Errors were simulated from the normal
distribution, with mean zero, variance w (z) o3 and 03 = 1. The weighting
function v (zy) is 0.52% + 0.1.

a one-dimensional sinc function. Errors were simulated from the normal distri-
bution, with mean zero, variance w (zy) 02 and o3 = 1. The weighting function
v (xg) is 0.5:10% +0.1. Figure 7.7 shows the results from unweighted and weighted
LS-SVM.

The weighted LS-SVM resulted in a test set MSE of 0.0739, which was an
improvement over the unweighted LS-SVM test set MSE of 0.1273.

Simulation 2

As a second example, consider the following model

cos(15(x + 0.5))
zr + 0.5

Yk =

ten, k=1,..n, (7.59)

with  ~ U[0,1]. Errors were simulated from the normal distribution, with
mean zero, variance v () os and o2 = 1. The weighting function v (zy) is
223 + 0.4. Figure 7.8 shows the results from unweighted and weighted LS-SVM.
The weighted LS-SVM resulted in a test set MSE of 0.0932, which was an
improvement over the unweighted LS-SVM test set MSE of 0.3617.
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Figure 7.8: Both estimated regression functions (dashed line) and (doted line)
were obtained from the heteroscedastic LS-SVM regression fit and from the
LS-SVM regression fit respectively. Errors were simulated from the normal
distribution, with mean zero, variance v (zx) 03 and o = 1. The weighting
function v (zy) is 223 + 0.4.
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7.3 Conclusions

We proposed a non-parametric data analysis tool for noise variance estimation
towards a machine learning context. By modelling the variation in the

data for observations that are located close to each other, properties of the data
can be extracted without relying on an explicit model of the data. These ideas
are translated by considering the differences of the data instead of the data itself
in the so-called differogram cloud. A model for the differogram can be inferred
for sufficiently small differences. By deriving an upper bound on the variance
of the differogram model, this locality can be formulated without having to
rely explicitly on a hyper-parameter as the bandwidth. Furthermore, a number
of applications of modelfree noise variance estimators for model selection and
hyper-parameter tuning have been given.

While the method of least squares (under the Gauss-Markov conditions)
enjoys well known properties, we have studied the properties of the LS-SVM
regression when relaxing these conditions. It was recognized that outliers may
have an unusually large influence on the resulting estimate. However, asymptot-
ically the heteroscedasticity does not play any important role. Squared residual
plots are proposed to assess heteroscedasticity in regression diagnostics.
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Chapter 8

Density estimation

In this chapter we give a survey of parametric and nonparametric density esti-
mation. We briefly discuss some methods for choosing the smoothing parameter
in the kernel density estimator. Next, we discuss the regression view of den-
sity estimation. Finally, we apply LS-SVM regression modelling in the case of
density estimation. Contributions are made in Section 8.3 and Section 8.5.

8.1 Introduction

In many cases, one wishes to make inferences only about some finite set of
parameters, such as the mean and variance, that describe the population. In
other cases, one wants to predict a future value of an observation. Sometimes,
the objective is more difficult: one wants to estimate a function that charac-
terizes the distribution of the population. The cumulative distribution function
(cdf) or the probability density function (pdf) provides a complete description
of the population, so one may wish to estimate these functions. Although the
cdf in some ways is more fundamental in characterizing a probability distribu-
tion (it always exists and is defined the same for both continuous and discrete
distributions), the probability density function is more familiar and important
properties can be seen more readily from a plot of the pdf than from the plot
of the cdf.

In the simpler cases of statistical inference, one assumes that the form of the
pdf is known and that there is a finite dimensional parameter vector that char-
acterizes the distribution within the assumed family. The normal distribution is
a good model for symmetric, continuous data. For skewed data, the lognormal
and gamma distributions often work very well. Discrete data are often modelled
by the Poisson or binomial distributions. Distributions such as these are families
of distributions that have various numbers of parameters to specify the distri-
bution completely. A standard way of estimating a probability density function
is to identify appropriate characteristics, such as symmetry, modes, range, etc.,
choose some well-known parametric distribution that has those characteristics,

95
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and then estimate the parameters of that distribution. For example, if the pdf
of interest has a finite range, a beta distribution may be used to model it, and
if it has an infinite range at both ends, a normal distribution, a Student’s ¢
distribution, or a stable distribution may be a useful approximation. Rather
than trying to fit an unknown pdf to a single parametric family of distributions,
it may be better to fit it to a finite mixture of densities. (Priebe, 1994) describes
an adaptive method of using mixtures to estimate a pdf. (Solka et al., 1995)
describe visualization methods for selection of the mixture estimator. (Everitt
and Hand, 1981) provide a general discussion of the use of finite mixtures for
representing distributions. (Roeder and Wasserman, 1997) describe the use of
mixtures in Bayesian density estimation.

In a non-parametric approach, no assumptions or only weak assumptions,
are made about the form of the distribution or density function. These assump-
tions may only address the shape of the distribution, such as an assumption of
unimodality or an assumption of continuity or other degrees of smoothness of the
density function. The estimation problem is much more difficult and the estima-
tion problem may be computationally intensive. A very large sample is usually
required in order to get a reliable estimate of the pdf. Starting from the defini-
tion of a pdf, a class of density estimators (e.g., histograms, Nadaraya-Watson
kernel estimators, nearest neighour methods, variable Nadaraya-Watson kernel
estimators and orthogonal series estimator) are defined. Apart from the his-
togram, the Nadaraya-Watson kernel estimator is the most commonly used es-
timator and is the most studied mathematically (Rosenblatt, 1956) and (Parzen,
1962). The variable kernel method is related to the nearest neigbour class of
estimators and is a method which adapts the amount of smoothing to the local
density of the data. Orthogonal series density estimators, or projection esti-
mators, introduced by (Cencov, 1962), are smoothers of the empirical density
function. The local nature of wavelet functions promises superiority over pro-
jection estimators that use classical orthonormal bases (Fourier, Hermite, etc.).
The wavelet estimators are simple and share a variety of optimality properties.
The estimation procedures fall into the class of so-called projection estimators.
For a critical discussion of the advantage and disadvantages of wavelets in den-
sity estimation see (Walter and Ghorai, 1992). A theoretical overview of wavelet
density estimation can be found in (Hédle et al., 1998). The methods discussed
so far are all derived in an ad hoc way from the definition of a density. A survey
of density estimation based on a standard statistical technique, the maximum
likelihood, is given next.

In their pioneering article, (Good and Gaskin, 1971) introduced the idea
of maximum penalized likelihood density estimation. The idea is to minimize
a penalized minus log likelihood functional. The log likelihood dictates the
estimate to adapt to the data, the roughness penalty counteracts by demanding
less variation in the density function, and the smoothing parameter controls the
tradeoff between the two conflicting goals. The use of penalty has a long history,
which may trace back to (Whittaker, 1923) and (Tikhonov, 1963); see (Wahba,
1990) for a review.

The method of sieves was introduced by (Grenander, 1981) and studied by
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many authors including (Geman and Hwang, 1982; van de Geer, 1993, 1996;
Shen and Wong, 1994; Wong and Shen, 1995; Birgé and Massart, 1998). The
idea of sieves is to restrict the minimization in the maximum likelihood problem
to classes of smooth densities. There are two kind of sieves. One kind is ob-
tained by considering finite-dimentional subspaces of L' (R), and then the sieve
consists of all pdfs in a particular subspace. The other kind of sieve is obtained
by considering compact subsets of L' (R). Examples of sieves are: Gaussian
mixture sieve (Genovese and Wasserman, 2000) and the class of beta mixtures
defined by Bernstein polynomials (Ghosal, 2001).

There are various semi-parametric approaches in which, for example, para-
metric assumptions may be made only over a subset of the range of the distri-
bution and non-parametric assumptions for others. Local likelihood was intro-
duced by (Tibshirani and Hasti, ) as a method of smoothing by local polynomials
in non-Gaussian regression models. An extension of these local likelihood meth-
ods to density estimation can be found in (Loader, 1996) and (Hjort and Jones,
1996). The idea is, that around each given data point one define the local log
likelihood. The local polynomial approximation assumes that the logarithm of
the density function can be well approximated by a low-degree polynomial in a
neighborhood of the fitting point.

A number of parametric methods, using neural networks, have been proposed
in the literature. For example, (Traven, 1991; Bishop and Legleye, 1995; Miller
and Horn, 1998). Neural network methods for density estimation based on
approximating the distribution function can be found in (Magdon-Ismail and
Atiya, 2002).

Another class of probability density function estimators based on Support
vector methods (SVM) are proposed by (Mukherjee and Vapnik, 1999). While
the structure of the Nadaraya-Watson kernel density estimator can be too com-
plex, the support vector approach provides a sparse estimate of a density and
therefore a reduced computational cost.

8.2 Survey of density estimation

Suppose that X1, ..., X,, are random variables that are independent and identi-
cally distributed according to some probability distribution function F', where
F € F, a family of probability distribution functions and probability density
function f. The probability density function (pdf), which has the properties
that f(x) >0, f is piecewise continuous and ffooo f(x)dx =1, is defined as

F(z)= /f fw)du, (8.1)

The problem is to construct a sequence of estimators f,, () of f(z) based on the
sample z1,...,2,. Because unbiased estimators do not exist for f (Rao, 1983),
one is interested in asymptotically unbiased estimators f, (z) such that

lim Efcr, {fn (x)} = f(x), V.

n— oo



98 CHAPTER 8. DENSITY ESTIMATION

Starting from the definition of a pdf, a class of density estimators (e.g.,
histogram estimator, kernel estimator, orthogonal series estimator, wavelets)
are defined. Let W (z,x) be a function of two arguments, which will satisfy the
conditions [*° W (z,x)dz = 1 and W (z,2) > 0, V z,2. An estimate of the
density underlying the data can be obtained by putting

Fula) = %Zwm,@. (8.2)
k=1

For example, the kernel estimate can be obtained by putting W (z, z) = %K (’” ==
and the Parzen kernel density estimator is defined as

Folz) = %’éK (x _hx’“) (8.3)

where K is some chosen unimodal density, symmetric about zero.

The variable kernel method is related to the nearest neigbour class of es-
timators and is a method which adapts the amount of smoothing to the local
density of the data. Define Aj; to be the distance from xj, to the Ith nearest
point in the set D(—%) = {1, ey Tr—1,Tf41, ..., Tn} and let I € Ny. The variable
kernel estimate with smoothing parameter h is defined by

. 1 "1 T — Tp

The window width of the kernel placed on the point Zj is proportional to Ay
so that data points in regions where the data are sparse well have flatter kernels
associated with them. For any fixed [, the overall degree of smoothing will
depend on the parameter h.

The methods discussed so far are all derived in an ad hoc way from the
definition of a density. A survey of density estimation based on a standard
statistical technique, the maximum likelihood, is given in the next Subsections.

8.2.1 Maximum likelihood estimation
Parametric maximum likelihood estimation

When the density f on a domain H is known to belong to a finite dimensional
parametric family F = {f(z;0) : 6 € ©} described by a (low dimensional) pa-
rameter belonging to the set of all possible parameters ©. Then, there exists
a fp € O such that f(z) = f(z;6p), —o0 < x < oo. The standard method
for estimating 6y is by maximum likelihood estimation (Fisher, 1922). Note
that a parametric approach puts rigid constraints on the estimator. Rather
than maximizing the likelihood itself, the estimation problem (under reasonable
conditions) is equivalent to

min — [, log f(z;0)dF,(x)

st. 0 €0 (8.5)
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where ), (x) is the empirical distribution function. There are other methods for
estimating 6, such as the method of moments, the method of maximal spacing
and quantile regression. A choice of 8y, based on least squares estimation, would
minimize [, (f(z;0) — f())? dz. Because f(z) is unknown, the least squares
estimator of the parameter 6 is the solution to

;n;ne—zgf(x,ﬁ)an(fc) + fp (f(:0))” dx (8.6)

Non-parametric maximum likelihood estimation

When a parametric form is not available, a naive maximum likelihood estimator
without any nonintrinsic constraint is a sum of delta function spikes at the
sample points, which apparently is not an appealing estimator when the domain
‘H is continuous. The maximum likelihood solution or least squares solution for
f is then given by a histogram (Thompson and Tapia, 1990). An alternative is
to spread out the point masses to obtain the Nadaraya-Watson kernel density
estimator. To incorporate the information that the solution of

min — [; log f(z)dF),(z)
s.t. f is a continuous pdf

should be a smooth pdf is done by the method of mazimum penalized likelihood
estimation, the method of local parametric non-parametric maximum likelihood
estimation and the method of sieves (Grenander, 1981).

In their pioneering article, (Good and Gaskin, 1971) introduced the idea of
mazimum penalized likelithood density estimation. The idea is to minimize a
penalized minus log likelihood functional

min — [ log f(2)dFy(x) + hT ()
s.t. f is a continuous pdf,

(8.7)
2
where the J (f) = f_oooo (%\/f(x)) dz is a roughness penalty and h is called

a smoothing parameter. The log likelihood dictates the estimate to adapt to
the data, the roughness penalty counteracts by demanding less variation in f,
and the smoothing parameter controls the tradeoff between the two conflicting
goals. The penalized version of least squares is defined by

min =2 [, f(z)dE, () + [ (f(2))* dz + hJT (f) (8.8)

s.t. f is a continuous pdf,

with the choice of J (f) = [7 (%f(x)f dx, the solution of (8.8) satisfies the
boundary value problem

—h2L (f(2) + f(z) = dE,(z), —o0<x< o0
f(x) =0 for |z| — oo,
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and is given by the density function f(z) = [, K (%52) dF,(z), where K (z, 2) =

h
% exp (—%) is the scaled, two-sided exponential kernel (see Courant and

Hilbert, 1953). The use of penalty has a long history, which may trace back to
(Whittaker, 1923) and (Tikhonov, 1963); see (Wahba, 1990) for a review.

Local likelihood was introduced by (Tibshirani and Hasti, ) as a method
of smoothing by local polynomials in non-Gaussian regression models. This
procedure is designed for non-parametric regression modelling such as logistic
regression and proportional hazards models. An extension of these local likeli-
hood methods to density estimation can be found in (Loader, 1996) and (Hjort
and Jones, 1996). The idea is, that around each given z, one defines the local
log likelihood to be

log(L(:0)) = /

R

= %ZK (;v _hzk) log f(zk;0) —/
k=1

R

K (1: ; Z) [1og f(z:0)dE,(z) — f(z;@)dz]

K (x - Z) F(2:0)dz, (8.9)

where F),(z) is the empirical distribution function, K is a suitable non-negative
weighting function and h is the bandwidth. The local polynomial approximation
assumes that log f(z) can be well approximated by a low-degree polynomial in
a neighborhood of the fitting point z. With this approximation, the local log
likelihood estimator of the parameter 6 is the solution to

min — [, K (%) [log f(z:0)dF, () — f(z;@)dz] (8.10)
s.t. f is a continuous pdf.

. noope(emE
For example, a local constant fitting , (8.10) gives f,(z) = J}((—W’ which
R h

is the kernel estimate introduced by (Rosenblatt, 1956) and (Parzen, 1962).

The sieves method was introduced by (Grenander, 1981) and studied by
many authors including (Geman and Hwang, 1982; van de Geer, 1993, 1996;
Shen and Wong, 1994; Wong and Shen, 1995; Birgé and Massart, 1998). Con-
sider the following set of functions

v (Q) &

{§ : Q — R measurable : €11, < oo},

for a given domain 2 C R and a positive number p € [1,00]. The idea of sieves
is to restrict the minimization in the maximum likelihood problem to classes
of smooth densities. There are two kind of sieves. One kind is obtained by
considering finite-dimentional subspaces of L' (R), and then the sieve consists
of all pdfs in a particular subspace. The other kind of sieve is obtained by
considering compact subsets of L! (R). For example, let g € L? (R) then g2 €
L' (R), a simple example of sieves is when one have a nested sequence of finite-
dimentional subspaces of subspaces of L? (R)

Y,C..CYT,CL*R),
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which is dense in L? (R). An exponential family of densities is given by

f(z)=go(x)exp (¢ (x)), —o00 <z < 00,

where gg is some fixed pdf and ¢ € T,,. The minimization problem may then
be formulated by

min—ngp(x) dF,(z) (8.11)
st. o € Yoy, and [ go (z) exp (¢ (2)) dz = 1.
Remark that estimation by the method of sieves reveals that the dimension of
the subspaces T,, plays the role of the smoothing parameter. Other sieves are
for example, Gaussian mixture sieve (Genovese and Wasserman, 2000) and the
class of beta mixtures defined by Bernstein polynomials (Ghosal, 2001).

8.2.2 Support Vector Method for density estimation

The SVM approach (Mukherjee and Vapnik, 1999) considers the problem of
pdf estimation as a problem of solving (8.1) where instead of F'(z) one uses a
plug-in estimator F}, (z), the empirical distribution function. Solving T'f = F'
with approximation F), (x) is an ill-posed problem. Methods for solving ill-posed
problems where proposed by (Tikhonov, 1963) and (Philips, 1962). Solving (8.1)
in a set of functions belonging to a reproducing kernel Hilbert space, based on
methods for solving ill-posed problems for which SVM techniques can be applied,
one minimizes

min ZZj:l 19119JK ({Ei7 ,Tj, h)
s.t. ‘Fn(x) =005 2o K (2, u, h)du <kKp, 1<i<n, (812)
¥; >0and Y . 0, =1, '

where k,, is the known accuracy of approximation of F' (x) by F, (x) (Mukher-
jee and Vapnik, 1999). To obtain the solution as a mixture of probability den-
sity functions, the kernel must be a probability density function and ¥; > 0,
>, ¥; = 1. Usually most of the 9; values in the SVM estimate will be zero
and one obtains a sparse estimate of a probability density function.

A typical property of SVM’s is that the solution is characterized by a convex
optimization problem, more specifically a quadratic programming (QP) problem
see (8.12). But in LS-SVM’s the solution is given by a linear system (equal-
ity constraints) instead of a QP problem (inequality constraints). The SVM
approach (Mukherjee and Vapnik, 1999) requires inequality constraints for den-
sity estimation. One way to circumvent these inequality constraints is to use
the regression-based density estimation approach. In this approach one can use
the LS-SVM for regression for density estimation.

8.3 Smoothing parameter selection

Smoothing methods provide a powerful methodology for gaining insights into
data. Many examples of this may be found in monographs of (Eubank, 1988;
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Hardle, 1990; Miiller, 1988; Scott, 1992; Silverman, 1986; Wahba, 1990; Wand
and Jones, 1994). But effective use of these methods requires: (a) choice of the
kernel, and (b) choice of the smoothing parameter (bandwidth).

Consider the Parzen kernel density estimator. As it turns out, the kernel
density estimator is not very sensitive to the form of the kernel (Rao, 1983).
An important problem is to determine the smoothing parameter. In kernel
density estimation, the bandwidth has a much greater effect on the estimator
than the kernel itself does. When insufficient smoothing is done, the resulting
density estimate is too rough and contains spurious features. When excessive
smoothing is done, important features of the underlying structure are smoothed.
There are many methods for smoothing parameter selection (e.g., least-squares
cross-validation, least squares plug-in methods, the double kernel method, L,
plug-in methods, etc.). However, only two methods are considered here:

(7) In the least squares cross-validation method, the smoothing parameter h
is chosen by

min/ (fn(x) - f(x))2 dz subject to h > 0. (8.13)

. 2
One first derives an unbiased estimator of / ( fulz) = f (x)) dx by observing

that
[ (@)= 1@) do= [ (fa0)) o+ [ (700t

-2 / fu(z)dF (z). (8.14)

The second term on the right is independent of h, and since we wish to minimize
over h, only the last term needs to be estimated. However, Devroye and Lugosi
(2001) provides proofs that the banddwidth selection based on Ly would not be
universally useful.

(#4) From the Lipoint of view, one choose the smoothing parameter as the

solution to
min /

The nice properties associated with the Ly norm, especially (8.14), do not apply
to the L1 norm. Counsider the double kernel method (Devroye, 1989) for choosing
the smoothing parameter. One choose the smoothing parameter as the solution

to
min/

where g, p, is much more accurate estimator of f than fn,h. Following the De-
vroye (1989) the following double kernel methods are considered. With the
Epanechnikov kernel, the second kernel is taken to be the Berlinet-Devroye ker-
nel defined as

fulz) — f(x)’ dx subject to h > 0. (8.15)

Fon(@) = Gun (x)‘ dx subject to h > 0, (8.16)

7—312%) if |z] < 3,
?—1)  if L <[z <1, (8.17)
otherwise.

BD =

(e RNENNTE
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In this thesis we use a combination of cross-validation and bootstrap for
choosing the bandwidth for the Parzen kernel estimator. The algorithm is as
follows:

Algorithm 23 (Smoothing parameter selection)

(i) Cross-Validation step. From x1, ..., Ty, construct an initial estimate of the
probability density function

. 2
where hg is chosen by minimizing [ E (fn(x) - f(x)) dx which can be
estimated by the Jackknife principle

k=1
1 - - Xy — Tk Xy — Tk

= K K

i DK (T o ()

=1 k=1

1 & 1 1 T — Z‘k)
+— —K ( : (8.18)

ho = (TL — 1) gé:l ho ho

where f,(l_k) 1s the density estimate based on all of the data except xi and
K (u) o K (u) is the convolution of the kernel with itself.

(i) Bootstrap step

(#.1) Construct a smoothed bootstrap sample Construct the empirical dis-
tribution, Fn, which puts equal mass, 1/n, at each observation (uni-
form random sampling with replacement). From the selected Fn, draw
a sample x3,...,xz}, called the bootstrap sample. Adding a random
amount ho& to each x7, k = 1,...,n where { is distributed with den-
sity K (). So xp* =z}, + ho&.

(ii.2) Estimate the integrated mean absolute error by

IMAEyyo; (h, ho) =

where fi%(x;h) = 35 30 K (z Zi ) forb=1,...,B and B is the
number of bootstrap samples to be taken.

(i.3) Obtain the bootstrap choice of the bandwidth hpeor by minimizing
IMAEypo0t (hy ho) over h.
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Figure 8.1: Kernel estimate for suicide data (Bandwidth: h =10). The estimate
is noisy in the right-hand tail.

8.4 Regression view of density estimation

The kernel estimator suffers from a drawback when applied to data from long-
tailed distributions. An example, based on the data set reported by (Copas and
Fryer, 1980), of this behaviour is given by Figure 8.1 and Figure 8.2. The data
set gives the lengths of treatments of control patients in a suicide study. The
estimate shown in Figure 8.1 is noisy in the right-hand tail, while the estimate
shown in Figure 8.2 is more smooth. Note that the data are positive, estimation
of the density shown in Figure 8.2 treats the data as observations on (—oo, 00) .

In order to deal with this difficulty, various adaptive methods have been pro-
posed (Breiman et al., 1977). Logspline density estimation, proposed by (Stone
and Koo, 1986) and (Kooperberg and Stone, 1990), captures nicely the tail of
a density but the implementation of the algorithm is extremely difficult (Gu,
1993). In this Chapter we develop a density estimation using LS-SVM regres-
sion. The proposed method has particularly advantages over Nadaraya-Watson
kernel estimators, when estimates are in the tails. The data sample is pre-
binned and the estimator employs the bin center as the ’sample points’. This
approach also provides a sparse estimate of a density. The multivariate form
of the binned estimator is given in (Holmstrém, 2000). Consistency of mul-
tivariate data-driven histogram methods for density estimation are proved by
(Lugosi and Nobel, 1996). The connection between probability density function
estimation and non-parametric regression is made clear via smoothing ordered
categorical data.
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Figure 8.2: Kernel estimate for suicide data (Bandwidth: h =80). The estimate
is more smooth than in Figure 8.1. The data are positive, however estimation
of the density treats the data as observations on (—oo, 00) .

On the other hand, if the intention is not to look at the density function
but instead to use it as an ingredient in some other statistical technique, a
stategy is to first reduce the dimension (e.g., projection pursuit) of the data and
then perform density estimation (e.g., Nadaraya-Watson variable kernel) in the
smaller-dimensional subspace. Projection pursuit was proposed by (Friedman
and Tukey, 1974), and specialized to regression by (Friedman and Stuetzle,
1981). Huber gives an overview (Huber, 1985).

