ITK Research Report No.

November 199

| nductive char acterisation

of databaserelations

Peter A. Flach

Full version of a paper appearinc

Methodologies for Intelligent Systems
Z.W. Ras, M. Zemankova and M.L. Emrich (eds.),
North-Holland, Amsterdam, 1990, pp. 371-378.

ISSN 0924-780:

Institute for Language Technology and Atrtificial Intelligence,
Tilburg University, The Netherlands

| nductive characterisation of database relations

Peter A. Flach

ABSTRACT

The general claims of this paper are twofold: there are challenging
problems for Machine Learning in the field of Databases, and the study of
these problems leads to a deeper understanding of Machine Learning. To
support the first claim, we consider the problem of characterising a database
relation in terms of high-level properties, i.e. attribute dependencies. The
problem is reformulated to reveal its inductive nature. To support the second
claim, we show that the problems presented here do not fit well into the
current framework for inductive learning, and we discuss the outline of a more
general theory of inductive learning.

KEYWORDS Relational model, attribute dependencies, inductive learning, theoretical analysis.

Contents
I 1 0 1 o Yo [¥Tox oY o 1RO 1........
2. Characterising a database relation........ ..o b T
2. L P iMINAIES. . et 3.
2.2 Characterisation by functional dependencies............coooviiiiiiiii, 3...
2.3 Characterisation by multivalued dependencCies........c.ccovveveiiiiiiiiieiiin e, AN
3. Inductive learning of characterisations...........cooouiiiiiiiiii e 11........
3.1 The problem of incremental characterisation: monotoNniCity...........cccovvvvveieienennn.. 11
3.2 Inductive learning of functional dependencies.............ccoiiiiiiiiiiiii 12.
3.3 Inductive learning of possible multivalued dependencies............c.cocvevevevenevennennn. 13
3.4 From possible multivalued dependencies to satisfied multivalued dependencies: a
(o [T Y71 0 =T o] o €e = U] o TP 16.......
4. Induction of weak theOries. 21.......
R Va1 Yo [o3 o] o VPSP 21......
4.2 Al approaches to inductive 1earning..........cooeveuiiiiiiiiiiii e 21.......
4.3 WEAK CONSISLENCY. ...t ettt e ettt e e e 22....
4.4 Towards a meta-theory of inductive learning.................cooiiiiiiiiiiiiie 22.
5. CONCIUAING FEMAIKS. ...\ttt ans 24.....

LS (=] (= 01 25.......

1. I ntroduction

The issues addressed in this paper are taken from two seemingly disparate fields: Machine Learning and
Databases. Yet, we claim that each field can play a significant role for the other. On the one hand,
techniques used in inductive learning can be applied to problems of data modeling. On the other hand,
these problems differ from the usual inductive learning problems (such as concept learning from
examples), and require a new framework for inductive learning. Therefore, the study of these problems aids
in a more thorough understanding of inductive learning.

How can inductive learning techniques be useful for data modeling? Machine Learning aims at
automating the transfer of knowledge to machines, without the need of making this knowledge explicit.
Often, the relevant knowledge has to be generalised from explicit, specific facts, as in inductive learning.
This kind of learning can be paraphrased as ‘from specific facts to general knowledge’. Databases are
devices for storing large amounts of similar, specific facts. The data model, i.e. the structure of this
specific knowledge, is used for tasks like maintaining the integrity of the data, and answering queries:
‘through structural knowledge to specific facts’. In this paper, we would like to suggest that the data
model can at least partially be derived from the specific data stored in the database.

To this end, we consider the following problem: given a database realafiod acharacterisation
of r in terms of a particular feature of the relational model, such as attribute dependencies, keys, or
integrity constraints. For instance, a characterisatiariroterms of functional dependencies lists exactly
those functional dependencies that are satisfiad $ych characterisation problems arise when data has to
be stored in a database without a complete data model available. If a characterisation of the data reveals
any unanticipated regularities, several steps can be taken:

0] the characterisation is added to the data model;

(i) the characterisation is maintained as a temporary hypothesis, that has to be updated

when new, conflicting data occurs;
(i) the characterisation is combined with the original data model to form a second,
stronger data model, that can for instance be used to signal new, ‘deviating’ data, that
satisfies the original, weak data model but fails to satisfy the new, stronger data
model;
(iv) the characterisation is used for generating very high level answers to general queries
about the observed data, e.g., in statistical databases.
There is an important difference between the first two cases on one hand, and the last two cases on the
other. In caseii{) and {v), the characterisation is used for the observed data only, and therefore logically
valid. In casei{, the initial data is declared to be prototypical for all possible data. In other words, we
generalise from specific facts (the initial data) to general laws (the extended data model). Analogously, if
the process described in casg results in a final hypothesis that is used to extend the initial data model,
this is again an generalisation process, only with a more cautious strategy. Such a generalisation can
never be logically justified, because it involves an inductive leap from observed data to unseen data.
Therefore, case$)(@nd (i) concerrinductive characterisatioof database relations, which is the subject of
this paper. We restrict ourselves to characterisation in terms of attribute dependencies (functional and
multivalued).

The paper is organised as follows. In section 2 we study Qase.(the problem of characterising

a given database relation. In section 3, we study the problem of incrementally characterising a relation

(case ii)). We will argue that such incremental characterisation problems can be fruitfully viewed as
inductive learning problems. In section 4, we also show that current inductive learning models do not fit
characterisation problems, and we propose a more general learning inchatelon of weak theorie§Ve

end the paper with some concluding remarks.

2. Characterising a database relation

2.1 Preliminaries

We base our discussions on the relational model of data, and our notational conventions are close to
[Maier 1983]. Arelation scheme & a set ofttributes{Ay, ..., Ay}. Each attribute?; has adomainD;,
1<i<n, consisting ofvalues Domains are assumed to be countably infinitéugle on Ris a mappind:
R - [0;D; with t(A;) OD;, 1<i<n. The values of a tupleare usually denoted a$(A7), ..., t(Ay)> if the
order of attributes is understood.rélation on Ris a set of tuples oR. We will only consider finite
relations. Any expression that is allowed for attributes is extended, by a slight abuse of symbols, to sets
of attributes, e.g., iK is a subset oR, t(X) denotes the sett@A) | AOX}. We will not distinguish
between an attributd and a setA} containing only one attribute. A set of values for a set of attributes
X is called arX-value. In general, attributes are denoted by uppercase letters (possibly subscripted) from
the beginning of the alphabet; sets of attributes are denoted by uppercase letters (possibly subscripted)
from the end of the alphabet; values of (sets of) attributes are denoted by corresponding lowercase letters.
Relations are denoted by lowercase letters (possibly subscripted) sugb, &s r, y tuples are denoted
byt t1, to, If X andY are sets of attributes, their juxtapositigly meansX(lY. We employ the
usual notation for expressions of relational algebra.

As defined above, a relatioron a relation schenfe={A4,...,Aq} can be viewed as an extension of
ann-ary predicate symbal; alternatively,r is a possible model of the open formu(X 1,...,X,) .
Likewise, a relation that satisfies a dependdddy a model oD. If r is a model of a formule, we write
r £ @ This has been called a model-theoretic view of databases, and it allows us to use semantic concepts
such as logical implication and generality without reintroducing them explicitly in the context of
relational databases. Alternatively, the correspondence between first-order logic and databases allows us to
introduce proof-theoretic concepts, as in the area of deductive databases (for an excellent survey of logic
and databases, see [Gallateal. 1984]). In this paper, we will switch freely from the relational model to
logic when appropriate. Note however, that the explicit use of attributes permits the relational algebra to
operate on a meta-level.

