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Abstract

The performance of most practical classifiers improves when correlated or irrelevant
features are removed. Machine based classification is thus often preceded by subset
selection – a procedure which identifies relevant features of a high dimensional data
set. At present, the most widely used subset selection technique is the so-called
“wrapper” approach in which a search algorithm is used to identify candidate sub-
sets and the actual classifier is used as a “black box” to evaluate the fitness of the
subset. Fitness evaluation of the subset however requires cross-validation or other
resampling based procedure for error estimation necessitating the construction of
a large number of classifiers for each subset. This significant computational bur-
den makes the wrapper approach impractical when a large number of features are
present.

In this paper, we present an approach to subset selection based on a novel defi-
nition of the classifiability of a given data. The classifiability measure we propose
characterizes the relative ease with which some labeled data can be classified. We
use this definition of classifiability to systematically add the feature which leads
to the most increase in classifiability. The proposed approach does not require the
construction of classifiers at each step and therefore does not suffer from as high
a computational burden as a wrapper approach. Our results over several different
data sets indicate that the results obtained are at least as good as that obtained
with the wrapper approach.
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1 Introduction

The goal of statistical pattern classification is to assign a class label to an input
x on the basis of N labeled (possibly noisy) training patterns {(x(i), t(i))}Ni=1.
Here, x(i) ∈ <n denotes the input, t(i) ∈ {ω1, ω2, . . . , ωc} denotes the class label
(or the target) corresponding to x(i), and c is the total number of classes. In
high dimensional spaces (n is large), features often tend to be correlated or ir-
relevant leading to a deterioration of classification performance. For example,
the performance of the Naive-Bayes classifier is relatively insensitive to irrele-
vant features but deteriorates rapidly with correlated features (Langley et al.,
1992; Duda and Hart, 1973). On the other hand, the performance of classifiers
that rely on some form of distance (for example, a nearest-neighbor classifier
which assigns a class label based on the class labels of a certain number of
training patterns closest to the input) deteriorates rapidly with irrelevant fea-
tures. Even when the effect of irrelevant or correlated features is limited (or
unexplored for a particular classifier), having fewer inputs can at least lead to
simplified or quicker classifier construction (Hartman et al., 1990).

Because of the above considerations, feature subset selection is typically used
before pattern classification to reduce the number of features. Subset selection
requires the definition of a fitness criteria to decide on the relevant merits of a
subset and a search criteria to examine the different subsets. The large number
of possible subsets (2n− 1 ≈ 2n) makes an exhaustive search impractical. The
branch and bound approach works with a monotonic fitness criterion to provide
the best subset of a given size (Narendra and Fukunaga, 1977; Fukunaga,
1990) without searching through all subsets. When the computational expense
of branch and bound is too large to be acceptable, sequential selection of
features as done in forward selection or backward elimination can be carried
out. Unlike branch and bound procedure, forward selection and backward
elimination may not find the best subset of a given size. At present, the most
widely used method is the so-called wrapper approach which uses hill climbing
(or some other greedy search strategy) and the error rate of the classifier itself
as the fitness criteria (Kohavi and John, 1997). Since the classifier (for which
the lower dimensional subspace is being prepared) is itself used to provide
the fitness of a specific subset, features most relevant to the classifier can
be chosen. However, because a classifier is constructed for the evaluation of
each subset (often several classifiers have to be constructed for each subset;
for example when the error rate has to be estimated through cross validation
or resampling based methods), the wrapper approach is extremely slow and
impractical for high dimensional or very large data sets.

In this paper, we present an approach to subset selection based on a novel
definition of the classifiability of a given data. The classifiability, as we de-
fine it, characterizes the relative ease with which some labeled data can be
classified. We use the proposed definition of classifiability to systematically
examine each of the remaining features and add the feature which leads to the
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most increase in classifiability. We stop adding features when the classifiabil-
ity stops increasing. The proposed approach does not require the construction
of multiple classifiers at each step and is thus faster than wrapper approach.
On the other hand, our results over several different data sets indicate that
the result obtained are at least as good as that obtained with the wrapper
approach.

We have laid out the rest of the paper as follows. In Section 2, we discuss the
wrapper approach to subset selection in greater detail. We also briefly discuss a
less widely used (and less effective) approach - the filter approach. In Section
3, we present a short overview of some existing methods of characterizing
the difficulty of a classification problem and then present our definition of
classifiability (Dong and Kothari, 2001). In Section 4, we present the algorithm
for subset selection based on the proposed classifiability measure. In Section
5 we present some experimental results and compare those results with that
obtained with the wrapper approach. In Section 6, we present our conclusions.