8.4.1 Smoothing ordered categorical data, regression and
density estimation

A categorical variable is one for which the measurement scale consists of a set
of categories. There are two primary types of measurement scales for categor-
ical variables, Many categorical scales have a natural ordering. Examples are,
response to a medical treatment (excellent, good, fair, poor). Categorical vari-
ables having ordered scales are called ordinal variables. Categorical variables
having unordered scales are called nominal variables. Examples are, favorite
type of music (classical, country, jazz, rock, others) and mode of transportation
to work (automobile, bicycle, bus, train, others). For these variables, the or-
der of listing the categories is irrelevant, and the statistical analysis should not
depend on that ordering.

Consider a series of n independent trails, in each of which just one of r» mu-
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tually exclusive events Ay, ..., A, must be observed, and in which the probability
of occurrence of event Ay in any trail is equal to pg. Let Uy, ..., U, be ordinal
random variables denoting the numbers of occurrences of the events Ay, ..., A,
respectively, in these n trails, with Y, _, Uy = n. The probability model for
Uy is a multinomial distribution, Uy «~ Bin(n,pg), with E[Ug] = npr and
E [px] = pk. The elements of the vector p = (p1, ..., p,) are called cell probabili-
ties and n the sample size. The joint distribution of Uy, ..., U, is given (Johnson
et al., 1997) by

r

N (U = uk)l = nvkll <(p1’;:k)

k=1

P

and can be expressed as

Plui,...,u] = ( uh.’f’ur )kli[l(pk)“k. (8.19)

Ignoring constants, the relative frequencies p1, ..., p,- are the solution to

min — Y, _, Uy log pi
> 8.20
s.b. D g1 e =1 (8.20)

Most of the examples in the literature, estimation of a smooth density func-
tion f, are referred to continuous data. Since smoothness, continuity and dif-
ferentiability would seem to be naturally linked to each other. For a nominal
variable smoothing is not very helpful, since it is very difficult to define how
”close” two categories are. An ordinal variable, where the categories do have
a natural ordering, can arise as a discretization of an underlying continuous
variable (e.g., 0 <z < 5,5 <z <10, 10 < z < 15, etc.). For such a variable,
smoothing makes sense, as it is likely that the number of observations that fall
in a particular cell provide information about the probability of falling in nearby
cells as well. For example, if the variable represents a discretization of a con-
tinuous variable with smooth density f, the probability vector p = (p1,...,pr)
also reflect that smoothness, with pgbeing close to p; for k close to [. In many
situations, the number of cells is close to the number of observations, resulting
in many small (or zero) cell counts. Such a table of counts is called a sparse
table. For such tables, py is not a good estimator of p, as the asymptotic
approximation does not apply. Smoothing methods provide a way around this
problem. Information in nearby cells can be borrowed to help provide more ac-
curate estimation in any given cell. Let the vector p = (p1, ..., p,) be generated
from an underlying continuous variable with a smooth density function f on

[0, 1] through the relation p, = fé f(v)dv. The Mean Value Theorem implies

that py = @ for some 2, € {k;1,§

A natural way to define a smooth estimator p = {pi},_, is by analogy
with a regression of outcome values pr = <% on the equispaced design points

%,k = 1,...,7. The aim of a regression is to estimate F [pg |X = x| = pg. So a
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Nadaraya-Watson kernel estimator of pr would be

(8.21)

where K (.) is the kernel function. Thus, in a sense all these smoothing problems
can be treated as a special case of a general regression problem.

8.4.2 Design of the regression data

Suppose 21, ..., 2, is a random sample from a continuous probability density
function f(z). Let Ay (z), k = 1,...,s be the bin interval, let ay (z) denote
the left-hand endpoint of Ay (z) and let h = (ar+1(2) — ar(z)) denote the bin
width. Let Uy denote the bin count, that is, the number of the sample points
falling in the bin Ag. Then the histogram is defined has

U, 1 &
f(z) = 772 =— > apars) (1) for z € Ay, (8.22)
k=1

where Uy, has a binomial distribution, Uy, «Bin(npy(2), npr(2) (1 — pi(2))) (John-
son et al., 1997) with

ap+h
pi(z) = / F(&)de € € A (8.23)

k

Minimizing the mean integrated squared error, denoted by
MISE (f(z), f(z, h)) , one obtains

h = (%) 5 n-
o (f1(2)) dz

which, asymptotically, is the optimal choice for h. The optimal choice for h
requires knowledge of the unknown underlying density f, (Tukey, 1977) and
(Scott, 1979) have suggested using the Gaussian density as a reference standard
and modify the normal rule when the data is skewed or heavy-tailed. Hence
from (8.22)

=

(8.24)

h = 3.58n7 3 Ky Ky, (8.25)

where § is a robust scale parameter (MAD estimator), k; is a skewness correc-
tion factor and kg is a kurtosis correction factor. In practice, the smoothing
parameter is of the from h* = ch. (Scott, 1979) has investigated the sensitivity

of the MISE to local deviations of ¢ from 1 (for example, ¢ = 1 vs. ¢ = 2).

Based on that sensitivity analysis, one prefers the bin width hA* = %fz, even
though it contains several spurious small bumps.
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8.5 LS-SVM and density estimation

Let zy, the independent variable, be the center of Ag, & = 1,...;s. Let yy,
the dependent variable, be the proportion of the data {Zk}Z:l falling in the
interval Ay divided by the bin width h,. Using Taylor’s expansion, f(£) =
fF(R)+(E—2)f (2)+0 (h?), for € € Ay, in (8.23) it can be calculated that

Blnl = £ +0 ), Verlnl = L840 (1), (sas)

The noise inherent in the histogram varies directly with its height see (8.26).
Thus, one can regard the density estimation problem as a heteroscedastic non-
parametric regression problem defined as

yp =m (k) t ek, ek = ex[n(m(zk),z1)] (8.27)

where ey, are independent and identically distributed. The function n (g (xx) , zx)
expresses the possible heteroscedasticity and m : R? — R is an unknown real-
valued smooth function that we wish to estimate. Recall from chapter ..., that
asymptotically the heteroscedasticity does not play any important role since
smoothing is conducted locally and hence the data in a small window are nearly
homoscedastic. The density estimator is defined by

[ () =Clmn (z)], (8.28)

where the constant C is a normalization constant such that f (x) integrates to
1 and 7, (xg) is the LS-SVM regression smoother.

8.6 Experiments

We include two experiments. First we select some densities on a benchmark
data set (Berlinet and Devroye, 1994). The group of densities contains three
smooth bell-shaped ones such as the normal, lognormal and the ¢-distribution
with 4 degrees of freedom. These have varying tail sizes and asymmetries. A
continuous density with discontinuous first derivative is included: the beta(2,2).
The discontinuity occurs near the extrema of the support. Next we take the
simplest density that is non-smooth: the uniform density (it has no tails). All
these densities are unimodal. The last two densities are mixtures of normal
densities and are multimodal. The marrionite density is included to test the
robustness with respect to well-separeted modes of varying scales. Let ¢ (u,0)
denote the normal density with mean g and standard deviation o. The selected
densities are defined as follows:

(1) The standard normal density: f (z) = ¢ (0,1).

(2) The standard lognormal density: f (z) = z\}ﬁ exp (—%) on [0,00) .
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Density Parzen density estimation | LS-SVM density estimation
average Ly error average Ly error
Standard 0.0059 0.0055
Normal
Standard 0.0046 0.0041
lognormal
t(4) 0.0033 0.0033
Beta(2, 2) 0.0828 0.0494
U0,1] 0.0222 0.0272
Skewed
bimodal 0.0088 0.0085
marronite 0.0212 0.0142
density

Table 8.1: LS-SVM estimate of the error variance: mean, bias and variance for
100 replications.

wi1 _
(3) The central t-distribution: f(z) = \;}(71,2(7)) <1+ ‘%2) (2 ), v > 0,
—00 < x < 00.

(4) The beta(2,2) density: f(z) =6zx(1—2),0<z<1.
(5) The uniform density on [0,1].

(6) The skewed bimodal density: a normal mixture: f(z) = 2¢(0,1) +
1 1
30 (1.5, 4).
1 3

(7) The marronite density: another normal mixture: f(z) = +¢(—20,1) +

30(0,1).

For each of the densities, we generated 50 samples of size 500, and used the
Parzen density estimator and the LS-SVM regression estimator. We use a com-
bination of cross-validation and bootstrap for choosing the bandwidth for the
Parzen kernel estimator. The average L; errors are estimated for each density
(Table 8.1). Both methods gives similar results.

In the last experiment we apply both methods to the suicide data (Copas and
Fryer, 1980). Note that the data are positive, the estimates shown in Figure 8.3
that the Parzen estimator treating the data as observations on (—oo, 00), while
the LS-SVM (RBF kernel) estimate deals with this difficulty.

8.7 Conclusions
The SVM approach (Mukherjee and Vapnik, 1999) requires inequality con-

straints for density estimation. One way to circumvent these inequality con-
straints is to use the regression-based density estimation approach. In this
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Figure 8.3: Estimates for the suicide data study. The * points denotes the
centers of the histogram bins.
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approach one can use the LS-SVM for regression for density estimation. The
proposed method (density estimation using LS-SVM regression) has particu-
larly advantages over Nadaraya-Watson kernel estimators, when estimates are
in the tails. The data sample is pre-binned and the estimator employs the bin
center as the 'sample points’. This approach also provides a sparse estimate of a
density. The multivariate form of the binned estimator is given in (Holmstrom,
2000). Consistency of multivariate data-driven histogram methods for density
estimation are proved by (Lugosi and Nobel, 1996).

In the first experiment we used the Parzen density estimator and the LS-
SVM regression estimator. We used a combination of cross-validation and boot-
strap for choosing the bandwidth for the Parzen kernel estimator. The average
Ly errors are estimated for each density. Both methods gives similar results
(Table 8.1).

In the last experiment we applied both methods to the suicide data (Copas
and Fryer, 1980). Note that the data are positive, the estimates shown in Figure
8.3 that the Parzen estimator treating the data as observations on (—o0, 00),
while the LS-SVM (RBF kernel) estimate deals with this difficulty. In order to
deal with this difficulty, various adaptive methods have been proposed (Breiman
et al., 1977). Logspline density estimation, proposed by (Stone and Koo, 1986)
and (Kooperberg and Stone, 1990), captures nicely the tail of a density but the
implementation of the algorithm is extremely difficult (Gu, 1993).
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Chapter 9

Robustness

In the previous chapters basic methods for LS-SVM regression models were dis-
cussed. The use of least squares and equality constraints for the models results
into simpler formulations but on the other hand has potential drawback such
as the lack of robustness. In this chapter we explain some measures of robust-
ness. Next, we will discuss ways to enhance the robustness of LS-SVM models
for nonlinear function estimation by incorporating methods from robust statis-
tics. Weighted LS-SVM versions are explained in order to cope with outliers
in the data (Suykens et al., 2002). In order to understand the robustness of
these estimators against outliers, we use the empirical influence function and
maxbias curves. We also discuss how these robust techniques can be applied to
the primal as well as dual representations of LS-SVMs. Contributions are made
in Section 9.3.

9.1 Introduction

A common view on robustness is to provide alternatives to least squares methods
and Gaussian theory. In fact, a statistical procedure based on Lo works well in
situations where many assumptions (such as normality, no outliers) are valid.
These assumptions are commonly made, but are usually at best approximations
to reality. For example, non-Gaussian noise and outliers are common in data-
sets and are dangerous for many statistical procedures (Hampel et al., 1986).
The importance of using robust statistical methods was recognized by eminent
statisticians like (Pearson, 1902; Student, 1927; Jeffreys, 1939; Box, 1953; Tukey,
1960, 1962). It was convincingly demonstrated by Pearson for tests and by
Tukey for estimators. Pearson (Pearson, 1929, 1931) showed the nonrobustness
even of the level of chisquare- and F-tests for variances; in the context, Box (Box,
1953) and Box & Andersen (12) introduced the term "robust”. Tukey (Tukey,
1960), (summarizing earlier work) showed the nonrobustness of the arithmetic
mean even under slight deviations from normality. However, the modern theory
of robust statistics emerged more recently, led by Huber’s (1964) classic minimax

115
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approach and Hampel’s (1974) introduction of influence functions.
Huber (Huber, 1964) gave the first theory of robustness. He considered the
general gross-error model or e-contamination model

U(Fy,e) ={F:F(x)=(1—¢€) Fy(x) +eG(z), 0<e<1}, (9.1)

where Fy(z) is some given distribution (the ideal nominal model), G(x) is an
arbitrary continuous distribution and e is the first parameter of contamination.
The contamination scheme describes the case where, with large probability (1 —
€) the data occurs with distribution Fy(z) and with small probability e outliers
occur according to the distribution G(z). Examples of the e-contamination
model are:

Example 24 ¢-contamination model with symmetric contamination
F(z)=(1-€e)N(0,0%) +eN(0,k%0%), 0<e<1, r>1 (9.2)

Example 25 ¢-contamination model for the mizture of the normal and Laplace
or double exponential distribution

F(z)=(1—-€¢)N(0,0%) +eLap(0,)), 0<e<l, (9.3)

where respectively k£ and A are the second parameters of contamination de-
scribing the rate of variance of G(z) over the variance of Fy(z) (k > 1). He
considered also the class of M-estimators of location (also called estimating
equation, generalized maximum likelihood estimators) described by some suit-
able function. The Huber estimator is a minimax solution: it minimizes the
maximum asymptotic variance over all F' in the gross-error model. The gross-
error model can be interpreted as yielding exactly normal data with probability
(1 — €), and gross errors (or some other, “contaminating” distribution) with
small probability € (usually between 0% and 5%).

Huber developed a second theory (Huber, 1965, 1968) and (Huber and
Strassen, 1973) for censored likelihood ratio tests and exact finite-sample con-
fidence intervals, using more general neighborhoods of the normal model. This
approach may be mathematically deepest, but seems very hard to generalize
and therefore plays hardly any role in applications.

Hampel developed a third (Hampel, 1968, 1971, 1974) and (Hampel et al.,
1986) also very closely related robustness theory which is more generally appli-
cable than Huber’s first and second theory. Three main concepts are introduced:
qualitative robustness, which is essentially continuity of the estimator viewed as
functional in the weak topology; the influence curve (IC) or influence function
(IF), which describes the first derivative of the estimator, as far as existing; and
the breakdown point (BP), a global robustness measure which describes how
many percent gross errors are still tolerated. Small perturbations should have
small effects; a first order Taylor expansion describes the small effects quantita-
tively (often in very good approximation); and the breakdown point tells under
which load the bridge breaks down (or the estimator is totally unreliable). Thus,
we can call robustness theory the stability statistical procedures.
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In historical summary, robustness has provided at least two major insights
into statistical theory and practice: (i) Relatively small perturbations form
nominal models can have very substantial deleterious effects on many commonly
used statistical procedures and methods (as in Tukey’s example at the beginning
of this article). (i) Robust methods are needed for detecting or accommodating
outliers in the data (Rousseeuw and Hubert, 1999).

Besides the books by (Huber, 1981) and (Hampel et al. 1986), some other
books on robust statistics are (Rousseeuw and Leroy, 1987; Staudte and Shaether,
1990; Stahel and Weisberg, 1991; Morgenthaler et al., 1993); more on the math-
ematical side (Rieder, 1994; Jureckova and Sen, 1996); applied books with rele-
vance for robustness (Mosteller and Tukey, 1977; Box et al., 1978; Hoaglin et al.,
1983; Gnanadesikan, 1977; Box et al., 1983); on special related topics (Miiller,
1997; Morgenthaler and Tukey, 1991); on computer programs for robust statis-
tics (Marazzi, 1993).

9.2 Measures of Robustness

In order to understand why certain estimators behave the way they do, it is
necessary to look at the various measures of robustness. There exist a large
variety of approaches towards the robustness problem. The approach based on
influence functions (Hampel, 1968, 1974) will be used here. The effect of one
outlier on the estimator can be described by the influence function (IF') which
(roughly speaking) formalizes the bias caused by one outlier. Another measure
of robustness of an estimator is the maxbias curve. The maxbias curve gives
the maximal bias that an estimator can suffer from when a fraction of the data
come from a contaminated distribution. By letting the fraction vary between
zero and the breakdown value a curve is obtained. The breakdown value is how
much contaminated data an estimator can tolerate before it becomes useless.

9.2.1 Influence functions and breakdown points

Let F be a fixed distribution and T (F) a statistical functional defined on a set U
of distributions satisfying some regularity conditions (Hampel et al., 1986). Let

the estimator T;, = T'(F},) of T(F') be the functional of the sample distribution
F,.

Definition 26 (Influence function). The influence function IF(x;T, F) is de-
fined as
IF (2T, F) = liH}T[(l —€) F 4 eA,] —T(F).
€ €

(9.4)
Here A, denotes the pointmass distribution at the point x.
The IF reflects the bias caused by adding a few outliers at the point x, stan-

dardized by the amount € of contamination. Note that this kind of differentiation
of statistical functionals is a differentiation in the sense of von Mises (Fernholz,
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(b)

Figure 9.1: Illustration for showing the difference between the concept of influ-
ence function and breakdown point. The breakdown point is proportional to
the width of the beam multiplied by the square of its height. The Influence
function is just a plot of the elasticity as a function of z, the postion of the
external force e.

1983). ;From the influence function, several robustness measures can be de-
fined: the gross error sensitivity, the local shift sensitivity and the rejection
point (Hampel, 1968, 1974). Mathematically speaking, the influence function is
the set of all partial derivatives of the functional 7" in the direction of the point
masses. For functionals, there exist several concepts of differentiation; Gateaux,
Hadamard of compact, and Fréchet derivative have been used in statistics, the
Fréchet derivative being the strongest concept and formely considered to be
very rarely applicable; but the main reason for this belief seems to be the non-
robustness of most classical estimators, while at least some (if not most) smooth
M-estimators are indeed Fréchet-differentiable (Clarke 1983, 1986), (Bedmarski,
1993). The IF describes the derivative of a functional in whatever sense it exists.

A mechanical analogy of the concept of influence function is shown in Figure
9.1. Given a beam which is fixed at one end and a stone with weight € is attached
on the other end.

The influence function is a plot of the elasticity (based on the differential
equation of the elastic line) as a function of z, the position of the weight. The
elastic line is given in Figure 9.1.b.

Definition 27 (Maxzbias curve). Let T (F) denote a statistical functional and
let the contamination neighborhood of F be defined by (9.1) for a fraction of
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contamination €. The mazxbias curve is then defined by

T(F)—T(Fo)

B(e,T(F),F)= sup
00

FGZ/{(Fg,e)

Definition 28 (Breakdown point). The breakdown point € of the estimator

T, = T(F,) for the functional T(F) at F is defined by
e (T,F)=inf{¢ >0|B(e,T(F),F)=00}. (9.5)

This notion defines the largest fraction of gross errors that still keeps the
bias bounded.

A mechanical analogy of the concept of breakdown point is very simple,
how heavy does the weight € has to be made such that the beam breaks? The
breakdown point is proportional to the width of the beam multiplied by the
square of its height. Next, we will give some examples of influence functions
and breakdown points for location estimators and scale estimators.

Example 29 (sample mean). The corresponding functional T (F) = [ zdF ()
of the mean is defined for all probability measures with existing first moment.
From (9.4), it follows that

IF (0T, F) = lim L0 = OF + ] (@) = [ adF(x)

el0 €
— lim € [xdAy(z) — € [ zdF ()
el0 €
=z~ T(F). (9.6)

The IF of the sample mean is sketched in Figure 9.2. We see that the IF
is unbounded in R.

This means that an added observation at a large distance from T'(F') gives
a large value in absolute sense for the IF. The finite sample breakdown point
of the sample mean has €, = 1/n, often the limiting value lim,, . € = 0 will
be used as a measure of the global stability of the estimator. One of the more
robust location estimators is the median. Although the median is much more
robust (breakdown point is 0.5) than the mean, its asymptotic efficiency is low.
But in the asymmetric distribution case the mean and the median does not
estimate the same quantity.

Example 30 ((0, 82)-trimmed mean). The corresponding statistical functional

for the (0, B2)-trimmed mean is given in terms of a quantile function and is
defined as

1 F~(1-p2) 1 =p2)
(9.7)
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IF(x,T;F)

T(F)=mean

Figure 9.2: Influence function of the mean. The influence function is unbounded
in R.

The quantile function of a cumulative distribution function F is the generalized
inverse F~ : (0,1) — R given by

F~(¢)=inf{x: F(z) > q}. (9.8)

In the absence of information concerning the underlying distribution func-
tion F of the sample, the empirical distribution function Fn and the empirical
quantile function F,; 1 are reasonable estimates for F and F~, respectively. The
empirical quantile function is related to the order statistics Tp(1) < ... < Ty
of the sample through

n n

F7(q) = 2n(), forqce <i1,i>. (9.9)

To derive the influence function I1F(x; F~(q), F) for the qth quantile
functional F~(q), assume that F has a density [ which is continuous and posi-
tive at g = F~(q). Let F. = F 4+ €(Ay — F) and apply (9.8)

TIF + (A — F)] = inf {5 F(z) + € (Auy(2) — F(@)) = q}
=inf{x: F(z)+ e[l (z > x9) — F(z)] > q}
q—e[I(mZxo)]}
-9 J
One finds I1F(z; F~(q), F) = (0/0¢) [F_l(q)]ezo indirectly by first calculating

(d/de) [F7 (q)] for e > 0 and then takez‘ng lime o (d/de) [F=*(q)] . From (9.10)

(9.10)

— inf {x L F(z) >
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€

we have F-1(q) = F~ (%) Thus

[ (1meleza)y) (265
de[F <q (1—-¢) : ﬂ ( (q EI(I>10)]))
q—1I(z, < F~ (q))

(- (=)

so that

4 - (1=l @220)]\] _ ¢—I(x0 < F~(q))
gt {F ( 10 ﬂ ) ®-11)

@D g < F (q)
IF(z; F~ (q), F) = 0 20 =F~ (q) (9.12)
4 x0>F~ (q).

Now we can calculate the influence function of the (0, 82)-trimmed means.
Define

1 TH(1-62)
Tio,6.) (Fe) = 1_52/0 ydF(y)

1 F7H(1-82) F7N(1-62)
- / ydF(y) + ¢ / yd (A, — F) (y)
1-082|Jo 0
(9.13)

We will find IF(x; 11(0,5,), F) = (d/de) [T(o,p,)(Fe )L o indirectly by first calcu-
lating (d/de) [T(0,5,)(Fe)] for € > 0 and then taking lim. o (d/de) [T(0,5,)(Fe)] -
From (9.13)

% [T(0,52)(Fe)] = 1?6_(1(_14/;52)10 (F7'(1— ) % [F71 (1= 52)]
« (1-B2)
+<1_1ﬂ2>[/0 v (8~ F) ()

, (9.14)

1 d F7(1=p2)
+€(1_ﬁ2)& [/0 yd(AmfF)(y)
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IF(x,T;F)

T(F)

X

Figure 9.3: The influence function of the (0, 82)-trimmed mean. The influenece
function is both continuous and bounded in R.

so that
IF(z;p1(0,6,), F) = leifg% [T0,6.) (Fe)]
— F(_l(ii_ﬂ:;?)f (F~ (1= ) IF(z;F (q), F)
+1 352 VOF(l_ﬂz)ydAm(y) —/OF(l_ﬂQ)de(y)
- %1‘ (F~ (1= B2)) IF(2; F~(q), F) — (0,52
i ﬁ] (< F (1-f)). (9.15)

Substituting the influence function IF (x; F~(q), F), with g = (1 — B2) , given
in (9.12) into (9.15) yields:
B2 F~ (1-P32)

[F(x; JF) = 5 Ao 0STSFTI-=0) g6
(it £) { F= (1~ ) - popy  FT(A=f2) <z .