2.2 Characterisation by functional dependencies

Relationr satisfies a functional dependenXy: Y if t100r andto[0r andt; (X)=tx(X) imply t1(Y)=tx(Y). Put
differently, for everyX-valuex, the relatiorme(ox=x(r)) contains at most one tuple. The characterisation
of r in terms of functional dependenciedFB(r) = {X- Y |r satisfiesX - Y}. Thus,r is a relation that
satisfies all fds ifFD(r) and no others, hencas anArmstrong relatiorfor FD(r). A relationcontradicts
any fd that it does not satisfy.

The empty relatio] and any one-tuple relation}{satisfy all fds. The universal relatian(the
Cartesian product;D; of all domains of attributes) satisfies only trivial fds. Whiles infinite, there are
also finite relationgy that satisfy only trivial fds, thuBD(q) =FD(u). This follows directly from the
existence of Armstrong relations for any (consistent) set of fds [Armstrong 1974¢Baki984].

As an illustration, let be the relation depicted in table 1.

A B C
& b1 C1
) b C1
& b3 C2
1 b3 C2

Table 1.A relation satisfying some functional dependencies.

Thenr satisfiesA- B, A- C (henceA is a key forr) andB - C, among others=D(r) contains these

three fds, plus every fd that is implfe@y them (such a8 - BC, andAC- B), including trivial fds

XY whereXOY (such asAC- A). The set A- B, A- C, B- C} appears to be aoverfor FD(r), i.e.

FD(r) is the deductive closure of this set. It can be easily shown that each element of a non-redundant

cover can be written in the ford- A, whereA is a single attribute such thaflX. Thus, we can solve

the characterisation problem for fds if we have an algorithm that constructs a seXofAdshich is a

cover forFD(r). In the following, we restrict ourselves to fds with a single attribute on the righthand-side.
The following theorem provides the clue for an fd-characterisation algorithm.

THEOREM 1 (More general than for fds)f a relation r satisfies an fd X A, then it also
satisfies any fd ¥ A such that ¥/X.

Proof. If r contradictsY - A, then it contains two tuples with equébalues but unequal
A-values. But then these tuples also have equallues, hence contradictsX - A. |

Thus, if a non-redundant cover contains two Xds A andY - A, thenXOY. We call an fdX— A as
general asan fdY - A iff XOY. This terminology is justified by Theorem 1: any model of a more general
fd is a model of a less general one, hence the former implies the latter. The relation of generality is a
partial ordering on the set of fds (partitioning it into sets of fds with equal righthand-sides). Theorem 1
shows, that the set of fds satisfiedrbig bounded from above by a set of most general fds, such that any
fd more specific than one of these is also satisfied Bus, it suffices to maintain this upper boundary
in a characterisation algorithm.

There are essentially two approaches for determirig) for a givenr: (i) start with the (empty)
cover ofFD(u), the set of trivial fds, and add those fds that are also satisfiedibystart with a cover of
FD(0O), the set of all fds, and remove those fds that are contradictedTing former approach will be
called arupwardapproach, because it starts with the set of most specific fds; likewise, the latter approach
will be called adownwardapproach. Which approach will be more efficient depends on the actual number
of fds satisfied by the relation.

There is an important difference, however, between testing for satisfaction and testing for
contradiction: contradiction can always be reduced to two witnessing tuples gbati®981]; this can
easily be seen if fds are expressed in Horn form. More importantly, these two witnesses provide
information about how to specialise the refuted fd, as will be detailed below. For these reasons, we restrict
attention to the downward approach. We proceed by showing how the contradiction test can be
implemented; then we give an algorithm for downward fd-characterisation, and we give a method for
specialising refuted fds.

The satisfaction of an fif — A by a relatiorr can be expressed in Horn clause form as (see for
instance [Grant & Jacobs 1982]):

A=A":-r XA(X 1y weey X n,A), r XA(X Ly wees X n,A'). (21)

wherer xa denotes the projectiamnya(r) of r on the attributes iX followed byA. The equality test for

the A-values of both tuples can be implemented by syntactic unification, as in Prolog. For instdRce, let
= {A, B, C, D}, then the fdA- C is expressed a&=C":-r Ad(A,C),r aAdA,C) , or equivalently,
Cc=C"-r(A,B,C,D),r(A,B',C',D") . Thus, the general Horn form of an fdAsA':-
Tuplel,Tuple2 , and the test for contradiction is easily implemented in Prolog as

fd_contradicted((A=A"-Tuplel,Tuple2), Tuplel,Tuple2) :-
tuple(Tuplel), tuple(Tuple2), A ZA. (2.2)
The goal?- fd_contradicted(FD,Tuplel,Tuple2) succeeds if the fBD is contradicted by
the tuplesTuplel,Tuple2 . For instance, a refutation of the satisfaction (and thus a proof of the

contradiction) of the above fd by a relation containing Wienesses(al,bl,c1,d1) and
r(al,bl,c2,d2) is given in fig. 1.

C=C':-r(A,B,C,D),r(A,B',C',D"). r(al,bl,c1,d1).
c1=C':-r(al,B',C'D". r(al,bl,c2,d2).
cl=c2.

Figure 1.Refutation of the satisfaction of an fd with two tuples.

The clausel=c2 evaluates to false by definition.

Using this contradiction test, an algorithm for downward fd-characterisation is given by Algorithm
1. For simplicity, we keep the righthand-side attribAtéxed. The algorithm leaves the way in which
the relation is searched for two tuples contradicting an fd is left unspecified. Notice that a naive approach
is easily implemented by callirfg_contradicted(FD,Tuplel,Tuple2) with second and third
argument uninstantiated. This goal will succeed with the first pair of tuples found to corfadéctd
on backtracking all other solutions will be generated. This approach is naive in the sense that it
investigates alh? pairs of tuples, while only 1f@n-1) pairs need to be investigated. The latter approach
corresponds to calculatieD(r0{t}) by first calculatingFD(r), followed by a comparison ofwith each
tuple inr. This is in fact equivalent to the inductive learning approach presented in section 3.2, which
relies on the fact th&D(r)OFD(rC{t}).

ALGORITHM 1. Downward characterisation by functional dependericies

Input: a setr of tuples on a relational scherReand an attribut&R.
Output: a non-redundant cover of the set of functional dependeXcids satisfied
byr.

Proc fd_char, A);
QUEUE :={0 - A};
FD_SET :=[J;
While QUEUE£D do
FD :=remove next fd from QUEUE;
For each pair T1, T2 fromr do
If fd_contradicted(FD, T1, T2)
then add fd_specialise(FD, T1, T2) to QUEUE;
fi
od
If FD is not contradicted
then FD_SET := FD_SEMFD;
fi
od
cleanup(FD_SET);
Return(FD_SET).

The algorithm operates as follows. QUEUE is maintained, containing fds still to be tested. For the first
FD in the queue, a pair of contradicting witnesses is sought. If no such can beRDusdatisfied by

and can be added ED_SET If FD can be refuted, it is discarded and more specific fds are added to the
gueue. Finally, the callleanup(FD_SET}Jemoves those fds froffD_SETthat are subsumed by (less
general than) others.

