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Abstract:

In the feature subset selection problem, a learning algorithm is faced with
the problem of selecting a relevant subset of features upon which to focus its
attention, while ignoring the rest. To achieve the best possible performance
with a particular learning algorithm on a particular training set, a feature sub-
set selection method should consider how the algorithm and the training set
interact. We explore the relation between optimal feature subset selection and
relevance. The wrapper method searches for an optimal feature subset tailored
to a particular algorithm and a domain. We compare the wrapper approach to
induction without feature subset selection and to Relief, a filter approach to fea-
ture subset selection. Improvement in accuracy is achieved for some datasets for
the two families of induction algorithms used: decision trees and Naive-Bayes.
In addition, the feature subsets selected by the wrapper are significantly smaller
than the original subsets used by the learning algorithms, thus producing more
comprehensible models.
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1.1 INTRODUCTION

In supervised machine learning, an induction algorithm is typically presented
with a set of training instances, where each instance is described by a vector of
feature (or attribute) values and a class label. For example, in medical diag-
nosis problems the features might include the age, weight, and blood pressure
of a patient, and the class label might indicate whether or not a physician de-
termined that the patient was suffering from heart disease. The task of the
induction algorithm, or the inducer, is to induce from training data a classifier
that will be useful in classifying future cases. The classifier is a mapping from
the space of feature values to the set of class values.

In the feature subset selection problem, a learning algorithm is faced with the
problem of selecting some subset of features upon which to focus its attention,
while ignoring the rest. The idea behind the wrapper approach (John, Kohavi
and Pfleger, 1994; Kohavi and John, 1997), shown in Figure 1.1, is simple: the
induction algorithm is used as a black box. It is repeatedly run on the dataset
using various feature subsets. Some method is used to evaluate its performance
on each subset, and the feature subset with the highest evaluation is chosen as
the final set on which to run the induction algorithm. The resulting classifier
is then evaluated on an independent test set that was not used during the
search. Since the typical goal of supervised learning algorithms is to maximize
classification accuracy on an unseen test set, we use accuracy as our metric in
guiding the feature subset selection.

Practical machine learning algorithms—decision tree algorithms such as C4.5
(Quinlan, 1993) and CART (Breiman et al., 1984), and instance-based algo-
rithms such as IBL (Aha et al., 1991)—are known to degrade in prediction
accuracy when trained on data containing superfluous features. Algorithms
such as Naive-Bayes (Duda and Hart, 1973; Good, 1965; Domingos and Paz-
zani, 1997) are robust with respect to irrelevant features, but their performance
degrades when correlated (even if relevant) features are added. John (1997)
shows examples where adding a single irrelevant feature to a credit-approval or
diabetes dataset degrades the performance of C4.5 by over 5%. The problem
of feature subset selection is that of finding a subset of the original features of
a dataset, such that an induction algorithm that is run on data containing only
these features generates a classifier with the highest possible accuracy.

From a purely theoretical standpoint, the question of which features to use
may not be of much interest. A Bayes rule predicts the most probable class
for a given instance, based on the full joint probability distribution over the
features and the class. The Bayes rule is monotonic, :.e., adding features cannot
decrease accuracy, so subset selection is useless.

In practical learning scenarios, however, we are faced with two problems.
First, the learning algorithms are not given access to the underlying distribu-
tion; rather, they are usually given a relatively small training set. Second, even
quite similar algorithms may incorporate different heuristics to aid in quickly
building models of the training data—finding the smallest model consistent
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The induction algorithm itself is used as a “black box” by the subset selection algorithm.

Figure 1.1 The wrapper approach to feature subset selection

with the data is NP-hard in many cases (Hyafil and Rivest, 1976; Blum and
Rivest, 1992).

We define an optimal feature subset with respect to a particular induction
algorithm and dataset, taking into account the algorithm’s biases and their
interaction with the training sample:

Definition 1

Guwen an inducer I, and a training dataset D with features X1, X5, ..., Xy, an
optimal feature subset, Xopt’ 1s the subset of the features that marimizes
the accuracy of the induced classifier C = (D).

Thus, by definition, to get the highest possible accuracy, the best subset that
a feature subset selection algorithm can select is an optimal feature subset.

