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The discovery of functional dependencies from relations is an important database analysis
technique. We present BNE, an efficient algorithm for finding functional dependencies from large
databases. RNE is based on partitioning the set of rows with respect to their attribute values, which
makes testing the validity of functional dependencies fast even for a large number of tuples. The use
of partitions also makes the discovery of approximate functional dependencies easy and efficient and
the erroneous or exceptional rows can be identified easily. Experiments show thatlE is fast in
practice. For benchmark databases the running times are improved by several orders of magnitude
over previously published results. The algorithm is also applicable to much larger datasets than the
previous methods.
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1. FUNCTIONAL AND APPROXIMATE An approximate functional dependency is a functional
DEPENDENCIES dependency that almost holds. For example, gender
is approximately determined by first name. Such

Functional dependencies are relationships between attributeslependencies arise in many databases when there is a natural
of a database relation: a functional dependency states thatlependency between attributes, but some tuples contain
the value of an attribute is uniquely determined by the errors or represent exceptions to the rule. The discovery
values of some other attributes. For example, in an addresof unexpected but meaningful approximate dependencies
database, zip code is determined by city and street addressseems to be an interesting and realistic goal in many
The discovery of functional dependencies from relations has data mining applications. Consider, again, a database of
received considerable interest (e.g. [1, 2, 3,4, 5,6, 7, 8]). chemical compounds. An approximate dependency from a
Automated database analysis is, of course, interesting forset of structural attributes to the carcinogenicity could be
knowledge discovery and data mining (KDD) purposes. For as valuable as a functional dependency: both could provide
instance, consider a database of chemical compounds andialuable hints to biochemists for potential causes of cancer
their outcomes on various bioassays. Discovering that anbut neither can be taken as a fact without further analysis by
essential quality, such as carcinogenicity, of a compound domain specialists. Approximate functional dependencies
depends functionally from certain structural attributes can be also have applications in database design [11].
invaluable. Functional dependencies also have well-known There are many possible ways of defining the approxi-
applications in the areas of database management, reversmateness of a dependengy— A. The definition we use
engineering [9] and query optimization [10]. is based on the minimum number of tuples that need to be
Formally, afunctional dependenayver a relation schema removed from the relation for X — A to hold inr: the
Ris an expressioiX — A, whereX € RandA € R. The error e(X — A) is defined a®e(X — A) = min{|s| |

dependencoldsor is valid in a given relationr over R if s CrandX — Aholdsinr \ s}/|r|. The measure
for all pairs of tupled, u € r we have: ift[B] = u[B] for has a natural interpretation as the fraction of tuples with
all B € X, thent[A] = u[A] (we also say that andu agree exceptions or errors affecting the dependency. Given an
on X andA). A functional dependenc}{ — A is minimal error thresholde, 0 < ¢ < 1, we say thatX — A

(inr)if Ais notfunctionally dependenton any proper subset is an approximate (functional) dependenifyand only if

of X, i.e.if Y — Adoes not hold i foranyY c X. The e(X — A) is at mosts. In this paper, we also consider the
dependencX — Aistrivial if A € X. The centraltask we  approximate dependency inference task: given a relation
consider is the following: given a relationfind all minimal and a threshold, find all minimal non-trivial approximate
non-trivial dependencies that holdrin dependencies.
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We describe a new approach to the discovery of both 1.2. Paper organization
functional and approximate dependencies, and we present ) ) )
TANE, an algorithm that implements the ideas. The We start in Section 2 by formulating the dependency
main innovation is a new method for determining whether discovery task in terms of equivalence classes and partitions.
a dependency holds or not. The method is based onln Sectipn3we lay out the principles of segrching the.spa(.:e
representing attribute sets by equivalence class partitions of°! functional dependencies. Detailed algorithms are given in
the set of tuples. ANE also has an improved method for S€ction 4 and analysed in Section 5. We give experimental
searching the space of functional dependencies. results in Section 6 and conclude in Section 7.
The worst case time complexity of the algorithm with AN €arlier and shorter version of this paper appeared
respect to the number of attributes is exponential, but this @S [22].  Proofs of non-trivial lemmata in this article
is inevitable since the number of minimal dependencies cancan be found in [23]. ~An implementation of theaRE
be exponential in the number of attributes [2, 12]. However, &/90rithm can be obtained via the WWW pagehp:/
with respect to the number of tuples, the time complexity www.cs.helsinki.fi/research/fdk/datamining/tane/
is only linear (provided that the set of dependencies does
not change as the number of tuples increases). To our2, PARTITIONS AND DEPENDENCIES
knowledge, only one previous algorithm can claim this [13].
Previous algorithms have almost invariably been basedA dependencX — Aholdsif all tuples that agree ok also
on either repeatedly sorting the tuples of the relation or agree onA. Our approach to the discovery of dependencies
comparing every tuple to all other tuples and this can is based on considering sets of tuples that agree on some set
obviously be inefficient for large relations. The linearity Of attributes. Determining whether a dependency holds or
makes ENE especially suitable for relations with a large ot can be done by checking whether the tuples agree on the
number of tuples. right-hand side whenever they agree on the left-hand side.
Experimental results show that the algorithm is effective Furthermore, whenthis is not the case, we can easily identify
in practice and that it makes the discovery of functional and the tuples that do not agree on the right-hand side. Thus the
approximate dependencies feasible for relations with evenapproach extends naturally to approximate dependencies.
hundreds of thousands of tuples. Dependency discoveryFormally, the approach can be described using equivalence
tasks that have been reported to take minutes or even hour§lasses and partitions.
are solved with the new algorithm in seconds or fractions of
a second on a PC. 2.1. Partitions