The proceduréd_specialise(FD, T1, TAhould of course not jump over fds that are satisfied, but
it should preferably jump over fds more special tiFh that are also contradicted by 1, T2}. As
suggested above, this can be done. The key idea is, that if fhe @is contradicted by the witnesses
r(al,bl,cl,d1) andr(al,bl,c2,d2) , then we can immediately deduce from this refutation that
AD - C is a possible replacement, bAB - C definitely is not. This conclusion can be reached by
looking for attributes, apart froi@, for which both witnesses have different values, De.This set of
attributes is called thdisagreemenof the two witnesses, and can be obtained by computingahtir
unification (the dual of unification) [Plotkin 1970, 1971; Reynolds 1970]. The anti-unification of
r(al,bl,c1,d1) andr(al,bl,c2,d2) isr(al,bl,C,D) , suggestind as an extension to the
lefthand-side of the fd. In the next iteratioAD -~ C may itself turn out to be contradicted, if
r(al,b2,c1,d2) happens to be in But then we obtain(al,B,C,d2) as anti-unification of
r(al,b2,c1,d2) andr(al,b1,c2,d2) , suggestind as an extension to the lefthand-side of the
fd. This yields the even more specificA8D- C.

The procedure is slightly more involved than suggested above, because the disagreement might
contain several attributes, each of which is a sufficient extension to the lefthand-side of the contradicted fd
(at least for those two witnesses). Thus, each pair of witnesses can suggest a number of extensions, and
each possible replacement should follow one suggestion for each pair of witnesses.Ae.(C, i
contradicted by(al,b1,c1,d1) andr(al,b2,c2,d2) , the disagreement i8{ D}, yielding the
possible replacemenfsB - C andAD - C. The full algorithm is given below.

ALGORITHM 2. Specialisation of an fd contradicted by two tuples.
Input: an fdX - A and two tuples$;, to contradicting it.
Output: the set of least specialisations)of, A, not contradicted by, to.
Proc fd_specialise{ - A, ty, ty);
SPECIALISED_FDS :#1;
DISAGREEMENT := the set of attributes for whighandt, have different values;
DISAGREEMENT := DISAGREEMENT — A};
For each ATTR in DISAGREEMENTdo
add XOATTR) — A to SPECIALISED_FDS;

od
Return(SPECIALISED_FDS).

The above characterisation algorithm has been implemented in Prolog, applied separately to each
possible righthand-side. The database tuples are asserted on the object-level, proving contradiction of fds
as specified in formula (2.2). On the other hand, the replacement procedure operates on a meta-level, on
which fds are described by (lists of) attribute names. This greatly simplifies the manipulation and
specialisation of fds. There is a very straightforward procedure for translating fds on this meta-level to the
object-level. We note that a cover foD(r) is usually smaller than the union oveof covers for - A
| X- Ais satisfied by}, due to the pseudo-transitivity derivation rulé-{A andAY- B imply X - B).

Thus, the characterisation algorithm could be made more efficient by not splitting it into separate
procedures for every possible righthand-side.

2.3 Characterisation by multivalued dependencies

Relationr satisfies a multivalued dependerfowd X - - Y if t10r andt,0r andty(X)=t(X) imply that
there exists a tupligr with t3(X)=t1(X), t3(Y)=t1(Y), andtz(2)=ty(Z), whereZ denotesR-XY. In words,

the set ofy-values associated with a particukwalue must be independent of the values of the rest of
the attributes 4). The symmetry of this definition implies that there is also a taglér with
ta(X)=t1(X), ta(Y)=to(Y), andts(2)=t1(2). Letr be the relation shown in table 2, thesatisfies the mvds
A- -BandA- - CD.

A B C D
=Y by (o] (0}
a by C2 o)
a by C2 7]
a b2 1 ch
(4] by Co (o))

Table 2.A relation satisfying some multivalued dependencies.

Define MVD(r) = {X- - Y | r satisfiesX - - Y}. With mvds also we only need a cover for
MVD(r), containing for instance no trivial mvds; alsoXif. - YOMVD(r) then alsaX - — ZOMVD(r),
with Z=R-XY. Such a cover can be represented by a seiepkEndency basgdlaier 1983]. The
dependency basi®DEP(X) of XOR wrt MV D(r) is a partition ofR containing X, such that
X- 5 YOMVD(r) iff Y is the union of some sets IMEP(X). For instance, iR={A, B, C, D}, the

dependency basis #fwrt {A— - B} is { A, B, CD}, implying the mvdA - - CD. Thus,MVD(r) can be
completely described byDEP(X) | XOR}.

Satisfaction and contradiction of mvds can be extended to dependency bases in the obvious way.
We then have the following theorem.

THEOREM 2 (More general than for mvdslf. a relation r satisfies a dependency basis
DEP1(X), then it also satisfies any dependency basis DEP2(xh that X7X, and
DEPL(X) is a finer partition than DEP2(X

Proof. If r contradictsDEP2(X'), then there is an mvd' - - Y that is contradicted b,
such thaty is the union of some sets DEP2(X'). That is, there argr andt,r with
t1(X")=to(X"), such that ndz0r satisfiestz(X')=t1(X'), t3(Y)=t1(Y), andtz(Z')=tx(Z'), where

Z' denotesR—X'Y. But then nas[r satisfiest4(X)=t1(X), ta(Y)=t1(Y), andts(Z2)=tx(2),
where Z denotesR-XY, either. ThusX- - Y is also contradicted by. But X - - Y is
implied by DEP1(X), which is therefore also contradictedry [|

We callDEP(X) as general aDEP2X'), because the former logically implies the latter. Thus,
the set DEP(X) | XOR} can be made non-redundant by removing those elements that are less general than
others. For instancdQEP1(A)={A, B, C, D} is more general than botbhEP2(A)={A, B, CD} and
DEP3(AB)={AB, C, D}. Consequently, the most geneMND(r) is represented bR EP([1)=R. This
relation of generality forms the basis for a downward characterisation algorithm for mvds, similar to
Algorithm 1 above: if the current set of dependency bases implies an mvd that is falsified by a new tuple,
the guilty dependency basis is removed and replaced by more specific ones. We proceed by showing how
the contradiction test can be implemented; then we give an algorithm for downward mvd-characterisation,
and we give a method for specialising refuted mvds.

The satisfaction of an mvd- - Y by a relatiorr is expressed in Horn form as:

I’(X Lo XY 1,0 Y mZ 1,2 k) -

r(X L XA 1, AmZ 1,...,Zk), I’(X 1,...,Xn,Y1,...,YmB1,...,Bk). (2.3)
assuming for notational convenience tatlenotes the firat attributes ofr, andY denotes the nexh
attributes. For instance, I&be {A, B, C, D}, then both mvdsA - - B andA- - CD are expressed by
r(A,B,C,D):-r(A,B',C,D),r(A,B,C',D"). Thus, the general Horn form of an mvd is
Tuple3:-Tuplel,Tuple2 , and the test for contradiction is easily implemented in Prolog as

mvd_contradicted((Tuple3 :- Tuplel, Tuple2),Tuplel,Tuple2) :-
tuple(Tuplel), tuple(Tuple2), not tuple(Tuple3). (2.4)
For instance, a refutation of the satisfaction of the above mvd bydbk#ive withesses
r(al,bl,cl,dl) andr(al,b2,c2,d2) and thenegativewitnessr(al,b2,c1,d1) is given in
fig. 2. Using this contradiction test, an algorithm for downward mvd-characterisation is given by
Algorithm 3. It is analogous to Algorithm 1.

r(A,B,C,D) :- r(A,B',C,D), r(A,B,C',D). r@al,bl,c1,d1).

r(al,B,c1,d1) :- r(al,B,C'\D"). r(al,b2,c2,d2).
r(al,b2,c1,d1). :-r(al,b2,c1,d1).
(I

Figure 2.Refutation of the satisfaction of an mvd with three tuples.

ALGORITHM 3. Downward characterisation by multivalued dependencies.

Input: a relational schemig, and a set of tuples orR.
Output: a set of dependency bases covering exactly those multivalued dependencies
satisfied byr.

