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Abstract

With the growth of database complexity and size it is becoming increasingly necessary to automate the analysis of
data.  Part of this automation is the development of inductive algorithms to search for characterising rules.  The
paper introduces the formal concept of an induced dependency as a descriptor for the relationships which characterise
the data within a database.  This is done within the framework of known functional dependencies held in the schema.
Two distinct ways of weakening the completeness of an induction are developed, in terms of which a two
dimensional matrix of types of induced dependency is defined.

1.  Introduction

The automated extraction of rules and trends from large quantities of data is becoming increasingly necessary as the number,
size and complexity of databases increases.  These rules provide insight into the structure and content of the data which might
not be immediately apparent.  The general problem can be summarised as the generation of descriptors and algorithms to
automate the analysis of large volumes of data.

The specification of functional dependencies in a relational database indicates relationships about the structure of a world of
interest [1, 2].  Inductive inference allows the development of rules or characterisations from examples [3, 4].  Our conjecture
is that the induction of functional dependencies would allow the structure of a database to be suggested from the inspection of
its data.

Han, Cai and Cercone [5, 6] distinguish between derived rules in two ways.  Firstly whether the rule is qualitative or
quantitative (ie. whether a measure of conformity to the rule is given) and secondly whether the rule is characteristic (ie. it
applies to all data identified by some criteria) or classificatory (ie. the rule enables discrimination between identifiable sets of
data).

This paper presents a formalisation of the concept of induced dependencies.  It proposes a definition of a full induced
dependency and some subclasses based on weaker criteria.  It will be shown that the distinctions made by Han et al. can be
properly expressed within the proposed formalism.

2.  Induced Dependencies

2.1.  Initial Discussion

The concept is first introduced by means of an example.  Consider a relational schema populated as follows:

STU Name StudentId School
BROWN 3 Comp.Sci.
GREEN 5 Maths
WHITE 6 Elec.Eng.
BLACK 7 Maths

                                                
† Published as J.F. Roddick and T.J. Richards, "Induced dependencies in relational databases", in Proc. Second International

Computer Science Conference. Kowloon, Hong Kong, pp. 379-385, 1992.
1 Current Address, School of Computer and Information Science, The Levels Campus, University of South Australia, The Levels,

SA 5095, Email: roddick@cis.unisa.edu.au
2 Email: tom@latcs1.lat.oz.au



ENR Stud-No Subj-No Year Grade
3 DB1 1990 Pass
3 OS2 1989 Pass
5 DB1 1990 Fail
6 DB1 1990 Pass
6 PH3 1990 Pass
7 OS1 1990 Fail
7 IDB 1991 Fail

LEC Subject Year Lecturer
DB1 1990 JFR
DB2 1989 JDP
IDB 1991 JFR
OS1 1990 TJR
OS2 1989 JDP
PH3 1990 TJR

with known Functional Dependencies (FDs):

STU.StudentId → STU.(Name, School) F1

ENR.(Stud-No, Subj-No, Year) → ENR.Grade F2

LEC.(Subject, Year) → LEC.Lecturer F3

ENR.Stud-No → STU.StudentId F4

ENR.(Subj-No, Year) → LEC.(Subject, Year) F5

Induced dependencies can be loosely defined as functional dependencies that are consistent with the data currently held in the
database but have not been defined within the database schema.  Note that induced dependencies are not necessarily true; they
are merely satisfied or appear to be true given the data.  Thus we are able to suggest the following Induced Dependencies (IDs):

STU.Name →-  STU.StudentId I1

ENR.Stud-No →-  ENR.Grade I2

LEC.Subject →-  LEC.Lecturer I3

STU.School →-  ENR.Grade I4

Rule I4  shows that induced dependencies, like functional dependencies, may exist across relations and may be read as "Given
only a student's school it is possible to determine the results of subjects taken by that student", or put another way, "Either all
students in a school pass all subjects or they all fail all subjects".  For a cross-relation induced dependency the relations are
treated as if they have been joined on their foreign keys, thus the defined functional dependencies are an integral part of the
definition of IDs, (see also [7] who investigates the satisfaction of functional dependencies over sets of relations).  This
follows intuitively from the desire to make use of any known structure of the data.  Without the use of these known
relationships there is no way to associate tuples in different relations by inspection of the data alone, especially in cases where
attribute names and domains differ3.

2.2.  Full Induced Dependencies

The notational conventions adopted in this paper are based on Maier [2].  A relational scheme R is a set of attribute names
{ A1, ... ,An} where each Ai , 1  ≤  i  ≤  n , has a corresponding Di, called as the domain of Ai .  If

D = D1 ∪ D2 ∪ ... ∪ Dn then a relation r  on R is the set of mappings or tuples {t1, t2, ... ,tp} ∈ r from R to D where

for each tj , 1 ≤ j ≤ p, tj(Ai) must be in Di , 1 ≤ i  ≤ n.