Two tuplest andu areequivalentwith respect to a given set
X of attributes ift[ A] = u[A] for all Ain X. Any attribute
Several algorithms for the discovery of functional depen- set X partitions the tuples of the relation into equivalence
dencies have been presented [1, 3, 5, 6, 12, 13, 14]. Weclasses. We denote thegjuivalence classf a tuplet < r
review these algorithms and compare them with our method with respect to a given se¢ € Rby [t]x, i.e. [t]x = {u €

in Section 5.3. The complexity of discovering functional r |t[A] = u[A]forall A e X}. The setrx = {[t]x |t e}
dependencies has been studied in [2, 12, 15]. of equivalence classes ispartition of r underX. That is,

Approximate functional dependencies have been consid-x is a collection of disjoint sets (equivalence classes) of
ered in [7, 8, 16, 17]. Kivinen and Mannila [16] define tuples, such that each set has a unique value for the attribute
several measures for the error of a dependency and derivesetX and the union of the sets equals the relatiomherank
bounds for discovering dependencies with errors; they || of a partitionr is the number of equivalence classesin
denote the measushy gs.

The use of partitions to describe and define functional
and approximate dependencies has been suggested in [8
parallel to our work. There the emphasis is on a conceptual
viewpoint and no algorithms are given. Partition semantics
for relations have been considered in [18], and a rough set
approach in [19].

Our search strategy is, on an abstract level, similar to
the search of association rules [20]: one first computes
some non-trivial information about attribute sets (partitions 2.2. Partition refinement
in our case as opposed to frequent itemsets in the caser
of association rules), from which the dependencies (versus . . .. )

. ) ._“functional dependencies. A partitiom refines another
association rules) can be computed easily. The levelwise " . . . L
method for the computation of dependencies is an instancepartltlon i If every equivalence class in is a_subset of
: . : some equivalence class®f. We have the following lemma.
of the generic data mining algorithm [21], also used
successfully in thea priori algorithm for association rule LEMMA 2.1.A functional dependencX — A holds if
mining [20]. and only ifrx refinesmyay.

1.1. Related work

ExAMPLE 1. Consider the relation in Figure 1. Attribute
has value 1 only in tuples 1 and 2, so they form an
quivalence class [{4y = [2]{ay = {1, 2} (we use here
tuple identifiers to denote tuples). The whole partition
with respect toA is ma; = {{1,2},{3,4,5},{6,7,8}}.
The partition with respect to{B,C} is wcy =
{{1}. {2}, {3, 4}, {5}, {6}, {7}, {8}}.

he concept of partition refinement gives almost directly
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Tuple ID A B C D

1 1 a $ Flower
2 1 A Tulip
3 2 A $ Daffodil
4 2 A $ Flower
5 2 b Lily
6 3 b $ Orchid
7 3 C Flower
8 3 C # Rose

Partitions of attributes:

ma = {{1.2},{3,4,5}, (6,7, 8}}
7y = {{1}. {2, 3,4}, {5, 6}, {7, 8}}
micy = {{1,3,4.6},{2,5, 7}, {8}

7oy = {L 4,7} {2}, {3}, {5}, {6}, {8}}

FIGURE 1. An example relation and its partitions with respect to
all attributes.

There is an even simpler test for wheth¥r— A holds
or not: check iflrx| = |mxuial. If wx refinesmay,
thenmxyua; equalswx. On the other hand, sincexya
always refinesrx, wxua; cannot have the same number of
equivalence classes ax unlessrxyuia; andzx are equal.
We have shown the following lemma.

LEMMA 2.2.A functional dependencX — A holds if
and only if|rx| = [wxuial-

2.3. Approximate dependencies

Recall that the erroe(X — A) of a dependencX — Ais
the minimum fraction of tuples that must be removed from
the relation forX — A to hold. The erroe(X — A)
can be computed from the partition andmwxua; in the
following way. Any equivalence classof wx is the union
of one or more equivalence classgsc,, ... of mxuay,
and the tuples in all but one of tloes must be removed for
X — Ato hold. The minimum number of tuples to remove
is thus the size of minus the size of the largest of tiggs.
Summing that over all equivalence classed wx gives the
total number of tuples to remove. Thus we have

eX —> A

=1- Y max|c| | c e mxua andc C c}/Ir|.
cemyx

An algorithm with which to compute(X — A) given the
partitionsmrx andmwxuyay is described in Section 4.

3. SEARCH

3.1. Search strategy

To find all minimal non-trivial dependenciesaNE works as
follows. It starts the search from singleton sets of attributes
and works its way to larger attribute sets through the set
containment lattice level by level. When the algorithm
is processing a seX, it tests dependencies of the form

X\ {A} — A, whereA € X. This guarantees that only
non-trivial dependencies are considered. The small-to-large
direction of the algorithm can be used to guarantee that only
minimal dependencies are output. It can also be used to
prune the search space efficiently (see Figure 2).

A similar small-to-large search strategy, the levelwise
algorithm, has been used successfully in many data mining
applications [21]. In addition to effective pruning, the
efficiency of the levelwise algorithm is based on reducing
the computation on each level by using results from previous
levels.

In this section we consider different aspects of the
search, including effective pruning criteria for the levelwise
algorithm in TANE, as well as fast computation of partitions.
Both tasks can be solved efficiently in the levelwise strategy
by using information from the previous levels. Based on the
material presented in this section, exact algorithms are given
in Section 4.