The I'F of the (0, 82)-trimmed mean is sketched in Figure 9.3. Note that it
is both continuous and bounded in R.
The finite sample breakdown point of the (0,(3)-trimmed mean has e} =
(|nB2] + 1) /n and the limiting value lim,, .o € = Ga.
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T=Variance

IF(x,T,F)

Figure 9.4: The influence function of the sample variance. The influence func-
tion is unbounded in R.

Example 31 (variance). Given the corresponding functional T(F) = [ (x — w)? dF (z)
and from (9.4), it follows that

Jzd[(1 —€)F + eA;] (z) — [xdF(x)

IF (z;T,F) =lim

el €
o €S @ =)’ A () — € [ (¢ — ) dF ()

el €
= (o= =T (9.17)

The IF of the sample variance is sketched in Figure 9.4. We see that the
IF is unbounded in R.

This means that an added observation at a large distance from T'(F) gives
a large value in absolute sense for the IF'. The finite sample breakdown point
of the sample variance has € = 1/n, often the limiting value lim,_,~ € = 0
will be used as a measure of the global stability of the estimator.

9.2.2 Empirical influence functions

The most important empirical versions of (9.4) are the sensitivity curve (Tukey,
1970) and the Jackknife (Quenouille, 1956) and (Tukey, 1958).
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The sensitivity curve

There are two versions, one with addition and one with replacement. In the
case of an additional observation, one starts with a sample (21, ..., z,_1) of size
n—1. Let T(F) be an estimator. Let T'(F) be an estimator and let T'(F,_;) =
T (x1,...,xn—1) be denote the estimate. The change in the estimate when an
nth observation x,, = x is included is T (z1, ..., Tp—1,2) — T (21, ..., Xp—1) . One
multiply the change by n and the result is the sensitivity curve.

Definition 32 (sensitivity curve) One obtains the sensitivity curve if one re-
places F' by F,,_1 and € by % in (9.4):

SCo (0,7, By = T [("T’l) P+ %Ax} _T (Fn_l)

SI=

=n-1)T (an1) +T(A;) —nT (anl)
=n[T, (x1,....tn_1,2) = Tp_1 (1, zn_1)].  (9.18)

Example 33 (mean) Consider the one-sample symmetric Gaussian location
model defined by
Xk:E[X]—i—ek, k=1,..,n, (919)
where the errors are i.i.d., and symmetric about 0 with common density f
and F. If the error distribution is normal, X is the best estimate in a variety
of senses. Let T(F) = p = E[X] denote the mean in a population and let
T1,...,Tn_1 denote a sample from that population. The sensitivity curve of the
mean s then

SCp-1(z,Z, Fum1) = n (i (21, ey Tpe1,2) — (1, 0oy Tp1))

1 1 R
=n (E sz + ~r = (21, ...,xnl))
=n-1) a1, rpn1)+x—ni(x1,....,Tn_1)
=z —f(z1, ., Tn-1).

Example 34 (median) The sample median is defined by

med =

T (k+1) ifn=2k+1 9.20
{ (xn(k) + xn(k+1)) % if n =2k (9-20)

where Tp1y < ... < Ty are the order statistics. The sensitivity curve of
the mean s then
SChp-1(x, med, Fn,l) =n(med (z1,...,Tp—1,2) —med (x1,...,Tp—1)). (9.21)
Depending on the rank of x, the sensitivity curve of the median is given by
) n(x(k) — med (ml,...,xn,l)) for x <z
SCr_1(x,med, F,_1) =4 = Jor xay <@ < wpq

n (x(kH) —med (1, ..., xn,l)) for x> x40y
(9.22)
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Figure 9.5: Sensitivity curve of the sample mean and the sample median.

Given an univariate data set x = (z1, ...,xloo)TWhere z~N (0, 12) . Lo-
cation estimators applied to this sample are the sample mean and the sample
median. We show the sensitivity curve for the location estimators in Figure
(9.5). The most important aspect is that the sensitivity curve of the mean be-
comes unbounded for both £ — oo and x — —o00, whereas the median remains
constant.

Example 35 (spread). Let T(F) = o2 denote the variance in a population and
letxy, ..., x, denote a sample from that population. Then 52 = % Sy (i — an)2
is the plug-in estimate of o2. Shift the horizontal axis so that 22;11 xr = 0. The
sensitivity curve of the variance is then

SCp_1(x,6%, Fyo1) =n (62 —62_1)
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Figure 9.6: Sensitivity curves of mean deviation, median absolute deviation and
the sample variance

Scale estimators applied to the sample = (21, ..., 100) " where z ~ A/ (0,1%),
are the sample variance, the Mean Deviation and the Median Absolute Devia-
tion. The Mean Deviation is defined as

T (7)) = %’é o (9.23)

This estimator is nonrobust to outliers and has a breakdown point ¢* = 0. The
Median Absolute Deviation (MAD), one of the more robust scale estimators, is
defined as

T (Fn) = med |z — med (x;)] . (9.24)

This estimator has a high breakdown point ¢* = 0.5. We show the sensitivity
curve for the scale estimators in Figure 9.6.

The most important aspect is that the sensitivity curves of the variance and
the Mean Deviation become unbounded for both x — oo and £ — —o0, whereas
the sensitivity curve of the Median Absolute Deviation is bounded.

Jackknife approximation

An other approach to approximating the IF, but only at the sample values
x1, ..., Ty themselves, is the Jackknife.
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Definition 36 (The Jackknife approzimation). If one substitutes E, for F and
—ﬁ for e in (9.4), one obtains

Jir (2, T, Fy,) =

= (’/l — 1) [Tn (xl, 7l‘n) — Tn—l (IZ?l, ey Lj—1y Lj41, 7l‘n)] .

In some cases, namely when the influence function does not depend smootly
on F', the Jackknife is in trouble.

9.3 Residuals and Outliers in Regression

Residuals are used in many procedures designed to detect various types of dis-
agreement between data and an assumed model. In this section, we consider
observations that do not belong to the model and often exhibit numerically large
residuals and, in case they do, they are called outliers. This type of situation is
a special case of heteroscedasticity and is prevented by imposing the condition
E[e] = o”.

Although the detection of outliers in a univariate sample has been investi-
gated extensively in the statistical literature (see Barnett and Lewis, 1984), the
word outlier has never been given a precise definition. For example, we use the
one of (Barnett and Lewis, 1984). A quantitative definition has been given by
(Davis and Gather, 1993).

Definition 37 (Barnett and Lewis, 1984). An outlier is an observation (or
subset of observations) which appears to be inconsistent with the remainder of
that set of data.

A good elementary introduction to residuals and outliers is given by Fox
(Fox, 1991). More advanced treatments are given by Cook and Weisberg (Cook
and Weisberg, 1982) and by Atkinson (Atkinson, 1985).

9.3.1 Linear regression

As an example, let the simple linear model assumes a relation of the type
yr = B0+ Pk +ep, k=1,...n (9.26)

in which the slope (; and the intercept (y are to be estimated. Figure 9.7
illustrates the effects of an outlier in the y-direction. The outlier has a rather
large influence on the least squares (LS) regression line.

Unlike LS, the L; regression line protects us against outlying y; and is robust
with respect to such an outlier. The residuals from an LS fit are not very useful
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Figure 9.7: The original data and one outlier in the y-direction. The solid line
corresponds to the LS fit without the outlier. The dashed line corresponds to
the LS fit with the outlier.

as outlier diagnostics, on the other hand, the residuals computed from a robust
estimator (e.g. L regression, least median of squares, least trimmed squares)
embody powerful information for detecting all the outliers present in the data.
For LS, we have seen that one outlier can totally bias the LS estimator. On
the other hand, the L; regression can handle the outlier. Figure 9.8 gives a
schematic summary of the effect of one outlier on LAD regression, in the same
situation as Figure 9.7.

In the following experiment we will check whether the estimators can deal
with several outliers in the data set. Given 50 ”good” observations
{(z1,y1), .-, (50, Y50) } according to the linear relation

yr =50+ 1.5z, +ex, k=1,..,50, (9.27)

where e, ~ N(0,0.5%) and z3, ~ UJ0,5]. To these data, we applied LS and
LAD techniques. The estimators yield values of /3’0 and Bl which are close to
the original [y, B1. Then we started to contaminate the data. At each step
we deleted one "good” point and replace it by a ”bad” point generated (z;,y;)
according to a normal distribution y; ~ N (2, 52) . We repeated this until only
25 7good” points remained. A breakdown plot is shown in Figure 9.9 where the
value of Bl is drawn as a function of the percentage outliers.

The LS was immediately affected by these outliers and breaks down, whereas
the LAD holds on. An disadvantage of some robust methods (e.g. L; regression,
least median of squares) is its lack of efficiency when the errors would really be
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Figure 9.8: The original data and one outlier in the y-direction. The solid line
corresponds to the LAD fit without the outlier. The dashed line corresponds to

the LAD fit with the outlier.
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Figure 9.9: Breakdown plot,
percentage of contamination.
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normally distributed. One solution to improve the efficiency of these robust
methods is to use reweighted least squares. This leads us to the following
algorithm:

Algorithm 38 (Weighted Least squares).

(i) Choose the initial Ly estimator for (3
n P )
0 = arg minz Yk — Zﬁjxg) . (9.28)
S j=1
(i) Evaluate the error estimators
€k = Yk — Zﬁjx;(f) (9.29)
and calculate a robust variance estimator

62 =1.483 MAD (9.30)

(iii) Find a weighting function, for example

L=
vk_{ 0 otherwise. (9-31)

(iv) Once a weighting function is selected, one replaces all observations (xy, yx)
by (\/Ukivk, \/'Ukyk) .

(v) On these weighted observations, a standard LS may be used to obtain the
final estimate.

9.3.2 Kernel based regression

Recall that (i) the Nadaraya-Watson kernel estimate of a regression function
takes the form

SLRP S Sy G o

where K : R? — R and h > 0, and (ii) the LS-SVM regression estimate is given
by

g (z) = ;am (x _hx’“> +b, (9.33)

where & € R and b € R. Figure 9.10 and 9.11 plot the effects of an outlier in
the y-direction respectively for the Nadaraya-Watson kernel estimate and the
LS-SVM regression estimate.
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Figure 9.10: The effects of an outlier (y-direction). Estimation of the sinc
function by Nadaraya-Watson kernel regression.

2k . outlier i
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Figure 9.11: The effects of an outlier (y-direction). Estimation of the sinc
function by LS-SVM regression.
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Figure 9.12: Index plot associated with LS-SVM regression. From this plot we
can conclude that the data set contains one outlier.

Unlike in the linear parametric regression case, analysis of the robustness
properties of kernel based estimators are in term of the estimated regression
function. Let (x;,yy) be an outlier (y-direction) and let A be the influence re-
gion. In both cases the outlier has a small influence on the estimate i, (x;) when
(x;,mn(z;)) € A and has no influence when (z;,m,(z;)) ¢ A. The residuals
from both (Nadaraya-Watson kernel estimate, LS-SVM regression estimate) are
very useful as outlier diagnostics. Figure 9.12 gives evidence of the presence of
an outlying observation. The residual plot is given for the LS-SVM regression.

Using decreasing kernels, kernels such that K(u) — 0 as u — oo, the in-
fluence for both ¢ — oo and * — —o0, is bounded in R. Common choices
for decreasing kernels are: K(u) = max ((1 —u?),0), K(u) = exp (—u?) and
K(u) =exp (—u).

We show the sensitivity curve (one with replacement) for (x,m,(z)) € A
and (x;,my(z;)) ¢ A in Figure 9.13. The most important aspect is that the
sensitivity curve of the m, (z) becomes unbounded (z € A) for both y — oo and
y — —oo, whereas the 1, (z;) remains constant (x; ¢ A).

In the following experiment we will check of the estimators can deal with
several outliers in a particular region A. Given 300 ”good” observations
{(z1,y1) , .-, (X300, Y300) } according to the relation

yr = m(xzk) +er, k=1,...,300, (9.34)

where ej, ~ N(0,0.1%) and xj, ~ U [—15,15]. To these data, we applied kernel
regression techniques. For example the estimators (Nadaraya-Watson kernel
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Figure 9.13: Empirical influence function of m,(x) as a function of (z — ;).
The influence curve (dotted region) is unbounded in R, whereas in the other

region the influence curve remains bounded in R.
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Figure 9.14: Breakdown plot, showing the estimated function values (7, (xs5s)
and 7, (2274)) as a function of the percentage of contamination.

estimate and the LS-SVM regression estimate) yielded values of 7, (z55) and
My (T274) which were close to the m(xss) and m(zsg). Then we started to con-
taminate the data. At each step we deleted one ”good” point in the region A (%)
where ¢ = 48, ...,68 and replace it by a "bad” point (x;,y). We repeated this
until no ”good” points remained in A. A breakdown plot is shown in Figure
9.14 where the values of 7, (z55) and 7, (z274) are drawn as a function of the
percentage outliers.

9.3.3 Robust LS-SVM

Under conditions where the dependent variable y is the result of measuring a
regression function with normal additive noise e, the empirical risk minimization
principle provides for the loss function L (f(z),y) = (f(z) —y)* an efficient
estimator of the regression m(z). Minimizing the empirical risk with respect
to this loss function is known as the least squares (LS) method. The classical
approach to the regression problem uses this method. The origin of the least
squares method goes back to Legendre (Legendre, 1805). While the method of
least squares enjoys well known properties within Gaussian parametric models,
it is recognized that outliers which arise from heavy-tailed distributions have an
unusually large influence on the resulting estimates.

If one haves only general information about the noise model, e.g., the density
of the noise is a symmetric smooth function, then the best minimax strategy
for regression estimation (Huber, 1964) provides the loss function L (f(x),y) =
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|f(x) — y|. Minimizing the empirical risk with respect to this loss function is
called the Least Absolute Deviations (LAD) method. The LAD estimation ap-
pears under a variety of names in the literature: the minimum absolute devia-
tions method (MAD), minimum absolute errors (MAE), least absolute residuals
(LAR), Li-norm and least absolute values (LAV). Although it was known and
studied as early as 1757 by Boscovich (Boscovich, 1757), due to mathematical
inconveniences it never received full attention. However, it came into practi-
cal use with the development of mathematical programming. It is of interest to
note that the LAD approach is equivalent to the method of maximum likelihood
when the noise e has a double exponential distribution, and when the noise e has
a uniform distribution with unknown range, the maximum likelihood criterion
consists of minimizing the maximum |e;|. Robust choices of the loss function
can be motivated from both Huber’s and Hampel’s approaches for the location-
scale models. In the regression setting (He, 1991) showed that obtaining local
robustness requires using information beyond the residuals.

LS-SVM and robust cost functions

Based on Huber’s robust theory (Huber, 1964), one can calculate a family of
robust loss functions depending on how much information about the noise is
available.

Theorem 39 (Huber, 1964). Consider the class A of densities formed by miz-
tures p(u) = (1 —¢)g(u) + eh (u) where u = (f(x) —y). Let —logg(u) €
C? [a,b] where a and b are endpoints. The class A possesses the following robust
density

(I-¢e)g(a)exp(—c(a—u)) foru<a
Probust(u) = ¢ (1 —¢)g(u) fora<u<b (9.35)
(I—-e)g(b)exp(—c(u—10)) foru>h.

The monotonic function

_dlogg(u) _ g'(u)

du g(u)

s bounded in absolute value by a constant ¢ determined by the normalization

condition
(1-¢) ( [ st 24250 j9<b>> 1

Using (9.35), one can construct a robust regression estimator. The robust
regression estimator is the one that minimizes the empirical risk functional

Remp (f) = - Z Ingrobust(Uk)~
k=1
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As an example, given the normal density the class A of densities are defined as

p(u) = (;ﬂ_i) exp <2“022> + eh(u).

According to the theorem the density

(1=¢) oy (i _c )
- exp g0z — o ful) for |u[ >co
probust(u) = \/2(_1—5) ? (936)

E‘Z
— 5 XD (_W) for |u| < co

will be robust in the class, where ¢ is determined from the normalization con-

dition
2
co 2expexp | —%
(1-2) / u? pesp (%)
——— | d _ 2 | =1.
o 7wexp 952 U + .

The loss function derived from this robust density is the Huber loss function
(right panel of Figure 9.15)

for |u| > ¢,

02
Ly (1) = — 108 Propust (u) = { ¢ ‘“lu_z_ B (9.37)
2

for |ul <e.

It is interesting to contrast this with the e-insensitive error measure (support
vector machines error measure), ignoring errors of size less than e. The e
insensitive loss function has the form

[0, if |u] <e,
Le(u) = { |u| — e, otherwise, (9.38)

shown in the left panel of Figure 9.15.

The loss function L. (u) has the same structure as the loss function Ly (u).
The e-insensitive error measure also has linear tails, but in addition it flattens
the contributions of those cases with small residuals. € is a parameter of the
loss function L. (u), just like ¢ is for Ly (u).

Consider the class of support vector machines. Let F denote a set of linear
functions defined as

F={f:f@)=w"p(x)+b: weRY, beR, p:RSR™},  (9.39)

where R™# denote a high-dimensional feature space, w € R/, b € R are the
parameters and ¢ : R“—R™ is the feature map. With f € F,,, one can define
the optimization problem in the primal space as

~ 7\ . - T . 1 2
(w,b) = argweﬂrg/ldr})eR [’y’;L ((w" ¢ (zk) +b) —yr) + 5 lwll3] . (9.40)

where L(.) € C”(R), v > 1. Next we examine of the family of robust cost
functions that fit within the LS-SVM formulation.
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Figure 9.15: The left figure shows the e-insensitive loss function used by the
SVM regression. The right figure shows the loss function used in Huber’s robust
regression.

(7). The LAD estimator is recommended when the shape of the noise distri-
bution is unknown and one only assumes that it belongs to a broad family of
distributions. In this case L (¢) = |e| € C° (R). To overcome this difficulty, one
can take an approximation to |e| like ve? + a,, € C* (R), where a,, is a small

positive parameter. Remark that the sequence of functions f, (e) = /€2 + %,

converge uniformly to |e|, a nondifferentiable function. If one puts L (e) =
ve? + ap in (9.40), one obtains a Quadratic Programming (QP) problem. Fig-
ure 9.16 plots the smooth approximation to the absolute value function. The
solid curve represents the absolute value function; the dashed curve represents
the approximation v/e? + a,, with parameter a,, = 0.01.

(74) . Huber M-estimates use a function L (e) that is a compromise between
e? and |e|. Huber has combined the advantages of both methods by defining
L (e) to be equal to e when e is near 0 and equal to |e| when e is far from 0.
The Huber loss function is defined in (9.37), where ¢ = 1.53 (Huber, 1981). To
estimate o we use § = 1.483 MAD, where MAD is the median of the absolute
deviations |éx|. The multiplier 1.483 is chosen to ensure that § would be a good
estimate of o if it were the case that the distribution of the random errors were
normal (Birkes and Dodge, 1993). The Huber loss function is convex and Ly (e)
€ C!(R), but has discontinuous second derivatives at points where |é;| = c.
The mathematical structure of the Huber M-estimator seems first to have been
considered in detail by Clark (Clark, 1985). If one puts Ly (e) in (9.40), one
obtains a Quadratic Programming (QP) problem.
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Figure 9.16: Smooth approximation to the absolute value function. The solid
curve represents the absolute function L (e) = |e|; the dased curve represents
the approximation L (e) = y/e? + a2 with the parameter a,, = 0.1.

(iii) . Only for the case L (e) = age? +aje+ag € C® (R), az,a1,ag € R one
has a linear system.

Iteratively LS-SVM

Huber M-estimates We can apply the LS-SVM iteratively to obtain Huber
M-estimates. Given training data D,, = {(z1,v1),..., (Zn,¥yn)} and an opti-
mal (h,7y) combination. The computational procedure (iteratively LS-SVM) is
described below.

Algorithm 40 (Tteratively LS-SVM).

(1) Initialize: Let y,[co] =y, k=1,...,n

(2) Begin

(i) Apply the LS-SVM to the training data D,, = { (J:l, yﬁ‘”) N (xn, yl«?])}
to obtain:

(i.1) The support vectors dgvo], k =1,...,n and the bias term bl (by

solving linear systems (3.8))
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(i.2) The vector ml = Y (1), oyl (mn)) of the estimated re-

gression values are given by

(@) = Y &K (w2 h) + 00 k=1, nii = 1,.m
k=1

T ~[0]
(ii) Let ¢l0) = (é[lO], ...,é@) where éECO] = % and:

(ii.1) Calculate 30!

5101 = 1,483 MAD( &lo)

é[lo](

)

(#.2) Truncate the residuals by defining

A = maxe (=158, min (¢!, 1.559)) k =1,..n.

(iii) Let y][go] = m£?] (xg) + ALO]; Vk, k=1,...,n.

(3) Repeat the calculations with y,&”,k = 1,...,n in place of y,[co] = yr, k =
1,...,n. Until consecutive estimates dg_l] and &L” are sufficiently close to
one other Vk, k=1,...,n.

Weighted LS-SVM. In order to obtain a robust estimate based upon the
previous LS-SVM solution, in a subsequent step, one can weight the error vari-
ables e = ay /v by weighting factors vy (Suykens et al., 2002). This leads to
the optimization problem:

: o _o 1 oT, o 1 S 02
wg})lor}eoj(w ,€°) = quTw + 5’7;%61@ (9.41)

such that yp = w°T ¢ (z3,) +b° +ep, k=1,...,n. The Lagrangian is constructed
in a similar way as before. The unknown variables for this weighted LS-SVM
problem are denoted by the o symbol. From the conditions for optimality and
elimination of w®, e® one obtains the Karush-Kuhn-Tucker system:

o 17 b° 0
z =|— 42
v [l [ e
where the diagonal matrix D, is given by D, = diag {ﬁ, ceey ﬁ} The choice

of the weights vy, is determined based upon the error variables e, = /v from
the (unweighted) LS-SVM case. Robust estimates are obtained then (Rousseeuw
and Leroy, 1986) e.g. by taking

1 if lex/8| <1
vp =4 LSl o) < en/8| < e (9.43)
10~4 otherwise
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where § = 1.483 MAD (eg) is a robust estimate of the standard deviation of the
LS-SVM error variables e, and MAD stands for the median absolute deviation.
One assumes that e, has a symmetric distribution which is usually the case
when (h,7) are well-determined by an appropriate model selection method.
The constants ¢, ¢o are typically chosen as ¢; = 2.5 and ¢o = 3 (Rousseeuw and
Leroy, 1987). Using these weightings one can correct for outliers (y-direction).
This leads us to the following algorithm:

Algorithm 41 (Weighted LS-SVM).

(i) Given training data Dy, = {(x1,91) .. (Tn,Yn)}, find an optimal (h,~y)
combination (e.g. by cross-validation, FPE criterion) by solving linear
systems (Chapter 3, (3.8)). For the optimal (h,7y) combination one com-
putes ey, = oy /7y from (Chapter 3, (3.8)).

(i) Compute § = 1.483 MAD(ey,) from the ey, distribution.
(iii) Determine the weights vy, based upon ey, § and the constants c1,ca.

(iv) Solve the weighted LS-SVM (9.42), giving the model
g (z) =Y g ar K (@, ) + b°.

First, we graph the sensitivity curve (one with replacement) for (z, mg (x)) €
A and (z;,m$(x;)) ¢ A in Figure 9.17. The most important aspect is that the
sensitivity curve of the mS () becomes bounded (z € A) for both y — oo and
y — —oo, whereas the m? (z;) remains constant (x; ¢ A).

Second, we compute the maxbias curve for both LS-SVM and weighted LS-
SVM on a test point. Given 150 ”good” observations {(x1,y1), .., (150, ¥150) }
according to the relation

yr = m(zy) +ex, k=1,...,150, (9.44)

where ex ~ N(0,1%). Let A be a particular region (43 data points) and let x
be a test point from that region (Figure 9.18). Then we started to contaminate
the data in region A. At each step we deleted one ”good” point in the region A
and replace it by a "bad” point (x;,y;). We repeated this until the estimation
becomes useless. A maxbias plot is shown in Figure 9.19 where the values of
My (x) and me (x) are draw as a function of the number of outliers in region A.
The maxbias of ., () increases only very slightly with the number of outliers
in region A and stays bounded right up to the breakdown point. This doesn’t
hold for m, (z) with 0% breakdown point.