2 The Wrapper Approach to Subset Selection

The wrapper approach to feature subset selection is based on using the clas-
sifier as a “black box”. A search algorithm (such as hill climbing) is used to
search for a “good” subset and the classifier is used to find the error rate with
a particular subset. However, the true error rate of the classifier with a given
subset is hard to compute and an estimate obtained using cross validation or
bootstrap based methods (Efron and Tibshirani, 1993, 1995) has to be used
in lieu of the true error rate. When sufficient bootstrap samples are used the
error estimate is usually reliable (Efron and Tibshirani, 1993, 1995).

Typically, a “state vector” of length n (i.e. of the same length as the num-
ber of features) is defined. A 1 in the state vector implies inclusion of the
corresponding feature and a 0 implies exclusion. To minimize time, wrapper
algorithms typically use forward selection, i.e. they start from an empty list
of features and add relevant features as they are discovered. The following
sequence of steps, adopted from Kohavi and John (1997), illustrate a typical
wrapper approach to subset selection based on hill climbing.

(1) Let v ← empty set of features.
(2) Expand v. Typically, this generates new states by adding or deleting a

single feature from v. For example, if n = 3 and v = (0 0 0), then
expansion of v might lead to the following states: (1 0 0), (0 1 0), and
(0 0 1).

(3) Use the classifier and an error estimation procedure (such as bootstrap-
ping) to find the fitness of each subset that resulted from the expansion
of v.

(4) Let v′ be the subset with the highest fitness.
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(5) If fitness of v′ is greater than that of v, v ← v′ and goto step 2. Else
terminate with v as the final subset.

There are of course many variations to the above algorithm. For example,
it is known that hill climbing may get trapped in a local minima. Conse-
quently, better search methods, such as best-first search may be used (Russell
and Norvig, 1995; Goldberg, 1989). Additionally, one can formulate alternate
operators to expand v.

Despite the variations, the central aspect of the wrapper approach is that since
the classifier is used in the selection process, one can get an accurate estimate
of the performance with a given subset. On the other hand if a mechanism
other than the classifier is chosen for evaluating the subsets, then a subset
which provides poor performance with the actual classifier may be chosen. Of
course, this implies that at each pass of the wrapper algorithm requires the
construction of (E ∗ |v|) number of classifiers. Here |v| denotes the number
of child states of v and E denotes the number of independent classifiers that
must be constructed with a given subset to obtain an estimate of the error.
For example, if sufficient data is available and a simple estimation procedure
such as k-fold cross validation is used, then E = k. When sufficient data is
not available, and resampling based procedures such as bootstrapping is used
then one might require 100—200 classifiers resulting in E = 100 or E = 200.
Clearly, this results in an enormous computational expense and is not feasible
for large data sets.

A less widely used approach is the so-called filter approach. Algorithms based
on the filter approach typically do not consider the classifier (or error estimates
obtained from the target classifier) for subset selection. The Relief algorithm
(Kira and Rendell, 1992) for example, assigns a “relevance” to each feature.
Relevance values are updated by selecting a pattern at random from the data
set and finding the difference between it and two “nearest” patterns to the
chosen pattern – one of the same class and the other of the opposite class.
Due to the random sampling involved in Relief, it is likely that results exhibit
a large variance unless the algorithm is run for a very long time. Other ap-
proaches in this category include the FOCUS algorithm (?), the decision tree
based feature selection Cardie (1993), and the PRESS algorithm (Neter et al.,
1990).

3 A New Definition of Classifiability

Prior to presenting the proposed measure of classifiability we present a short
overview of some of the existing approaches to characterizing the difficulty of
a classification problem.

A classical approach to measuring the classifiability uses Fisher’s Discriminant
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Ratio (FDR) which in a two-class situation can be defined as,

FDR = max
i∈{1,2,...,n}

{

(µ1i − µ2i)
2

σ12i + σ22i

}

(1)

where, µ1i and µ2i denote the mean and σ12i and σ22i denote the variance
of the two classes along the ith feature. The maximum along any feature is
then used to characterize the problem. Of course, an underlying assumption
in FDR is that the class distribution is normal along the individual features
which in general is not valid.

