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Abstract. There is much empirical evidence about the success of naive
Bayesian classification (NBC) in medical applications of attribute-based
machine learning. NBC assumes conditional independence between at-
tributes. In classification, such classifiers sum up the pieces of class-
related evidence from individual attributes, independently of other at-
tributes. The performance, however, deteriorates significantly when the
“interactions” between attributes become critical. We propose an ap-
proach to handling attribute interactions within the framework of “vot-
ing” classifiers, such as NBC. We propose an operational test for de-
tecting interactions in learning data, and a procedure that takes into
account the detected interactions in learning. This approach induces a
structuring of the domain of attributes, may lead to improved classifier’s
performance and may provide useful novel information for the domain
expert when interpreting the results of learning. We report on its ap-
plication in data analysis and model construction for the prediction of
clinical outcome in hip arthroplasty.

1 Introduction

The most common form of machine learning is attribute-based supervised in-
ductive learning. Given a set of instances, each of them described by the values
of the attributes and the class, we learn to predict the class of a new instance.
In this paper we consider this learning problem when both the attributes and
class are nominal. That is, the domains of the attributes and the class are dis-
crete and unordered. Since the class is nominal in our case, the prediction task
is classification.

Naive Bayes Classification (NBC) is a machine learning method, particularly
popular in medical applications. NBC assumes that the attributes are mutually
independent. Although in practice this assumption is not quite true, experi-
ence shows that the NBC approach in medical applications is effective and gives
relatively good classification accuracy in comparison with other, more elabo-
rate learning methods. Similar conclusions hold for logistic regression, another
classification learning method that approximates the target concept as if the
attributes were independent. The relative strength of these approaches comes
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precisely from the fact that they assume attribute independence, even when the
assumption is not completely true. The independence assumption licences the
classifier to collect the evidences about the class from individual attributes sep-
arately. So an attribute’s contribution of evidence about the class is determined
independently from other attributes. This makes the estimates of evidence from
given learning data more robust than in cases when attribute dependences are
taken into account. This increase in robustness is particularly important when
data is scarce, which is a common problem in medical applications. The evidence
from individual attributes can be estimated from larger data samples, whereas
the handling of attribute dependences leads to fragmentation of available data
and consequently to unreliable estimates of evidence. Often in practice these
unreliable estimates cause inferior performance of more sophisticated methods.
Consequently, more sophisticated methods (which do not assume independences)
often perform inferior to simple NBC or logistic regression.

So NBC often works well in practice, in particular in medical applications, as
long as the attributes are “sufficiently independent.” However, when attribute
dependences become critical, ignoring dependences leads to disastrous perfor-
mance. Methods like NBC that look at just one attribute at a time are in ma-
chine learning called “myopic.” Such methods compute evidence about the class
separately for each attribute (independently from other attributes), and then
simply “sum up” all these pieces of evidence. This “voting” does not have to be
the actual arithmetic sum (for example, it can be the product, that is the sum of
logarithms, as in NBC). But the important point is that the aggregation of pieces
of evidence coming from individual attributes does not depend on the relations
among the attributes. We will refer to such methods as “voting methods;” they
employ “voting classifiers.”

A well known example where the myopia of voting methods results in com-
plete failure, is the concept of exclusive OR: C = XOR(X, Y ), where C is a
Boolean class, and X and Y are Boolean attributes. Myopically looking at at-
tribute X alone provides no evidence about the value of C. The reason is that
the relation between X and C critically depends on Y . For Y = 0, C = X ; for
Y = 1, C 6= X . Similarly, Y alone fails. However, X and Y together perfectly
determine C. We say that there is a positive interaction between X and Y with
respect to C. In the case of positive interaction between X and Y with respect
to class C, the evidence from jointly X and Y about C is greater than the sum
of the evidence from X alone and evidence from Y alone.

The opposite may also happen, namely that the evidence from X and Y
jointly is worth less than the sum of the individual pieces of evidence. In such
cases we say that there is a negative interaction between X and Y w.r.t. C. A
simple example is when attribute Y is (essentially) a duplicate of X . For example,
the length of the diagonal of a square duplicates the side of the square. Similar
to positive interactions, voting classifiers are confused by negative interactions
as well.

In this paper we propose an approach to handling attribute interactions
within the framework of voting classifiers, such as Naive Bayes Classifier. We
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propose an operational test for detecting positive and negative interactions in
learning data, and a procedure for “resolving” the detected interactions when
learning a voting classifier. The key in resolving interaction is that the interact-
ing pairs of attributes are treated jointly, giving rise to new attributes, which is
similar to the idea of structured induction [1–3]. This approach induces an auto-
matic structuring of the domain of attributes. In addition to improved classifier
performance, it is hoped that such domain structuring also provides useful novel
information for the domain expert when interpreting the results of learning.