3.2. Pruning the search space

3.2.1. Rhs candidate pruning
TANE works through the lattice until the minimal depen-
dencies that hold are found. To test the minimality of a
potential dependencX \ {A} — A, we need to know
whetherY \ {A} — A holds for some proper subsétof X.
We store this information in the sé(Y) of right-hand side
candidates oY

If A e C(X) for a given seX, thenA has not been found
to depend on any proper subsetXf More precisely, the
collection ofinitial rhs candidate®f a setX € RisC(X) =
R\ C(X), whereC(X) = {A e X | X\ {A} — Aholds. To
find minimal dependencies, it suffices to test dependencies
X\ {A} — A whereA € X andA € C(X \ {B}) for all
B e X.

ExAMPLE 2. To illustrate the initial rhs candidate set,
assume thatANE is considering the seX = {A, B, C} and
that{C} — Ais avalid dependency. Sin¢€} — A holds,
we have thalA ¢ C({A, C}) = C(X\{B}), which tells TANE
that{B, C} — Ais not minimal.

Pruning the search space iaNE is based on the fact that
if C(X) = @, thenC(Y) = ¢ for all superset¥ of X. Thus
no dependency of the fori \ {A} — A can be minimal
and the seY need not be processed at all. The breadth-first
search in the set containment lattice can use this information
effectively, as illustrated in Figure 2.

3.2.2. Rh$ candidates

While the initial rhs candidates are sufficient to guarantee
the minimality of discovered dependencies, we will use
improved rhs™ candidatesC*(X) that prune the search
space more effectively:

Ct(X)={AceR|VBeX:
X\ {A, B} — {B} does not hol#l
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FIGURE 2. A pruned set containment lattice f¢A, B, C, D}.
Due to the deletion 0B, only the bold parts are accessed by the
levelwise algorithm.

Note thatA can equaB. The following lemma shows that
we can use the riscandidates to test the minimality of a
dependency just as we would use the initial rhs candidates.

LEMMA 3.1.LetA e X andletX \ {A} — Abe avalid
dependency. The dependency {A} — A is minimal if
and only if, for allB € X, we haveA € C*(X \ {B}).

The lemma would hold if we replacet (X \ {B}) with
C(X \ {B}), but rhs" candidates have two advantages over
initial rhs candidates. First, we may encount®& for which
A ¢ CH(X\ {B}) and stop checking earlier, saving some
time. Second and more importantly, for soBeC ™ (X\{B})
can be empty while(X \ {B}) is not. Then, with rh$
candidates, the set is never processed due to the pruning.

The definition of C*(X) is based on a fundamental
property of functional dependencies, stated in the following
lemma.

LEMMA 3.2.LetB € X and letX \ {B} — B be avalid
dependency. IK — A holds, thenX \ {B} — A holds.

The lemma allows us to remove additional attributes from
the initial rhs candidate sef§X). Assume thak\{B} — B
holds for someB € X. Then, by the lemma, a dependency

with X on the left-hand side cannot be minimal because we

can removeB from the left-hand side without changing the

removed by this rule is the following:

C"(X)={Ae X|3IB e X\ {A}:
X\ {A, B} - B holds.
EXAMPLE 4. Assume that ANE is considering the

set X = {A, B,C,D}, and that{C} — B is a valid
dependency. The\ € C”({A,B,C}) = C”"(X\{D})

which tells TANE that X \ {A} — Ais not minimal.

Finally, the following lemma shows that the sufficient but
optimized set of rhs candidateg * (X) can be also defined
in terms ofC(X), C’'(X), andC” (X).

LEMMA 3.3.
Ct(X)={AcR|VBeX:
X\ {A, B} — {B} does not holgl
= ((R\CX) \ C"(X)\ C"(X)

3.2.3. Key pruning

An attribute setX is a superke)if no two tuples agree on

X, i.e. partitionx consists of singleton equivalence classes
only. The setX is akeyif it is a superkey and no proper
subset of it is a superkey. When a key is found during the
search of dependencies, additional pruning methods can be
applied.

LEMMA 3.4.LetB € X and letX \ {B} — B be avalid
dependency. IK is a superkey, theK \ {B} is a superkey.

Normally, a dependenc¥ — A, A ¢ X, is tested when
X U {A} is processed because we negd)a for validity
testing. However, ifX is a superkey theX — A s always
valid and we do not need U {A}.

Now, consider a superkeX that is not a key. Obviously,
a dependencyX — A is not minimal for anyA ¢ X.
Furthermore, ifA € X andX \ {A} — A holds, then, by
Lemma 3.4,.X \ {A} is a superkey and we do not neeg
for testing the validity ofX \ {A} — A. In other words, we
have no use foX or x in finding minimal dependencies.
Hence, we can prune all keys and their supersets, i.e. the
superkeys that are not keys.

3.3. Computing with partitions

validity of the dependency. Hence, we can safely remove e next introduce two ways to reduce the time and space

from C(X) the following set:

R\ X if3Be X: X\ (B} — Bholds

/ —
c = {@ otherwise
ExAMPLE 3. Assume that ANE is considering the
setX = {A, B, C} and thafC} — B is a valid dependency.
ThenA € C’'({B, C}) = C'(X \ {A}) which tells TANE that
X\ {A} — Ais not minimal. Note that ANE does not need
to know whetheiX \ {A} — A holds or not.