Finally, illustrative examples are given. In this example we illustrate the
method of weighted LS-SVM. First, we show two examples of estimating a sinc
function from noisy data: (a) strong outliers are superimposed on zero mean
Gaussian noise distribution (Figure 9.20-9.21) (b) non-Gaussian noise distribu-
tion (central ¢-distribution with 4 degrees of freedom, i.e. heavy tails (Johnson
and Kotz, 1970)) (Figure 9.22).
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Figure 9.17: Empirical influence function of m,,(x) as a function of (v — ;).
The data set used for this experiment is y; =sinc(zy) + e, where the errors
e~N (0, 0.22) for all £ =1, ...,150. The influence curve is bounded in R.
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Figure 9.18: Given 150 training data (Wahba, 1990) corrupted with e ~
N (0, 12) . Consider the region A between z = 1 and = = 2. In each step the
data in the region A is contaminated by replacing a good point (given as “o”)
by a bad point (denoted as “*”) until the estimation becomes useless.
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Figure 9.19: Maxbias curves of the LS-SVM regression estimator r, (z) and
the weighted LS-SVM regression estimator g, () .

(b) non-Gaussian noise distribution (central ¢-distribution with 4 degrees of
freedom, i.e. heavy tails (Johnson and Kotz, 1970)) (Figure 9.22).

Given is a training set of N = 300 data points. From the simulation results
it is clear that the unweighted LS-SVM is quite robust and does not breakdown
(Figure 9.20). The generalization performance is further improved by applying
weighted LS-SVM (Algorithm: Weighted LS-SVM), shown in Figure 9.21 and
Figure 9.22, respectively. The good generalization performance on fresh test
data is shown for all cases.

An additional comparison with a standard SVM with Vapnik e-insensitive
loss function is made. The Matlab SVM Toolbox by Steve Gunn was used to
generate the SVM results. Here ¢ = 0 was taken and as upper bound on support
values C' = Inf. An optimal o value was selected. Other ¢, C' combinations
resulted in worse results. These comparative results are shown in (Figure 9.23).
In these examples the weighted LS-SVM results show the best results. The
unweighted LS-SVM is also quite robust. Due to the choice of a 2-norm this
may sound surprising. However, one should be aware that only the output
weights (support values ) follow from the solution to the linear system while
(v,0) are to be determined at another level.

Figure 9.24 shows comparative results on the motorcycle data, a well-known
benchmark data set in statistics (Eubank, 1999). The z values are time measure-
ments in milliseconds after simulated impact and the y values are measurements
of head acceleration. The x values are not equidistant and in some cases multi-
ple y observations are present for certain x values. The data are heteroscedastic.
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Figure 9.20: Estimation of a sinc function by LS-SVM with RBF kernel, given
300 training data points, corrupted by zero mean Gaussian noise and 3 outliers(
denoted by +). (Top-left) Training data set; (Top-right) resulting LS-SVM
model evaluated on an independent test set: (solid line) true function, (dashed
line) LS-SVM estimate; (Bottom-left) e k values; (Bottom-right) histogram of
ey, values.
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TRAINING DATA: f(x)=sinc(x) TEST DATA: f(x)=sinc(x)
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Figure 9.21: Weighted LS-SVM applied to the results of Figure 9.21. The ey
distribution becomes Gaussian and the generalization performance on the test
data improves.

In this sense it forms a challenging test case. Figure 9.24 show the results from
unweighted and weighted LS-SVM in comparison with standard SVM. In this
example standard SVM suffers more from boundary effects. The tuning param-
eters are: v =2, 0 = 6.6 (LS-SVM) and 0 = 11, ¢ = 0, C = Inf (Vapnik
SVM).

Figure 9.25 shows the improvements of weighted LS-SVM on the Boston
housing data in comparison with unweighted LS-SVM. The weighted LS-SVM
achieves an improved test set performance after determination of (v, o) by 10-
fold CV on a randomly selected training set of 406 points. The remaining test set
consisted of 100 points. The data were normalized except the binary variables.
Optimal values of (v,0) were determined by 10-fold CV on the training set.
The weighted LS-SVM resulted in a test set MSE error of 0.1638, which was an
improvement over the unweighted LS-SVM test set MSE error of 0.1880. The
improved performance is achieved by suppressing the outliers in the histogram
shown in Figure 9.25.

Robust fixed size LS-SVM regression

The training data D,, = {(x1,91),..., (Tn,yn)} are assumed to be zero mean.
We known from chapter 3.4 that one can constructs a new training set defined
as D'Slfeature) = {(Qa (xk) ayk) : ¢ (xk) € RnFSayk’ € ya k= ]-7 ws My Mpg < Tl}
based on the Nystrom approximation. The following fixed size LS-SVM model
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Figure 9.22: Estimation of a sinc function by LS-SVM with RBF kernel, given
300 data points, corrupted by a central ¢-distribution widt degrees of freedom
equal to 4. (Top-Left) Training data set; (Top-Right) resulting weighted LS-
SVM model evaluated on an independent test set: (solid line) true function,
(dashed line) weighted LS-SVM estimate; (Bottom-Left) residuals obtained with
weighted LS-SVM; (Bottom-Right) histogram of the residuals.
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Figure 9.23: Comparison between standard SVM, unweighted LS-SVM and
weighted LS-SVM. Weighted LS-SVM gives the best estimate for this example.
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Figure 9.24: Motorcycle data set: comparison between standard SVM, un-
weighted LS-SVM and wighted LS-SVM.
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histogram of a/y, Unweighted LS—-SVM
100 T T T T T

freq

=]

.
2 -1.5 -1 —-0.5 o 0.5 1 1.5 2 25 3

aly
histogram of a/y, Weighted LS—-SVM
70 T T T
60 - -
50 -
o 40 4
L
= 30 -
20 -
10~ 1
0 I I 1 I I I
-2 -15 -1 -0.5 (¢ 0.5 1 15 2 25 3

aly

Figure 9.25: Boston housing data set: (Top) histogram of e_k for unweighted
LS-SVM with RBF kernel. The outliers are clearly visible; (Bottom) histogram
resulting from weighted LS-SVM with improved test set performance.

is assumed
y=Aw+e, (9.45)
where y = (y1, ...,yn)T, e = (eq, ...,en)T and the n X npg matrix A is defined
as
T A A
ay ¢1 (1), - (1)
A= . . . ) (9.46)
a, @1 (@), o Gu(zn)

Assume that the rows of A are ii.d. observations from a npgg-dimensional
distribution F,,. Let F be the joint distribution for the (npg + 1)-dimensional
distribution, ™ is a random row of A and y is the associated dependent variable.
Let E, be the empirical distribution which put mass % on each of the n rows
(a{,yk) , k = 1,..,n, of the matrix [A|y]. Define the real-valued functional
B(F) = E [ya] . Tt maps the class of all distributions on R*#s*! onto R"s (for

which the expectation F [ya] exists), y € R and a € R"FS. Evaluated at F),

B (Fn) - %Zykak - %ATY. (9.47)

k=1
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Define Q (F) = E [aa”] , evaluated at F,

Q (Fn) - %lglakaf Ly (9.48)

T
—1
The ridge regression functional wyigge = T (F') = (Q(F) + %I) B(F) yields

. 1 -1
wridge = T(Fn) = (ATA + _In> ATY (949)
0
Lemma 42 The influence function of T (F) at (a”,§) with § € R is

-1
IF ((a™,9);T,F) = (Q(F) + %I) (B(H) — Q(F)T(F)) (9.50)

Proof: By definition, the influence function gives for each (ag,yk) (where
al € R"rs y, € Rk = 1,...,n) the directional derivative (Gateau derivative)
of T at F' in the direction of H = A — F

IF (a7, ) ; T, F) = lim — (=) F+ eApry] = T(F)

€l0 €
= L e
- [di (@ + e +21) - (B(F) + eBi) .

1\ !
+ (Q(F)—I—eQ(H)—i—;I) B(H)

e=0

Q(F) + }/I) ) (a(§—a"T(F))) (9.51)
O

—1
This influence factors into an influence of position (Q(F) + %I ) a and the

influence of the residual (§ — a”T(F)) . The influence function is unbounded in
R, the observations with large residuals have a much larger contribution to the
influence function.
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Consider the fixed-size LS-SVM regression where v — oco. Let T (Fn) be

denote a robust fixed-size LS-SVM estimator based on a M-estimator.

Lemma 43 The influence function of the robust T(F') at (aT,gj) € Rrrstl s

a,j—aTT(F
IF ((%,9): T, F) = fD(a,Z(— ayTT(F))c(LaT)izF(a,g)' (0.52)

The functional T'(F') corresponding to a robust fixed-size LS-SVM is the solution
of

/p (a,5 — a"T(F))adF(a,§) = 0. (9.53)

Then the influence function of T" at a distribution F' is given by

N . T[(l—G)F+€A[aTg]] —T(F)
IF((aT,y),T,F)flelirg .
= (P + ).y
_ p(a,§—aTT(F))
I D(a,y—a"T(F))aaTdF(a,q)

(9.54)

where D (t) = dg—(tt). This influence function is bounded in R. For a complete

proof of the M-estimator (linear regression context), see (Hampel et al. 1986).

Example 1

In this example we illustrate the method of fixed size LS-SVM. Given the train-
ing data (n = 500) where 10 outliers are superimposed on a N (0,02) noise
distribution. From the simulation results (Figure 9.26) it is clear that the
generalization performance for both robust methods (the Li-estimate and the
Huber-estimate) is improved with respect to the Lo-estimate. The Lq-estimate
and the Huber-estimate resulted in a test set MSE of respectively 0.0044 and
0.0042, which was an improvement over the Lo-estimate test set MSE of 0.1347.

9.4 Conclusions

Unlike in the linear parametric regression case, analysis of the robustness prop-
erties of kernel based estimators are in term of the estimated regression function.
The residuals from LS-SVM regression estimate is very useful as outlier diag-
nostics. While standard SVM’s approaches starts from choosing a given convex
cost function and obtain a robust estimate in a top-down fashion, this proce-
dure has the disadvantage that one should know in fact beforhand which cost
function is statistically optimal. We have successfully demonstrated and alter-
native bottom-up procedure which starts from an unweighted LS-SVM and then
robustifies the solution bij defining weightings based upon the error distribution.
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Figure 9.26: Estimation of a 2-dimensional function by fixed-size LS-SVM with
RBF kernel, given 500 training data points, corrupted by zero mean, vari-
ance=0.1 Gaussian noise and 10 outliers (denoted by ’*’)(Top-left) Trainind
data set;(Top-Right) resulting Fixed size LS-SVM evaluated on an independent
test set; (Bottom-Left) L; estimate and (Bottom-Right) Huber estimate.



Chapter 10

Data-driven Loss Functions
for Regression

In this chapter we study the Nadaraya-Watson estimator and show its nonro-
bustness in the sence of the influence function. We show that the L- robustifed
Nadaraya-Watson kernel estimator has a boundend influence function. In a
maximum likelihood sense, we calculate a loss function which is optimal for a
given noise model. Contributions are made in Section 10.2, 10.3, and 10.4.

10.1 Introduction

Currently, there exists a variety of loss functions (e.g., least squares, least
absolute deviations, M-estimators, generalized M-estimators, L-estimators, R-
estimators, S-estimators, least trimmed sum of absolute deviations, least median
of squares, least trimmed squares). On the other hand, this progress has put
applied scientist into a difficult situation: if they need to fit their data with a
regression function, they have trouble deciding which procedure to use. If more
information was available, the estimation procedure could be chosen accordingly.

An idea for such a situation is to combine two convenient methods. Arthanari
and Dodge (1981) introduced an estimation method in the linear model based
on a direct convex combination of LAD and LS estimators with a fixed weight.
Adaptive combination of LS and LAD estimators was first introduced by Dodge
and Jureckova (1987). Dodge (1984) introduced a convex combination of M-
and LAD estimates; this convex combination was considered as adaptive by
Dodge and Jureckova (1988), who constructed an adaptive combination of LAD
with Huber’s M-estimate. The adaptive combination of LAD and the trimmed
LS estimators was first studied by Dodge and Jureckova (1992).

Another idea, proposed in this Section, is as follows. Given the data the
method can basically be split up into two main parts: (i) constructing a robust
nonparametric regression model and computing the residuals, and (i7) finding
the distribution of the errors via a robust bootstrap and computing the loss

151
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function. Given the data, a robust nonparametric regression method will be
used to obtain the residuals. Based on these residuals we can compute, in a
maximum likelihood sense, the loss function. The evaluation of the accuracy of
that loss function will be based on bootstrap accuracy intervals. We exhaustively
describe the different parts in the next subsections.

10.2 Robust nonparametric regression models

The theory of robustness considers deviations from the various assumptions of
parametric models. Robust statistics is thus an extension of classical parametric
statistics. It studies the behavior of statistical procedures, not only under strict
parametric models, but also both in smaller and in larger neighborhoods of such
parametric models. Nonparametric statistics allows “all” possible probability
distributions. When robustness to outliers is concerned, studying the behavior
of nonparametric estimators is important. Davis and Gather (1993) give a
quantitative definition of an outlier:

Definition 44 (Davis and Gather, 1993). Let x = (21, ..., z,) denote a random
sample. For any B, 0 < B < 1, the B outlier region of a null distribution
(distribution to be tested) F with mean u and variance o? is defined by

E(8,m,0%) = {x D —pl > qlfgo}, (10.1)

where q is the 1 — g quantile of the null distribution F'. A number x is called
an [ outlier with respect to F if x € = (b’,u, 02) .

Based on this definition outliers may also affect nonparametric estimators.

10.2.1 Robust Nadaraya-Watson kernel estimator

The Nadaraya-Watson kernel estimator is nonrobust. Based on a functional
framework (Ait-Sahalia, 1995) we will calculate the influence function of the
estimator to quantify this nonrobustness. First we will define the concept of
Frechet differentiability and the uniform Sobolev norm.

Definition 45 Let (V;||],), (U;|ll,) be Banach spaces, let T be a functional
T:V = U and let B(V,U) be the class of all bounded linear operators from V
into U. The functional T is Frechet differentiable at x € V' with respect to ||-||,,
if there exists an operator S,(T) € B(V,U) :V — U such that

T(z+h)=T(x)+Sz(T)h+o(h). (10.2)

Definition 46 For any function g € C", mth (m <) order uniform Sobolev
norm is defined as

8(a1+-~~+ad)g(t>

10.
Oty...0ty ’ (10-3)

gl = sup sup sup
0<c<m |a|=c teR4
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where |a] = a1 + ... + a4. Consider now the case where V. C C" and U = R.
Let the statistical functional be denoted by T'(Fxy) where Fxy € V is the
cumulative joint distribution of the data and the natural estimate of T'(Fxy ) is
T(F 'xy ) where 3 'xy is the cumulative sample joint distribution function. Let
Fy|x denotes the conditional probability distribution function of Y given X.

Theorem 47 Generalized Delta theorem (Ait-Sahalia, 1995). Let Fxy € V
and let GXY = FXY - FXy.

(1) The functional T is Frechet differentiable at the point Fxy for the norm
Il and its differential is given by

S TGy = - ([sor ety - ax(@m) . 0

.
fx (@)
(i1) The functional T(Fxy) is consistently estimated by T(Fxy) and

N = (T(FXY) - T(FXY)) = N (0, V(T(Fxy))). (10.5)

By analogy with Hampel’s influence function (Hampel, 1994) and based on
the Generalized Delta theorem, the influence function of the Nadaraya-Watson
kernel estimator is defined as

IF ((xg,yk); T, Fxy) = Sk, T (FXY - FXY) (10.6)

with Sp,, TFxy = 0, we obtain

IF ((zk,yx); T, Fxy) = m/yff (x—hxk> K (y _hyk) dy—
e () o

_ % (% /yK (y hy’“) dy — m(:c)) . (10.7)

The influence function is unbounded for y in R. Using decreasing kernels, kernels
such that K(u) — 0 as u — oo, the influence function is bounded for z in R.
Common choices for decreasing kernels are: K (u) = max ((1 —u?),0), K(u) =
exp — (u?) and K (u) = exp (—u).

By analogy (Boente and Fraiman, 1994), we are interested in the L- robus-
tifed Nadaraya-Watson kernel estimator. A convenient subclass of L-estimators
is given by

Ty, (Fxy) = /j (Fyix (v)) Fy x (Fyix (v)) dFyx (0) + Y a;F;  (g;).
j=1
(10.8)
It is assumed that 0 < ¢; < ... < ¢ < 1 and that a,...,a,, are nonzero con-
stants. This requires that J must be integrable, but lends itself to formulation
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of L-estimates as statistical functionals. Thus L-estimates of form (10.8) are
sums of two special types of L-estimate, one type weighting all the observations
according to a smooth function, the other type consisting of a weighted sum of
a fixed number of quantiles. Let u = Fy|x (v) and let m = 0, we obtain the L
functional

T, (Fxy) = / T (w)d (u). (10.9)

Following Ait-Sahalia, Bickel and Stoker, (2000) the functional T}, is Frechet
differentiable at the point Fxy for the norm ||-|| and its differential is given by

J (v)
I (2 Py ()

ad—lg B

Sk I1Gxy = /

The influence function for the estimator 17, (F Xy) is given by

IF ((xr,yk); T, Fxy) = Spyy T (FXY - FXY)

- / f (xifi (u)) ’ <hd1—1K (Z hxk) -/ (“’”)) au

Y
L (2o J (u) Fyix () = o
e k>/f(w,F;|X <u>)K< o )d“
u d—1 -
+/f (xi}%j (w) aﬂl?...aid—l) (1 Py () (10.11)

The influence function is bounded for y in R. Alternative derivations of the
influence function can be found in (Van Der Vaart, 1998) and (Serfling, 1980).
Let J (u) = ﬁ[ 18,1—3) (u) which correspond to the 3 conditional trimmed

expectation (10.9), the estimator of T (Fxy) is given by
. 1 1-6
T (FXY> - m/ﬁ By iy (2)dz (10.12)

and Fy‘x is defined as

K ()

| ,; Yo K (xhxl) =

where K is the Gaussian kernel. The trimming parameter was set equal to 2.5%.
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10.2.2 Smoothing parameter selection for regression

The Nadaraya-Watson kernel estimate requires the tuning of an extra learning
parameter, or tuning parameter, denoted here by h. We will use the cross-
validation as tuning parameter selection method. Essentially, cross-validation
uses the data set at hand to verify how well a particular choice of smoothing
parameter (bandwidth) does in terms of the residuals. More precisely, the cross-
validation score function is defined as

1

CViry) (h EZ yk — G (@ h))?, (10.14)

where mEf’“) is the so called ”leave-one-out” version of m,,. That is, mﬁf’“ is
constructed with n—1 data points by leaving out the data point (zy,yx) . Notice
that the cross-validation criterion is essentially the same as the residual sum of
squares, using the Lo measure. This measure is not a robust one and what is
needed is a robust version of the cross-validation. We define the absolute value
cross-validation score function by

1< e
CViwy(h) =~ > ‘yk — M (@ h)| - (10.15)
k=1

This criterion score function should be resistant against outliers.

10.3 Computing the loss function

Let f (y,m (z)) denote the model of noise and let L (y,m (z)) denote the loss
function (the statistic of interest here). In a maximum likelihood sense, for the
symmetric density function f (y,m (x)), a certain loss function is optimal for a
given noise model such that the loss function equals

L(y,m(x)) ==Y log f (yx —m (zx)). (10.16)
k=1

10.3.1 Kernel density estimation

Smoothing methods provide a powerful methodology for gaining insights into
data. Many examples of this may be found in monographs of (Eubank, 1988;
Hérdle, 1990; Miiller, 1988; Scott, 1992; Silverman, 1986; Wahba, 1990; Wand
and Jones, 1994). But effective use of these methods requires: (a) choice of the
kernel, and (b) choice of the smoothing parameter (bandwidth). Let K : R? —
R be a function called the kernel function and let h > 0 be a bandwidth or
smoothing parameter. The Parzen kernel density estimator is defined as

Ful nhz <x_x’“). (10.17)
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10.3.2 Smoothing parameter selection for density estima-
tion

As it turns out, the kernel density estimator is not very sensitive to the form of
the kernel (Rao, 1983). An important problem is to determine the smoothing
parameter. In kernel density estimation, the bandwidth has a much greater
effect on the estimator than the kernel itself does. When insufficient smoothing
is done, the resulting density estimate is too rough and contains spurious fea-
tures. When excessive smoothing is done, important features of the underlying
structure are smoothed (see chapter 8). An objective, for the Parzen kernel esti-

mator, is to choose the smoothing parameter that minimizes the MISE ( fn, f )

Devroye and Lugosi (2001) provides proofs that the banddwidth selection based
on Lo would not be universally useful. In this thesis we use a combination of
cross-validation and bootstrap for choosing the bandwidth for the Parzen kernel
estimator. The algorithm is as follows:

Algorithm 48 (Smoothing parameter selection,).

(i) Cross-Validation step. From x1, ..., T, construct an initial estimate of the
probability density function

where hg is chosen by minimizing the integrated mean squared error (IMSE),

/E (Fule) - f(a:))zdx (10.18)

which can be estimated by the Jackknife principle by

eV (o) = [ (Fu@) do= 23" F (e

I
3
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— —_— —K . 10.19
N R Gy 119
where fr(fk) 1s the density estimate based on all of the data except xi and
K (u) o K (u) is the convolution of the kernel with itself.
(i) Bootstrap step

(ii.1) Construct a smoothed bootstrap sample Construct the empirical dis-
tribution, F,,, which puts equal mass, 1/n, at each observation (uni-
form random sampling with replacement). From the selected F,,, draw
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a sample x7,...,x}, called the bootstrap sample. Adding a random
amount ho€ to each x7, k = 1,...,n where £ is distributed with den-
sity K (+). So x}* = x} + hoé.

(i.2) Estimate the integrated mean absolute error by

fin(@sh) = fu(w; ho)| da,

B
1
IMAEyo0t (hyho) = B E /
b=1

where A;j"b(a:; h)=L3Y1 K (zflfz*) forb=1,...,B and B is the
number of bootstrap samples to be taken.

(i.3) Obtain the bootstrap choice of the bandwidth hpeor by minimizing
IMAEyo0t (hy ho) over h.

10.4 Accuracy of the loss function

10.4.1 Bootstrap method

Figure 10.1 is a schematic diagram of the bootstrap method as it applies to
general data structures. On the left an unknown probability mechanism P has
given the observed data z = (z1, ..., z,) by random sampling. Having observed
data z, we calculate a statistic of interest S(z), and wish to know something
about the statistical behavior.

The advantage of the bootstrap is that we can calculate as many replications
of S(z*) as we want. This allows us to probabilistic calculations.

Given a training data set of n points D,, = {(x1,vy1) , ..., (Tn, Yn)} with output
data 1, € R and input data z;, € R? according to

yr = m(zy) + ek, k=1,..n, (10.20)

where m : R — R is an unknown real-valued function. The e are assumed
to be independent random errors E [e;] = 0 and Efyg|X = zx] = m(xy). The
€1,...,en are (i.i.d.) from an unknown distribution F, with mean zero. In this
case, the unknown probability model P can be identified as (m (z), Fe). Let
Myobust (k) be denoted the robust estimation of m (zk), then F. can be esti-

mated by the empirical distribution F. putting mass n~! to e — nt Z;l:l €7,
where € = yr — Mrobust (Tx) is the k-th residual. P is now estimated by

P= (Mrobust () , Fe). To generate bootstrap data z; = (z, yi), we first gener-
ate (i.i.d.) data e9*,...,e0* from Fio and then define y; = My opust (Tx) + €3*.