Proc mvd_charR, r);
QUEUE :={CO, R}
DEP_SET :=J;
While QUEUE£O do
DEP :=remove next dependency basis from QUEUE;
For each pair T1, T2 fromr do
If mvd_contradicted(DEP, MVD, T1, T2)
then add mvd_specialise(DEP, MVD, T1, T2) to QUEUE;
fi
od
If DEP is not contradicted
then DEP_SET := DEP_SHIDEP;
fi
od
cleanup(DEP_SET);
Return(DEP_SET).

The specialisation que@UEUE contains pairsX, DEP(X). The callmvd_contradicted(DEP, MVD, T1,
T2) differs from formula (2.4) in that it takes a dependency HagB and two tuple§1 andT2, and
succeeds iff1, T2 contradictDEP, in which case it also returns the contradicted txD implied by
DEP.

Specialisation of a refuted dependency b&#d(X) must be done in two ways, according to
Theorem 2: by combining blocks in the partitionright specialisation), and by augmentiXgaleft
specialisation). For instance, suppose the dependencylaB{®)={ A, B, C, D} and the mvdA- -~ B

are refuted. First of alDEP(A) must be changed, either t8,{BC, D} or to {A, BD, C}. The witnesses

do not contain a clue for choosing between these two candidates, but notice that thepatdmbet
satisfied: otherwise the originally refuted dependency basis would be implied. In one of the following
iterations, the right one will be chosen (or again specialised). To prevent a specialisation step that is too
coarse, we must also add the dependency HaE€AB)={AB, C, D}, DEP(AC)={AC, B, D}, and
DEP(AD)={AD, B, C} to the specialisation queue. The specialisation procedure is given by Algorithm 4.

ALGORITHM 4. Specialisation of a dependency basis contradicted by two tuples.
Input: a dependency badBEEP(X), an mvdX- - Y, and two tuple$, t,
contradicting them.
Output: the set of least specialisationsEP(X), not contradicted b, to.
Proc mvd_specialis€fEP(X), X- - Y, {1, t5);
SPECIALISED_DEPS :#];
[* right specialisation */
For each finestDEP1(X) such thaDEP(X) is a finer partition and is not a
combination of blocks iDEP1(X) do
add K, DEP1(X)) to SPECIALISED_DEPS;
od
[* left specialisation */
For each smallest augmentatiod’ of X do
add ', DEP(X)) to SPECIALISED_DEPS;
od
Return(SPECIALISED_DEPS).

Notice that some of the left specialisations may also be falsified by the same witnesses: e.g., in fig. 2,
the C- andD-values of the second witness are immaterial, which therefore could also have been
r(al,b2,c1,d2) , falsifying the mvdAC- - B. If this is true, it will come out in one of the next
iterations of the mvd-characterisation algorithm. To improve efficiency, it could also be tested within the
specialisation routine.

10

3. Inductive learning of characterisations

3.1 The problem of incremental characterisation: monotonicity

In this section, we reformulate the characterisation problem as an inductive learning problem. That is, we
switch fromnon-incrementatharacterisation tmcrementalcharacterisation by assuming that tuples of

are supplied one at a time. After each new tuple the current characterisation should be updated. Thus, we
can take advantage of the large body of work on inductive learning (for a survey of this work, see
[Angluin & Smith 1983]).

In the spirit of the majority of this work, we will assume that the last tuptei®hot signalled;
thus, each intermediate characterisationhjgmothesik could turn out to be the final one. That is, our
learning criterion isdentification in the limitwhen given a sufficient set of examples, the learner should
output the correct hypothesis after a finite number of steps and never change it afterwards [Gold 1967].
Additionally, we allow for the possibility that the learning process is hélééor e such a sufficient set
of examples (i.e., the complete relation) has been supplied. In such a case, the final hypothesis may not
be the correct one, but it should be at least as close to the correct characterisation as every hypothesis
preceding it. Consequently, the sequence of intermediate hypotheses should demonstrate a global
convergence towards the correct characterisation. This global convergence is guaranteed by requiring the
learning algorithm to beonsistentiintermediate hypotheses make sense)camdervativethe current
hypothesis is changed only when necessary).

The results of section 2 can also be interpreted in the context of inductive learning: non-
incremental characterisation can be viewed as batch learning, in which all examples are processed at once,
and no intermediate hypotheses are generated. There is a very obvious method for transforming a batch
learning algorithm into an incremental learning algorithm: maintain a list of examples seen so far, and on
the advent of a new example, add it to the list and run the batch algorithm on the entire list. The resulting
algorithm is consistent, but may not be conservative. Moreover, this approach is infeasible because of its
storage and computation time requirements. We can do better if the results of the previous run can be used
in the next run, i.e., if we can tak¥r) as the starting point for the calculationdfr0{t}). In section
3.2 we prove that fds areonotonicin the following sensea:; O ry impliesFD(r1) O FD(r5). Due to this
property, we derive an inductive fd-characterisation algorithm which resembles the batch algorithm
(Algorithm 1) very much, and which is guaranteed to be conservative.

In section 3.3 we show that mvds amet monotonic, which makes incremental mvd-
characterisation problematic, with respect to efficiency as well as convergence. We present a solution by
introducingpossible multivalued dependenc@gmvds which can only be refuted by socalleggative
tuples, i.e. tuples that are known to et in the relation. We show that the set of pmvds shrinks
monotonically when the sets of positive and negative tuples grow larger. An additional problem is that
pmvds can not always uniquely be translated to mvds. This problem can be solved by an approach which
permits the system guerythe user about crucial tuples.

11

3.2 Inductive learning of functional dependencies

The monotonicity of fds is easily proved.

THEOREM3 (monotonicity of fds)r, [7r, implies FD(r) £ FD(ro).
Proof. ry O rp impliesox=x(r1) 0 ox=x(r2) impliesy(ox=x(r1)) O Tiy(0Ox=x(r2)). Hence, if
ro satisfiesX - Y thenr satisfiesX - Y and thus=D(rp) OFD(ry). [|

An algorithm that calculateBD(rd{t}) given r, FD(r), andt is given by Algorithm 5. Again, for
simplicity the righthand-side of the fds is fixed.

ALGORITHM 5. Incremental downward characterisation by functional dependencies.

Input: a setr of tuples on a relational schemRea non-redundant cov€OVERof
the set of functional dependenci¢s A satisfied byr, a tuplet onR, and an
attribute AOR.

Output: a non-redundant cover of the set of functional dependeXcids satisfied
by rO{t}.

Proc fd_char_incn{, COVERt, A);
QUEUE :=COVER
FD_SET :=[J;
While QUEUE£D do
FD :=remove next fd from QUEUE;
For each tuple T fromr do
If fd_contradicted(FIX, T)
then add fd_specialise(FD, T) to QUEUE;
fi
od
If FD is not contradicted
then FD_SET := FD_SEMFD;
fi
od
cleanup(FD_SET);
Return(FD_SET).

A non-incremental algorithm based on this incremental algorithm is given as Algorithm 6.

ALGORITHM 6. Non-incremental downward characterisation by functional dependencies.

I nput: a setr of tuples on a relational scherReand an attribut&R.
Output: a non-redundant cover of the set of functional dependeXcids satisfied
byr.

Proc fd_char_non_incr(A);
If r=0
then FD_SET =0 - A
else select a tuple T from;
COVER :=fd_char_non_inar-T, A);
FD_SET :=fd_char_incr{T, COVER, T,A).
Return(FD_SET).