We apply our proposed approach to the medical problem of predicting the
success of hip arthroplasty in terms of Harris Hip Score (HHS; [4]). We also com-
pare the automatically induced attribute structure based on interaction analysis,
with the structure proposed by a medical expert for the same domain [5].

2 Attribute Interactions

Let us first define the concept of interaction among attributes formally. Let
there be a learning problem with the class C and attributes X1, X2, . . .. Under
conditions of noise or incomplete information, the attributes need not determine
the class values perfectly. Instead, they provide some “degree of evidence” for or
against particular class values. For example, given an attribute-value vector, the
degrees of evidence for all possible class values may be a probability distribution
over the class values given the attribute values.

Let the evidence function f(C, X1, X2, . . . , Xk) define a “chosen” true degree
of evidence for class C in the domain. The task of machine learning is to induce
an approximation to function f from learning data. In this sense, f is the target
concept for learning. In classification, f (or its approximation) would be used
as follows: if for given attribute values x1, x2, . . . , xk : f(c1, x1, x2, . . . , xk) >
f(c2, x1, . . . , xk), then the class c1 is more likely than c2.

We define the presence, or absence, of interactions among the attributes as
follows. If the evidence function can be written as a (“voting”) sum:

f(C, X1, X2, . . . , Xk) = g





∑

i=1,2,...,k

gi(C, Xi)



 (1)

for some functions g, and g1, g2, . . . , gk, then there is no interaction between the
attributes. Equation (1) requires that the joint evidence of all the attributes
can be essentially reduced to the sum of the pieces of evidence gi(C, Xi) from
individual attributes.

If, on the other hand, no such functions g, g1, g2, . . . , gk exist for which (1)
holds, then there are interactions among the attributes. The strength of inter-
actions IS can be defined as IS := f(C, X1, X2, . . . , Xk) − g (

∑

i gi(C, Xi)).
IS greater than some positive threshold would indicate a positive interaction,
and IS less than some negative threshold would indicate a negative interaction.
Positive interactions indicate that a holistic view of the attributes unveils new
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evidence. Negative interactions are caused by multiple attributes providing the
same evidence, which should get counted only once.

We will not refine this definition to make it applicable in a practical learning
setting. Instead, we propose a heuristic test for detecting positive and negative
interactions in the data, in the spirit of the above principled definition of inter-
actions. Interaction gain is based on the well-known idea of information gain.
Information gain of a single attribute X with the class C [6], also known as
mutual information between X and C, is defined as:

GainC(X) = I(X ; C) =
∑

x∈DX

∑

c∈DC

P (x, c) log
P (x, c)

P (x)P (c)
, (2)

Information gain can be regarded as a measure of the strength of a 2-way in-
teraction between an attribute X and the class C. In this spirit, we can generalize
it to 3-way interactions by introducing the interaction gain [7]:

IG3(XY C) := I(XY ; C) − I(X ; C) − I(Y ; C), (3)

We have joined the attributes X and Y into their Cartesian product XY . Inter-
action gain can be understood as the difference between the actual decrease in
entropy achieved by the joint attribute XY and the expected decrease in entropy
with the assumption of independence between attributes X and Y . The higher
the interaction gain, the more information was gained by joining the attributes
in the Cartesian product, in comparison with the information gained from single
attributes. When the interaction gain is negative, both X, and Y carry the same
evidence, which was consequently subtracted twice.

3 Attribute Interaction Analysis In Hip Arthroplasty

Domain

We have studied attribute interactions and the effect they have on performance
of the naive Bayesian classifier in the domain of prediction of patient’s long
term clinical status after hip arthroplasty. The particular problem domain was
chosen for two main reasons. First, the construction of a good predictive model
for hip endoprosthesis domain may provide the physician with a tool to better
plan the treatment after the operation — in this respect, discovery of inter-
esting attribute interactions is beneficial. Second, in our previous study [5] the
participating physician defined an attribute taxonomy for this domain in order
to construct a required concept hierarchy for the decision support model: this
provided grounds for comparison with the a taxonomy discovered by observing
attribute interactions from the data.