This chapter is organized as follows. In Section 1.2, we present definitions
of relevance and distinguish between relevance and optimality. In Section 1.3
we describe filter methods of feature subset selection. Section 1.4 describes an
algorithm based on the wrapper approach, comparing the algorithm empirically
with a filter algorithm. Related and future work are discussed in Sections 1.5
and 1.6, and we present our conclusions in Section 1.7.

1.2 RELEVANCE OF FEATURES

In this section, we define two degrees of relevance: weak and strong. These
and several earlier definitions of relevance are reviewed in Kohavi and John
(1997). We define relevance in terms of a Bayes rule. A feature X is strongly
relevant if removal of X alone will result in performance deterioration of an
optimal Bayes rule. A feature X is weakly relevant if it is not strongly
relevant, but in some contexts may contribute to prediction accuracy of an
optimal Bayes rule. A feature is relevant if it is either weakly relevant or
strongly relevant; otherwise, it is irrelevant.

Definition 2 (Strong relevance)
Let S be the set of all features, and let S; be S—{X;}. A feature X; is strongly
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Figure 1.2 The feature filter approach, in which the features are filtered independently of
the induction algorithm.

relevant iff there exist values x;, y, and s; for which p(X; = 2;,S; = s;) > 0
such that
p(Y=y | Xi==2;,S=s)#pY =y | Si=s) .

Definition 3 (Weak relevance)
A feature X; is weakly relevant iff it is not strongly relevant, and there exists

a subset of features S of S; for which there exists some x;, y, and s; with
p(X; =z, S} = 5}) > 0 such that

p(VY=y| Xi=w;,Si=s;)#p(Y =y | Si=s5i) .

For a Bayes rule, the optimal set of features must include all strongly rele-
vant features and possibly some weakly relevant features. However, classifiers
induced from real data do not have such nice theoretical properties. Relevance
of a feature does not imply that it is in the optimal feature subset for a particu-
lar induction algorithm and, somewhat surprisingly, irrelevance does not imply
that it should not be in the optimal feature subset (Kohavi and John, 1997).

Example 1 (Optimality does not imply relevance)

A feature that always takes the value one is irrelevant by any reasonable defi-
nition of relevance we can think of. But consider a limited Perceptron classifier
(Rosenblatt, 1958). Tt has a weight associated with each feature, and it classi-
fies instances based upon whether the linear combination of weights and feature
values is greater than zero. By adding the feature that is always set to one, the
limited Perceptron becomes equivalent in representational power to the regular
Perceptron (which has an additional parameter allowing an arbitrary threshold,
not just zero). However, removal of all irrelevant features would remove that
crucial feature.

Although relevance and optimality are not equivalent concepts, the idea that
they must be related empirically motivates a set of feature selection methods
that measure the relevance of a feature from the data alone.

1.3 THE FILTER APPROACH

Whereas the wrapper approach attempts to identify the best feature subset to
use with a particular algorithm, the filter approach, which is more common in
statistics, attempts to assess the merits of features from the data alone. The
filter approach, shown in Figure 1.2, selects features using a preprocessing step,
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Figure 1.3 A view of feature relevance.

based on the training data. In this section we describe three algorithms from
the machine learning literature: FOCUS, Relief, and tree filters.

FOCUS (Almuallim and Dietterich, 1991; Almuallim and Dietterich, 1994),
is a feature selection algorithm for noise-free Boolean domains. It exhaustively
examines all subsets of features, selecting the minimal subset of features suffi-
cient to determine the label value for all instances in the training set.

The Relief algorithm (Kira and Rendell, 1992; Kononenko, 1994) assigns a
“relevance” weight to each feature, which is meant to denote the relevance of
the feature to the target concept. The Relief algorithm attempts to find all
relevant features. In real domains, many features have high correlations with
the label, and thus many are weakly relevant, and will not be removed by
Relief. Kohavi and John (1997) discuss early experiments with Relief and the
variant we used, Relieved-F. Relief searches for all the relevant features (both
weak and strong).