Algorithm 49 (The bootstrap based on residuals)

(i) The unknown probability model P was taken to be yr, = m (z1)+ek, k=
1,...,n with ey, ..., e, independent errors drawn from some unknown prob-
ability distribution F,
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Estimated
I Bootstrap
Unknown Observed probability Monte data
I probability —— data — model Carlo o x o N
model (P) z=(x.y) (P estimate) Z=(x.y)
n ‘ | |
B g?;lstlc of interest Bootstrap Statistic 7
s@2)
1 1 1 1 1 1 1 1 1

Figure 10.1: A general diagram of the bootstrap method for assessing statistical
accuracy. On the right hand side of the diagram, the empirical probability

mechanism P gives bootstrap samples z* = (z7,...,2%) by random sampling,

cey Ry

from which we calculate bootstrap replications of the statistic of interest S(z*).
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(i1) Calculate My opyust (T) , and the residuals are €, = yr — Myobust (Tk) , from
which was obtained:

(ii.1) An estimated version of F.o : probability % on é;.

(“2) L(yka mrabust (Ik)) = - log f(yk - mrobust (Ik))

(iii) Bootstrap data D;, = {(21,97), .., (Tn,y;,)} were generated according to
Yi = Mrobust (Tx) + €57, €57, ..., 0% independent errors drawn from Feo by
Monte Carlo.

(iv) Having generated D}, , the estimated errors (residuals) are € = yj —

m:obust (‘Tk) . Calculate L* (yz7 m:’obust (xk)) = —log f*(y;; - m:obust (xk))

(v) This whole process must be repeated B

K (kg )i

T —x]

P —
where Mo obust (xk) - Zrobust,i S robust. K (S
robust,j v

T @)y
robust,j K( h )

and

Merobust (mk) = Zrobust,i >

10.4.2 Robust bootstrap

The robustification of the bootstrap in based on a control mechanism in the
resampling plan, consisting of an alteration of the resampling probabilities, by
identifying and downweighting those data points that influence the function
estimator (see Chapter robust prediction interval).

10.5 Simulations

This example describes experiments with kernel based regression in estimat-
ing the loss function. For these experiments we chose the following regression
function

sin (z)

Yk = +ex, k=1,...,250 (10.21)
where the values yj, are corrupted by (i) ex ~ N (0,0.2%) and (i)

er ~ Lap (0,0.22) . The results are shown in Figure (10.2) and (10.3). Figure
(10.2) gives the results for experiment with e, ~ A (0,0.2%) and Figure (10.3)
gives the results for experiment with ex ~ Lap (0, 0.22) . Both Figures give the
empirical probability distribution function, the empirical probability density
function and the empirical loss function. Note that respectively the Lo norm
loss function and the Ly loss function can be recognized.
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1.2

=
Zos

Qar

0
Numerical results for the bootstrap experiment with

Figure 10.2:
N (0, 0.22) for recovering the true maximum likelihood loss function.

~

Numerical results for the bootstrap experiment with ey

Qo -

Figure 10.3:
Lap (0, 0.22) for recovering the true maximum likelihood loss function.
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10.6 Conclusions

We have shown that Nadaraya-Watson estimator is nonrobust in the sence of
the influence function and that L- regression achieved robustness. Based on
the estimated noise model we have calculated the empirical loss function. In an
experiment, we have recognized respectively the Lo norm loss function and the
L1 loss function.
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Chapter 11

Robust tuning parameter
selection

In this chapter we study the use of robust statistics towards learning parameter
selection by cross-validation and the final prediction error (FPE) criterion. For
robust learning parameter selection methods robust location estimators such as
trimmed mean are applied. Together with robust versions of LS-SVMs, robust
counterparts for cross-validation (De Brabanter et al., ) and FPE criterion (
De Brabanter et al., ) are proposed. Finally, simulation results for weighted
LS-SVM function estimation are given to illustrate that the proposed robust
methods outperforms other cross-validation procedures and methods based on
a number of other complexity criteria. Contributions are made in Section 11.3,
11.4, 11.5 and 11.7.

11.1 Introduction

As explained in Chapter 4, most efficient learning algorithms in neural networks,
support vector machines and kernel based methods (Bishop, 1995; Cherkassky
et al., 1998; Vapnik, 1999; Hastie et al., 2001; Suykens et al., 2002b) require the
tuning of some extra learning parameters, or tuning parameters, denoted here by
0. For practical use, it is often preferable to have a data-driven method to select
0. For this selection process, many data-driven procedures have been discussed in
the literature. Commonly used are those based on the cross-validation criterion
of Stone (Stone, 1974) and the generalized cross-validation criterion of Craven
and Wahba (Craven and Wahba, 1979). One advantage of cross-validation and
generalized cross-validation over selection criteria such as Mallows’ C, and the
Final Prediction Error (FPE) criterion (Akaike, 1970) is that they do not require
estimates of the error variance. This means that Mallows’ C),, Akaike’s (FPE)
criterion require a roughly correct working model to obtain the estimate of the
error variance. Cross-validation does not require this. But for general dependent
data, the cross-validation fails to capture the dependence structure of the data

163
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and require nontrivial modifications. An advantage with the Final Prediction
Error (FPE) criterion is that the minimization can be performed with respect to
different model structures, thus allowing for dependent dat. Based on location
estimators (e.g. mean, median, M-estimators, L-estimators, R-estimators), one
can find robust counterparts of model selection criteria (e.g. Cross-Validation,
Final Prediction Error criterion).

Given a random sample e = (ey, ..., e,)" from a distribution F(e). Let Ty be
a model selection criterion and let £ = L (e) be a function of the random variable
e. One can transform the cost function of I'g, based on £ = L (e), into a simple
location problem. The robust counterpart of the model selection criterion is now
based on a robust regression estimation and a robust location estimator (e.g.
median, M-estimators, L-estimators, R-estimators). The choice of a robust
location estimator depends on the distribution F'(£) and his robustness and
efficiency properties.

Definition 50 (Statistical location model). Letting & = L(e) = (&1,...,6n)"
and § = (81, ...,0,)" we then write the statistical location model as

Ee=n+0 k=1,..n, (11.1)

where n is an unknown one-dimensional parameter and dy is normally dis-
tributed with mean zero and standard deviation o.

Definition 51 (Location estimator). Given a location model and a norm |-,

an estimator n =T (Fn) of m induced by the norm is

0= argmnin 1€ = Lanll, (11.2)

where 1, denotes the vector whose components are 1. The estimator T (Fn)

is called a univariate location estimator.

11.2 Location estimators

We will now discuss the location estimators. The least squares (LS) estimator
minimizes

T (Fn) = argmgnkzz1 (& —n)%, (11.3)

which leads to the arithmetic mean. This estimator has a poor performance in
the presence of contamination. Therefore Huber (Huber, 1964) has lowered the
sensitivity of the LS loss function by replacing the square by a suitable function
p- This leads to the location M-estimator.
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M-estimators

In this subsection we briefly review the statistics which are obtained as solutions
of equations. Often the equations result in an optimization procedure, e.g. in
the case of maximum likelihood estimation (MLE), least squares estimation etc..
Such statistics are called M-estimates. An important subclass of M-estimates
is introduced by Huber (Huber, 1964). A related class of statistics, L-estimates
is treated in the next subsection.

Let &1, ..., &, be a random sample from a distribution F' with density f(£—n),
where 7 is the location parameter. Assume that F' is a symmetric unimodal
distribution, then 7 is the center of symmetry to be estimated. The M-estimator

n="T (ﬁn) of the location parameter is defined then as some solution of the

following minimization problem
T (Fn) = arg min -n), 11.4
g 7; ;; 1 p (& —mn) ( )

where p (t) is an even non-negative function called the contrast function (Phan-
zagl, 1969); p(&x —n) is the measure of discrepancy between the observation &
and the estimated center. For a given density f the choice p (t) = —log f (t)
yields the MLE. It is convenient to formulate the M-estimators in terms of the
derivative of the contrast function D (t) = dp(t)/dt called the score function.
In this case, the M-estimator is defined as a solution to the following implicit
equation

S D& — i) =0. (11.5)
k=1
Well-known examples of location parameter estimators are:

e Ezample 1: For p(t) = t2, one obtains the least squares solution by mini-
mization of Y, _; (& — 7])2. The corresponding score function is D (¢) = t,
—00 < t < oo. For this D, the M-estimate is the sample mean. The con-
trast function and the respectively score function are sketched in Figure
11.1.

e Ezample 2: For p (t) = |t|, one obtains the least absolute values by mini-
mization of Y ;_, [ — n|. The corresponding score function is

-1, t<0
Dt)={ 0 t=0 (11.6)
1 t>0.

The corresponding M-estimate is the sample median. The contrast func-
tion and the respectively score function are sketched in Figure 11.2.

e Ezample 3: Huber considers minimization of Y_;_, p (& — 1), where

12 [t <e
— 2 >
p(t) = { clt| = %02 It > c. (11.7)
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Contrast and Score Function
T

Contrast Function:
L2 norm

score function

T(F)=mean

Figure 11.1: The contrast function and the score function of the Ly- norm.

Contrast and Score Function
T

Contrast Function:
L1 norm

score function

T(F)=median

Figure 11.2: The contrast function and the score function of the Li-norm.
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Contrast and Score Function
T

L1 norm

Contrast\Cunction

= {
k=1 | |_2 norm | score function
! |
! |
O ! |

Figure 11.3: The contrast function and the score function of the Huber type of
M -estimators.

The score function is

—c, t< —c
D(t)={ t tl < e (11.8)
c t>c.

The corresponding M-estimate is a type of Winsorized mean (explained in
further detail in next subsection). It turns out to be the sample mean of
the modified £;’s, where £, becomes replaced by 7+ ¢, whichever is nearer,
if |€; — 7| > ¢. The contrast function and score function are sketched in

Figure 11.3.
e Ezample 4: Hampel (1968, 1974) suggested a modification to the Huber
estimator:
t 0<|t|<a
a sign (t) a<lt|<b
=9 4 (%‘tb') sign(t)  b<|t <c (11.9)
0 [t] > ¢,

making W (¢) zero for [¢| sufficiently large. This M-estimator has the
property of completely rejecting outliers. The contrast function and score
function are sketched in Figure 11.4.



168 CHAPTER 11. ROBUST TUNING PARAMETER SELECTION

Contrast and Score Function
10 T

A

Score Function

Figure 11.4: Hampel’s modification to the Huber estimator. This M-estimator
has the property of completely rejecting outliers.
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Contrast and Score Function
T

contrast function
p(t)

score function

W(t)

Figure 11.5: Tukey’s biweight contrast and score function

e Example 5: A very smooth score function, the biweight was proposed by
Tukey (1974) and has become increasingly popular. The score function is

given by
U(t)=t(a*— t2)2 O1—aa)(t), (11.10)
where
_J1 ift € [—a,al
O-a.al = { 0  otherwise. (11.11)

The contrast function and the respectively score function are sketched in
Figure 11.5.

L-estimators

L-estimators were originally proposed by Daniel (1920) and since then have
been forgotten for many years, with a revival now in robustness studies. The
description of L-estimators can be formalized as follows.

Let &1,...,&, be a random sample on a distribution F', the ordered sample
values &, (1) < ... < &pu(n) are called the order statistics. A linear combination of
(transformed) order statistics, or L-statistic, is a statistic of the form

T (£) =3 Cugya (@ur) (11.12)
j=1
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Figure 11.6: Schematic representation of the trimmed mean on a symmetric
distribution.

for some choice of constants Ci,(1y, ..., Cp(n) Where 22‘;1 Cn(jy = 1 and af(-) is
some fixed function. The simplest example of an L-statistic is the sample mean.
More interesting, a compromise between mean and median (trade-off between
robustness and asymptotic efficiency), is the fGo-trimmed mean (Figure 11.6)
defined as

fips) = (11.13)

J =g+1

where the trimming proportion 3 is selected so that g = [nf2]| and a(&,(;)) =
n(y) is the identity function. The (-trimmed mean is a linear combination of
the order statistics given zero weight to a number g of extreme observations at
each end. It gives equal weight 1/(n — 2g) to the number of (n — 2g) central
observations. When F' is no longer symmetric, it may sometimes be preferable
to trim asymmetrically if the tail is expected to be heavier in one direction than
the other. If the trimming proportions are 3; on the left and (5 on the right,
the (81, B2)-trimmed mean is defined as

n—gz2

> &) (11.14)

Jj=g1+1

[ o) = 5 gl+92

where 81 and (s are selected so that g1 = [nf1] and g = |[nf2] . The (51, 82)-
trimmed mean is a linear combination of the order statistics giving zero weight
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Figure 11.7: Schematic representation of the Winsorized mean on a symmetric
distribution.

to g1 and go extreme observations at each end and equal weight 1/(n — g1 — g2)
to the (n — g1 — g2) central observations.

Another L-estimator is the S-Winsorized mean (Figure 11.7). Let 0 < 8 <
0.5, then the S-Winsorized means (in the symmetric case) is defined as

n—g

R 1
fw(p) = — | 9%n(g+1) + Z &ni) + 9€nn—-g) | - (11.15)
Jj=g+1

While the g-trimmed mean censors the smallest and largest g = |n3] obser-
vations, the §-Winsorized means replaces each of them by the values of the
smallest and the largest uncensored ones.

11.3 Robust V-fold Cross-Validation

The motivation behind cross-validation is easily understood, see (Allen, 1974)
and (Stone, 1974). Much work has been done on the ordinary or leave-one-out
cross-validation (Bowman, 1984) and (Hérdle and Marron, 1985). However, the
difficulty with ordinary cross-validation is that it can become computationally
very expensive in practical problems. Therefore, (Burman, 1989) has introduced
V-fold cross-validation. For more references on smoothing parameter selection,
see (Marron, 1987, 1989) and (H&rdle and Chen, 1995).

In recent years, results on Ly and L cross-validation statistical proper-
ties have become available (Yang and Zheng, 1992). However, the condition
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E [e7] < oo (respectively, E [leg|] < 0o) is necessary for establishing weak and
strong consistency for Lo (respectively, L) cross-validated estimators. On the
other hand, when there are outliers in the output observations (or if the distribu-
tion of the random errors has a heavy tail so that E [|ex|] = 00), then it becomes
very difficult to obtain good asymptotic results for the Ly (L) cross-validation
criterion. In order to overcome such problems, a robust cross-validation score
function is proposed in this paper. This is done by first treating the values of
the cross-validation score function as a realization of a random variable. In a
second stage, the location parameter (e.g. the mean) of this realization is esti-
mated by a robust method. The results of this paper illustrate that the robust
methods can be very effective, especially with non-Gaussian noise distributions
and outliers in the data.

The cross-validation procedure can basically be split up into two main parts:
(a) constructing and computing the cross-validation score function, and (b)
finding the tuning parameters by 0* =argming [CVy_foq (0)]. In this thesis
we focus on (a). Let {zp = (xx,yx)}r_; be an iid. random sample from
some population with distribution function F (z). Let F), (z) be the empirical
estimate of F'(z). Our goal is to estimate a quantity of the form

T(E,) = /L (Z,Fn(z)) dF(2), (11.16)

with L(-) the loss function (e.g. the Ly or L; norm) and where E [T(Fn)} could

be estimated by cross-validation. We begin by splitting the data randomly
into V disjoint sets of nearly equal size. Let the size of the v-th group be m,,
and assume that |[n/V] < m, < [n/V]|+1 for all v. Let F(n,mv) (2) be the
empirical estimate of F'(z) based on (n — m,,) observations outside group v and
let F,,, (z) be the empirical estimate of F (z) based on m, observations inside
group v. Then a general form of the V-fold cross-validated estimate of T(F’n)
is given by

14
CVy_told (9) = Z % /L (Z7 F(n,mv) (z)) dpmv (2). (11.17)
v=1

Let f(=m) (x;0) be the regression estimate based on the (n — m,,) observations
outside the group v. Then the least squares V-fold cross-validated estimate of
T(F,) is given by

Moy

14
CVfoold (9) = Z % Z mi (yk — ( ™) (l‘k 9))2 . (11.18)
k=1""

v=1

Let £ = L(e) be a function of a random variable e. In the V-fold cross-
validation case (11.18), a realization of the random variable e is given by e =

(yk — f(_m“) (2k; 9)), k=1,...,m, Vv, and the cross-validation score function
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distribution of model error
0.5 T T

Figure 11.8: Noise distribution. F (e) is unknown and is assumed to have zero
mearn.

can be written as function of the number of V' +1 location problems. It estimates
a location parameter of the corresponding v-samples.

“m 1 & Ym 1 &
CVy—fora (0) = 71) <m— L (ek:)) => 7” (m fk)
(

k= v=1 Vk=
11, "'76177L1) ) ---7,&\/ ({Vlv "'7§V7fbu)) ) (1119)

where §,; denotes the j-th element of the v-th group, fi, ({41, ..., §om, ) denotes
the sample mean of the v-th group and ji is the mean of all sample group means.
Consider only the random sample of the v-th group and let F,, (¢) be the
empirical distribution function. Then Fm,, (&) depends in a complicated way on
the noise distribution F'(e), the 8 values and the loss function L(-). In practice
F(e) is unknown except for the assumption of symmetry around 0 (see Figure
11.8). Whatever the loss function would be (Ly or L), the distribution £, (€)
is always concentrated on the positive axis with an asymmetric distribution
(see Figure 11.9). The asymmetric distribution of fi1, ..., iy, denoted by F (fiy)
is sketched in Figure 11.10. There is a lot of variability in the V-fold cross
validated estimate, because the number of ways that n random values can be
grouped into V' classes with m,, in the vth class, ¢ = 1,...,V, and Zy:l My =N
equals W’m,

We propose now the following procedure. Permute and split repeatedly the
data - e.g. r times - into V' groups as discussed. then the V-fold cross-validation
score function is calculated for each split and finally take the average of the r
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distribution of u=L(9)
3.5 T

Figure 11.9: Squared residual distribution, F,, (u) concentrated on the positive
axis with an asymmetric distribution.

distribution of mu

f(mu)

0.08 -

0.06 - -
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Figure 11.10: Asymmetric distribution F' (g,).
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distribution of Cross—validation scores Estimates

O Single. CV—-Estimates

w
Q 2 @) repeated—V—fold
a

15 -~ cv estimate

Figure 11.11: Schematic representation of the sampling distribution correspond-
ing with one point in the tuning parameter space.

estimates

1 T
Repeated,CVV,fold ((9) = - Z CVV—fold,j (9) . (11.20)
=1

The distribution of the Repeated_CVy _ fo14 (¢) is asymptotically normally dis-
tributed. The repeated V-fold cross-validation score function has about the
same bias as the V-fold cross-validation score function, but the average of r
estimates is less variable than for one estimate. This is illustrated in Figure
11.11.

11.4 Repeated Robust and Efficient V/-fold Cross-
validation Score Function

A classical cross-validation score function with Lo or L; works well in situations
where many assumptions (such as e, ~ N (0, 02) , B [ei] < oo and no outliers)
are valid. These assumptions are commonly made, but are usually at best
approximations to reality. For example, non-Gaussian noise and outliers are
common in data-sets and are dangerous for many statistical procedures and
also for the cross validation score function. Given the previous derivations of
robustness and efficiency, a new variant of the classical cross-validation score
function is introduced based on the trimmed mean. There are several practical
reasons to use this type of robust estimator, which is the least squares solution
after discarding (in our case) the go = |nf2] largest observations:
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e The trimmed mean can be applied when the sample distribution is sym-
metric or asymmetric.

e It is easy to compute. It is a reasonable descriptive statistic, which can
be used as an estimator of the mean of the corresponding truncated dis-
tribution.

e For large n, the trimmed mean has an approximate normal distribution
(Bickel and Peter, 1965). The standard deviation can be estimated based
on the Winsorized sum of squares (Huber, 1970).

e It can be used as an adaptive statistic.

The general form of the V-fold cross-validation score function based on the
sample mean is given in (11.17). The robust V-fold cross-validation score func-
tion based on the trimmed mean is formulated as

m

Fi(lfﬁg)
n" / L (2, Fm,) (2))dFm, (z).  (11.21)
0

\%4
Vet (0) =3
v=1

Let fRobust (x;0) be a regression estimate constructed via a robust method, for
example the weighted LS-SVM (Suykens et al., 2002). Then the least squares
robust V-fold cross-validation estimate is given by

My 1 - 9
CVRobust 0) = ﬂ ( o (=my) -0 )
V—fold ( ) ; n g m, — I_mvﬁQJ Yk fRobust(‘r]“ ) 1 (k)
T, (1), (mo— Lo o)) (U = P (225 0))%), (11.22)
where (y; — é;;’;i(mk; 9))37%(19) is an order statistic and the indicator function

Itqp)(2) = 1if a < z < b and otherwise 0.
The robust V-fold cross-validation score function can also be written as

V530 (8) = 1 wees €y ) (11.23)

It estimates a location parameter of the v-samples, where i g, ,)
(Emv(l)v s §mu(mv)) is the sample (0, B3)-trimmed mean of the v-th group, and
i is the mean of all the sample group (0, B2)-trimmed mean. To use a (0, 32)-
trimmed mean, one must decide on a value of 35. Guidelines for selection of this
value can be found in (Hogg, 1974). If one is particularly concerned with good
protection against outliers and if from past experience one has an idea about
the frequency of occurrence of such outliers (5 to 10% is typical for many types
of data) one would choose a value 82 somewhat above the expected proportion
of outliers.

Similar as presented in Section 13.2 for the V-fold CV score function, the
data is permuted and splitted repeatedly - e.g. r times - into V' groups. For each
split, the robust V-fold cross-validation score function is calculated. The final
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result is the average of the r estimates. This procedure reduces the variance of
the score function

Repeated CVif%4t (0) ZCVRO‘}%J (6). (11.24)

Remark that the robust cross-validation score function inherents all nice prop-
erties of the trimmed mean and his I F has the same form.

11.5 Robust Generalized Cross-validation Score
Function

A natural approach to robustify the GCV is by replacing the linear procedure of
averaging by the corresponding robust counterparts. Let £ = L(¢) be a function
of a random variable 9. In the GCV case, a realization of the random variable
¥ = g(e) is given by

_ yr — J" (53 0) B .
= (1 - <1/zkvk>tr<5*>> AT (11.25)

where f*(xzy;0) is the weighted LS-SVM as described in Section 11.3.2, the
weighting of f*(xzy;0) corresponding with {zy,yx} is denoted by v and the
smoother matrix based on these weightings is defined as in Eq.(3.12) where Z

is replaced by Z* = (Q+V,) with V, = diag { } The GCV can now
be written as

yv1? T yun

1 — 1 —
GCV(9) = EZL(M) = 52192. (11.26)
k=1 k=1

Using a robust analog of the sum ((0, 52) - trimmed mean), the robust GCV is
defined by

n—|npBz]
1
GC'Vrobust(@):m Z I[ﬁn(l)’ﬂn(n_mﬁﬂ)](192) (11.27)
k=1

where 1. ;(-) is an indicator function.

11.6 Illustrative examples

11.6.1 Artificial data set

In this example we compare eight criteria: leave-one-out C'V, C’V‘fi Fold>
oVl foia» AIC, BIC, the repeated C'Vy §Ob?jfd, GCV and robust GCV for use

in tuning parameter selection of function estimation. First, we show three ex-
amples of estimating a sinc function where the noise model is described by:
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Method L2 L1 Loo

Lo Loo-CV+LS-SVM 0.000587 | 0.020209 | 0.083482
Ly V—fold CV+LS-SVM 0.000621 | 0.020686 | 0.093063
robust V-fold CV+weighted LS-SVM | 0.000586 | 0.020399 | 0.076741
L, V-fold CV+LS-SVM 0.000644 | 0.020979 | 0.097678
AIC 0.000645 | 0.021227 | 0.091463
BIC 0.000687 | 0.022292 | 0.085469
GCV—+LS-SVM 0.000645 | 0.021227 | 0.091463
robust GCV+weighted LS-SVM 0.000645 | 0.021227 | 0.091463

Table 11.1: Numerical performance measured on fresh test data for the results
of the sinc function without outliers. The results compare the performance of an
LS-SVM on data with a Gaussian noise model tuned by different performance
criteria. The robust procedures performs equally well as the classical methods
in the non-contamination case.