If r is a relation on R, with X and Y subsets of R then the functional dependency X → Y holds if and only if for every X-value
x, πY(σX=x(r)) has at most one tuple, where π and σ are the project and select operators as given in [2, p 13 et. seq.].

A definition of the full induced dependency is as follows, (the prefix full is used to distinguish it from the weak induced
dependency introduced later).
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Definition - Full Induced Dependency

Let R be a set of non-empty relations r1, r2 ... rn defined on R1, R2 ... Rn and let X and Y be a subset

of attributes from R1, R2 ... Rn.  A full induced dependency between X and Y exists if:

i. The data in R is consistent with the existence of a functional dependency X → Y,

ii. The closure of functional dependencies defined for R does not imply X → Y.

Returning to our example earlier, the induced dependencies

STU.StudentId →− STU.Name

ENR.Stud-No →-  STU.Name

do not hold as condition ii. requires that IDs be distinct from FDs, both directly and from the transitive closure of FDs.
Clearly, IDs could have been defined such that FDs comprised a subset of IDs.  In practice however it is felt that IDs and FDs
have separate functions and thus condition ii. requires that they be distinct.  This also parallels the definition of an inductively
strong argument in that it must not be deductively valid [8].  The induced dependency,

ENR.(Stud-No, Subj-No) →-  ENR.Grade

holds but is not minimal.  Minimality can be enforced by insisting that:

For no proper subset X' of X, does X' →- Y hold.

2.3.  Value Sensitive Induced Dependencies

The Value Sensitive Induced Dependency (or VSID) extends the concept further.  In some cases, only a subset of values in a
set of attributes infers values in a second set of attributes or an attribute only infers an identifiable subset of values in a second
set of attributes.  Consider the case below:

ENR Stud-No Subj-No Year Grade
3 DB1 1990 Pass
3 OS1 1991 Fail
5 DB1 1990 Pass
5 OS1 1991 Fail
5 PG1 1990 Pass
7 DB2 1991 Fail
7 HW1 1992 Pass
7 PG1 1990 Fail
7 PG2 1991 Fail

While there is no FD or ID from Year to Grade, we can indicate that a Value Sensitive Induced Dependency holds for a
selection of the ENR relation as follows:

ENR.Year[1991] →-  ENR.Grade I5

This can be read as "Every subject taken in 1991 had the same grade".  Similarly restriction can be made on the target of the
dependency so that:

ENR.Year →-  ENR.Grade[Pass] I6

Formally Value Sensitive Induced Dependencies can be defined as follows:

Definition - Value Sensitive Induced Dependency

Let R be a set of non-empty relations r1, r2 ... rn defined on R1, R2 ... Rn and let X and Y be subsets

of attributes from R1, R2 ... Rn.  Let Dx and Dy be the domains of X and Y resp. and let D'x be a

proper subset of Dx and D'y be a proper subset of Dy.  A value sensitive induced dependency between X

and Y exists with respect to D'x and D'y if the induced dependency X'→- Y' holds for X' = σx∈D'x
(X)

and Y' = σy∈D'y
(Y).



Three comments should be made about the above definition.

a. When D'x is equal to Dx and D'y is equal to Dy then the Value Sensitive Induced Dependency simply

becomes a Full Induced Dependency as the select operations specify no restriction.

b. Restricting the domain of X does not require a corresponding restriction in the domain of Y and visa-versa.

c. A qualitative measure of the weakening of the full induced dependency is the extent to which D'x  and D'y are

reduced relative to Dx and Dy.

Value-Sensitive induced dependencies are similar to the horizontal decompositions discussed by Ceri et al. and others [9-14].
These references (especially [13]) discuss the fragmentation of relations within the context of distributed databases.