12

3.3 Inductive learning of possible multivalued dependencies

There is a very important difference betwee fds and mvds, as follows. Xn. ¥ says: if two tuples

have equakK-values, than they also have eqi¥alalues. An mvd, however, says: if it is known that
these two tuples are in the relation, then it is also known that two other tuples are in the relation. Put
differently, mvds ar¢éuple-generatinglependencies rather thaquality-testinglependencies [Beeri & Vardi

1981]. Consequently, the analogue of Theorem 3 does not hold for mvds.

THEOREM4 (non-monotonicity of mvdsMVD(r) does not monotonically decrease when r
increases.

Proof. Let X - - YOMVD(r), and lett10r andt,0r (t1#ty) have equakK-values, then
X5 5 YOMVYD(rd{ty,t5}). Now, let t3(X)=t1(X), t3(Y)=t1(Y), t3(2)=t2(Z) (Z=R-XY),
t4(X)=t1(X), ta(V)=tx(Y), andts(2)=t1(2), then agairX — - YOMVD(rO{tq,to,t3,t4}). (NB.
t10r andt,0r andX - - YOMVD(r) impliestsOr andt,r.) [|

For an example, see the relation in table 3: the first four tuples constiartd the other four ate, to,
tz3 andt,3.

A B C D
& by C1 dy
=4l 07)) b
& by C2 e
= by C1 (0}
ta: & 07) C2 dy
to: & by C1)
ts: & b2 C1 <7
ty: & b1 Co (o}

Table 3. MVDis not monotonicr satisfiesA - - B, r[J{ty,t;} does not, and
r{tq,to,t3,t4} again does.

Theorem 4 implies, thdVD(r(0{t}) can not be constructed by simply removing falsified mvds from
MVD(r): some mvds not in the latter set might have to be added to the former. It is thus not possible to
derive an incremental algorithm from the non-incremental one (Algorithm 3) in the same way as
Algorithm 5 was derived from Algorithm 1 in the fd-case. On the contrary, an incremental approach
would require reconsideration of all tuples upon arrival of a new tuple, and would therefore be considerably
less efficient than the non-incremental algorithm. Moreover, the resulting algorithm would not be
conservative. In the remainder of this section, we present an approach based on incorporating explicit
negative information in the learning process.

The behaviour of non-monotonic characterisations can be expfainyethe Closed World
Assumption(CWA), which states that everything that is katown to be true is assumed to het
true. This assumption is in conflict with an incremental approach, which assumes that if a tuple is not in
the current, partial relation, it may still appear in a future extension. The only way to resolve this
conflict, is to abandon the CWA by defining a mvd toplossiblysatisfied by a partial relatianif it is
satisfied by some extensiofilr. This introduces an additional problem: th@versal extensiort of r,
i.e. the universal relation restricted to tuples containing attribute values appearjrgpfisfies every

13

mvd. Because*[r, we have that possibly satisfies every mvd as well. The only way to get around this,
is to incorporate negative information in the characterisation process, by suppgatyetuples that

are not in the relation to be characterised. Thus, we defimssible multivalued dependen@mvd)

XO O Y to be satisfied by a sptof (positive) tuples and a setof negative tuplesp(andn disjoint) iff

for any three tupleg, ty, t3 such that;(X)=ty(X)=t3(X), t3(Y)=t1(Y), andtz(R-XY)=to(R-XY), t;0p and
to0p impliestz0n; alternatively, the pmvd isontradictediff t;0p, t,0p andtzn. We also writep, =

XO O Y for a satisfied pmvd, ang, mEXO O Y for a contradicted pmvd. The set of pmvds satisfied by
<p, N> is denoted®MVD(p, n). Clearly, this set is monotonic with regard to positive and negative tuples.

THEOREMS5 (monotonicity of pmvds)

(i) p1 O p2 implies PMVD(p, n) J PMVD(fp, n).

(i) nq O ny implies PMVD(p, p) [J PMVD(p, p).

Proof. Immediate from the definition of satisfaction of pmvds.]

The generality relation for pmvds is given by Theorem 6.

THEOREMG6.(more general than for pmvds)

(i) (augmentationkp, e XY implies<p, mEXZOOY;

(ii) (complementation¥yp, mEXL DY implies<p, mEXL [0 R-XY.

Proof. (i) LetXZO O Y be contradicted by witnessist,, t3, thent(X2)=tx(X2)=t3(X2)
implies t1(X)=to(X)=t3(X); t2(X2)=t3(X2) andtz(R—XZY)=t2(R—XZY) implies t3(R—
XY)=to(R=XY). ThusXO O Y is contradicted by the same witnesses.

(i) Immediate. |

Theorem 6i{) shows, that the pmva€]1 0 Y andXO O R-XY are equivalent (suggesting a dependency
base-like representatidPDEP(X) = {X, Y, R—XY}). Theorem 6 () shows, that a more specific pmvd is
obtained by removing attributes frovhor R—-XY and adding them t¥. In fig. 3, the generality relation

is depicted for pmvds on the relation scheRve {A, B, C}. Only non-trivial pmvds, i.e. XO O Y with

both Y andR-XY non-empty, are included; also, for each pair of equivalent pmvds, only one
representative is included.

ood A ouuB pdbc
CUuA B OUA A OB

Figure 3.Non-trivial pmvds orR = {A, B, C}, ordered by generality.

Note that this relation is a restriction of the generality relation for mvds: e.g., by pseudotranpitivity,
O--AandpE A~ - Bimply pE O - - B, but<p, = OO0 A and<p, no= AO O B do not imply

<p, wE 00O0B.
The contradiction test for pmvds is derived from the test for mvds (formula (2.4)) by changing
not tuple(Tuple3) (implementing the CWA by negation as failure)neg_tuple(Tuple3)

(testing for explicit negative information).

14

pmvd_contradicted((Tuple3:-Tuplel,Tuple2),Tuplel,Tuple2,Tuple3) :-

pos_tuple(Tuplel), pos_tuple(Tuple2), neg_tuple(Tuple3).

We are now ready to give an incremental pmvd-characterisation algorithm.

ALGORITHM 7. Incremental downward characterisation by possible multivalued
dependencies.

a setp of positive tuples and a sebf negative tuples on a relational scheme
R, the set of most general possible multivalued dependencies satisfigd by
n>, and a paikt, & consisting of a tupleonR, ands{+, —}.
the set of most general possible multivalued dependencies satisfied by
<p{t}, n> if s=+, or by<p, nO{t}> if s=—.

Input:

OQutput:

Proc pmvd_char_incgg, n, IN_PMVDS <,);
QUEUE :=IN_PMVDS
PMVD_SET :=[J;
While QUEUE£O do

od

PMVD :=remove next pmvd from QUEUE;
Ifs=+
then /* positive tuple */
For each tuple Tp fromp and Tn fromn do
If pmvd_contradicted(PMVDO, Tp, Tn)
then add pmvd_specialise(PMVD, Tp, Tn) to
QUEUE;
fi
od
else /* negative tuple */
For each pair Tpl, Tp2 fronp do
If pmvd_contradicted(PMVD, Tp1, Tpd,
then add pmvd_specialise(PMVD, Tpl, Ta2to
QUEUE
fi
od
fi
If PMVD is not contradicted
then PMVD_SET := PMVD_SETIPMVD;
fi

cleanup(PMVD_SET);
Return(PMVD_SET).

The operation of Algorithm 7 depends on whether the new tuple is positive or negative. Notice that the
call pmvd_contradicted(PMVD, Tpl, Tp2,rpw takes three tuples. The celeanup(PMVD_SET)

removes redundant pmvds with respect to the generality ordering.

15

The specialisation algorithm for pmvds is given by Algorithm 8.