Furthermore, assume thXt has a proper subs#t such
thatY \ {B} — B holds for someB € Y. Then we can
also remove fron€(X) all A € X\ Y. The set of attributes

requirement of working with partitions. The first one
replaces partitions with a more compact representation,
‘stripped partitions’. The second one is a method to
quickly approximate the error. These methods optimize
the algorithms described in the following section. We
then describe how to compute partitions efficiently in the
levelwise TANE algorithm.

For both optimizations we need the concept of approxi-
mate superkey. Theerror measure can be extended to other
properties of a relation [24]; in particular, it can be extended
to the property of an attribute set being a superkey. We define
e(X) to be the minimum fraction of tuples that need to be
removed from the relationfor X to be a superkey. E(X)
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is small, thenX is anapproximate superkeyhe errore(X) Once NE has the partitionry, it computes the error

is easy to compute from the partitiarx using the equation  e(X), to be used in validity testing based on Lemma 3.5. The

e(X) =1—|mx|/Irl. full partition is needed only for the computation of partitions
on the next level.

3.3.1. Stripped partitions After the initial setup of the first partitionsa, for all

A stripped partitionis a partition with equivalence classes A € R, TANE deals with tuple identifiers only. This gives
of size one removed. The stripped version of a partition two advantages. First, the different attribute types and values
is denoted by?. For examples 75y = {{1 4,7}} in the can be discarded and the computation is conducted, in effect,
relation of Figure 1. An intuitive explanation for discarding ©On intégers. The operations on partitions are thus simple and
singleton equivalence classes is that a singleton equivalencdast. Second, when computing approximate dependencies,
Stripped patrtitions contain the same information as full

partitions. For example, the val@gX) is easy to compute
from stripped partitions using the equation 4. ALGORITHMS
4.1. TANE main algorithm

e(X) = (||zx|l — l7xD/Ir |, 1 ) o . .
(X) = (llxil = lwxD/Ir] @ To find all valid minimal non-trivial dependenciesaNE
where [|7x|| is the sum of the sizes of the equivalence searches the set containment lattice in a levelwise manner.

classes ifrx. Also, the refinement relations of partitions are A 1evel L. is the collection of attribute sets of sizesuch
the same, and Lemma 2.1 thus holds for stripped partitionsthat the sets inL, can potentially be used to construct

as well. dependencies based on the considerations of the previous
Lemma 2.2 does not hold for stripped partitions, because S€ctions. RNE starts withLy = {{A} | A € R}, and
|7x| can be the same dfxua)| even ifrx # wxu(a)- computesL, from Ly, L3 from L, and so on, according
However, sincex(X) = e(Y) if and only if |zx| = |my|, we to the information obtained during the algorithm.
can replace Lemma 2.2 with the following lemma. ALGORITHM. TANE
LEMMA 3.5.A functional dependenc — A holds if ~ INPut: relationr over schem& _
and only ife(X) = e(X U {A}). Output: minimal non-trivial functional dependencies that
hold inr

3.3.2. Bounding

Computing the erroe(X — A) from partitions needs
O(Jr]) time. It is often possible to avoid this computation
by using the following bounds.

1 Lo:={#)
2 Ct@W: =R
3 Li:={{Al|AeR
4 L.=1
5  while Ly # 0
e(X) —e(XU{A}) <e(X - A) < e(X). (2) 6 COMPUTE.DEPENDENCIEEL ()
7 PRUNE(L¢)
8 L¢y1 := GENERATENEXT_LEVEL(Ly)
9

=041

If e(X) —e(XU{A}) > ¢ oreX) < g TANE does
not need to compute(X — A) to find whetherX —

A holds approximately or not. The time saving by this
optimization can be significant, because the number of
functional dependencies considered can be as mudR 43
times the number of attribute sets processed.

The procedure&OMPUTE.DEPENDENCIESL () finds the
minimal dependencies with the left-hand sidd.in.;. The
procedurePRUNE(L¢) prunes the search space by deleting
sets fromL, as described in Section 3. The procedure
GENERATENEXT_LEVEL(L,) forms the next level from

333. C_o_mputmg partitions the current level. These procedures are described in the
The partitions are not computed from scratch for each following subsections

attribute set. Instead, whemiWE works its way through the

lattice, it computes a partition as a product of two previously
computed partitions: thproduct of two partitionsz’ and 4.2. Generating levels
", denoted byr’ - 7", is the least refined partitiom that

refines bothr’ and”. We have the following resuit. The procedur6ENERATEINEXT_LEVEL computes the level

Ley1r from Lg. The level Lyyq will contain only
LEMMA 3.6.Forall X,Y C R, mx - my = wxuy- those attribute sets of sizé + 1 which have all their
subsets of siz¢ in Ly. The pruning methods guarantee
that no dependencies are lost. The specification of
GENERATENEXT_LEVEL is

TANE computes the partitions(a), for eachA € R,
directly from the database. Partitions, for |[X| > 2,
are computed as a product of partitions with respect to two
subsets oX. Any two different subsets of sizeX| — 1 will
do, which is convenient for the levelwise algorithm since
only partitions from the previous level are needed. and|Y| = ¢ we haveY € L}.

Levs ={X | |X| =€+ 1andforally withY c X
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The algorithm is given below. 4.4, Pruning the lattice

Procedure GENERATE NEXT_LEVEL (L) The pruning procedure of AlgorithmaANE is given below.