2.4.  Weak Induced Dependencies

In some cases, in particular where there is a large amount of data, the absence of an induced dependency does not imply the
absence of an interesting correlation of values.  Consider the following:

ENR Stud-No Subj-No Year Grade
3 IS1 1990 Fail
3 OS1 1990 Fail
3 OS3 1991 Pass
3 DB2 1991 Fail ✖

5 IS1 1991 Pass
5 OS1 1991 Pass
5 PG1 1990 Fail
6 DB1 1991 Pass
6 DB2 1991 Pass
6 HW2 1990 Fail
6 PG2 1991 Pass
7 EN2 1990 Fail
7 HW1 1991 Pass
7 PG1 1990 Fail
7 PH3 1990 Fail

In only one case the student's grade was not inducible from the year the subject was attempted (as shown by the tuple marked).
This can be written:

ENR.Year →--  ENR.Grade I7

Clearly the definition of an interesting correlation is context sensitive.  Han et al. [6] suggest a t–threshold to handle noise and
exceptions, ie. fewer than some number of exceptions are ignored.  Other possibilities such as confidence thresholds,
percentages and the number of standard deviations may be equally appropriate.  Choice of these is essentially application
sensitive.  Where quantification is required we can write:

ENR.Year →-- (98%) ENR.Grade I8

Definition - Weak Induced Dependency

Let R be a set of non-empty relations r1, r2 ... rn defined on R1, R2 ... Rn and let X and Y be a subset

of attributes from R1, R2 ... Rn.  A weak induced dependency X →--(k) Y exists if for some arbitrary

confidence value k', k' ≤ k, we can write X →- Y.

Clearly, k can be viewed as a measure of the weakening.

2.5.  Weak Value Sensitive Induced Dependencies

The two concepts above can be amalgamated in cases where a subset of attribute values in an attribute almost determines a
value in another attribute.  For instance, given the example above we could more accurately write:

ENR.Year[1990] →-  ENR.Grade I9



ENR.Year[1991] →--  ENR.Grade I10

The significance of Weak VSIDs is an area for further research but clearly the development of induction algorithms must avoid
their excessive production.

3.  Properties of Induced Dependencies

Value sensitive and weak induced dependencies can be considered to differ from full induced dependencies on horizontal or
vertical grounds.

Value sensitive induced dependencies can be viewed as a horizontal weakening in that not all tuples adhere to the property and a
selection must be performed to create a relation that satisfies full induced dependence, (cf. [12]). 

Similarly weak induced dependencies weaken the property in a vertical manner in that the target attributes only adhere to the
dependency to a given confidence level.  Schematically this can be viewed as in Figure 1 with the shading indicating some
intuitive measure of usefulness.  Note this is different from the vertical fragmentation discussed in, for example [15], where the
two vertical fragments of a relation can be outer joined over the primary key to reform the relation.
Figure       1       -        Horizontal       and        Vertical

Weakening       in       Induced        Dependencies   
The inference axioms for Functional Dependencies as given by
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→- Y

e. Transitivity X →- Y and Y →- Z implies X →-

Z
furthermore

X →- Y and Y → Z implies X →-

Z
and

X → Y and Y →- Z implies X →-

Z

f. Pseudotransitivity X →- Y and YZ →- W

implies XZ →- W
furthermore

X →- Y and YZ → W implies XZ

→- W
and

X → Y and YZ →- W implies XZ

→- W

All the above also hold for value-sensitive induced dependencies as long as the same domain subset is used wherever an
attribute set is specified.  For instance with additivity:

X[D'x] →- Y[D'y] and X[D'x] →- Z[D'z]    implies X[D'x] →- Y[D'y]Z[D'z]

but

X[D'x] →- Y[D'y] and X[D''x] →- Z[D'z]   does not imply X[D'x] →- Y[D'y]Z[D'z]

nor X[D''x] →- Y[D'y]Z[D'z]

4.  Related Research

As stated earlier, the work of Han et al. [6] characterises induction rules in two ways.  Firstly, a rule is quantitative when a
measure of conformity to the rule is supplied.  Full Induced Dependencies are quantitative in that the measure of conformity to
the rule is unity.  Weak Induced Dependencies are either qualitative or quantitative depending on whether confidence values are
specified.

Secondly, a rule is characteristic if it applies to all data identified by some criteria.  Singularly, induced dependencies in all
forms as presented here are characteristic.  In addition, sets of value sensitive induced dependencies (for example, I9  and I10
in section 2.5) may be used to discriminate between sets of data and may thus be used for classification.  Furthermore, the
strength of the closed world assumption (CWA) may be such to allow a VSID to be implicitly classificatory in so far as they
could indicate a dependency that does not necessarily hold for the rest of the domain.

Work on the development of database induction algorithms includes Han et al. [5, 6] who present an algorithm based on
concept tree ascension that returns a generalised relation by aggregating on higher level concepts.  Flach [16] investigates a
learning algorithm that allows the induction of multi-valued dependencies from relational data.  Significantly, Flach relaxes the
CWA and allows the induction process to request negative examples as appropriate.  While the CWA is often of limited
validity, the ability to request confirmation of a candidate dependency is often limited also.