(a) noise defined as F, (z) = N(0,0?) (Table 11.1), (b) contamination noise
defined as F, () = (1 —€)N(0,0%) + e N(0,x%02), €= 0.15, & = 1 (Fig-
ures 11.12, 11.13 and 11.14) and (¢) contamination noise defined as F, () =
(1 —€e)N(0,02) +eLap(0,)), €=0.15, A =1 (Figures 11.15, 11.16 and 11.17)

Given is a training set with n = 150 data points. From the simulation
results it is clear that in all contaminated cases the LS-SVM tuned by the clas-
sical methods are outperformed by the robust methods for tuning the weighted
LS-SVM. With the proposed robust procedures, the contamination has practi-
cally no influence on the tuning parameter selection. An important property of
these robust procedures is that in the non-contamination case (c), it performs
equally well as the classical methods (table 11.1). A Monte Carlo simulation
(this experiment is repeated 150 times) was a carried out to compare the dif-
ferent criteria. The LS-SVM estimates are presented with tuning parameters
selected by different criteria. Figures 11.12, 11.13 and 11.14 gives the boxplots
of the simulations for case (a). Figures 11.15, 11.16 and 11.17 gives boxplots of
the simulations for case (b).

11.6.2 Real data sets
Body fat data

In the body fat data set (Penrose et al., 1985) the response variable ”body fat”
and the 18 independent variables are recorded for 252 men. The last third
part of permuted observations is used as independent test set to compare the
obtained results as given in Table 11.2. After examination of the data, the
trimming proportion of the robust cross-validation procedure was set to 5%.
The results show the improved performance of the proposed robust procedures
in different norms (L1, Lo and Lo).
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Figure 11.12: The boxplots of the Monte Carlo simulations on artificial data
(sinc function) for the contamination noise € (A (0,1%)), e = 0.15. Each box
in the figure gives the median and the standard deviation of the sample. In
the Ly norm the best results (mean and variance) are obtained by robust V-
fold crossvalidation and robust generalized crossvalidation combined with the
weighted LS-SVM.
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Figure 11.13: The boxplots of the Monte Carlo simulations on artificial data
(sinc function) for the contamination noise € (./\/ (0, 12)) , € = 0.15. Each box
in the figure gives the median and the standard deviation of the sample. In
the L; norm the best results (mean and variance) are obtained by robust V-
fold crossvalidation and robust generalized crossvalidation combined with the
weighted LS-SVM.
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Figure 11.14: The boxplots of the Monte Carlo simulations on artificial data
(sinc function) for the contamination noise € (M (0,1%)), e = 0.15. Each box
in the figure gives the median and the standard deviation of the sample. In
the Lo norm the best results (mean and variance) are obtained by robust V-
fold crossvalidation and robust generalized crossvalidation combined with the
weighted LS-SVM.
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Figure 11.15: The boxplots of the Monte Carlo simulations on artificial data
(sinc function) for the contamination noise € (Lap (O, 12)) , € = 0.15. Each box
in the figure gives the median and the standard deviation of the sample. In
the Ly norm the best results (mean and variance) are obtained by robust V-
fold crossvalidation and robust generalized crossvalidation combined with the
weighted LS-SVM.
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Figure 11.16: The boxplots of the Monte Carlo simulations on artificial data
(sinc function) for the contamination noise € (Lap (0, 12)) , € = 0.15. Each box
in the figure gives the median and the standard deviation of the sample. In
the L; norm the best results (mean and variance) are obtained by robust V-
fold crossvalidation and robust generalized crossvalidation combined with the
weighted LS-SVM.
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Figure 11.17: The boxplots of the Monte Carlo simulations on artificial data
(sinc function) for the contamination noise € (Lap (0,12)), € = 0.15. Each box
in the figure gives the median and the standard deviation of the sample. In
the Lo norm the best results (mean and variance) are obtained by robust V-
fold crossvalidation and robust generalized crossvalidation combined with the
weighted LS-SVM.
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Method LQ L1 Loo

Lo Loo-CV+LS-SVM 0.0000209 | 0.00363 | 0.0136
Ly V-fold CV+LS-SVM 0.0000166 | 0.00306 | 0.0156
AIC 0.0000996 | 0.00819 | 0.0256
BIC 0.0000996 | 0.00819 | 0.0256
GCV+LS-SVM 0.0000193 | 0.00323 | 0.0138
robust V—fold CV+weighted LS-SVM | 0.0000014 | 0.00078 | 0.0046
robust GCV+weighted LS-SVM 0.0000084 | 0.00226 | 0.0101

Table 11.2: Numerical performance measured on fresh test data for the body fat
data set. The results compare the performance of an LS-SVM on this real data
tuned by different performance criteria. The robust procedures outperform the
classical methods in this case.

Method Ly Iy L

Lo Loo-CV+LS-SVM 3.9974 | 1.5925 4.9841
Ly, V-fold CV+LS-SVM 3.9956 | 1.5918 [ 4.9804
AIC 6.6044 | 1.4824 | 18.6141
BIC 11.6372 | 1.3864 | 29.0393
GCV+LS-SVM 4.7557 | 1.7083 | 5.4784
robust V-fold CV+weighted LS-SVM | 3.9158 | 1.5846 | 5.0697
robust GCV+weighted LS-SVM 3.9316 | 1.5813 5.0104

Table 11.3: Numerical performance measured on fresh test data for the Boston
housing data set. The results compare the performance of an LS-SVM on this
real data tuned by different performance criteria. The robust procedures are
slightly better (AIC, BIC and generalized cross-validation perform significantly
worse than the others.

Boston housing data

The Boston housing data set (Harrison et al., 1978) is composed of 506 objects.
There are 13 continuous variables (including the response variable "MEDV”)
and one binary valued variable. The last third part of permuted observations is
used as independent test set to compare the obtained results as given in Table
11.3

11.7 Robust complexity criteria

11.7.1 Robust Final Prediction Error (FPE) criterion

Let Q, be a finite set of effective number of parameters. For ¢ € Q,, let F, 4
be a set of functions f, let @, (¢) € R™ be a complexity term for F, , and let
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f be an estimator of f in F,, ;. The model parameters, § € ©, are chosen to be
the minimizer a generalized Final Prediction Error (FPE) criterion defined as

Jo(0) = %RSSJr (1 + %) 62, (11.28)

Each of these selectors depends on S(f) through its trace (tr(S(6)) < n — 2),
which can be interpreted as the effective number of parameters used in the fit.

Because J¢ () is based on least squares estimation (via L (yk, f(xg; 9)) ,02), it

is very sensitive to outliers and other deviations from the normality assumption
on the error distribution. A natural approach to robustify the Final Prediction
Error (FPE) criterion Jo(0) is as follows:

(7). A robust estimator M, (z,6) based on (e.g. M-estimator (Huber, 1964)
or weighted LS-SVM (Suykens et al., 2002)) replaces the LS-SVM m, (x, 6) . The

corresponding smoother matrix S* (v, ..., Up; é) is now based on the weighting
elements v, k =1,...,n of Mg (z,0).

(i7) . The RSS = L3 (yx — 17 (21;0))? by the corresponding robust
counterpart RSS,opust- Let &€ = L(e) be a function of a random variable e. A
realization of the random variable e is given by ex = (yr — M, (x;0)), k =
1,...,n, and the %RSS = J1(0) can be written as a location problem

B0 = T3 L) = &, (11.29)
k=1 k=1

where &, = e2, k = 1,...,n. Using a robust analog of the sum ((0, 32) - trimmed
mean), the robust Ji () is defined by

n—|nB2]

robus _ 1
Jl t(e) - n— I_nﬁQJ ]; gn(k:)a (1130)

where &,(1), .., {n(n), € = (Yr — My, (213 0)) and 1p (25, 0) is a weighted repre-
sentation of the function estimate.

(ii7) . The variance estimator 62 by the corresponding robust counterpart
&2 Consider the NARX model (Ljung, 1987)

e,robust*
g@)=fly@t—=1),..,ylt—q),u(t—1),...,ult —p)). (11.31)

In practice, it is usually the case that only the ordered observed data y(k)
according to the discrete time index k, are known. The variance estimator
suggested by (Gasser et al., 1986) is used

1 Z (y(t — Da +y(t + 1)b — y(t))?

_ 2 2
n 2t=2 a?+b2+1

G2 (y (1) =

(11.32)
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where a = % and b = % Let ¢ = L (99) be a function of a

random variable, a realization of the random variable ¥ is given by

9, — (y(t —Da+y(t+ l)b—y(t)). (11.33)

va?+b2+1
The variance estimator (11.32) can now be written as an average of the random
sample 97, ...,92 (a location problem):

ey Up

n—1

1

~2 o

o= —5 D G (11.34)
k=2

where ¢, = 93, k = 2,...,n — 1. Using a robust analog of the sum ((0,3s) -

trimmed mean), the robust 67 .., is defined by

m—|mpB2

J
1
52
ae,mbust:m 2 Cn(1)s (11.35)

where m =n — 2.
The final robust FPE criterion is given by

2[tx(5" (00, 0) +1] )
J 97‘0 us :J 97‘0 us + 1+ N €, robus
¢ O)robust = 1 (8)robust ( ey L

(11.36)

where the smoother matrix S* (vk,é) is now based on the weighting elements
V-

11.7.2 Influence function of the Robust Final Prediction
Error (FPE) criterion

Because J¢(0) is based on least squares estimation (via L (yk, f (k; 0)) ,62), it
is very sensitive to outliers and other deviations from the normality assumption
on the error distribution. The influence function of the Final Prediction Error
(FPE) criterion is unbounded in R.

The corresponding statistical functional for the robust FPE criterion is given
by

_ 1 Fm(=) robust 1 Fr(1=h2)
R SRR (1_52 [ aro),
(11.37)

where MTobust — (1 4 M) . .From the definition of the influence
n—tr(S*(vg,0))—2

function and (11.37) , it follows that

IF (6, T, F) =IF (&Th, F) +m™st (IF ((; Ty, F)), (11.38)
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Figure 11.18: The logistic map with contaminated equation noise. Time plot
of the validation data and its iterative predictions using mentioned LS-SVM
estimators.

where

E—B2F(1-B2) - _
IF (&1, F) = _(1=02) h(F) 0 SE<F (1=5) (11.39)
F~ (1 - p2) =T\ (F) F= (1) <¢
and the influence function I'F ({;Ts, F') can be calculated. We can see that the
influence functions are bour}ded in R. This means that an added observation

at a large distance from T'(F),) gives a bounded value in absolute sense for the
influence functions.

11.7.3 Illustrative examples
Example 1: Artificial example

An example illustrates the advantage of the proposed criteria. It considers a
stochastic version of the logistic map y(t+1) = cy(t) (y(t) — 1)+e; with ¢ = 3.55
and contaminating process noise e;. The recurrent prediction illustrates the
difference of the NAR model based on the LS-SVM tuned by AICC and the
weighted LS-SVM tuned by Jo(0)ropust (see Fig 11.18).

The numerical test set performances of both are shown in Table 11.4 with
improved results (in Lo, L1, Lo norm) by applying the robust model selection
criteria.
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Method Ly Ly Ly
AICC+LS-SVM 0.1088 | 0.2251 | 1.0338
Jc(0)robust+WLS-SVM | 0.0091 | 0.0708 | 0.2659

Table 11.4: Performance of kernel based NARX model and its robust coun-
terpart on time-series generated by logistic map with contaminated equation
noise.

Example 2: Process data

The process is a liquid-satured steam heat exchanger, where water is heated
by pressurized saturated steam through a copper tube. The output variable is
the outlet liquid temperature. The input variables are the liquid flow rate, the
steam temperature, and the inlet liquid temperature. In this experiment the
steam temperature and the inlet liquid temperature are kept constant to their
nominal values (See dataset 97-002 of DalSy, (De Moor 1998)). A number of
different models are tried on the dataset (fort = 1,...,3000). A final comparison
of the estimated models is done and measured on an independent testset (for
t = 3001, ...,4000)

1. At first, classical linear tools were used to explore properties of the data.
An appropriate ARX model was selected using AICC and GCV. Although its
one-step ahead predictor is excellent, iterative predictions are bad because of
the overestimation of the orders of the data.

2. A way to overcome this, is to use robust methods for the parameter
estimation in ARX modeling (based on Huber’s cost function) and the robust
counterparts of AICC and GCV. Although the performance in the one-step-
ahead prediction on the test set is slightly worse compared to the previous
non-robust models, the iterative prediction is the iterative prediction based on
robust procedures outperforms the non-robust methods. Note that small orders
are selected by the robust procedures.

3. Thirdly, the fixed-size LS-SVM (RBF kernel) was used for model identifi-
cation of a NARX model (Table 11.5). The performance in the one-step-ahead
prediction on test data is slightly worse compared to the linear models, while
in the iterative prediction the fixed-size LS-SVM outperforms (in the Ly, Ly
and Ly norm) the linear models. The best results (L1, L; and Lo, norm) are
obtained by robust selection criteria combined with a robust fixed-size LS-SVM.

11.8 Conclusions

Cross-validation methods are frequently applied for selecting tuning parameters
in neural network methods, usually based on Ly or L; norms. However, due to
the asymmetric and non-Gaussian nature of the score function, better location
parameters can be used to estimate the performance. In this thesis we have
introduced a repeated robust cross-validation score function method by applying
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Figure 11.19: The process is a liquid-saturated steam heat exchanger, where
water is heated by pressurized saturated steam through a copper tube.

One-step-ahead Iterative

Model Selection L, |Li [ Lo [ La [Li | L
Linear Models

Jo =0.052, GC'V = 0.059
ARX(40,40,8) | AICC 0.0823 | 0.226 | 1.10 | 3.04 1.42 4.48
ARX(40,18,8) | GCV 0.0819 | 0.226 | 1.10 | 0.722 | 0.708 | 2.28
Fized-size LS-SVM (RBF) based Models

Jo =0.048, GC'V = 0.054
NARX(3,4,8) AICC 0.0967 | 0.250 | 1.12 | 0.560 | 0.609 | 2.16
NARX(3,4,8) GCV 0.0967 | 0.250 | 1.12 | 0.560 | 0.609 | 2.16
Robust fized-size LS-SVM (RBF) based models

J5ePust = 0.024, GCVTU = 0.030

rNARX(3,3,8) | robust AICC | 0.0958 | 0.246 | 1.11 | 0.501 | 0.589 | 2.09
rNARX(2,1,8) | robust GCV | 0.0914 | 0.245 | 1.08 | 0.496 | 0.566 | 1.99

Table 11.5: Numerical performance measure on test data for the results of the
process dataset. The results compare the performance of linear ARX models
with NARX using fixed-size LS-SVM (RBF kernel) tuned by different model
selection criteria (AICC, GCV) and its robust counterparts based on robust
fixed-size LS-SVM and robust complexity criteria. Again, the robust procedures
outperform the classical methods in the iterative prediction.
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concepts from robust statistics to the cross-validation methodology. We have
applied a similar technique to generalized cross-validation. Simulation results
illustrate that these methods can be very effective, especially with outliers on
data where the Lo methods usually fails. The proposed methods have a good
robustness / efficiency trade-off such that they perform equally well in cases
where Ly would perform optimally.

We have proposed robust estimation and robust model selection techniques
for the use of least squares support vector machines with nonlinear ARX models.
Robust techniques have been proposed for fixed-size LS-SVMs in the primal
space as well as for the dual problem. Several examples illustrate that these
methods can further improve standard non-robust techniques in the case of
outliers and non-Gaussian noise distributions.



Chapter 12

Robust Prediction Intervals

In this chapter we give some definitions concerning confidence intervals and
prediction intervals (Casella and Berger, 1990; Shao, 1999). Next, we discuss
methods of constructing prediction intervals. Finally, we introduce robust pre-
diction intervals for LS-SVM based on a robust external bootstrap method.
Contributions are made in Section 12.3.

12.1 Definitions

Let X = (21, ...2,) be random variables with unknown joint distribution F' € F
depending on a real-valued parameter T'(F) and let C'(X) denote a confidence
set for T(F). If

inf Prob (T(F) € C(X)) > ¢ (12.1)

where ¢ = 1 — « and « is a fixed constant in (0,1). Then C(X) is called a
confidence set for T(F) with coverage probability g. The concept of confidence
sets can be extended to the case where T'(F) is a vector of m real-valued pa-
rameters and C(X) is called a confidence region. If C(X) = [L(X),U(X)]
for a pair of statistics L and U, then C(X) is called a confidence interval.
If C(X) = (—o0,U(X)] or [L(X),00), then L (or U) is called an upper (re-
spectively a lower) confidence bound for T(F'). Let T4(F) denote a real-valued
parameter with s € § where S is an index set that may contain infinitely many
elements, and let Cs(X) be a class of confidence intervals. If

I;Ielg:PI‘Ob (Ts(F) € Cy(X) for all s € §) > ¢ (12.2)

then C5(X), s € S, are level ¢ = 1 — o simultaneous confidence intervals or
confidence bands for Ts(F).

To fix the ideas, consider the following example in which it is desired to
estimate a confidence interval, a tolerance interval and a standard error bar of
a parameter. Let x1,...x, be a random sample from a the normal distribution
N (,u, 02) with unknown mean p and unknown variance o2, and let X and s? be

189
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the sample mean and sample variance. A (1 — «) 100 percent confidence interval
on y is given by

S _
X — 2(;%,nfl < u X+ t%,nfl_

N Vi’

& percentage point of the ¢ distribution with n — 1

2 _
degrees of freedom. This means that in using X to estimate p, the error e =
‘X - u’ is less or equal to t%,n,lﬁ with confidence (1 — «)100. Unlike the

where tg 51 is the upper

confidence interval, which estimates the range in which a population parameter
falls, the tolerance interval estimates the range which should contain a certain
percentage of each individual observation within the population. In practical
situations, a bound that covers 95% of the population is given by

X:ECS(X),

where ¢ is determined such that one can state with confidence (1 — «) 100 per-
cent that the limits contain at least a proportion p of the population.
Finally, the standard error bar defined by

X+s(X),
gives some idea about the precision of X.

Definition 52 Let & be a random variable and suppose that the distribution
of & is related to the distribution of a sample X from which prediction will be
made. For instance, X = (x1,...x,) is the observed sample and & = X, 41 is to
be predicted, where xy,...Tn, Tpy1 are (i.4.d.) random variables. A set C(X) is
said to be a level ¢ = 1 — « prediction set for £ if

I;Iéf}_ Prob (£ € C(X)) > ¢ (12.3)

where F' is the joint distribution of & and X. A prediction interval for an un-
observed random variable £ based on the observed data X is a random interval
C(X) = [L(X),U(X)].

Note the similarity in the definitions of a prediction interval and a confidence
interval. The difference is that a prediction interval is an interval on a random
variable, rather than a parameter. Methods for constructing confidence sets
are for example: pivotal quantities, inverting acceptance regions of tests, the
statistical method (Mood, Graybill and Boes, 1974), Bayesian approach (credi-
ble sets), confidence sets based on likelihood, invariant intervals (Berger, 1985),
(lehmann, 1986) and bootstrap confidence sets.

12.2 Construction of prediction intervals

Perhaps one of the most popular methods of constructing prediction sets is the
use of pivotal quantities (Barnard, 1949, 1980), defined as
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Definition 53 Let X = (x1,...z,) be random variables with unknown joint dis-
tribution F' € F, and let T(F) denote a real-valued parameter. A random vari-
able J(X,T(F)) is a pivotal quantity (or pivot) if the distribution of J(X,T(F))
1s independent of all parameters.

Suppose that x1,...,z, are i.i.d. normal random variables with unknown
mean and variance p and o2, respectively. The random variable

Tz, ) = @ ~tn_1,

where s is an estimate of the square root of Var [ex] = 02, has a t distribution
with (n — 1) degrees of freedom. This distribution is independent of both y, o2

and @ is a pivot for p. The random variable

(n—1)s?
\7(1.70—2) = 2 ~ X%},717
o
where s? is an estimate of Var[ex] = 02, has a x? distribution with (n — 1)

degrees of freedom. This distribution is independent of both u, o? and
is a pivot for 0. To obtain confidence intervals for ;1 and o2, one can use the
respectively pivots. In many problems, it is difficult to find exact pivots or to
determine the distribution of an exact pivot if it does exist. However, in these
cases, it is often possible to find an approximate pivot (approximate pivots are
justified via asymptotic arguments).

Next, the given examples illustrate inference for linear parametric models
and nonparametric models. The development of procedures for obtaining con-
fidence intervals (for regression parameters) and prediction intervals (for new
outputs of the regression model) requires that one assumes the errors to be
normally and independently distributed with mean zero and variance 2. For
nonparametric models one can obtain statistical inference based on bootstrap
procedures.

(n—1)s>
52

Example 54 Consider the multiple (several independent variables) linear re-
gression with d input variables and assume that the Gauss-Markov conditions
(Elex] =0, E [(ek)ﬂ =02 < o0 and E[ej,e;] = 0, Vi # j), hold. One has a
relationship of the form

d
Yr = Wo +ZU)]'$§€J) +ex, k=1,...n, j=1,..d,
j=1

T .
where the unknown parameter vector w = (wg, w1, ...,wq)" s assumed to be fixed

and ey, arei.i.d. N (07 02) . The least squares estimate of w = (wg, w1, ..., wd)T 18

defined to be those values wg, W1, ..., Wy such that Wy + 2?21 wjx;j) minimizes
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the residual sum of squares. Inferences regarding the regression parameters,
under the assumption of normality, using a pivotal quantity

d}i—wi

j(y7w’b) = ) ~ tn—(d+1)u 1= 07 17 "'7d7

s.e(w;
for with one obtains the following confidence interval estimators with confidence
coefficient (1 — «):

1211' + S-e(wi)t(n—d—i-l),a/% 1= 0, 1, ceey d,

where s.e(w;) is the square root estimator of Var [w;], i =0,1,....d and
t(n—dt1),a/2 18 the (1 — a/2)th quantile of the t- distribution. A regression model
can be used to predict future observations on the output variable y corresponding
to particular values of the d input variables, for example (V)| ..., z(D. The point
T
estimate for the future observation yo at the point xo = (xél), e x(()d)) ]
computed from equation ) (zo) = Wl xg. A pivotal quantity is given by
yo — 0" xo

&\/1 + 2T (XTX) " 2o

j(y7 yO) =

~ tnfdJrlv

where & is an estimate of the square root of Var [ex] = 0. The random variable
J(y,y0) has a t distribution t,_q1, this is because yo and wTlzg are indepen-
dently normal, (n — d + 1) 62 has a chi-square distribution x2_,,, and yo, v g
and 62 are independent. A level 1 — o prediction interval for yo is then

§(50) * taysn-as16\/ 1+ 27 (XTX) .

Suppose one is interested in several prediction intervals constructed from the
same data. Such intervals are called simultaneous prediction intervals or pre-
diction bands. If one sets up m intervals as above, each at level 1 —a, the overall
inference will not be at the 1 — « level. A good solution is to use Bonferroni
inequality (Sen and Srivastava, 1990).