3.1 The Data

The data we have considered was gathered at Department of Traumatology of
University Clinical Center in Ljubljana from January 1988 to December 1996.
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For each of the 112 patients, the data records 28 attributes observed at the
time of or immediately after the operation. All attributes are nominal and most,
but not all, are binary (e.g., presence or absence of a complication). Patient’s
long-term clinical status was assessed in terms of Harris hip score [4] at least 18
months after the operation. Harris hip score gives an overall assessment of the
patient’s condition and is evaluated by a physician who considers, for example,
patient’s ability to walk and climb stairs, patient’s overall mobility and activity,
presence of pain, etc. The numerical Harris hip score in scale from 0 to 100 was
discretized into three classes: bad (up to 70, 43 patients), good (between 70 and
90, 34 patients) and excellent (above 90, 35 patients).

3.2 Interaction Gain Analysis

We first analyzed the hip arthroplasty data to determine the interaction gain
(3) between pairs of attributes. Results of these analysis are presented in Fig. 1,
which, for the presentation clarity, shows only the most positive (IG3 ≥ 0.039)
and the most negative interactions (IG3 < −0.007).

The domain expert first examined the graph with positive interactions; they
surprised her (she would not immediately think about these if she would be
required to name them), but could all justify them well. For instance, with her
knowledge or knowledge obtained from the literature, specific (bipolar) type of
endoprosthesis and short duration of operation significantly increases the chances
of a good outcome. Presence of neurological disease is a high risk factor only in
the presence of other complications during operation. It was harder for her to
understand the concept of negative interactions, but she could confirm that
the attributes related in this graph are indeed, as expected, correlated with one
another. In general, she found the graph with positive interactions more revealing
and interesting.
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Fig. 1. Graphs displaying the distinctly positive (the two subgraphs on the left), and
negative (the graph on the right) interactions. Each edge is labeled with the value of
IG3 for the pair of connected attributes.
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3.3 Induction of Attribute Structure

To further observe interactions in our domain, we used the hierarchical clustering
method ‘agnes’ [8]. Pairs of attributes that interact strongly with the class,
either positively or negatively, should appear close to one another, while those
which do interact should be placed further apart. They do not interact if they
are conditionally independent, which also happens when one of the attributes
is irrelevant. The dissimilarity function, which we express as a matrix D, was
obtained with the following formula:

D(A, B) =

{

|1/IG(ABC)| if |IG(ABC)| > 0.001,

1000 otherwise.
(4)
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Fig. 2. An attribute interaction dendrogram (left) illustrates which attributes inter-
act, positively or negatively, while the expert-defined concept structure (right) was
reproduced from [5].

In Fig. 2, we compared the attribute interaction dendrogram with an expert-
defined concept structure (attribute taxonomy) that was used as a skeleton for
decision support model in our previous study [5]. While there are some similar-
ities (like close relation between ability to stand and walk), the two hierarchies
are mostly dissimilar. The domain expert appears to have defined her structure
on the basis of medical (anatomical, physiological) taxonomy; this seems not to
correspond to attribute interactions, as we have defined them in this text.
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4 Construction of Classification Models

While the naive Bayesian classifiers cannot exploit the information hidden in a
positive interaction [9, 10], the attributes in negative interactions tend to confuse
their predictions [11]. The effects of negative interactions have not been studied
extensively, but provide explanation for benefits of feature selection procedures,
which are one way of eliminating this problem.

With resolving interactions, we refer to a procedure where the interacting
pairs of attributes are treated jointly, giving rise to new attributes which are
added to the data set. The best subset of attributes is then found using a feature
subset selection technique, and later used for construction of a target prediction
model. For feature subset selection, we used the greedy heuristic, driven by the
myopic information gain (2): only the n attributes with the highest information
gain were selected. For resolution of interactions we also used a greedy heuris-
tic, guided by the interaction gain (3): we introduced the Cartesian product
attributes only for the N attribute pairs with the highest interaction gain.

In our experimental evaluation, interaction gain scores were obtained from
considering the complete data set, new attributes were generated, and added into
the data set. In the second phase, the naive Bayesian classifier, was built using
the altered data set and evaluated at different sizes of the selected feature subset.
The ordering of the attributes for feature subset selection using information gain,
and the modeling using the subset were both performed on the learning data set,
but evaluated on the test set. The evaluation was performed using the leave-one-
out schema: for the data set containing l instances, we performed l iterations,
j = 1, 2, . . . , l, in which all instances except j-th were used for training, and the
resulting predictive model was tested on the j-th instance. We report average
performance statistics over all l iterations. All the experiments were performed
with the Orange toolkit [12].