While there is no requirement for a concept hierarchy table (cf. [5]) it could be an effective method of shorthand for complex
VSID.  For instance, the VSID

ENR.Year[1989] Æ- ENR.Grade[PA,CR,DN,HD] I11

together with the concept hierarchy

{PA,CR,DN,HD} # Pass

would allow the VSID to be restated as:

ENR.Year[1989] →-  ENR.Grade[Pass] I12



Note that concept hierarchies can weaken the induced rule if not all lower level elements of the higher level concept are present
in the VSID.

5.  Conclusions and Further Research

This paper presents a formalisation of the concept of induced dependencies which makes implicit use of any predefined
functional dependencies.  This formalisation is then compared with existing work.

As well as the machine learning aspects of this work we also foresee conventional database management uses including:

i. the flagging of updates that violate induced dependencies as a warning of unusual data entry activity,
ii. performance improvement possibilities by better utilisation of available indexes, query optimisation and data

distribution.

Further work is being undertaken to extend the ideas above to cover temporal databases (defined in a manner similar that used
in [17-19] and thus enable temporal trends to be induced.  An aim of the project is to also handle schema evolution as
investigated in [20, 21].

References

[1] E.F. Codd, "A relational model for large shared data banks".  Commun. ACM. vol. 13, no. 6, pp. 377-387, 1970.

[2] D. Maier, The theory of relational databases. Computer Science Press: Rockville, 1983.

[3] E.M. Gold, "Language identification in the limit".  Inf. Control. vol. 10, pp. 447-474, 1967.

[4] D. Angluin and C.H. Smith, "Inductive inference: theory and methods".  ACM Comput. Surv. vol. 15, no. 3, pp. 237-
269, 1983.

[5] Y. Cai, N. Cercone and J. Han, "An attribute-oriented approach for learning classification rules from relational
databases", in Proc. Sixth IEEE International Conference on Data Engineering. Los Angeles, CA, IEEE Computer
Science Press, pp. 281-288, 1990.

[6] J. Han, Y. Cai and N. Cercone, "Discovery of quantitative rules from large databases", in Proc. Fifth International
Symposium on Methodologies for Intelligent Systems. Knoxville, TN, North Holland, pp. 157-165, 1990.

[7] P. Honeyman, "Testing satisfaction of functional dependencies".  J. Assoc. Comput. Mach. vol. 29, no. 3, pp. 668-677,
1982.

[8] B. Skyrms, Choice and chance, an introduction to inductive logic. Third edn., Wadsworth Publ.: Belmont, CA, USA,
1986.

[9] P. De Bra and J. Paredaens, "Horizontal decompositions for handling exceptions to functional dependencies", in Advances
in Database Theory II, Gallaire, H., Minker, J. and Nicolas, J.-M., (eds.), Plenum Press: New York, pp. 123-144, 1984.

[10] A.L. Furtado, "Horizontal decomposition to improve non-BCNF scheme".  SIGMOD Rec. vol. 12, no. 1, pp. 26-32,
1981.

[11] J. Paredaens, P. De Bra, M. Gyssens and D. Van Gucht, The structure of the relational database model. Vol. 17.
Springer-Verlag: Berlin, 1989.

[12] S. Ceri, M. Negri and G. Pelagatti, "Horizontal data partitioning in database design".  SIGMOD Rec. 1982.

[13] S. Ceri and G. Pelagatti, Distributed databases: principles and systems. McGraw-Hill: New York, 1984.

[14] P. De Bra and J. Paredaens, "Horizontal decompositions and their impact on query solving".  SIGMOD Rec. vol. 13, no.
1, pp. 46-50, 1982.

[15] R. Elmasri and S. Navathe, Fundamentals of database systems. Benjamin/Cummings: Redwood City, CA, 1989.

[16] P.A. Flach, "Inductive characterisation of database relations", in Proc. Fifth International Symposium on Methodologies
for Intelligent Systems. Knoxville, TN, North-Holland, Amsterdam, pp. 371-378, 1990.

[17] S. Jones, P. Mason and R. Stamper, "LEGOL 2.0: a relational specification language for complex rules".  Inf. Syst. vol.
4, no. 4, pp. 293–305, 1979.

[18] J. Ben–Zvi, "The time relational model". Ph.D. thesis, University of California, Los Angeles., 1982.

[19] R. Snodgrass, "The temporal query language TQUEL".  ACM Trans. Database Syst. vol. 12, no. 2, pp. 247–298, 1987.

[20] L.E. McKenzie and R.T. Snodgrass, "Schema evolution and the relational algebra".  Inf. Syst. vol. 15, no. 2, pp. 207-
232, 1990.



[21] J.F. Roddick, "Dynamically changing schemas within database models".  Aust. Comput. J. vol. 23, no. 3, pp. 105-109,
1991.