Tree filters (Cardie, 1993) use a decision tree algorithm to select a subset of
features, typically for a nearest-neighbor algorithm. Although they work well
for some datasets, they may select bad feature subsets because features that
are good for decision trees are not necessarily useful for nearest-neighbor. Also,
due to fragmentation, the tree may fail to include relevant features.

Filter approaches to feature subset selection do not take into account the
biases of the induction algorithms—they select feature subsets that are inde-
pendent of the induction algorithms. In some cases, measures can be devised
that are algorithm-specific, and these may be computed efficiently. For ex-
ample, measures such as Mallow’s C, (Mallows, 1973) and Prediction Sum of
Squares (Neter et al., 1990) have been devised specifically for linear regression.
However, these tailored measures would not work well with other algorithms,
such as Naive-Bayes.

Filter approaches can be easily fooled—the Corral artificial dataset from
John et al., (1994) is one example. There are 32 instances with six Boolean
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features plus a Boolean class. The target concept is (A0 A A1) v (B0 A Bl).
A feature named “irrelevant” is uniformly random, and another feature “corre-
lated” matches the class label 75% of the time. Greedy strategies for building
decision trees pick the “correlated” feature as it seems best by all known selec-
tion criteria. After the “wrong” root split, the instances are fragmented and
there are not enough instances at each subtree to describe the correct concept.
Although the “correlated” feature is weakly relevant, it is harmful to decision
trees. When this feature is removed, the optimal tree is found.

Even a filter that perfectly selected strongly and weakly relevant features
would not always work well with Naive-Bayes for example, because in some
cases the performance of Naive-Bayes improves with the removal of relevant
features. These examples and the discussion of relevance versus optimality
above suggest that a feature selection method should take the induction algo-
rithm into account.

1.4 THE WRAPPER APPROACH

In the wrapper approach, shown in Figure 1.1, the feature subset selection is
done using the induction algorithm as a black box (i.e., no knowledge of the
algorithm is needed, just the interface). The feature subset selection algorithm
conducts a search for a good subset using the induction algorithm itself as part
of the evaluation function. The accuracy of the induced classifiers is estimated
using accuracy estimation techniques (Kohavi, 1995b) The problem we are
investigating is that of state space search.

The wrapper approach conducts a search in the space of possible parameters.
A search requires a state space, an initial state, a termination condition, and a
search engine (Ginsberg, 1993). Below we describe a specific instantiation of
the wrapper approach using best-first search.

The search space organization that we chose is such that each state represents
a feature subset. For n features, there are n bits in each state, and each bit
indicates whether a feature is present (1) or absent (0). Operators determine
the connectivity between the states, and we have chosen to use operators that
add or delete a single feature from a state, corresponding to the search space
commonly used in stepwise methods in Statistics. Figure 1.4 shows such the
state space and operators for a four-feature problem. The size of the search
space for n features is O(2"), so it is impractical to search the whole space
exhaustively, unless n 1s small.

The goal of the search is to find the state with the highest evaluation, using
a heuristic function to guide it. Since we do not know the actual accuracy of
the induced classifier, we use accuracy estimation as both the heuristic function
and the evaluation function. The evaluation function we use is five-fold cross-
validation, repeated multiple times. The number of repetitions is determined on
the fly by looking at the standard deviation of the accuracy estimate, assuming
they are independent. If the standard deviation of the accuracy estimate is
above 1% and five cross-validations have not been executed, we execute another
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Each node is connected to nodes that have one feature deleted or added. The dotted arrows
are an enhancement that is explained in Section 1.4.2.

Figure 1.4 The state space search for feature subset selection

cross-validation run. While this is only a heuristic, it seems to work well in
practice and avoids multiple cross-validation runs for large datasets.

1.4.1 A Best-first Search Engine

Best-first search (Ginsberg, 1993) is a robust search method. The idea is to
select the most promising node we have generated so far that has not already
been expanded. The algorithm varies slightly from the standard version because
there is no explicit goal condition in our problem. Best-first search usually
terminates upon reaching the goal. Our problem is an optimization problem,
so the search can be stopped at any point and the best solution found so far
can be returned (theoretically improving over time), thus making it an anytime
algorithm. In practice, we must stop the run at some stage, and we use what
we call a stale search: if we have not found an improved node in the last %
expansions, we terminate the search. An improved node is defined as a node
with an accuracy estimation at least € higher than the best one found so far.
In the following experiments, k was set to five and epsilon was 0.1%.