Friedman and Rafsky (1979) proposes a Minimum Spanning Tree (MST) is
constructed from all the patterns in a sample. The fraction of patterns of
opposite classes connected by an edge in the MST is then used as a measure
of the classifiability of the sample. Of course as noted in Ho and Baird (2002),
even in a simple linearly separable classification problem there might exist
a large number of patterns of opposite classes that are close to each other.
In effect, as might become evident later, the distribution (structure) of the
pattern distribution is ignored in this formulation. In some other approaches,
the deviation from linear separability is used a basis for characterizing the
classifiability (Smith, 1968; Hoekstra and Duin, 1996).

In some other approaches, the deviation from linearity as measured from the
value of the objective function used to obtain a linear classifier is used as a
measure of classfiability (Smith, 1968; Hoekstra and Duin, 1996). However,
these measures do not accurately capture the classifiability since they rely
primarily on the number of misclassifications (or more generally on the value
of the objective function) and disregard the distribution of the error. For
additional details and a comparative review we refer the reader to Ho and
Baird (2002).

Our definition of classifiability is motivated by the fact that a n-dimensional
classification problem may be visualized in (n+ 1) dimensions using the class
label as the (n+ 1)th dimension. For example, Figure 1 shows a classification
problem in 2 dimensions with the corresponding visualization in 3 dimensions.

The class label may thus be viewed as defining a surface which is “rough”
when patterns of different classes are near each other and “smooth” when
patterns of the same class are adjacent to each other. Naturally, classification
is considerably more complicated when the “class label surface” is rough.
Consequently, if the smoothness (or roughness) of the class label surface can
be quantified, then a natural measure of classifiability is obtained.

This intuitive notion is nicely captured by the second order joint conditional
density function f(ωi, ωj|d), i.e., the probability of going from class ωi to class
ωj within a distance d

1 . We develop the proposed measure of classifiability

1 This definition is similar to that used in image processing to characterize the
texture of images (Haralick, 1980; Rao, 1990). In the context of image processing,
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Fig. 1. A 2-class classification problem (left panel) and the visualization in
3-dimensions (right panel).

as follows. For simplicity, and without loss of generality, we consider a 2-class
classification problem.

Consider a given training pattern x(i). Let y be a training pattern in the neigh-
borhood (within a distance d) of x(i). One can then define a joint probability
matrix for pattern x(i) as,

J (i) =







P (ω1|y, ω1|x
(i)) P (ω2|y, ω1|x

(i))

P (ω1|y, ω2|x
(i)) P (ω2|y, ω2|x

(i))





 (2)

Since y and x(i) are independent, this simplifies to,

J (i) =







P (ω1|y)P (ω1|x
(i)) P (ω2|y)P (ω1|x

(i))

P (ω1|y)P (ω2|x
(i)) P (ω2|y)P (ω2|x

(i))





 (3)

Note that the matrix J (i) defined in equation (2) will be strongly diagonal
when patterns in the neighborhood of x(i) belong to the same class as x(i).
Neighboring patterns (i.e. within a distance d) belonging to the same class
correspond to a smooth class label surface or easier classification. As the class
label surface becomes more rough, the off-diagonal entries become larger.

The classifiability measure for patterns distributed in the neighborhood of a
pattern x(i) is thus defined by,

C(x(i))=P (ω1|y)P (ω1|x
(i)) + P (ω2|y)P (ω2|x

(i))

−P (ω2|y)P (ω1|x
(i))− P (ω1|y)P (ω2|x

(i)) (4)

and the overall classifiability L for the entire data can be defined by,

L =
∑

i

P (y) C(x(i)) (5)

the gray level intensities serve the role that the class label serves here.
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where y, as before, is a pattern in the neighborhood of a pattern x(i).

Computationally, it is easy to compute the classifiability. One can simply
consider a training pattern – say x(i) – and populate J (i) based on fraction
of neighboring patterns in the different classes. This provides J (i) and thus
C(x(i)). P (y) is simply given by the ratio of patterns in the neighborhood of
x(i) over N .

It is easy to see that 0 ≤ L ≤ 1 and a higher value of L implies greater
classifiability. In the next section, we use this definition of classifiability for
subset selection.