Procedure PRUNEL )
Leyr1:=9

for each K € PREFIX BLOCKS(L,) do
foreach{Y, Z} C K,Y # Z do

1

2 foreach X € Ly do
3

4 X=YUZ

5

6

7

if CH(X)=¢do
deleteX from L,
if X is a (super)keylo
foreach A e CT(X)\ X do
if AeMNgexCT(XU{A}\{B})then
outputX — A
deleteX from L,

if forall A e X, X\ {A} € L, then
Leyr = L U{X}
return Lyyq

O~NOOUT PR WNPE

The procedurePREFIX.BLOCKS(L,) partitions L, into
disjoint blocks as follows. Consider a skt € L, to be The procedur@RUNE implements the two pruning rules
a sorted list of attributes. Two sefs,Y € L, belong described in Section 3. By the first rul& is deleted if
to the same prefix block if they have a common prefix CT(X) = #. By the second ruleX is deleted ifX is a
of length¢ — 1, i.e. they differ in only one attribute and key. In the latter case, the algorithm may also output some
the non-matching attribute is the last attribute in béth dependencies. We will show that the pruning does not cause
andY. Each prefix block forms a consecutive block in the algorithm to miss any dependencies.
lexicographic ordering of ;. The prefix blocks are thus easy Let us first consider pruning by emptg*t(X). If

to compute from lexicographically orderéq. The idea of CT(X) = @, the loop on lines 4-8 in the procedure
this procedure is from [20] and is explained in detail in [25, COMPUTE.DEPENDENCIESand the loop on lines 5-7 in
Algorithm 3]. the procedurePRUNE will not be executed at all. Since

CT(Y) = ¢ also for allY > X, deletingX will have no
effect on the output of the algorithm.
4.3. Computing dependencies Let us now consider the pruning of keys. The correctness

) of the pruning is based on the following lemma.
Below is the procedureCOMPUTE.DEPENDENCIES of

Algorithm TANE. LEMMA 4.2.Let X be a superkey and leA € X. The
dependencX \ {A} — Ais valid and minimal if and only
Procedure COMPUTE.DEPENDENCIESL () if X\ {A}is akey and, foralB € X, A€ C*(X\ {B}).

A dependencX — Ais output on line 7 of the procedure
for efChX €Lcdo n PRUNE if and only if X is a key,A € CT(X) \ X, and
CTX) = acx CT X\ {AD Ac CT(XU{A}\ {B)), forall B € X. Lemma 4.2 shows
foreachX € L, do " that such a dependency is valid and minimal. The lemma
for_eachA €X ﬂc_ (X). do also shows that if a minimal dependengy\ {A} — A
if X\ {A} > Als validthen is not output in the procedureOMPUTE_DEPENDENCIES
OutputX \ {A} —> A because of the pruning, it is output in the procedrReNE

+
removeA from T (X) Therefore, the pruning works correctly.
remove allB in R\ X from C*(X)

O~NO O WNPE

4.5. Computing partitions
By Lemma 3.1, steps 2, 4 and 5 guarantee that the procedure

outputs exactly the minimal dependencies of the fotry The above algorithm contains no references to partitions.
{A} - A whereX € L, andA e X. The validity testing However, the implementation of the central test on line 5
on line 5 is based on Lemma 3.5. of COMPUTE.DEPENDENCIESrequires knowinge(X) and

COMPUTEDEPENDENCIESL ) also computes the sets (X \ {A}). Also, the superkey test on line 4 eRUNE
C*t(X) forall X € L,. The following lemma shows that is based ore(X). In TANE, the e values are computed

this is done correctly. from stripped partitions by Equation (1). The partitions are
computed as follows.

LEMMA 4.1.For all Y € L¢_1, let CT(Y) be cor- In the beginning, partitions with respect to the singleton
rectly computed. After executing the procedwewm- attribute sets are computed straight from the relatiorA
PUTE_DEPENDENCIESL,), CT(X) is correctly computed  partitionsyay is computed from the colunmi A] as follows.
forall X € L,. First, the values of the column are replaced with integers

1,2,3,... so that the equivalence relations do not change,

Line 8 implements the difference betweéri(X) and i.e. same values are replaced by same integers and different
C(X). If that line was removed, the algorithm would work values with different integers. This can be done in linear
correctly, but pruning might be less effective. time using a data structure such as a trie or a hash table
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to map the original values to integers. After this, the value Procedure e

t[A] is the identifier of the equivalence clag$h; of 7ia;,
andmyp; is then easy to construct. Finally, the singleton
equivalence classes imja; are stripped off to form the
stripped partitiont(a) .

A partition with respect to a larger attribute sHt is
computed whenX is added to its level on line 6 of
GENERATENEXT_LEVEL. The setX was formed a¥ U Z
and the partitionry is computed as the produey - 7z. The
product is computed with the following procedure in linear
time.

Procedure STRIPPEDPRODUCT

. H i _ /
Input: Stripped partitionst’ = {cj, ..
{cf,....c5 }.

| _

Output: Stripped partitiort = 7/ - 7”.

.,C~}andn” =

||

1 7:=0 R

2 fori:=1to|n’|do

3 foreacht e ¢/ do T[t] ;=i

4 Si]:=0 _

5 fori:=1to|x”|do

6 for eacht € ¢ do

7 if T[t] # NULL then §TI[t]] := T[t]] U {t}
8 for eacht € ¢ do

9 if |[9T[t]]| = 2then® =7 U{ST[t]]}
10 STt :=¢

11 fori:=1to|n’| do

12 for eacht e ¢/ do T[t] := NULL

13 return 7

The procedure assumes that the tablleas been initialized
to all NULL. Since the procedure resetsto all NULL

before exit, the same table can used repeatedly without re-o(siry).

initialization.