Example 55 The linear regression model of example 61 provides a flexible
framework. However, linear regression models are not appropriate for all sit-
uations. There are many situations where the output variable and the input
variables are related through a known nonlinear function. Suppose one has a
nonlinear relationship of the form

yk:m(xk;w)+ek7 k:17"'7n7

where the ey, are ii.d. N (0,02), ) is a (nx 1) vector and w € R% As-
sume that the Gauss-Markov conditions (Elex] = 0, E [ej] = 0® < oo and
Elej,e;) =0, Vi # j), hold. To find the least-squares estimates, one must dif-
ferentiate 25:1 (g — m (x5, w))* with respect to w. This will provide a set of
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d normal equations for the monlinear situation. In a linear regression model,
when the errors are mormally and independently distributed, exact confidence
intervals and prediction intervals based on t and F distributions are available.
The least-squares parameter estimates have attractive statistical properties (un-
biasedness, minimum variance and normal sampling distributions). However,
this is not the case in nonlinear regression, even when the errors are i.i.d. sta-
tistical inference in nonlinear regression depends on large-sample or asymptotic
results. The large-sample theory generally applies both for normally and non-
normally distributed output variables. Using the asymptotic linearization of
yp = m(zg,w) +ep, k = 1,...,n, one can apply existing linear methods to
finding a prediction interval for y at x = xg. The point estimate for the future

T
observation yo at the point rg = (:c(()l), ...,x(()d)

is computed from equation
7 (xo) = m (xo,w) . An asymptotic pivotal quantity is given by

Yo —m (xggw)

6/ 1+ g7 (20: ) (GTG) ™ g (i)

T (Y, yo) =

~ tnfpa

where & is an estimate of the square root of Var [ey] = o2,
g7 (zo;w) = (6m(m°;w) ama(zo;w)) and G = [(M)}, k=1,..,n,

owy Y Wq ow;

j=1,...,d. The random variable J(y,yo) has a t distribution t,_q4, under ap-
propriate reqularity conditions and for large n. An approximate 1 — o level
prediction interval for yo is then

9 (z0) £ ta/Q,n—dfT\/l + g7 (20; ) (GTG) ™ g (w03 ).

The construction of prediction bands is discussed by (Khorasani and Mil-
liken, 1982). Prediction intervals for multilayer perceptrons, a class of nonlin-
ear models, can be obtained based on asymptotic results. Examples are find in
(Hwang and Ding, 1997) and (De Veauz et al., 1998).

Example 56 [t should be clear that in dealing with the linear and nonlinear
regression models of the two previous examples, the normal distribution played
a central role. Inference procedures for both linear and nonlinear regression
models in fact assume that the output variable follows the normal distribution.
There are a lot of practical situations where this assumption is not going to be
even approzimately satisfied. The generalized linear model (GLM) was developed
to allow us to fit regression models for output data (y € RT,y € N ory € {0,1})
that follows a general distribution called the exponential family. The GLM is
given by
pe =g (Elye|X =ax]) =agw, k=1,...m,

where xy, is a vector of input variables for the kth observation and w is a vec-

tor of parameters. Every GLM has three components: (a) an output variable
distribution (error structure), (b) input variables, and (c) a link function (e.g.
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logistic link, log link, probit link). For further details on the structure of GLM
(see McCullagh and Nelder, 1987). An important member of the family of GLM
1s the logistic regression defined as

1

=—— k=1
1+ exp (—zfw)

m (k)

n

) 3 )

where the term xftw = wo+ Z;‘l:1 wjo:g). Note that 0 < 7 (z1) < 1. One can
associate a 1 — a level prediction interval on 7 (zg) through a prediction interval
(Wald inference) on zfw, zfw £ 240 \/1 +al (XTVX) " 2o with Var [d] =

(XTVX)fl. The point estimate for the future observation yo at the point

TO1, .-, Tod 8 computed from equation 7 (xg) = m. An asymptotic
—%o

pivotal quantity is given by

Iy, (x0)) = o~ 7o) — ~ AN(0,1),
(7 (20)) (1~ 7 (20)) /1 + 2 (XTVX) g

where an asymptotic standard normal distribution is denoted by AN (0,1).
An approximate 1 — « level prediction interval for yg is then

7 (20) £ Zay2 [(7 (20)) (1 — 7 (z0))] \/1 +al (XTVX)_1 Zo-

Example 57 An alternative approach to estimation is to use a biased estima-
tion method. These methods of estimation are based on trading off bias for vari-
ance. Principal Component regression, Ridge regression (Hoerl and Kennard,
1970) and the shrinkage estimator (Stein, 1956) and (James and Stein, 1961)
are three of the several methods belonging to the class of biased estimators. For
example, Ridge regression modifies the method of least squares to allow biased
estimators of the regression coefficients. Given the data (x1,y1) -, (Tn,Yn)
for ordinary least squares the solution vector for the mormal equations is given

by Wois = (XTX)f1 XTY while the Ridge regression estimator is given by
. -1
Wrigge = (X" X +¢l) ~ XTY.

The constant c reflects the amount of bias in the estimators. When ¢ = 0, Wridge
reduces to the ordinary least squares wys. When ¢ > 0, the ridge regression
coefficients are biased but tend to be more stable than ordinary least squares
estimators. A limitation of Ridge regression is that ordinary inference procedures
are not applicable and exact distributional properties are not known. One can
obtain confidence intervals and prediction intervals by using bootstrapping, which
is discussed in Section 5.

Example 58 The previous examples are parametrized by an Euclidean param-
eter vector. With nonparametric regression, the simplest type of semiparamet-
ric models, the regression equation is determined from the data. In this case,
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one relares the assumption ey S N(0,0%) and inferential procedures are not
strictly applicable, since those are based on the assumption of normal errors.
One possible approach is to obtain prediction intervals by using bootstrapping.

12.3 Robust Prediction Intervals

Methods to establish confidence intervals or prediction intervals are based on
the principle of first estimating m(z) by an initial estimator 7, (x) and then
estimating the distribution of m(x)— m, (z). In the statistical literature a dis-
tinction is made between pivotal and nonpivotal methods. Hall (1992) pointed
out that pivotal methods, for the problem of bootstrap prediction intervals,
should be preferred to nonpivotal methods. The main problem with prediction
intervals in nonparametric regression rests on the fact that a consistent estimator
of m(z) is necessarily biased (Neumann, 1995). Regarding bias correction, there
are two commonly used methods to deal with the bias of the initial estimator
My, (z), undersmoothing and explicit bias correction on the basis of yet another
kernel estimator. In Hall (1991, 1992) it is shown that the undersmoothing
methods leads to better results.

12.3.1 Weighted LS-SVM for robust function estimation
Smoother matrix for prediction

We focus on the choice of an RBF kernel K (z, z;; h) =exp {— |z — xl||§ /hQ}.
In matrix form, let § = (h, V)T and for all new input data defined as Dy tesr =
{:alest e R =1, ..., s}

mn (xtest; 9) — Qtestdtrazn + lnbtram

— |:Qtest (Z—l _ Z—lﬁz—1> + an Z_1:| y
C C

_ S(wteSt, xtrain; e)y, (124)

1
) 1 )
where ¢ = 1T [ Qfrein 4 Z 1p, Z = (Qtramn 4 %In), Jnn 18 & square matrix

with all elements equal to 1, Jg, is a s X n matrix with all elements equal to 1,
y=(y1,---,yn)T and My, (2% 0) = (M, (215 0), ... M, (2l 0))T. The LS-

SVM for regression corresponds to the case with 7, (z'**;6) defined by (12.4)
and

Jan

z 12.5
: (12.5)

S(xtest7xtrain;9) _ Qtest (Z—l _ Z—l %Z—l) +

where QI* = K (2{7*™, 2{°*') are the elements of the s x n kernel matrix and
Qfrain = K (zire™, z{r*") are the elements of the n x n kernel matrix.
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12.3.2 Robust bootstrap

Contamination of a sample is an problem which can become worse when the
bootstrap is applied, because some resamples may have a higher contamination
level then the initial sample. Bootstrapping using robust function estimators,
me (zr), may be a solution to this problem but it can lead to several compli-
cations (Stromberg, 1997) and (Singh, 1998). Stromberg (1997) studies alter-
native bootstrap estimates of variability for robust estimators. Singh (1998)
suggests a robustification of bootstrap via winsorization. Hall and Presnell
(1999) suggest a general approach, using a version of the weighted bootstrap,
The method depends on measures of dispersion and on the distance between
distributions. Salibian-Barrera and Zamar (2000) introduce a robust bootstrap
based on a weighted representation for M M-regression estimates. The robus-
tification of the bootstrap in this thesis is to introduce a control mechanism in
the resampling plan, consisting of an alteration of the resampling probabilities,
by identifying and downweighting those data points that influence the function
estimator.

Given a random sample {(z1,y1), ..., (Tn, Yn)} with common distribution F.
To allow for the occurrence of outliers and other departures from the classical
model we will assume that the actual distribution F of the data belongs to the
contamination neighborhoud

F.={F:F=(1-¢G+e€H, H arbitrary} (12.6)

where 0 < € < 0.5. For each pair (x,yx) in the sample define the residuals as
ér = yr — Ty, (zg) . Based on the residuals define the weights as

vp =0 (e—’“> (12.7)

S

where 9 (.) is some function and § is a robust scale estimator. For instance,
one could apply hard rejection or smooth rejection of outliers (see Suykens
et al., 2002). Let the resampling plan of the uniform bootstrap be denoted by
Punif = (£, ..., 1) and let p = (p1, ..., ) be the resampling plan of the weighted
bootstrap with mass pi on éx. Let m be the number of data points with (v # 1)

and Y_;_, pr = 1. The mass p;, [ = 1,..n — m, is given by

1 iy
pl:—+M, I=1,...n—m ;i=1,....m (12.8)
n n—m

and the mass p;, j = 1,...,m, is given by

pi=1|1- Dy - —=m— 1, j=1,..,m. (12.9)
’ ( z; ) ( 2j=1 “l>

Algorithm 59 (Robust external (wild) bootstrap)
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(i) The unknown probability model P was taken to be y, = m (xy) + ey, with
€1, ..., ey independent errors drawn from some unknown probability distri-
bution F,.

(ii) Calculate ™y (vx), and the estimated errors (residuals) areé) = yj —
My (xg), from which was obtained an estimated version of F, : p =
(p1, -y Pn) and py is given by (12.8 and 12.9).

(i1i) Draw the bootstrap residuals €}, from a two-point centered distribution in
order that its second and third moment fit the square and the cubic power
of the residual é. For instance, the distribution of é; could be 16|qe,) +
(1 =1)0pe,) with n = %, a = %, b = # and dy) being the
Dirac measure at x Alternatively, one can choose éj distributed as € =

€k (% + Z%_l) , with Z1  and Zy being two independent standard Normal

random variables, also independent of éx.

(i) Having generated {y;},_, , calculate the bootstrap estimates F*(x).

(v) This whole process must be repeated B times.

12.3.3 Computing robust prediction intervals

The prediction problem for nonparametric function estimation falls in two parts,
the first being construction of a prediction interval (based on a pivotal method)
for the expected value of the estimator and the second involving bias correction
(undersmoothing). Given a LS-SVM function estimator 7, j (o), where z
is a new input data point, prediction intervals are constructed by using the
asymptotic distribution of a pivotal statistic. Let J(m(zo), Mnn (20)) be a
pivotal statistic defined as

T (m(0), i (o)) = Tzt (Z0) = (o) = B (o) (12.10)

(V' (20))*

where B(zg) is the bias and V(zg) is the variance of the LS-SVM function
estimator 7y, 5, (x0). The asymptotic pivot J(m(zo), 7 n (20)) can not be used
for practical computations of prediction intervals because both B(zg) and V (z0)
are unknown. We consider an alternative method that consists in estimating
the distribution of the pivot

1, h (20) (20) —m (20)

(7 @)

by an external bootstrap method. One approximate the distribution of the
pivotal statistics 7 (m(xo), Mn,n (20)) by the corresponding distribution of the
bootstrapped statistics

T (m(xo), 1itn,n (20)) = (12.11)

Vit 0), i () = s F0) ~ PimglT0) (12.12)

(7 te0)’
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where * denotes bootstrap counterparts.

A natural approach to robustifying the pivotal V(1 4(z0), ™ ,, (20)) is to
replace the LS-SVM function estimator by a robust function estimator (the
weighted LS-SVM) and replace the variance estimator V* (zo) by its robust
counterpart V*® (z)

m* —me (x
B0 (w0), 30 () = 1ot~ Mg ) (12.13)

s

(7 (@0))”

Given new input data defined as D t.st, robust s simultaneous prediction
intervals (applying the Bonferroni method) with asymptotic level 1—« are given
by

1 1
j [m;;h(:vo) - (V*O (wo)) * Qayosy MG + (V*o (wo)) i Q(la)/fzs} ;

(12.14)
where ), denote the a-quantile of the bootstrap distribution of the pivotal
statistic Z(rmy, ,(w0), ™%, (o))

12.4 Simulation

To illustrate the behavior of the robust prediction intervals proposed in the
foregoing sections, we present an example using the following data set. Consider
the following nonlinear regression model defined as

Y = sin (z) ten k=1,..,250 (12.15)
x

where the values yj are corrupted by noise with a e-contamination model
U (Fo,e) ={F:F(z)=(1-¢) Fo(z) +eG(z), 0<e<1}, (12.16)

where Fy(x) is a Normal distribution with parameters A (0,0.2?), G(z) ~
N (3,2%) and € = 0.05. The prediction intervals are shown in Figure (12.1)
and Figure (12.2). Figure 12.2 shows the improvements of robust prediction
intervals based on the weighted LS-SVM and robust bootstrap techniques in
comparison with prediction intervals based on the unweighted LS-SVM and
nonrobust bootstrap techniques.

12.5 Conclusions

We have robustified the bootstrap based on a control mechanism in the re-
sampling plan, consisting of an alteration of the resampling probabilities, by
identifying and downweighting those data points that influence the function
estimator. We have demonstrated the improvements of robust prediction in
comparison with prediction intervals.
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10 T T
= = LS-SVM
— lower pred. interval
- upper pred. interval
- data points
8 . —_— sinc [l
6 -
> 4 -

Figure 12.1: Both the estimated regression function (dashed line) and its asso-
ciated 95% prediction intervals (dashdot lines) were obtained from the LS-SVM
regression fit. The intervals are based on bootstrap techniques.

10 T
= = robust LS-SVM
— lower pred. interval
- upper pred. interval
data points
8 - —SiNC H
6 -
> 4+ -

Figure 12.2: Both the estimated regression function (dashed line) and its as-
sociated 95% prediction intervals (dashdot lines) were obtained from weighted
LS-SVM regression fit. The intervals are based on robust bootstrap techniques.
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Chapter 13

Conclusions

In this thesis, we have given an overview of basic techniques for non-parametric
regression. In this chapter, we first give a chapter by chapter overview of our
contributions and the conclusions. Topics for further research are pointed out
in the second section of this chapter.

13.1 Conclusion Summary

The key method in this thesis is least squares support vector machines (LS-
SVM), a class of kernel based learning methods that fits within the penalized
modelling paradigm. Primary goals of the LS-SVM models are regression and
classification. Although local methods (kernel methods) focus directly on esti-
mating the function at a point, they face problems in high dimensions. There-
fore, one can guarantee good estimation of a high-dimensional function only
if the function is extremely smooth. Additional assumptions (the regression
function is an additive function of its components) overcome the curse of di-
mensionality.

The iterative backfitting algorithm for fitting LS-SVM regression is simple,
allowing one to choose a fitting method appropriate for each input variable.
Important is that at any stage, one-dimensional kernel regression is all that is
needed. Although consistency of the iterative backfitting algorithm is shown
under certain conditions, an important practical problem (number of iteration
steps) are still left. However the iterative backfitting algorithm (for large data
problems) fits all input variables, which is not feasible or desirable when a large
number are available. Results show that backfitting LS-SVM (RBF kernel) out-
performs the LS-SVM (RBF kernel). Recently we have developed a new method,
componentwise LS-SVM, for the estimation of additive models consisting of a
sum of nonlinear components (Pelckmans et al., 2004). The method combines
the estimation stage with structure detection. Advantages of using component-
wise LS-SVMs include the efficient estimation of additive models with respect to
classical practice, interpretability of the estimated model, opportunities towards

201
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structure detection and the connection with existing statistical techniques.

Model-free estimators of the noise variance are important for doing model
selection and setting learning parameters. We have generalized the the idea of
the Rice estimator (Rice, 1984) for multivariate data based on U-statistics and
differogram models (Pelckmans et al., 2003). We have studied the properties
of the LS-SVM regression when relaxing the Gauss-Markov conditions. It was
recognized that outliers may have an unusually large influence on the resulting
estimate. However, asymptotically the heteroscedasticity does not play any
important role.

We proposed a non-parametric data analysis tool for noise variance estima-
tion towards a machine learning context. By modelling the variation in the
data for observations that are located close to each other, properties of the
data can be extracted without relying on an explicit model of the data. These
ideas are translated by considering the differences of the data instead of the
data itself in the so-called differogram cloud. A model for the differogram can
be inferred for sufficiently small differences. By deriving an upper bound on
the variance of the differogram model, this locality can be formulated without
having to rely explicitly on a hyper-parameter as the bandwidth. Furthermore,
a number of applications of modelfree noise variance estimators for model selec-
tion and hyper-parameter tuning have been given. While the method of least
squares (under the Gauss-Markov conditions) enjoys well known properties, we
have studied the properties of the LS-SVM regression when relaxing these con-
ditions. It was recognized that outliers may have an unusually large influence
on the resulting estimate. However, asymptotically the heteroscedasticity does
not play any important role. Squared residual plots are proposed to assess het-
eroscedasticity in regression diagnostics.

A brief summary is given of the main methods for density estimation. We
explain the connection between categorical data smoothing, nonparametric re-
gression and density estimation. In addition we use the LS-SVM regression
modelling for density estimation. The SVM approach (Mukherjee and Vap-
nik, 1999) requires inequality constraints for density estimation. One way to
circumvent these inequality constraints is to use the regression-based density es-
timation approach. In this approach one can use the LS-SVM for regression for
density estimation. The proposed method (density estimation using LS-SVM re-
gression) has particularly advantages over Nadaraya-Watson kernel estimators,
when estimates are in the tails. The data sample is pre-binned and the estima-
tor employs the bin center as the ’sample points’. This approach also provides
a sparse estimate of a density. The multivariate form of the binned estimator is
given in (Holmstrom, 2000). Consistency of multivariate data-driven histogram
methods for density estimation are proved by (Lugosi and Nobel, 1996).

In the first experiment we used the Parzen density estimator and the LS-
SVM regression estimator. We used a combination of cross-validation and boot-
strap for choosing the bandwidth for the Parzen kernel estimator. The average
L1 errors are estimated for each density. Both methods gives similar results
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(Table 8.1). In the last experiment we applied both methods to the suicide data
(Copas and Fryer, 1980). Note that the data are positive, the estimates shown
in Figure 8.3 that the Parzen estimator treating the data as observations on
(—00,0), while the LS-SVM (RBF kernel) estimate deals with this difficulty.
In order to deal with this difficulty, various adaptive methods have been pro-
posed (Breiman et al., 1977). Logspline density estimation, proposed by (Stone
and Koo, 1986) and (Kooperberg and Stone, 1990), captures nicely the tail of
a density but the implementation of the algorithm is extremely difficult (Gu,
1993).

We have developed a robust framework for LS-SVM regression. It allows to
obtain a robust estimate based upon the previous LS-SVM regression solution,
in a subsequent step. The weights are determined based upon the distribution of
the error variables. We have shown, based on the empirical influence curve and
the maxbias curve, that the weighted LS-SVM regression is a robust function
estimation tool.

While standard SVM’s approaches starts from choosing a given convex cost
function and obtain a robust estimate in a top-down fashion, this procedure
has the disadvantage that one should know in fact beforhand which cost func-
tion is statistically optimal. We have successfully demonstrated and alternative
bottom-up procedure which starts from an unweighted LS-SVM and then ro-
bustifies the solution bij defining weightings based upon the error distribution.

We have shown that the Nadaraya-Watson estimator is nonrobust in the
sence of the influence function and that L- regression achieved robustness. Based
on the estimated noise model we have calculated the empirical loss function. In
an experiment, we have recognized respectively the Lo norm loss function and
the L; loss function.

Most efficient learning algorithms in neural networks, support vector ma-
chines and kernel based learning methods require the tuning of some extra tun-
ing parameters. For practical use, it is often preferable to have a data-driven
method to select these parameters. Based on location estimators (e.g., mean,
median, M-estimators, L-estimators, R-estimators), we have introduced robust
counterparts of model selection criteria (e.g., Cross-Validation, Final Prediction
Error criterion).

Cross-validation methods are frequently applied for selecting tuning param-
eters in neural network methods, usually based on Lo or L; norms. However,
due to the asymmetric and non-Gaussian nature of the score function, better
location parameters can be used to estimate the performance. In this thesis we
have introduced a repeated robust cross-validation score function method by
applying concepts from robust statistics to the cross-validation methodology.
We have applied a similar technique to generalized cross-validation. Simulation
results illustrate that these methods can be very effective, especially with out-
liers on data where the Lo methods usually fails. The proposed methods have
a good robustness / efficiency trade-off such that they perform equally well in
cases where Lo would perform optimally. We have proposed robust estimation
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and robust model selection techniques for the use of least squares support vector
machines with nonlinear ARX models. Robust techniques have been proposed
for fixed-size LS-SVMs in the primal space as well as for the dual problem.
Several examples illustrate that these methods can further improve standard
non-robust techniques in the case of outliers and non-Gaussian noise distribu-
tions.

Inference procedures for both linear and nonlinear parametric regression
models in fact assume that the output variable follows a normal distribution.
With nonparametric regression, the regression equation is determined from the
data. In this case, we relax the normality assumption and standard inference
procedures are no longer applicable in that case. We have developed a ro-
bust approach for obtaining robust prediction intervals by using robust external
bootstrapping methods.

13.2 Further research

Further research is necessary to make the kernel methods more robust. Possibly
this research will support on two pillars:

(1) existing robust methods must be studied concerning the kernel based
models with conversion of dual to the primal spaces, both for function estimation
and kernel PCR, kernel PLS and kernel CCA.

(2) To robustify the costs function. Concretely we want replace the least
squares treatment by trimmed least squares criterion, weighted least squares,
L1- criterion or p-function like an M-estimator. Each costs function is only an
optimum for a particular error distribution. For this reason it would be desirable
to make the choice of the cost function on the basis of the data adaptive. A
possible working method exists to start with initial costs function and then
to study the tail behaviour of the resulting errors. Then an improved cost
function can be obtained. Further the robust properties of these methods must
be theoretically examined. For this we base on the functional approach of
Von Mises, which is used in parametric statistics and leads to the influence
function and the asymptotic breakpoint, which have to be extended to non-
parametric estimators. Finally the developed procedures will be applied on real
data sets. In particular we are thinking of data from the chemometrics and the
bio-informatics, because these contain frequently a lot of variables and a small
number or a very large number of observations.



Appendix A

Preliminary Tools and
Foundations

This Chapter outlines tools and foundations basic to asymptotic theory in statis-
tics and functional analysis as treated in this thesis. The description concerning
the asymptotic theory in statistics is based on (Serfling, 1980; Billingsley, 1986;
Van Der Vaart, 1998). An excellent introduction of functional analysis is given
by (Michel and Herget, 1981; Griffel, 1981; Aubin, 2000; Ponnusamy, 20002).

A.1 Definitions

A.1.1 The 0,0 and - notation

These symbols provide a convenient way to describe the limiting behavior of
a function f(x) as = tends to a certain limit a (not necessarily finite). These
symbols are called "little oh,” ”big oh” and ”twiddle” respectively. Let f(x)
and g(x) be two functions defined on D C R.

(). Let the relationship between f(x) and g(z) is such that lim,_,, pTED)
0, then we say that f(z) is of a smaller order of magnitude than g(z) in a
neigborhood of a. This fact is denoted by writing

f(=z

N>

f(@)=o0(g(x)), asz—a,

which is equivalent to saying that f(z) tends to zero more rapidly than g(z) as
z — a. For example, /T = o(z) as x — oo

(7). Suppose that there exists a positive number M such that |f(z)| <
Mg(z) for all z € D. Then f(z) is said to be of an order of magnitude not
exceeding that of g(x). This fact is denoted by writing

f(z) =0 (g(x))

for all z € D. For example, 22 + 22 = O(2?) for large values of z.

205



206 APPENDIX A. PRELIMINARY TOOLS AND FOUNDATIONS

(#4i) . If f(z) and g(x) are any two functions such that lim,_., % =1, then

f(z) and g(z) are said to be asymptotically equal, written symbolically
f(x) v~ g(z), asz — a.

For example, sin(z) «~ x as z — 0.