4 Classifiability Based Subset Selection

The proposed measure of classifiability provides an efficient measure for the
subset selection. Our specific method is based on forward selection, where at
each stage we add the feature which gives the largest increase in classifiability.
The complete algorithm is shown below. In the algorithm we have used the
shorthand notation L(v) to denote the classifiability as computed with all the
features in v and we have used ε as a user specified parameter representing
the minimum acceptable increase in classifiability with each added feature.

Let v = {∅} and let s = {x1, x2, . . . , xn}
for i = 1 to length(s) do

Find argmaxi L(v
′) where v′ = v ∪ xi

if (L(v′)− L(v)) > ε

v = v ∪ xi

s = s− xi

i = 1

continue

else

break

end if

end for

Return v as the final subset

In the proposed algorithm for feature subset selection, the need for construct-
ing multiple classifiers does not arise since the classifiability (for a fixed d)
does not depend on random sampling, initial conditions or other factors that
can alter results from one run to another. Therefore, unlike as in the wrapper
based approach multiple classifiers do not need to be constructed.
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It is easy to compute the worst case running time for the proposed algorithm.
In the worst case, all the input features may have to be included in the subset.
In that situation, the maximum number of times that the classifiability has
to be computed is given by

∑n
i=1 i = n(n+ 1)/2. Each time the classifiability

is computed one has to compute (N − 1) distances to count the points which
are within the neighborhood d of x(i). This has to be done for each of the N
points. So the total complexity of the proposed subset technique in the worst
case is given by O(N 2n2). In practice, the size of the subset is much lesser
than n and the complexity in practice is significantly less. In addition, when
the distance computation are done in parallel (or using some efficient data
structures), then the actual complexity can be quite modest.

5 Experimental Results

We present our experimental results in 4 separate groups. The first group
consists of a single simulation and is intended to highlight that our definition
of classifiability is in fact robust to the addition of irrelevant features. The
second group of simulations is based on 8 separate data sets. These data sets
are the ones used with the wrapper approach (Kohavi and John, 1997) and
thus allow for a direct comparison of the proposed method with the wrapper
approach. The third group of simulations is based on two large data sets (one
with 60 features and one with 649 features) that are widely available but were
not used in the wrapper approach reported earlier (Kohavi and John, 1997).
This group provides further evidence of the effectiveness and efficiency of the
proposed method. The last group of simulations is used to show the effect
of varying neighborhood when selecting feature subset based on classifiability
measure. We found out that the classifiability is quite robust to the change of
the neighborhood size. So is the feature selection results.

In all our simulations, we normalized each feature to lie in the range [a, a+1],
where a is some constant. We achieved this by dividing values of a feature by
the difference between the maximum and the minimum values of the feature.
Also, in all our simulations (except those in the last group) neighborhood size
d is set to be 3× the RMS distance of each pattern from its nearest neighbor.
In our distance computation, we use the Euclidean distance when a feature
has a numeric value. For symbolic features we fixed the distances between two
dissimilar symbolic features to be 1.

5.1 Simulation Group I

We present results with a synthetic data set to illustrate that ideally (i.e.
when we have a large number of samples) the classifiability of a data set
does not change when we add some irrelevant features. In this simulation,
there are three attributes and two classes labeled class 1 and class 2. The first
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attribute for each class is obtained by sampling from a Gaussian distribution
(µ1 = 0 and σ = 1 for class 1, and µ2 = 1 and σ = 1 for class 2). The second
and third attributes are random numbers uniformly generated in [0, 1]. We
constructed three different data sets by using attribute 1 only, attribute 1 and
2 and attribute 1, 2 and 3. The last two data sets thus contain some irrelevant
features. For each data set, we calculate the classifiability 5 times (with a
different sample each time) and the results are summarized in Table 1. We
can clearly see that the difference between the classifiability of first data set
and the classifiability of the second and third data set decreases as the sample
size increases. In the limit where a large number of samples are present, the
classifiability will be constant for all three data sets.

From the simulation, we also observe that the classifiability varies with the
sample size although the effect is not very significant. This can be explained by
the third criterion we mentioned in Section 3. The proposed measure of clas-
sifiability, like other empirical techniques, provides more accurate estimates
with increasing sample size.

Table 1
Classifiability L of three data sets with different sample size. All results are reported
as mean ± standard deviation computed from 5 independent trials.