To measure the performance of classification models we have used two error
measures. Error rate is the proportion of test cases where the classifier predicted
the wrong class, i.e., the class for which the classifier predicted the highest prob-
ability was not the true class of the test case. The second error measure, Brier

score, is usually used to assess the quality of weather forecasting models [13, 14],
and recently gaining attention in medicine [15]. It is better suited for evaluating
probabilistic classifiers because it measures the deviations from the actual to the
predicted outcome probabilities. As such, it is more sensitive than the error rate.
A learning method should attempt to minimize both the error rate and the Brier
score.

We have assessed how the inclusion of different number of newly constructed
and original attributes affects the prediction performance. Figure 3 illustrates
the search space for our particular domain, where the number n of attributes se-
lected is plotted on the horizontal and the number N of interactions resolved on
the vertical axis. The best choice of n and N can be determined with a wrapper
mechanism for model selection. We can observe several phenomena: increasing
the number of attributes in the feature subset does not increase the error rate
as much as it hurts the precision of probability estimates, as measured by the
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Fig. 3. Dependence of the Brier score and error rate on the feature subset size, n (hor-
izontal axis) and on the number of interactions resolved, N (vertical axis). Emphasized
are the areas of the best predictive accuracy, where Brier score is less than 0.2 and the
error rate less than 0.45.
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Fig. 4. Average Brier score and error rate as computed by leave-one-out and its de-
pendence on the number of attributes used in the model for N = 4 (solid line) and
N = 0 (dashed). For all measurements, the standard error is shown.

Brier score. Furthermore, there are diminishing returns to resolving an increasing
number of interactions, as illustrated in the contour diagrams in Fig. 3. Unnec-
essary interactions merely burden the feature subset selection mechanisms with
additional negative interactions, because attributes that arise out of interaction
resolution contain the information already provided by the original attributes.
Figure 4 presents the results in terms of Brier score and error rate with four
resolved interactions.

There are several islands of improved predictive accuracy, but the best ap-
pears to be the area with approximately 4 resolved interactions and 4 selected
attributes. Classification accuracy reaches its peak of 59% at the same number
of attributes used. This accuracy improves upon the accuracy of 56% obtained
in our previous study, where manually crafted features as proposed by domain
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experts were used in the naive Bayesian classifier [5]. Both are a substantial
improvement over models constructed from the original set of features, where
the accuracy of NBC with the original 28 attributes is 45%, and does not rise
beyond 54% even with the use of feature subset selection. The results in Table 1
show that three of the four constructed attributes were chosen in building of the
model. The table provides the set of important interactions in the data, where
an important increase in predictive accuracy can be seen as an assessment of the
interaction importance itself, given the data.

Table 1. Average information gain and feature selection rating for attributes for the
case N = 4, n = 4. The resolved interactions are emphasized.

Information Gain Attribute

0.118 luxation + injury operation time

0.116 diabetes + neurological disease

0.109 hospitalization duration + diabetes

0.094 pulmonary disease

5 Summary and Conclusions

We have defined interactions as deviations from the independence assumption
between attributes. Positive interactions imply conditional dependence of at-
tributes given the class; new evidence is unveiled if the positively interacting
attributes are treated jointly. Negative interactions imply mutual dependence of
attributes and duplication of evidence; we must be careful not to account for
the same evidence more than once. We have introduced interaction gain as a
heuristic estimate of the interaction magnitude and type for 3-way interactions
between a pair attributes and the class.

We have proposed a method for analysis and management of attribute in-
teractions in prognostic modeling. In an experimental evaluation on hip arthro-
plasty domain, we have obtained a number of promising and unexpected results.
Promising were those based on performance evaluation: resolution of positive
interactions yielded attributes that could improve the performance of predic-
tive model built by the naive Bayesian classification method. Promising but also
unexpected were the interactions themselves: we have observed that pairs of in-
teracting attributes proposed using our algorithm and induced from the data
were quite different from those obtained from expert-designed attribute taxon-
omy. Although the new attributes proposed by experts can constitute a very
valuable part of a background knowledge, and may significantly improve the
performance of predictive models (see [5]), other important attribute combina-
tions may be overlooked. The algorithms described in this paper may help the
domain experts to reveal them and, if found meaningful, include them in their
knowledge base.
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As any new method, the one proposed in this paper requires further eval-
uation on different problems and data sets. Beyond the sole test case reported
here, we did perform various other types of preliminary analysis [7]. They all
pointed to potential usefulness of the method, most particularly for feature sub-

set selection that is particularly tailored for methods such as the naive Bayes
and logistic regression, constructive induction where interaction gain can guide
the selection of appropriate attribute sets for which new features should be con-
structed, and for data analysis, where appropriate visualization techniques, such
as those presented in this paper, may help domain experts and data miners to
gain further insight into interplay of attributes, their role and importance in a
predictive model.
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