A.1.2 Indicator function

For any set A, the associated indicator function is

no={4 re4 (a1

A.1.3 Probability space and random variables

Let Q be an arbitrary nonempty space or set of points w. Let F be a o-field of
subsets of 2, that is, a nonempty class of subsets of {2 which contains 2 and is
closed under countable union and complementation. Let P, a set function, be a
probability measure defined on F satisfying 0 < P(A) <1for A€ F, P(0)=0
and P(2) = 1. In probability theory € consists of all the possible results or
outcomes w of an experiment or observation. A subset of 2 is an event and an
element w € € is a sample point.

Definition 1 An ordered triple (2, F, P) where
(a) Q is a set of points w,
(b) F is a o-algebra of subsets of €,
(¢) P is a probability on F ,
is called a probabilistic model or a probability measure space.

Definition 2 A real function X = X (w) defined on (2, F) is a F-measurable
function, or a random variable, if

XA ={weQ: X (w)c A} e F, for every Ac B(R), (A.2)

where B(R) is the o-field of Borel sets in R. That is, a random variable X is a
measurable transformation of (Q, F, P) into (R, B(R)) .

A.1.4 Distributions, expectations and quantiles

Note that a random variable X defined on (2, F, P) induces a measure Px on
B defined by the relation

Px (A)=P(X '(4), AeB.

Px is a probability measure on B and is called a probability distribution.
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Definition 3 For every x € R set
Fx(xz) = Px (—o0,z] = P{weQ: X (w) <z}. (A.3)
we call Fx = F the distribution function of the random variable X.

In the following we write {X < x} for the event {w € Q: X (w) < z}. The
distribution function F of a random variable X is a nondecreasing, right-continuous
function on R which satisfies

F(—o0)= lim F(z)=0

and
F (400) = lim F (z) =1.
Tr— 00
Definition 4 Let X1, Xs,..., Xy, be a random sample of size n from a distribu-

tion function F. Let F, be the step function defined by
. 1 <
For)==S "I .1 (Xs), R. A4
(x) n;( a) (Xk), we€ (A.4)

Then E), is called the empirical (or sample) distribution function based on the
sample X1, Xa, ..., X,.

Definition 5 Let (2, F, P) be a probability space and X be a random variable
defined on it. Let g be a real-valued Borel-measurable function on R. The expec-
tation of g(X) exists if g(X) is integrable over Q with respect to P. In this case
the expectation E [g(X)] of the random variable g(X) is defined by

E[g(X)] = /Q 4(X)dP. (A.5)

Suppose that F [g(X)] exists, the its follows that ¢ is also integrable over R
with respect to Px (Halmos, 1950), and the relation

/ 9(X)dP = / g(u)dPy (u) (A.6)
Q R

holds. In particular, if g is continuous on R and E [g(X)] exists, one can write

[ atxip = [ garc = [ " Y@)iF (@), (A7)

—00
where F' is the distribution function corresponding to Px, and the last integral
is a Riemann-Stieltjes integral. Two important special cases of (A.7) are as
follows: Let F be discrete with the set of discontinuity points {z,,n =1,2,...} .
Let p(x,,) be the jump of F' at x,,n =1,2,.... Then E[g(X)] exists if and only
if 07 1 19 (xn)| p(xn) < 0o, and in that case

E[g(X)] =) g(xa)p(an) (A.8)
n=1
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Definition 6 Let F be absolutely continuous on R with probability density func-
tion f(x) = %F(l’). Then E [g(X)] ezists if and only if [*_|g(z)| f(z)dz < oo,
and in that case

Elg(x)) = [ glo)f(a)da. (A9
—o0
Definition 7 The quantile function of a cumulative distribution function F is
the generalized inverse F~ : (0,1) — R given by

F~(q) =inf{x: F(z) > q}. (A.10)

In the absence of information concerning the underlying distribution func-
tion F of the sample, the empirical distribution function F, and the empirical
quantile function Fn_ are reasonable estimates for F' and F~, respectively. The
empirical quantile function is related to the order statistics Tp(1) < ... < Ty(n)
of the sample through

1—1 4

F=(q) = xng), forqe (T —) : (A.11)

n

A.2 Elementary properties of random variables
with finite expectations

Denote by £ = L (2, F, P) the set of all random variables with finite expex-
tations. Let X, Y € L, let a,b,¢c € R and let g(X) be integrable over Q with
respect to P.

(a) aX +bY € L and E[aX +bY] =aE [X]+DE[Y]

(b) EIX]<E[Y]if X <Y on a set of probability 1.

(c) Let g(X)= X%, i€ Ny.

Then FE [X i]7 if it exists, is called the moment of order i of the random variable
X.

(d) Let g(X)= (X —m)", where m € R and i € Ny.

Then E [(X fm)l}, if it exists, is known as the moment of order i about

the point m. In particular, if m = E[X], then E [(X —F [X])Z} is called the

central moment of order n and is denoted by u;. For i = 2,
p=E (X - E[X]?| = B[X?] - (B[X])® (A12)

is called the variance of X and is denoted by Var [X]. The positive square root
of Var[X] is called the standard deviation of X. Note that Var [X] > 0 and
Var [X] =0 <= X = ¢, (c constant).

(e) More generally, the covariance of two random variables X and Y denoted
by Cov [X,Y] is defined as

Cov[X,Y]=E[(X — E[X]) (Y — E[Y])] (A.13)
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In the following examples we briefly introduce some standard distributions.
(7) Uniform(a,b). The pdf of the uniform distribution is defined as

1

<z< A4
——a<esh (A1

flxla,b) =

(b—a)?
12 -

with mean E [X] = 2£% and variance Var [X] =

(i7) Normal(p,o%) . The pdf of the normal distribution is defined as

f(a:“t’gz) = U\}%exp (%) ,—00 < T < 00, (A.15)

with mean E [X] = p and variance Var [X] = ¢% and 0 > 0 and — o0 < pu <
0.

(7i7) Double exponential(u, o) or Laplace distribution. The pdf of the Laplace
distribution is defined as

f@lp,o) = %eXp <

@UMD,<m<x<m, (A-16)

with mean F[X] = p and variance Var [X] = 202 and ¢ > 0 and — 0o <
n < o0.

(iv) Lognormal(u, 02) . The pdf of the lognormal distribution is defined as

2 ( (logx—,u)2>
f(ac|ﬂ,o): exp| ——————1],0< 2z < o0, (A.17)

zo\/2m 202

with mean F [X] = exp (u + ";) and variance Var [X] = exp (2 (1 + 02)) —
exp(Q,u—i—UQ) and ¢ > 0 and — oo < p < 00.

(v) Exponential(\) . The pdf of the exponential distribution is defined as

1 x
fxz|N) )\exp( )\),O_x<oo,)\>0, (A.18)

with mean E [X] = X and variance Var [X] = 2.

(vi) Chi-squared. The pdf of the Chi-squared distribution is defined as

flalv) =

1 x
- (v/2)-1 ( __) < oo, v =1,2,...
(%) 2v/2x exp \ ,0 T < , U PR

with mean F [X] = v and variance Var [X] = 2v.
Figure A.1 shows the relationships among the common distributions.
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exp(X)
L normal |
lognormal (1.0)
log(X)
=0X
(X-1o e
L A i
normal i
(0.1) uniform
L - 4
i Y exp(-X/) -Nog(X)
- | Cauchy , : chl—(ic;uared exponential -
I PR 1
v=1 - XX, abs(X)
double
) exponential

Figure A.1: Relationships among the common distributions.
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Figure A.2: The boxplot based on the sample interquartile range.

A.3 Statistical graphics

A.3.1 Boxplot for the univariate data

The univariate boxplot (Tukey, 1977) is a graphical tool for summarizing the
distribution of a single random variable. Being a simple data analysis technique,
it yields information about the location (the median), scale (the interquartile
range), asymmetry, tails and outliers of a data distribution. A boxplot is the
rectangle with the base equal to the sample interquartile range IQ R, separated
into two parts by the sample median (see Figure A.2).

JFrom each side of the box, the two straight line segments are drawn describ-
ing the distribution tails, and finally, the observations lying aside these domains
are marked and plotted being the candidates for outliers. The left and right
boundaries for the distribution tails are given by

Z7 = max (:r:n(l), LQ — g[@R) , (A.19)

and

TR = min <mn(n), UuQ + i;’IQR) . (A.20)

here L@ and UQ are the lower and upper sample quartiles, respectively. In
general, they can be defined by LQ = ;) and UQ = xy,(p—j41) With j = 0.25n.
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A.3.2 Quantile-quantile plots
Construction of a g-q Plot

A g-q plot is a plot of the quantiles of the first data set against the quantiles of
the second data set. By a quantile, we mean the fraction (or percent) of points
below the given value. That is, the 0.3 (or 30%) quantile is the point at which
30% percent of the data fall below and 70% fall above that value. A 45-degree
reference line is also plotted. If the two sets come from a population with the
same distribution, the points should fall approximately along this reference line.
The greater the departure from this reference line, the greater the evidence for
the conclusion that the two data sets have come from populations with different
distributions. The sample advantages of the g-q plot are: (i) The sample sizes
do not need to be equal. (i¢) Many distributional aspects can be simultaneously
tested. For example, shifts in location, shifts in scale, changes in symmetry, and
the presence of outliers can all be detected from this plot. For example, if the
two data sets come from populations whose distributions differ only by a shift
in location, the points should lie along a straight line that is displaced either up
or down from the 45-degree reference line.

Interpreting quantile-quantile plots

If the data distribution matches the theoretical distribution, the points on the
plot form a linear pattern. Thus, you can use a g-q plot to determine how
well a theoretical distribution models a set of measurements. The following
properties of these plots make them useful diagnostics to test how well a specified
theoretical distribution fits a set of measurements: (i) If the quantiles of the
theoretical and data distributions agree, the plotted points fall on or near the
line y = . (i7) If the theoretical and data distributions differ only in their
location or scale, the points on the plot fall on or near the line y = a + bx. The
slope a and intercept b are visual estimates of the scale and location parameters
of the theoretical distribution. The interpretations of commonly encountered
departures from linearity are summarized in the following Table A.1.

A.4 Modes of convergence of a sequence of ran-
dom variables

In this subsection we consider some concepts of convergence of the sequence
{Xn}.

A.4.1 Convergence in probability

Let X1, X5, ...and X be random variables on a probability space (2, F, P). Then
{X,,n > 1} converges in probability to X as n — oo if for each € > 0,

lim P(|X, — X|>¢)=0 (A.21)

n—oo
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Description of Point Pattern

Possible Interpretation

All but a few points fall on a line

Outliers in the data

Left end of pattern is below the line,
right end of pattern is above the line

Long tails at both ends of the data
distribution

Left end of pattern is above the line,
right end of pattern is below the line

Short tails at both ends of the distri-
bution

Curved pattern with slope increasing

Data distribution is skewed to the

from left to right right

Curved pattern with slope decreasing | Data distribution is skewed to the

from left to right right

Staircase pattern (plateaus and gaps) | Data have been rounded or are dis-
crete

Table A.1: Quantile-quantile plot diagnostics.

This is written X,, 2 X or p-lim,, . X, = X. Extensions to the case random
elements of a metric space is straightforward, by replacing |X,, — X| by the
relevant metric (see Billingsley, 1968).

A.4.2 Convergence with probability 1

Consider random variables X1, Xo,...and X on (Q, F, P). Then {X,,} converges
with probability 1 (or strongly, almost surely, almost everywhere, etc.) to X if

lim P(|X,, — X|<e,

n— oo

YVm>n)=1 (A.22)

This is written X, wel X or pl-lim,, ., X, = X. Extensions to the case random
elements of a metric space is straightforward.

A.4.3 Convergence in distribution

Consider distribution functions Fi(-), Fa(-), ... and F(+). Let X1, Xo, ...and X be
random variables (not necessarily on a common probability space) having these
distributions, respectively. Then {X,,} converges in distribution (or in law) to
X if

lim F,(t) = F(t),

n—oo

each continuity point ¢ of F. (A.23)

This is written X, 4, X or d-lim,,_. X, = X.

Remark 8 The convergences 2 and B each represent a sense in which, for
n sufficiently large, X, (w) and X (w) approzimate each other as functions of w,
w € Q. This means that the distribution of X,, and X cannot be too dissimilar,
whereby approximation in distribution should follow. On the other hand, the

convergence A depends only on the distribution functions involved and does not
necessitate that the relevant X, and X approximate each other as functions of
w.
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Relationship among the modes of convergence ( -, Y2l and i) can be
summarized by the following scheme:

wpl

X, %x=>x,2x=Xx,%X (A.24)

None of these implications can be reversed.

A.5 Foundations of functional analysis

Definition 9 (Linear/vector space). A linear space, or vector space, over the
field R of real numbers is a set V' of elements called points or vectors, endowed
with the operations of addition and scalar multiplication having the following
properties:

(a) Yu,v € V and Va,b e R:

(1) utveV,

(2) au eV,

(3) lu=u,

(4) a(bu) = (ab) u,

(5) (a+b)u=au+ bu,
(6) a(u+v)au+ av.

(b) (V,+) is a commutative group; that is , YVu,v,w € V :

(1) 30 € V such that 0+ u = u,

(2) 3(—u) € V such that u+ (—u) =0, u+v=v+u, u+ (v+w) =
(u+v) 4+ w.

Definition 10 (Topological space). A topological space is a set endowed with a
topology, which is a family of subsets called open sets with the properties:

(1) the intersection of any two open sets is an open set,
(2) the union of any collection of open sets is an open set,

(8) the empty set and the whole space are open sets.

Definition 11 (Metric spaces). Let V' be a nonempty set and let d(.,.) be a
mapping/function from V. xV to R, d : V x V — R, satisfying the following
conditions for all u,v and w €V :

(1) dlu,v) =0<=u=vw
(2) d(u,v) = d(v,u)
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Figure A.3: Description (unit spheres) of balls with respect to the d, metric.

(3) d(u,v) < d(u, w) + d(w, v)

Then d is called a metric or a distance function on V. A metric space V is
also a topological space in which the topology is given by a metric.

Definition 12 Let a metric space be denoted by (V,d). The set B (xg,7) of all
points x € (V,d) satisfying the inequality d (zo,x) < r is called an open ball with
centre xg € (V,d) and radius r > 0. If the inequality is replaced by d (xg,x) < r
one speaks of a closed ball.

Example 13 (a) Figure A.3 shows the unit closed ball dp, (x,0) < 1,0 < p < 00
for the vector space R2.

(b) The open ball with center at go and radius § with respect to the supremum
metric

doo (f,h) = sup |f (z) = h(z)] (A.25)
z€10,10]
on the space C'[0,10] is given by
B (g0,9) ={g € C[0,10] : do (g, 90) < 6} . (A.26)
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10

Figure A.4: Ballsin (C'[0,10], dw ). The ball around gg consists of all functions
g such that the graph of g lies within a band around gy of width 4.

This means that |g (x) — go (z)| < § for each x € [0,10] and therefore, the
ball around gy consists of all functions g such that the graph of g lies within a
band about go of width 6. The region in which the graph of g must lie is shown
in Figure A.J.

A.5.1 Normed linear spaces and Banach spaces

Examples of normed spaces may be divided into three kinds; namely coordi-
nate spaces, sequence spaces and function spaces. A Banach space is simply a
complete normed space. Thus it contains the limit of all its Cauchy sequences.

Definition 14 (Normed spaces). Let V be a linear/vector space over the field F
(C orR ). A norm on'V is a mapping/function ||.|| from V toRZ, ||.| : V — RZ
satisfying the following three axioms

(@) Jul=0=u=0

(@) |2l = A |lul| Vu € V and A € F

(#i1) [Ju+ol] < fJull + [Jo]] Vu,0 € V

The pair (V,||.|]) is called a normed space.

Proposition 15 FEvery normed space (V. ||.||) is a metric space with respect to
the distance function d(u,v) = [Ju — ||, Yu,v € V.



A.6. STATISTICAL FUNCTIONALS AND DIFFERENTIABILITY 217

A.5.2 Inner product spaces, Hilbert spaces and reproduc-
ing kernel Hilbert spaces

Definition 16 (Inner product spaces). An inner product on a vector space V is
a scalar-valued function (u,v), defined for all ordered pairs of vectors u,v € V
and which satisfies the following axioms:

() (u,v) = (T,w) Yu,v € V, (the bar denotes complex conjugate)

(1) (au + bv,w) = a (u, w) + b (v,w) Yu,v,w € V and scalars a,b,

(#1) (u,u) > 0, (u,u) =0 if, and only if, u = 0.

A real inner product space is often called a Fuclidean space.

Proposition 17 An inner product space which is complete with respect to the
norm induced by the inner product is called a Hilbert space.

Definition 18 (reproducing kernel Hilbert spaces). A Hilbert space H of a real-
valued function on a set D is called a reproducing kernel Hilbert space (RKHS)
if, and only if, all the evaluation functionals on H are continuous (bounded).

A.5.3 Function spaces

Let f be a function and f(z) refer to the value of the function at the point x. If
f is differentiable and its derivative function f  (z) is a continuous function of z,
then f is continuously differentiable and f € C!. If f is vth order differentiable
and f(*) (z) is a continuous function of x, then f is continuously vth order
differentiable and f € C. If f is smooth, each derivative of a smooth function
is smooth, f € C*. A continuous function is of the class C°. Summarized, one
has the following regularity hierarchy

C,oC’>C' > ..o [)Cr=C™. (A.27)
vEN

where Cj, denotes the set of all bounded functions. For example f(z) = |x| is of
class C° and f(x) = z is of class C*°.

A.6 Statistical functionals and differentiability

A.6.1 Statistical functionals

Let X4, ..., X,, be a sample from a population with probability distribution F' and
let T,, =T, (X1, ..., X;,) be a statistic. When T}, can be written as a functional
T of the empirical distribution F,,, T, = T(F},), then we call T a statistical
functional. A statistical functional T'(F') is any function of F. Examples are
the mean p = [xdF(z), the variance 0? = [ (z — 1)? dF (z) and the median
med = F~ (1/2) . Another example of a functional is [ T (z) dF'(x) where T ()
is any function of x. Many important properties of statistics may be expressed
in terms of analytic properties of statistical functionals. A statistical functional
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T(F,) is robust at F according to Hampel (Hampel, 1971) if Z (T(Fn)) , a
function of the distribution F' of a single observation, is a continuous function
at F' when the Prohorov metric is used in the spaces for both F' and Z(T'). The
Influence Function is a form of derivative of a functional. The use of Taylor
expansions of statistical functionals to prove asymptotic normality is known as
Von Mises’ method. An other advantage of statistical functionals is that there
is often a natural extension to spaces that contain more than just distribution
functions.
Consider the set of all distribution functions on R denoted by U,

U={F|F:R—[0,1]}. (A.28)

A statistical functional is a mapping defined on a space of distribution func-
tions. Usually the image space is R but it could also be a set of categories or
a higher dimensional Euclidean space. The domain usually includes all empiri-
cal distribution functions and the hypothetical true distribution. Let statistical
functionals be denoted by T(F) where F' € U is the distribution of the data
and the natural estimate of T(F) is T(F),) where F), is the sample distribution
function.

Definition 19 A function T : Dy — R, where Dy C U, is said to be a statis-
tical functional if it satisfies the following two conditions:
(1) F, € Dy for all finite sequences 1, ..., Tp.

(ii) The map (1, ...,xn) — T(Fy,) is for all fized n a Borel function on R™.

Example 20 Let Dy CU be the set of all distribution functions with existing
first moment, that is Dy = {F €U : [|z|dF(z) < +o00}. Define T : Dy —
R by T(F) = [xdF(x). Now T(F) presents the mean of a population with
distribution function F'.

Example 21 Let Dy be the set defined by Dy = {F € U : [ #*dF(z) < +o0} .
Define T : Dy — R by T(F) = [2?dF(z) — ([ xdF(x))z. Now T(F) presents
the variance of a population with distribution function F.

A.6.2 Differentiability

It is convenient first to establish a general form of differentiation and then
restrict this to the form we wish to use. Let V and U be topological vector
spaces and let L (V,U) be the set of continuous linear transformations from V'
to U. Let S be a class of subsets of V' such that every subset consisting of a
single point belongs to S, and let A be an open subset of V.

Definition 22 A function T : A — U is S-differentiable at F € A if there
exists T € L(V,U) such that for any B € S

iy LF +eH) —T(F) - T (eH)

e—0 €

=0 (A.29)
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uniformly for H € B. The linear function T} is called the S-derivative of T
at F. Particular types of differentiation are:

(1) S = bounded subset of V'; this corresponds to Frechet differentiation.

(ii) S = compact subset of V'; this corresponds to Hadamard differentiation.

(i4i) S = finite subset of V'; this corresponds to Gateauz differentiation.

A.7 Aspects of statistical inference

Following the usual terminology, we use the term “estimator” to denote a ran-
dom variable, and “estimate” to denote a realization of the random variable.
The statistical properties of an estimator of a function at a given point are anal-
ogous to the statistical properties of an estimator of a scalar parameter. Let f
be the true function, f(x) refer to the value of the function at the point x and
f or f(z) denote the estimator of f or of f(z).

A.7.1 Pointwise properties of function estimators
Bias

The bias of the estimator of a function value at the point x is
Bias (f (@), f (@) = E[f ()| - f (@). (A.30)

If the bias is zero, the estimator is unbiased at the point x. If the estimator
is unbiased at every point x in the domain of f, the estimator is pointwise
unbiased.

Variance

The variance of the estimator at the point z is
. R R 2
Var {f(a:)} E{(f(x)E[f(x)D ] (A.31)

Mean Squared Error

The mean squared error, M SE, at the point x is

MSE (f (33)) -5 [(f (z) - f (x)ﬂ . (A.32)

The mean squared error is the sum of the variance and the square of the bias

wsE (7@) = B [(f@) -2/ @) 1@+ (7 0]
|

—Var|f (x)} + (E [ Fi (x)} —f (x))2 . (A.33)
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Mean Absolute Error

The mean absolute error, M AE, at the point z is

MAE (f (m)) —F Hf(:v) —f (x)H . (A.34)

It is more difficult to do mathematical analysis of the M AF than for the M SFE.
Furthermore, the M AFE does not have a simple decomposition into other mean-
ingful quantities similar to the M SFE.

A.7.2 Global properties of function estimators

Often, one is interested in some measure of the statistical properties of an esti-
mator of a function over the full domain D of the function. The obvious way
of defining statistical properties of an estimator of a function is to integrate the
pointwise properties. Three useful measures are the Li-norm, also called the
integrated absolute error, or TAFE,

14E (f) = / |F @)~ 1 (@)] da, (A.35)
D
the square of the Lo norm, also called the integrated squared error, or ISFE,
R . 2
ISE (f) - / (f (@) — f (x)) dz, (A.36)
D
and the L, norm, the sup absolute error, or SAE,

SAE ( f) =sup|f (2) ~ f (x)‘ . (A.37)

Integrated Mean Squared Error, Mean Absolute Error and Mean sup
Absolute Error

The integrated mean squared error is
R R 2
IMSE (f) :/ E [(f () —f(a:)) }dw. (A.38)
D
The integrated mean absolute error is
IMAE (f) - / E Hf(x) —f (x)H dz. (A.39)
D

The mean sup absolute error is

MSAE ( f) - /D E [sgp

F)—f (m)” de. (A.40)
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Consistency

. 2
Let [ (f (x)— f (x)) dF(z) be the Ly error. A sequence of function estimates
{ fn} is called weakly universally consistent if

lim E { / (f (z) — f(a:)>2dF(x)] —0 (A.41)

n—oo

for all distribution of (X,Y’) with E [Y?] < occ.

Rate of convergence

Given data D,, = {(z1,y1), .-, (Tn,yn)} a function estimate is denoted by fn.
Let U,; be a class of distribution of (X,Y") where the corresponding regression
function satisfies some smoothness condition depending on a parameter x. In
the minimax approach one tries to minimize the maximal expectation of the Lo
error within a class of distributions, e.g,

inf  sup E{ / (f(a:)— f(x))2dF(x)], (A.42)

fn (X,Y)EU,,

where the infimum is taken over all estimates fn
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