# of Patterns L with 1 Attr L with 2 Attr L with 3 Attr

200 0.6081 ± 0.0253 0.5109 ± 0.0260 0.3722 ± 0.0187

400 0.5556 ± 0.0710 0.4960 ± 0.0340 0.3858 ± 0.0358

800 0.5628 ± 0.0510 0.5214 ± 0.0354 0.4411 ± 0.0403

1600 0.5378 ± 0.0163 0.5043 ± 0.0094 0.4302 ± 0.0144

5.2 Simulation Group II

We present the results with 8 different data sets to illustrate that the pro-
posed feature subset selection criterion can achieve similar or better perfor-
mance compared with wrapper approach. We used two typical classification
algorithms, ID3 (Quinlan, 1986) and Naive-Bayes (Langley et al., 1992; Duda
and Hart, 1973; Fukunaga, 1990) to evaluate the classification accuracy on the
original data set (with all features) and on the subset as chosen by us. Results
are reported based on 10 fold cross-validation irrespective of whether there is
separate testing set or not. When separate training and testing data sets are
present, we simply merge them into one data set. All instances with missing
value are discarded. These test conditions are identical to the ones used with
the wrapper approach (Kohavi and John, 1997) and thus allow for a direct
comparison.

All data sets can be obtained from the MLC++ Machine Learning Library
(www.sgi.com/tech/mlc) along with some additional documentation. We pro-
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vide the salient characteristics of each of the data sets.

Cleve Data Set: The first data set in this group is the Cleve data set, which
has a total of 14 (8 symbolic, 6 numeric) attribute and two classes: sick
or healthy. Our proposed algorithm chooses 5 attributes (see Table 2). The
cross-validation accuracy of feature subset is improved for both classification
algorithms (see Table 3). For comparison, the wrapper approach chooses 2.6
(ID3) or 3.1 (Naive Bayes) 2 chosen are shown as fractional attributes and
results in better classification performance.

Corral Data Set: The Corral data set is an artificial data set. It has 6
attributes: A0, A1, B0, B1, Irr and Correlated. The target concept is
(A0 ∩ A1) ∪ (B0 ∩ B1). Irr is an irrelevant attribute, and Correlated is
an attribute highly correlated with the class label, but with a 25% error
rate. Our proposed algorithm chooses A0, A1, B0, B1 and Correlated as
the feature subset (see Table 2). For ID3, the cross-validation accuracy of
feature subset is the same, while the accuracy is improved for Naive-Bayes
classifier (see Table 3)). For comparison, the wrapper approach will choose
only 1 attribute and results in worse classification performance.

Crx Data Set: The Crx data set is based on credit card applications. There
are a total of 15 attributes and 2 classes. As Table 2 and 3 show, we
choose 4 attributes and the accuracy increases for both the classification
algorithms. For comparison, the wrapper approach chooses 2.9 (ID3) or 1.6
(Naive Bayes) attributes and results in Better (ID3) or worse (Naive-Bayes)
classification performance.

M of n 3− 7− 10 Data Set: This data set is again an artificial data set.
It has 10 attributes and 7 of which (numbers 2, 3, 4, 5, 6, 7, 8) are relevant
to the class label. Table 2 shows that our algorithm chooses 7 features,
3, 4, 5, 6, 7, 8, 9, as the subset and Table 3 shows accuracy is improved. The
wrapper approach results 0 attributes chosen and a corresponding decrease
in accuracy.

MONK’s Problem: For the next three simulations, we consider the well
known MONK’s data sets. The MONK’s data sets are actually three sub-
problems. The domains for all MONK’s problems are the same. There are
432 instances that belong to two classes and each instance is described by
7 attributes (a1, . . . , a7). Among the 7 attributes, there is one ID attribute
(a unique symbol for each instance), which is not related to classification
and is ignored in our simulations.
MONK-1: The target concept associated with the MONK-1 problem is
(a1 == a2) OR (a5 == 1). Table 2 summarizes the results obtained. We
choose totally three attributes in the order of a5, a1, a2, which is a good
match with the target concept. The cross-validation accuracy is shown in
Table 3. For comparison purpose, wrapper approach will choose only 1

2 The number of features reported are the number of features chosen averaged over
10 independent trials (Kohavi and John, 1997). Hence the fractional number of
features.
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attribute and results in worse classification performance.
MONK-2: The target concept associated with the MONK-2 problem is:
exactly two of (a1 == 1, a2 == 1, a3 == 1, a4 == 1, a5 == 1, a6 == 1).
Table 2 shows the results obtained. Proposed algorithm choose all 6 at-
tributes. The cross-validation accuracy is shown in Table 3. For compar-
ison purpose, wrapper approach will choose only 0 attribute and results
in worse classification performance.