ALGORITHM 8. Specialisation of a possible multivalued dependency contradicted by three

withesses.

Input: a possible multivalued dependerXiy [0 Y contradicted by three distinct
witnessegy, to (positive) ands (negative).

Output: the set of least specialisationsXdfl O Y, not contradicted b, to, ta.

Proc pmvd_specialiseC O Y, tq, ty, t3);
SPECIALISED_PMVDS 47,
DISAGREEMENT1 := the attributes for whiamnly t; andtz have the same

values;

DISAGREEMENT?2 := the attributes for whiamnly t, andtz have the same
values;

If DISAGREEMENT1 contains more than one attribute

then
For each attributeA in DISAGREEMENT1do
add XOA) 00O (Y-A) to SPECIALISED_PMVDS;
od

fi

If DISAGREEMENT2 contains more than one attribute

then
For each attributeB in DISAGREEMENT2do
add XOB) OO (Y-B) to SPECIALISED _PMVDS;
od

fi

Return(SPECIALISED _PMVDS).

The main idea behind Algorithm 8 is, to augment the lefthand-side of a contradicted pmvd with an
attribute for which not all three witnesses have the same value. Care must be taken to prevent generation
of trivial pmvds. For instance, léf=<ay, by, ¢, di, >, to=<a, by, &, th, &> andtz=<g, by, ¢, dh,

e;>, refuting the pmvdAO O C; we haveDISAGREEMENTZ C andDISAGREEMENTZ2 DE (each

of these sets is necessarily non-empty, otherwise the negative witness would be identical to one of the
positive withesses)DISAGREEMENT Icontains only one attribute; moving it to the lefthand-side
would result in a trivial pmvd. Moving one attribute fradiSAGREEMENT 20 the lefthand-side results

in the pmvdsADO O C andAEO O C . Notice that the complementary pmvd$ [00 BE and

AEL O BD are not generated; they would have been generated upon theedllspecialise(A0 BDE,

ty, b, t3).

3.4 From possible multivalued dependencies to satisfied multivalued
dependencies: a querying approach

We have now developed an incremental pmvd-characterisation algorithm, but it is mvds rather than pmvds
that we are interested in. Thus, the remaining issue is: what is the relationship bt@én and
PMVD(p, n), expressed in terms of the relationship between the one hand ammandn on the other?

The obvious approach would be to takg andMVD(r)=PMVD(p, n)®. However, this will lead to
inconsistencies, because the implicational structure of mvds is stronger than the implicational structure of
pmvds. For instance, lgt={<a1, by, ¢, d1>, <&, by, ¢, &>} and n={<ay, by, ¢, di>}, then<p, n>

satisfies bothAl 00 B andAC O BC, but contradictsAl O C, while A— - C follows by projectivity

from A- - B andA- - BC. Thus, we cannot include bo#- - B andA - - BC in MVD(r), but there

are no reasons to choose either one of them.

16

There are, however, conditions under whidiD(r)=PMVD(p, n) is valid: if we have seen all
negative tuples that are crucial. This idea is formalised as follows. Wepaadlnecessary for iff every
positive example is in, and ever§ negative example is not irbut inr*: rp andr*—rn. Likewise, we
call <p, n> sufficient for riff every tuple inr has been supplied as a positive example, and every tuple not
inr but inr* has been supplied as a negative example:andr*—rCn. We call<p, n> complete for iiff
<p, N> is both necessary and sufficient for

LEMMA 7. Let 1, t, t3 be three tuples withy (X)=to(X)=t3(X), t3(Y)=t1(Y), and $(R—
XY)=t,(R-XY).

() If <p, m is necessarior r, t10p, Llp and Ln implies {7, to0r and L.

(ii) If <p, m is sufficienfor r, t1 [, to[0r and gL implies §0p, bOp and g0n.

Proof. Trivial. [|

In what follows,t;, to andtz are witnesses as in Lemma 7.
Necessary tuples are needed for contradiction of pmvds.

THEOREMS. If <p, > is necessarfor r, MVD(r) J PMVD(p, n).
Proof. Supposep, mEXO O Y, i.e. there are witnesseglp, to0p andtzln. By Lemma
7 (i), t20r, to0r andt30r; hencerfEX - - Y. |

For instance, the positive tuplps{<aj, by, ¢1, d1>,<a, by, ¢, >} and the negative tuple={<ay, by,
Cp, di>} contradict the pmvdé\O O C andAO O BD; <p, n> is necessary for the relationdepicted in
table 4, which therefore does not satisfy the corresponding mvds.

A B C D
p: & by C1 ch
p: & by C2 o))
a by C <7

Table 4.A relation contradicting the mvds— - C andA- - BD.

Analogously, a sufficient set of positive and negative tuples contradicts at least those pmvds which
are (as mvd) not satisfied by the positive tuples.

THEOREMO. If <p, r is sufficientfor r, MVD(r) 7 PMVD(p, n).
Proof. Suppose the mvd - - Y is not satisfied by, i.e. there are witnessgslr, to(0r and
t30r. By Lemma 7i{), t100p, to00p, andtz[n; hence<p, mEXDO O Y. |

A complete set of positive and negative tuples results in a set of pmvds, equivalent with the set of mvds
satisfied by the positive tuples.

COROLLARY 10. If <p, is completdor r, MVD(r) = PMVD(p, n). []

17

For instance, a complete set of positive and negative tuples for the relation in table 4 is depicted in table
5.

A B C D

p: & by C1 ty

p: a b2 C2 b

p: & by C2 07)

n: =Y by C (o]

n: =) b1 C1 (073

n: =Y b, C1 (o]

(*) n: a b2 C2 i
(*) n & by 1 b

Table 54p, n> is complete for the relation in table 4.

In fact, the two negative tuples marked (*) are superfluous, because every pmvd they refute can be refuted
by means of one of the other three negative tuples (this is related to the symmetry of the definition of
satisfaction of an mvd). This doast mean that the starred tuples might just as well have been positive;

it means, that removing them fromdoes not influence the set of refuted pmvds. Thus, the starred
negative tuples araot necessary for, implying that the definition of necessary negative tuples is
somewhat too strong. We will not work this out formally in this paper.

In reality, we do not know, the relation to be incrementally characterised. Corollary 10 shows
that the set of pmvds can be consistently interpreted as a set of mpda»ifis complete foisomer
(i.e. if pOn=p*, according to the definition of completeness given above). We have implemented an
approach of extendingandn such thakp, n> is complete, by letting the system paogeeriesto the user.

That is, the system generates typical tuples not ygetann, which the user must classify as either
postive or negative. This process halts whemdn are complete fop, resulting in a set of pmvds that

can consistently be intepreted as an mvd-characterisatipn Difie query-process can naturally be
integrated with the specialisation process. Several query-strategies are possiblegugigusapproach
(corresponding to the search for least specialisations)dimide-and-conqueapproach, searching for a
refutation of a pmvd somewhere between a most general satisfied pmvd and a trivial (most specific) pmvd.
The cautious querying approach is illustrated below.

We assume that the user initially only supplies positive tuples; negative tuples are obtained by
means of queries. As in the previous algorithms, we maintain a queue of most general pmvds, and try to
falsify each one of them, as follows: for each pair of positive tuplds, we construct the negative
witnesstz. Now there are three possibilities) {g0p, i.e. the pmvd cannot be contradicted by means of
t1, to, and we proceed with the following pair of positive tuplég;tglin, i.e. the pmvd is indeed
contradicted and needs to be specialisiig;t¢[1p andtzIn, and we ask the user to classifyas either
positive or negativet is added to the appropriate set of tuples, and we proceed with eitha) casage
(iif). The process halts if every tuple thus constructed s im this casesp, n> is complete fop (in the
weaker sense discussed above), and the resulting set of pmvds can consistently be interpreted as a set of
mvds.