4.6. Approximate dependencies

Algorithm TANE can be modified to compute all minimal
approximate dependencieés — A with e(X — A) <

g, for a given threshold value. The key modification
is to change the validity test on line 5 of procedure
COMPUTE.DEPENDENCIEStO

5 if (X \ {A} - A) < ethen

In addition, the pruning has to be slightly weakened by
replacing line 8 ocOMPUTE.DEPENDENCIESWith

8/
9/

if X\ {A} = Aholds exactlythen
remove allB in R\ X from C*(X)

Input: Stripped partitionsrx andzxua; -
Output: e(X — A).

e=0

for eachc € wxy(a do
choose (arbitraryf) € ¢
T[t]:=|c|

for eachc € 7x do
m:=1
for eacht € cdom:= maxm, T[t]}
e=e+4|cl—m

for eachc € wxy(a do
choosé € c (samet as on line 3)
T[t]:=0

return e/|r |

O©CoOoO~NOOOUTPA~,WNEE

10
11
12

Note the similarity to the procedur®TRIPPERPRODUCT.
Here too, the tabld must be initialized to all 0 once, but
needs no re-initialization after that.

5. ANALYSIS
5.1. Worst case analysis

The time and space complexities of theNE algorithm
depend on the number of sets in the levels called the
sizes of the levels. Lednax be the size of the largest level
ands the sum of the sizes of all levels. In the worst case,
s = 02R) andsmax = O2R//IR]). Another factor

is the number of keys, denoted lay In the worst case,

k = O(smax = O(2RI/V/IR).

During the computation,s partitions are formed.
The time complexity for computing the partitions is
Not counting the handling of partitions, the
execution time of Algorithm ANE is dominated by random
(nonlinear) accesses to the levélg. During the whole
computation, procedureOMPUTE.DEPENDENCIESMakes
O(s|R]) random accesses on line 2, procedemUNE
O(k|R|? random accesses on line 6 and procedure
GENERATENEXT_LEVEL O(s|R|) random accesses on
line 5. No operation is executed more often during
the computation.  The access time depends on the
implementation of the levelk,. Using suffix arrays [26]
gives O(|R| + log|L¢]) access time, which iO(|R|)
becauselL,|] < 2RI, The suffix array forL, can be
constructed irD(|L¢||R]) time.

In summary, the algorithm has time complex@ys(|r | +
IRI%)+k |R|®). The algorithm needs to maintain at most two
levels at atime. Hence, the space complexit® (Smax(|r |+
IRD)). The following theorem gives upper bounds for the

The above algorithm returns only minimal approximate time and space complexities in terms of the size of the input.
dependencies. In some applications, it might also be useful
to know approximate dependencies that are not minimal but
have smaller error. We leave the necessary modifications a:
an exercise to the reader.

THEOREM5.1.The time complexity of AlgorithANE
is bounded by ((|r |+|R|%°)2!Rl) and the space complexity
Sy O((Ir | + IR/ /TRD.

TANE tries to resolve the test on liné first by using the
boundsin (2). If that fails the exact valueafX \ { A} — A)
is computed from partitions using the following procedure.

Approximate validity testing need3(|r |) time in contrast
to the O(1) time of exact validity testing. Thus, the time
complexity of finding approximate dependencies wittNE
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is O(w|r| + s|RI?2 + k|RJ3), wherev is the number of
validity tests done. In the worst case, = s|R|/2 =
O(|R| 2Ry and thus the time in terms of the size of the input
is O((Ir IR + |RI#2)2IR1).

only previously published practical algorithm achieving this
is by Schlimmer [4, 13], who uses decision trees for validity
tests. The decision tree approach is roughly equivalent
to computing each partition from partitions with respect
to singletons. It is slower by a fact@d(|R|) than using
partitions the way we do. All other algorithms ha®é|r |?)

or Q(Jr|log|r|) dependency on the number of tuples. Some
Due to the structure of the dependency set and pruning,of these could actually be implemented to run in linear time
s andsmax can be significantly smaller than the worst case g5 well by using, e.g. radix sorting.

analysis shows. The numberof keys is almost always Schlimmer also used the levelwise search strategy, as
much smaller tharsmax. In addition, the average size of (jg Bell and Brockhausen [6]. Both use less effective
stripped partitions can be much less than There are also  pruning criteria than we do, i.e. their algorithms may
some implementation details that further reduce the practicalgng up computing a larger part of the lattice. In

time and space complexities. addition, our implementation of the pruning based on the

We have implemented the attribute sets as bit vectors of proceduresENERATEINEXT_LEVEL is more efficient than
O(1) words and the random access with hashing. This ywhat Schlimmer, and Bell and Brockhausen use.
means, in practice, that set operations and random access There are also algorithms that search the lattice in a more
take constant time. The time complexity is then reduced to gepth-first like manner [5, 12]. Such a search allows criteria
O(s(r|+|R)+k|RI%) and space complexity 0 (Smax/r |)- for the pruning of the search space that are different from the
Limiting the bit vectors toO(1) words is not a severe preath-first search of the levelwise algorithm. A comparison
restriction because the number of attributes is typically small of the effectiveness of pruning in the two approaches is
and, due to exponential time and space complexities, the gjficult. However, validity and minimality testing, and the
algorithm could not handle a very large number of attributes mechanisms of pruning are less efficient in the depth-first
anyway. algorithms.