MONK-3: The target concept associated with the MONK-3 problem is
(a5 == 3 AND a4 == 1) OR (a5 6= 1 AND a2 6= 3). 5% noise is added
to the training set. Results obtained are shown in Table 2. Totally 4
attributes are chosen. The cross-validation accuracy is shown in Table
3. For comparison purpose, wrapper approach chooses 2 attributes and
results in better (ID3) or same (Naive Bayes) classification performance.

Pima Data Set: The last data set is the Pima data set. It has 2 classes, 8
attributes and a total of 768 instance. Tables 2 and 3 show that 3 attributes
are chosen and accuracy increases. For comparison, the wrapper approach
chooses 1 (ID3) or 3.8 (Naive Bayes) attributes and results in better (ID3)
or worse (Naive Bayes) classification performance.

Table 2
The number of features in the original data set and the number of features retained
in the subset. The features retained in the subset are also shown in the order of
selection.

Data set Original Subset Features #

1 Cleve 13 5 10,13,12,3,9

2 Corral 6 5 6,1,2,3,4

3 Crx 15 4 8,9,13,10

4 mofn-3-7-10 10 7 4,9,5,8,3,6,7

5 monk1 6 3 5,1,2

6 monk2 6 6 3,6,1,2,4,5

7 monk3 6 4 2,5,4,1

8 pima 8 3 2,8,1

From these 8 simulations, we can see clearly that proposed approach performs
at least as well as the wrapper approach when using real data sets, while does
much better than the wrapper approach when using artificial data sets. Figure
2 provides a pictorial comparison of the proposed method and the wrapper
based approach to subset selection when the Naive-Bayes classifier is used. In
either case, the proposed approach is faster than the wrapper approach 3 .

3 The differences in CPU time are trivial for these data sets because it usually
takes only several seconds (0-5 sec) for both approaches on today’s PC. The slight
differences were also affected by many factors other than the algorithm itself, for
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Table 3
Cross-validation accuracy for ID3 and Naive-Bayes classifier with the entire data
set (all features) and the subset (selected features). All results are reported as mean
± standard deviation computed from 10 independent trials.

Data set Full Set Subset

ID3 Naive-Bayes ID3 Naive-Bayes

1 Cleve 73.31 ± 4.26 83.51 ± 1.38 76.23 ± 2.25 84.17 ± 1.82

2 Corral 96.92 ± 2.05 80.83 ± 8.79 96.92 ± 2.05 86.03 ± 3.75

3 Crx 81.16 ± 1.04 77.68 ± 1.56 85.65 ± 1.3 84.06 ± 1.33

4 mofn-3-7-10 83.67 ± 2.19 87.33 ± 1.63 84.33 ± 1.22 89.33 ± 1.56

5 monk1 95.12 ± 1.36 74.97 ± 1.95 100.00 ±0.00 74.97 ± 1.95

6 monk2 46.05 ± 3.02 66.22 ± 2.80 46.05 ± 3.02 66.22 ± 2.80

7 monk3 100.00 ± 0.00 97.22 ± 0.47 100.00 ± 0.00 97.22 ± 0.47

8 pima 70.56 ± 1.66 75.90 ± 1.88 71.73 ± 1.38 73.43 ± 1.57
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Fig. 2. Comparison with wrapper approach (Naive Bayes classifier).

example, the number of features selected, the status of CPU. Hence the CPU time is
not reported here. The CPU time on two large data sets is reported in the following
section.
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5.3 Simulation Group III

In this group of simulations, we present the results with two widely used data
sets each with a large number of features. As such this group provides further
evidence of the effectiveness and efficiency of the proposed subset selection
strategy. As before, we used ID3 (Quinlan, 1986) and Naive-Bayes (Langley et
al., 1992; Duda and Hart, 1973; Fukunaga, 1990) to evaluate the classification
accuracy on the original data set (with all features) and on the subset as chosen
by us. Results are reported based on 10 fold cross-validation irrespective of
whether there is separate testing set or not. When separate training and testing
data sets are present, we simply merge them into one data set. All instances
with missing values are discarded. The simulation was done on the Pentium IV
1.8 GHz PC with 256M memory running Microsoft Windows XP Professional
Edition.