While best-first search is a more thorough search technique than hill-
climbing, it is not obvious that it is better in practice because of the bias-
variance tradeoff (Geman et al., 1992; Kohavi and Wolpert, 1996). Tt is possible
that a more thorough search will increase variance and thus reduce accuracy.
The detailed study in Kohavi and John (1997) did show that it was better for
the datasets studied.
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1.4.2 The State Space: Compound Operators

In the previous section, we looked at the search engine. In this section, we
look at the topology of the state space and dynamically modify it based on
accuracy estimation results. The state space is commonly organized such that
each node represents a feature subset, and each operator represents the addition
or deletion of a feature. The main problem with this organization is that the
search must expand (i.e., generate successors of) every node on the path from
the initial feature subset to the best feature subset. This section introduces a
new way to change the search space topology by creating dynamic operators
that directly connect a node to nodes considered promising given the evaluation
of the node’s children.

The motivation for compound operators is that the feature subsets can be
partitioned into strongly relevant, weakly relevant, and irrelevant features. In
practice, an optimal feature subset is likely to contain only relevant features
(strongly and weakly relevant features). A backward elimination search starting
from the full set of features that removes one feature at a time after expanding
all children reachable using one operator will have to expand all the children
of each node before removing a single feature. If there are i irrelevant features
and f features, (7 - f) nodes must be evaluated. Similar reasoning applies to
forward selection search starting from the empty set of features. In domains
where feature subset selection might be most useful, there are many features
but such a search may be prohibitively expensive.

Compound operators are operators that are dynamically created after the
standard set of children (created by the add and delete operators) has been
evaluated. They are used for a single node expansion and then discarded.
Intuitively, there is more information in the evaluation of the children than
just the identification of the node with the maximum evaluation. Compound
operators combine operators that led to the best children into a single dynamic
operator. Figure 1.4 depicts a possible set of compound operators for forward
selection. Formally, if we rank the operators by the estimated accuracy of the
children, then we can define the compound operator ¢; to be the combination
of the best 7 + 1 operators. For example, the first compound operator will
combine the best two operators. If the best two operators each added a feature,
then the first compound operator will add both; if one operator added and
one operator deleted, then we try to do both in one operation. The compound
operators are applied to the parent, thus creating children nodes that are farther
away in the state space. Each compound node is evaluated and the generation
of compound operators continues as long as the estimated accuracy of the
compound nodes improves.

Compound operators improve the search by finding nodes with higher ac-
curacy faster. The main advantage of compound operators is that they make
backward feature subset selection computationally feasible. Without compound
operators, the number of features could only decrease or increase by one at ev-
ery node expansion. For example, in the DNA dataset with C4.5, only 3555
nodes were evaluated in a best-first backward feature subset selection with com-
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Table 1.1 A comparison of C4.5 with no feature selection, with the Relieved-F filter (RLF),
and with the wrapper using backward best-first search with compound operators (BFS).

C4.5-RLF C4.5-BFS C4.5-BFS

Dataset C4.5 C4.5-RLF C4.5-BFS vs C4.5 vs C4.5 vs C4.5-RLF
breast cancer 95.424 0.7 94.424 1.1 95.284+ 0.6 0.14 0.41 0.83
cleve 72.30+ 2.2 74.95+ 3.1 77.88%+ 3.2 0.84 0.98 0.82
crx 85.944 1.4 84.06+ 1.2 85.80+ 1.3 0.07 0.46 0.91
DNA 92.66+ 0.8 92.75+ 0.8 94.444+ 0.7 0.54 0.99 0.99
horse-colic 85.05+ 1.2 85.88+ 1.0 84.77+ 1.3 0.77 0.41 0.17
Pima 71.60+ 1.9 64.18+ 2.3 70.18+ 1.3 0.00 0.19 1.00
sick-euthyroid 97.73+ 0.5 97.73+ 0.5 97.914+ 0.4 0.50 0.65 0.65
soybean-large 91.35+ 1.6 91.35+ 1.6 91.934+ 1.3 0.50 0.65 0.65
Corral 81.254+ 3.5 81.25+ 3.5 81.25+ 3.5 0.50 0.50 0.50
m-of-n-3-7-10 85.55+ 1.1 91.414+ 0.9 85.16+ 1.1 1.00 0.36 0.00
Monk1 75.694 2.1 88.89+ 1.5 88.89+ 1.5 1.00 1.00 0.50
Monk2-local 70.37+ 2.2 88.43+ 1.5 88.43+ 1.5 1.00 1.00 0.50
Monk2 65.05+ 2.3 67.13+ 2.3 67.13+ 2.3 0.82 0.82 0.50
Monk3 97.224 0.8 97.224+ 0.8 97.224+ 0.8 0.50 0.50 0.50
Average real: 86.51 85.67 87.27