We illustrate this approach with an example session with our Prolog program. The example is
taken from [Maier 1983, p. 123]. A tupgervice(f, d, p) means that flight numbédiflies on day
d and can use plane typeon that day. User input is in bold.

18

?- pnmvd_I| earn.
Relation: service(flight, day, plane).
Dependencies:
service:[]->->[plane]
service:[]->->[flight]
service:[]->->[day]
New tuple: servi ce(106, nonday, 747).
New tuple: service(106, thursday, 1011).
Is service(106, thursday, 747) in the relation? yes.
Is service(106, monday, 1011) in the relation? yes.

The user specifies the relation scheme, and the system shows the initial set of most general pmvds. The
user types in the first two tuples, which concern flight number 106. The system tries to falsify the pmvds
000 PLANEandO O O DAY by asking for a classification for two other tuples. Both of these tuples

are classified as positive, so none of the pmvds is contradicted (noté fhatFLIGHT cannot be
contradicted, because all tuples have the same flight number). This results in a complete set of positive
and negative tuples.

New tuple: service(204, wednesday, 707).
Is service(106, monday, 707) in the relation? no.
Specialise []->->[plane]

service(204, wednesday, 707)

service(106, monday, 1011)

not service(106, monday, 707)
Is service(204, monday, 1011) in the relation? no.
Specialise [J->->[flight]

service(204, wednesday, 707)

service(106, monday, 1011)

not service(204, monday, 1011)
Is service(106, wednesday, 1011) in the relation? no.
Specialise []->->[day]

service(204, wednesday, 707)

service(106, monday, 1011)

not service(106, wednesday, 1011)

The next positive tuple introduces new values for all three attributes. Now, the system is able to refute
each initial pmvd by constructing appropriate negative witnesses. They are replaced by more specific
pmvds, which cannot be contradicted because there are no two distinct positive tuples with either flight
number 204, day Wednesday, or plane type 707. Thus, the positive and negative tuples are complete, in
the weaker sense.

New tuple: service(204, wednesday, 727).
New tuple: st op.
Dependencies:
service:[day]->->[flight]
service:[flight]->->[day]
service:[plane]->->[day]
Yes

19

Adding one more positive tuple does not result in additional queries. After the learning process is halted
by the user, the system shows its final hypothesis, which can consistently be interpreted as a set of mvds.
Note, that this set of pmvds contains no redundant or trivial mvds.

20

4. Induction of weak theories

4.1 Introduction

In this section, we discuss the incremental characterisation algorithms presented above in the framework
of inductive learning. We will show, that this framework in its present state does not allow for the kind
of problems we study in this paper. For instance, it is common knowledge that positive examples cause
the most specific hypothesis to be generalised, while negative examples lead to the specialisation of the
most general hypotheses. Yet, our analysis of the characterisation problem for attribute dependencies
showed, that only the upper boundary of most general hypotheses is moving; moreover, in the fd case
this is caused by positive examples, and in the mvd case the upper boundary is only affected by
combining positive and negative examples. All this leaves room for only two possibilities: either the
above analysis is seriously flawed, or the inductive learning framework as it is now requires some strong
but implicit assumptions. We will argue for the latter case in this section.

4.2 Al approaches to inductive learning

In Artificial Intelligence, inductive learning is usually viewed as a search for a hypothesis satisfying the
conditions imposed by the examples. These conditions are usually formulated in terms of semantics: any
modef for an inductive hypothesks should also be a model for the examiges

Oi: H Ej (4.1)

A hypothesis that satisfies this condition is said t@dmasistentwvith the observations. The consistency
condition can be extended by includibgckground knowledgenat aids the hypothesis in explaining the
observations (see for instance [Genesereth & Nilsson 1987]). The main idea is, that formula (4.1) requires
the inductive hypothesis to l3s general agach of the examples. This relation of generality imposes an
ordering on the space of hypothesis, which can be fruitfully used to describe the set of consistent
hypotheses. The theoryef} given by the conjuction of the examples is the least general consistent
hypothesis. Becaudt is required to be logically consistent, not every hypothesis more gener#j tkan
consistent with the examples. Therefore, there may also exist most general consistent hypotheses, i.e.,
hypotheses satisfying formula (4.1), every possible extension of which is logically inconsistent. The
well-known Version Space model [Mitchell 1982] shows, that most general consistent hypotheses exist
for inductive concept learning. If positive and negative examples are formulas with opposite sign, then we
can write formula (4.1) 8s

H [P; for every positive example; (4.2)

HE -N; orN;E -H for every negative examphy (4.3)

These formulas immediately imply that the ordered subset of consistent hypothes&ssibe
Spaceis a convex set, with a lower boundary induced by the positive examples and an upper boundary
induced by the negative examples. Consequently, the elements of the Version Space need not be
enumerated, but can be described by these boundaries, combined with the generality ordering. This means,
that an example can be forgotten immediately after the boundaries have been properly updated.

21

4.3 Weak consistency

It is exactly the consistency condition that is inapt for our characterisation problems, because it only
allows for hypotheses whiokxplain the examples. In contrast, a characterisation in terms of attribute
dependencies does not explain any tuple; rather, it describes some properties they have in common. A
characterisation is notstrong theory from which the tuples can be derived, but ratheeak theory
from a prespecified class of hypotheses, which is logically consistent with the examples but does not
entail them. This point is elaborated below.

In its most general form, the inductive task is to identify a mblielgiven a number of examples
E; which are true in the model:

Oi: Mg E E; (4.4)
Mg has to be identified by means of a hypothesisvhich should also be true in the model:

Mok H (4.5)

From these formulas, we can eliminate the unkn®gnif the examples and the hypothesis have one
model in common, they should not entail absurdity when taken together:

{E}, HEDO (4.6)

Formula (4.6) expresses what will be called the conditionezfk consistency. The following theorem
gives a characterisation of weak consistency.

THEOREM 11. If a hypothesis H is weakly consistent with a set of examp{ggH{&n any
hypothesis Hless general than H is also weakly consistent with those examples.
Proof. {E;}, H§ O andH = H’ implies {Ej}, H'# O. [

Theorem 11 implies, that the empty theory, being the most specific, is always consistent with any set of
examples. Consequently, if we use weak consistency, we should lookrfost ggeneral hypothesis
consistent with the examples. This is exactly what we have been doing in the incremental characterisation
algorithms given in this paper. For instance, Theorem 1 is a paraphrase of Theorem 11 for the fd case.
Formula (4.6) represents the weakest notion of consistency that is still meaningful for inductive
learning. Any inductive learning task should use a notion of consistency that is at least as strong as this
one. Consequently, a learning model based on weak consistency encompasses every possible learning
model. The study of the conditions under which stronger learning models can be derived from weaker ones
is called ameta-theory of inductive learnirig [Flach 1990]. Some preliminary results are discussed in
the next section.

4.4 Towards a meta-theory of inductive learning

Any notion of consistency stronger than weak consistency should be sanctioned by additional information
about the nature of the inductive learning task. For instance, formula (4.6) implies formula (4.1) (which
will be calledstrongconsistency) iH constitutes @ompleteheorywith respect to the examples [Flach

& Veelenturf 1989], i.e. for every instari€d eitherl or - is a theorem in the theory induced yAny

weakly consistent hypothesis is guaranteed to be a complete theory wrt the example lanpuageryf (
instance has a unique minimal modél; this model can be uniquely mapped to a hypothesis for which it

is the only minimal model; andii() if any two hypotheses are logically consistent with each other, one
implies the other.