We present a brief description of each of the data sets and summarize the
subset selected for each data set in Table 4 and the cross-validation accuracy
obtained with the original and reduced data sets in Table 5.

Sonar Data Set: The first simulation is based on Sonar data set, which
has 208 instances and 2 classes. Out of 60 possible attributes, our algorithm
chooses 2, shown in Table 4. From Table 5, we can see clearly that the
cross-validation accuracy of feature subset is improved for both classification
algorithms.

Multi-Feature Digit Data Set: The second simulation is based on Multi-
Feature Digit data set, which has 1000 instances and 5 classes. Out of 649
possible attributes, our algorithm chooses 10 as shown in Table 4. The cross-
validation accuracy is shown in Table 5.

Once again, it is clear that the proposed algorithm succeeds in selecting a
subset with far fewer features than the original data set while improving the
testing accuracy. We can also clearly see the efficiency of proposed method
based on CPU time reported in Table 4.

5.4 Simulation Group IV

This group of simulations is intended to estimate the effect of neighborhood
size when doing subset selection based on the proposed classifiability measure.
For that purpose, we chose data sets Crx and Pima and varied the neighbor-
hood size from 2 ∗ r to 8 ∗ r as shown in the second column of Table 6 (r is
the RMS distance of each pattern from its nearest neighbor). As the results
in Table 6 show, there exists a large range of values of d for which the same
feature subset is selected. For example, the subset for the Crx data set always
contains features 8, 9, 13 and 10 when the neighborhood size d equals 2r, 3r or
5r. When d = 8r, those four features were picked again with priority although
two more features (6 and 12) were included.
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Table 4
The number of features in the original data set, the number of features retained in
the subset and corresponding CPU time. The features retained in the subset are
shown in the order of selection.

Prop. Method Wrapper Approach

Data set Original Subset Features # CPU (sec) Subset Features # CPU (sec)

11,19

18,37

Sonar 59 2 12,16 3 11 27,43 107

55,29

9,41

42

362,48 361, 295

475,133 132, 294

358,582 152, 289

Digit 649 10 86,638 2150 9 643, 359 4807

645,359 47

Table 5
Cross-validation accuracy for ID3 and Naive-Bayes classifier with the entire data
set (all features) and the subset (selected features).

Data set Full Set Subset (Prop. Method) Subset (Wrapper Appr.)

ID3 Naive-Bayes ID3 Naive-Bayes ID3 Naive-Bayes

Sonar 72.60 ± 1.05 68.75 ± 0.36 76.44 ± 1.32 71.15 ± 0.25 76.92 ± 1.98 68.75 ± 0.31

Mfeat 98.50 ± 0.87 98.50 ± 1.54 96.25 ± 2.35 98.50 ± 0.54 93.40± 1.32 94.50 ± 0.58

In general, there is no definite way of knowing an appropriate value to use for
neighborhood d. Typically, d should increase linearly with n – the number of
attributes. Indeed, d should be large enough such that at least a few instances
are present within that neighborhood of each instance. d should also be small
enough such that classifiability is evaluated locally. However, as Table 6 shows,
the proposed method is not overly sensitive to the choice of d. In practice, we
found out that 3× the RMS distance of each pattern from its nearest neighbor
gives good results.
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Table 6
Effect of varying d for the Crx and Pima data set. r is the RMS distance of each
pattern from its nearest neighbor

Data set Neigh.(d) Subset Features #

2r 4 8,9 13,10

Crx 3r 4 8,9 13,10

5r 4 8,9 13,10

8r 6 8,9 13,10,6,12

2r 4 2,8,1,4

Pima 3r 3 2,8,1

5r 3 2,8,1

8r 2 2,8

6 Conclusions

In this paper, we described a novel subset selection technique based on a def-
inition of classifiability. The proposed definition of classifiability is based on
the general notion of proximity (or overlap) of patterns of opposite classes and
is thus unbiased to any particular classifier. We used the proposed definition of
classifiability to implement a forward selection based subset selection scheme.
More specifically, a feature which maximized the classifiability was added to
the subset. Results on the 8 data sets reported earlier with the wrapper ap-
proach (Kohavi and John, 1997) confirm that the proposed scheme provides a
subset with equal or better performance than the wrapper approach without
the need for constructing a large (often in the hundreds) number of classi-
fiers. Based on these results, we believe that the proposed method can be of
significant utility in machine based classification of high dimension data.
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