To reduce the main memory requirement of the algorithm,  still another approach is to first compute all maximal
the partitions can be stored on disk. The algorithm can be jnyalid dependencies by a pairwise comparison of all tuples
organized so that at mogR| partitions at a time are in the  and then compute the minimal valid dependencies from
main memory and each partition is written to disk and read the maximal invalid dependencies [1, 3, 12, 14]. The
from disk only once. Then, the main memory requirement fj st part of such algorithms require£9(|r|2) time with
is O(r||R| + smax and the algorithm make®(s) disk respect to the number of tuples but is polynomial both in
accesses of siz@(|r|). These modifications do not change the number of tuples and the number of attributes, while
the time complexity of the algorithm. the second part requires exponential time in the number of

The practical properties of the modified algorithm are attributes but has no dependency on the number of tuples.
summarized below: The algorithm by Savnik and Flach [3] implements the
second part with a depth-first search. During the search,
the maximal invalid dependencies are used both for testing
validity of dependencies and for pruning the search space. In
Section 6 we present results of an experimental comparison
between our algorithm and the algorithm of Savnik and
Flach.

5.2. Practical analysis

CPU time:O(s(|r| + |R]) + k|RI?)

disk accessedD(s) accesses of sizZ@(|r |)
main memory requiremen®(|r || R] 4+ Smax)
disk space requiremen® (Smax|r |)

To computee(X — A), we need the partitionsx and
wxuiA;, and not juste(X) ande(X U {A}). This has two
negative effects on the approximate dependency version ofs, PERFORMANCE

TANE. First, approximate validity testing is slower, by ) _ ) o

practice due to stripped partitions and the boundsefor Paper and experimented with it to find out how it performs
described in Section 3.3. Second, partitions are needed muctn Practice. We have two implementations of the algorithm.
more often and, therefore, storing partitions to disk does The first, scalable version, denoted simply asv&, keeps

works in O(vr| + s|R| + k|RJ?) time and O(Smax/r |)
space.
valid dependencies, pruning can be much more effective in
reducings, Smax andv.

5.3. Comparison to other algorithms

One of the main advantages of the new algorithm is the
linear dependency on the number of tuples in the relation
(for a fixed set of dependencies). To our knowledge, the

The other version, ANE/MEM, works completely in main

However, because there are more approximatelymemory.

To provide perspective, we performed the same experi-
ments with the BEP program of Savnik and Flach. The
FDEPimplementation is based on the algorithm described in
[3] and is available at [27].

All algorithms, including BEP, are written in C and were
compiled with a GNU C compiler with full optimizations.
All experiments were run on the same 233 MHz Pentium PC
with 64 MB of memory running the Linux operating system.

THE COMPUTER JOURNAL,

\Vol. 42, No.2, 1999




108 Y. HUHTALA et al.

TABLE 1. Performance of the algorithms on real life databases.

Database Time (S)
Name IR| N TANE TANE/MEM  FDEP
Lymphography 148 19 2730 68 24 88
Hepatitis 155 20 8250 30 14 663
Wisconsin breast cancer 699 11 46 1 To 15
Wisconsin breast cancer 64 44736 11 46 81 23 17,521
Wisconsin breast cancer 128 89,472 11 46 173 247 *
Wisconsin breast cancer 512 357,888 11 46 884 * *
Adult 48,842 15 85 1451 * *
Chess 28,056 7 1 4 2 6685
TTime is 0.25 s.

TABLE 2. Performance of ANE/MEM on approximate dependency discovery. Times are given in seconds.

=00 e =0.01 & =0.05 e=01 e =05

Database Ir | N Time N Time N Time N Time N  Time
Lymphography 148 2730 89.1 3388 22.2 7031 4.9 6383 3.7 21 T 0.0
Hepatitis 155 8250 16.6 9666 14.6 6617 9.3 2630 4.2 160 T 0.0
W. breast cancex 1 699 46 0.3 113 0.3 126 0.2 141 0.2 18 To.0
W. breast cancex 2 1398 46 0.5 113 0.5 126 0.5 141 0.4 18 0.1
W. breast cancex 4 2796 46 1.1 113 1.1 126 1.0 141 0.9 18 0.2
W. breast cancex 8 5592 46 2.4 113 2.3 126 2.0 141 1.9 18 0.4
W. breast cancex 16 11,184 46 5.1 113 4.9 126 4.4 141 4.3 18 0.8
W. breast cancex 32 22,368 46 11.0 113 10.6 126 9.3 141 8.9 18 1.8
W. breast cancex 64 44,736 46  25.5 113  26.7 126  20.3 141 19.2 18 3.9
Chess 28,056 1 2.0 1 2.6 1 3.1 1 35 17 3.6

TTimes are 0.01-0.02 s.