22

The first two conditions together express what is commonly known asrthle representation
trick (SRT), which suggests to use the same language for examples and hypotheses. We would like to
stress that the SRT is not a trick buteaaom, which can be true in some learning situations and false
in others, such as the learning problems we study in this paper. Another class of learning problems which
falsify the SRT is learning froimcomplete exampleg&lach 1990], because incomplete examples, i.e.
examples for which information is missing from the description, do not have unique minimal models
(condition {) above). Hence, an incomplete positive example results in a number of competing least
general hypotheses.

A specific learning model that is based on the notion of weak consistency, and which fits the
learning problems studied in this paper, is the modseobnd-order inductive learniri§flach 1989]. In
this model, examples do not determine submodels of the model to be inferred, but rather elements of it.
As it were, models form an intermediate layer between examples and hypotheses, hence the name (by a
similar argument, ‘traditional’ inductive learning might be called first-order, and rote learning would be of
order zero). In a database context, models are (sets of) relations, and examples are tuples, which makes it
an ideal context for the study of second-order learning problems.

It should be noted, as a final withess for the novelty of our approach, that the notion of weak
consistency, unlike its strong counterpart, does not imply that consistency with a set of examples can be
confirmed by testing consistency with every example separately. This propeampbsitionalityFlach
1989] can be expressed as

(Oi: E;, H # O) implies {E}, Hi O (4.7)

If a learning problem is not compositional, every example must be remembered, because it can not be
sufficiently summarised by a set of temporary hypotheses. Neither characterisation problem is
compositional.

As a general conclusion, exploring novel learning tasks requires a thorough understanding of the
implicit assumptions that underly existing approaches; we should make these assumptions explicit, and
check their validity in the problems under investigation.

23

5. Concluding remarks

In this paper, we have analysed the problem of characterising a database relation by functional
dependencies and multivalued dependencies. We have given algorithms for these problems, and we have
adapted these for incremental characterisation by treating it as inductive learning. It must be noted, that
our algorithms owe much to the approachdahtification by refinemeniShapiro 1981, 1983; Laird

1986, 1988].

We consider these problems to be significant from a database perspective. On the other hand, our
goal has been to stress that a theory of inductive learning based on strong consistency is not the only
possibility. Indeed, we think that a truly general theory of inductive learning should start from the notion
of weak consistency, being the weakest notion still meaningful, and show how to derive stronger learning
models by obeying certain properties. We hope that the problems discussed in this paper support these
claims.

Notes

IThere exist complete proof systems for fds, see [Maier 1983].

2A similar, but somewhat less efficient algorithm was given in [Mannila & Raiha 1986].

3Note, thatr is allowed to contain eithes ort, without violatingX - - Y, as in figure 3.

4This observation suggests a link with the field of non-monotonic reasoning, and provides an
additional justification of the termon-monotonic

5By a slight abuse of terms, we say that a set of mvds is a subset of a set of pmvds iff every mvd
X - 5 Y in the first set has a counterpXifil 0 Y in the second set (analogous for superset).

6This condition is too strongiide ultra

7A modelfor a formula is an interpretation in which the formula is true. Additiongllis

required to have a model (i.&, is logically consistent).

8Mitchell’'s original work was formulated somewhat differently. As he was concerned with
concept learning, his examples consist of a description of a specific object, and a classification
of it as belonging or not belonging to the concept to be learned. The hypothesis should explain
any classification, given the corresponding description.

9This notion is identical to the usual notion of logical consistency.

10Here, we assume that an expressiman denote a positive example iff ean denote a negative
example;l is also referred to as amstance

24

References

[Angluin & Smith 1983] D. AIGLUIN & C.H. SMITH, ‘Inductive inference: theory and methods’,
Computing Survey$5:3, 238-269.

[Armstrong 1974] W.W. RMSTRONG ‘Dependency structures of data base relationshipBradn. IFIP
74, North Holland, Amsterdam, 580-583.

[Beeriet al.1984] C. EERI, M. DOWD, R. FAGIN & R. STATMAN, ‘On the structure of Armstrong
relations for functional dependencie3ACM 31:1, 30-46.

[Beeri & Vardi 1981] C. BERI& M.Y. V ARDI, ‘The implication problem for data dependencies’, in
Proc. 8th Int. Conf. on Automata, Languages, and Programnicfure Notes in Computer
Science 115, Springer-Verlag, New York, 73-85.

[Flach & Veelenturf 1989] P.A.IIACH & L.P.J. VEELENTUREF, Concept learning from examples:
theoretical foundationdTK Research Report 2, institute for Language Technology & Atrtificial
Intelligence, Tilburg University, the Netherlands.

[Flach 1989] P.A. EACH, Second-order inductive learnintTK Research Report 10, institute for
Language Technology & Artificial Intelligence, Tilburg University, the Netherlands; a
preliminary version appearedroc. workshop on Analogical and Inductive Inference AJI'89
K.P. Jantke (ed.), Lecture Notes in Computer Science 397, Springer-Verlag, Berlin.

[Flach 1990] P.A. EACH, Inductive learning of weak theoridd K Research Report, institute for
Language Technology & Atrtificial Intelligence, Tilburg University, the Netherlands
(forthcoming).

[Gallaireet al. 1984] H. Q\LLAIRE, J. MNKER & J.-M. NICOLAS, ‘Logic and databases: a deductive
approach’ Computing surveys

[Genesereth & Nilsson 1987] M.RENESERETH& N.J. NILSSON, Logical foundations of Artificial
Intelligence Morgan Kaufmann, Los Altos.

[Gold 1967] E.M. ®LD, ‘Language identification in the limitinformation and ControllO, 447-474.

[Grant & Jacobs 1982] J.RANT & B.E. JACOBS, ‘On the family of generalized dependency
constraints’ JACM 29:4, 986-997.

[Laird 1986] P.D.IAIRD, ‘Inductive inference by refinemenProceedings AAAI-86172-476.
[Laird 1988] P.D.IAIRD, Learning from good and bad datidluwer, Boston.

[Maier 1983] D. MAIER, The theory of relational databasgSomputer Science Press, Rockuville.

25

[Mannila & Réiha 1986] H. MNNILA & K.-J. RAIHA , ‘Design by example: an application of
Armstrong relations’J. Comp. Syst. S83, 126-141.

[Mitchell 1982] T.M. MTCHELL, ‘Generalization as searcitificial Intelligence18:2, 203-226.

[Plotkin 1970] G.D. BOTKIN, ‘A note on inductive generalisation’, Machine Intelligence 5B.
Meltzer & D. Michie (eds.), Edinburgh University Press, Edinburgh, 153-163.

[Plotkin 1971] G.D. POTKIN, ‘A further note on inductive generalisation’,Machine Intelligence 6
B. Meltzer & D. Michie (eds.), Edinburgh University Press, Edinburgh, 101-124.

[Reynolds 1970] J.C.IRYNOLDS, ‘Transformational systems and the algebraic structure of atomic
formulas’, inMachine Intelligence 3. Meltzer & D. Michie (eds.), Edinburgh University
Press, Edinburgh, 135-151.

[Sagivet al.1981] Y. 3\GlV, C. DELOBEL, D.S. RARKER, JR & R. FAGIN, ‘An equivalence between
relational database dependencies and a fragment of propositionallégit/] 28:3, 435-453.

[Shapiro 1981] E.Y.BAPIRO, Inductive inference of theories from factgchn. rep. 192, Comp. Sc.
Dep., Yale University.

[Shapiro 1983] E.Y.BAPIRO, Algorithmic program debugginddIT Press.

26