The times below are real times elapsed in the experimentsof magnitude faster on Lymphography than on Hepatitis.
as reported by the Unitime command. We report ‘wall ~ This is a good demonstration of how different approaches
clock’ times rather than CPU times in order to make the cost to pruning the search space have different effects in different
of 1/0 processing better visible and to give a fair account of databases.
the cost of swapping of ANE/MEM with large databases. The bottom part of Table 1 reports the performance
We ran the algorithms on a number of real life databases.of TANE on five larger databases. FomNE/MEM and
The databases and their descriptions are available onthe UCFDEP, some experiments are marked with an asterisk (*)
Machine Learning Repository [28]. The number of tuples, as infeasible; for ANE/MEM because of the lack of main
attributes and minimal dependencies fourid) (in each memory, and for BEPIf it did not finish within 5 h. TANE,
database are shown in the left half of Table 1. The datasetson the other hand, found the dependencies in seconds or
labeled ‘Wisconsin breast cancern’ are concatenations  minutes and was never in danger of running out of memory.
of n copies of the Wisconsin breast cancer data. To avoid Table 2 shows some performance results fanE/MEM
duplicate tuples, all values in each copy were appendedin the approximate dependency discovery task for different
with a unique string specific to that copy. Since the set of thresholdss. Results for the Hepatitis, Wisconsin breast
dependencies is the same in all these datasets, we were ableancer and Chess data sets are also presented graphically
to test how the algorithms scale with respect to the numberin Figure 3: N, /Np stands for the number of approximate
of database tuples only. dependencies found relative to the case for functional
The top three rows of Table 1 show the performance of dependencies; similarly, TimgTimey denotes the relative
the algorithms on three small databases. Running times arediscovery time. Approximate dependencies could not be
in the right half of the table; they are rounded to the nearest discovered in the Adult data set witiWE/MEM due to the
second. Our algorithms perform competitively in all cases. lack of main memory.
The Lymphography and Hepatitis databases are apparently Overall, approximate dependencies are found efficiently.
very similar. However, our algorithms are much faster on The number of dependencies found varies differently for
Hepatitis than on Lymphography whileDEP is an order each dataset. Within a reasonable range<0 ¢ <
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FIGURE 3. Performance of ANE/MEM for approximate FIGURE 4. Performance of the algorithms when the number of
dependencies in the Hepatitis (top), Wisconsin breast cancertuples increases. The three graphs show the same data on different
(middle), and Chess (bottom) data sets. scales.

0.1, the time either increases slightly (Chess dataset), space. The scaling properties ofNE/MEM on approximate
decreases slightly (Wisconsin breast cancer), or dropsdependency discovery can be read from Table 2; again, the
significantly (Hepatitis). The drop is even stronger with the performance is near linear in the number of tuples.
Lymphography dataset (shown only in the table). Our algorithms have not been optimized for memory
To find out how the number of tuples affects the and disk space consumption. With data compression, the
algorithms, we ran a series of experiments with increasing feasible range of our algorithms can be extended. Even in
number of tuples. The relations were formed by their current form our algorithms can handle much larger
concatenating multiple copies of the Wisconsin breast databases thanDEP. Previously reported results for other
cancer data as described earlier; recall that the set ofalgorithms are even worse [1, 3, 4, 6].
dependencies remains the same. The results are illustrated For a perspective on the size of problems considered
in Figure 4. MEP performs almost quadratically in the before, consider Table 3. It contains results published in
number of tuples while our algorithms are very near linear. previous articles, marked with a ‘daggef’),( and results
The sharp turn in the curve ofANE/MEM is caused by  we obtained using ANE and the publicly available version
the algorithm running out of main memory and starting to of FDEP. Many of the databases used in previous articles
use swap space. With the largest relation (357,888 tuples,are not publicly available, so results are missing altogether.
512 times Wisconsin breast cancerpNE used about 22  The Lymphography data set marked with an asteri3kg
MB of main memory and about 450 MB of temporary disk reported by Bell and Brockhausen [6] as well as by Savnik
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TABLE 3. Previously reported performance results and the new results. Numbers taken from other articles are marked with aT)dagger’ (
the source is given at the top of the column.

Database Bell Bitton BEP  Schlimmer
Name Ir | IRl |X] N etal.[6] etal.[1] [3] [4] TANE
Lymphographyi 150 19 7 641 >33h — 540 § — —
Lymphography 148 19 19 2730 — — 88s — 68.2s
Rell 7 7 7 8 — 002 — — —
Rel6 236 60 60 56 — 994's — — —
W. breast cancer 699 11 4 35 250s  — 15s 44405 0.34s
W. breast cancer 699 11 11 46 5d3s — 15s — 0.76 s
W. breast cancex 128 89,472 11 11 46 — — * — 173 s
Books 9931 9 9 25 17,040s — — — —

and Flach [3] to have 150 tuples while the one available at of attributes and the situation is more or less equally bad
the UCI repository has 148 tuples. for any algorithm. When the dependencies are larger than
The column|X| gives an upper limit for the number of that, the levelwise method that starts the search from small
attributes in the left-hand side of a dependency. Limiting dependencies is obviously further from the optimum. The
the maximum size makes the task easier. The colidnn levelwise search can, in principle, be altered to start from
gives the size of the results, i.e. the number of dependencieghe large dependencies. Then, however, the partitions could
output. The outputs are, however, different: some algorithms not be computed as efficiently.
only output a (minimal) cover of the dependencies that hold. There are also other interesting data mining applications
Since the tests were run in different environments direct for partitions. Association rules between attribute—value
comparisons are not possible. The results are, howeverpairs can be computed with a small modification of the
indicative. For an overview, consider the Wisconsin breast present algorithm.  An equivalence class corresponds
cancer data set with the left-hand side linmK]| 4, then to a particular value combination of the attribute
Although small and restricted, it is the only case for which set. By comparing equivalence classes instead of full
there are results for four algorithms. ANE discovers partitions, we can find association rules. A possible
dependencies in 0.34 second®EP in 15 s (slower by a  future research direction is to use the unified view

factor of 44), Bell and Brockhausen [6] in 259 s (760 times
slower), and Schlimmer [4] in 4440 s (13,000 times slower).
It should be noted that Bell and Brockhausen [6] were the

that partitions provide to functional dependencies and
association rules, independently observed also in [8], to find
an apt generalization of both and to develop an algorithm for

only ones to report results obtained on top of a commercial discovering such rules.
database management system, whereas all others used flat
files and specialized access methods.
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