Average artif. 79.19 85.72 84.68

The p-val columns indicates the probability that the top algorithm is improving over the
lower algorithm.

pound operators, and a subset of 12 features was selected. Without compound
operators, the algorithm would have to expand (180 — 12) - 180 = 30, 240 nodes
just to get to this feature subset.

Backward feature subset selection is still a very slow technique compared
with forward feature subset selection. Compared to the original algorithm,
wrapper runs are about two to three orders of magnitude slower. For example,
running C4.5 on the DNA dataset takes about 1.5 minutes. The wrapper
approach has to run C4.5 five times for every node that is evaluated in the
state space and in DNA there are thousands of nodes.

1.4.3 Experimental Comparison

Since C4.5 1s an algorithm that performs well on a variety of real databases,
we might expect 1t to be difficult to improve upon its performance using fea-
ture selection. Table 1.1 shows that this is the case: overall, the accuracy
on real datasets actually decreased when using Relieved-F, but the accuracy
slightly increased using the wrapper (a 5.5% relative reduction in error). Note
however that Relieved-F did perform well on some artificial databases, all of
which (except for Corral) contain only strongly relevant and totally irrelevant
attributes. On three artificial datasets, Relieved-F was significantly better than
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Table 1.2 A comparison of Naive-Bayes (NB) with no feature selection, with the Relieved-

F filter (RLF), and with the wrapper using backward best-first search with compound oper-
ators (BFS).

NB-RLF NB-BFS NB-BFS

Dataset NB NB-RLF NB-BFS vsNB vs NB vs NB-RLF
breast cancer 97.00+ 0.5 95.14+ 1.3 96.00+ 0.6 0.03 0.04 0.80
cleve 82.884+ 2.3 82.53% 2.4 82.56+ 2.5 0.44 0.45 0.50
crx 87.10+ 0.8 85.514+ 0.8 84.78+ 0.8 0.02 0.00 0.18
DNA 93.344 0.7 93.254+ 0.7 96.12+ 0.6 0.45 1.00 1.00
horse-colic 79.86+ 2.6 80.95+ 2.3 82.33%+ 1.3 0.67 0.89 0.77
Pima 75.90+ 1.8 64.57+ 2.4 76.03%+ 1.6 0.00 0.53 1.00
sick-euthyroid 95.644+ 0.6 95.644+ 0.6 97.35+ 0.5 0.50 1.00 1.00
soybean-large 91.80+ 1.2 91.654+ 1.2 94.294 0.9 0.45 0.99 0.99
Corral 90.624+ 2.6 90.624+ 2.6 90.62+ 2.6 0.50 0.50 0.50
m-of-n-3-7-10 86.434+ 1.1 85.94+ 1.1 87.50+ 1.0 0.33 0.85 0.93
Monk1 71.30+ 2.2 72.224 2.2 72.224 2.2 0.66 0.66 0.50
Monk2-local 60.65+ 2.4 63.43+ 2.3 67.13+ 2.3 0.88 1.00 0.95
Monk2 61.57+ 2.3 63.43+ 2.3 67.13+ 2.3 0.79 0.99 0.95
Monk3 97.224 0.8 97.224+ 0.8 97.22+ 0.8 0.50 0.50 0.50
Average real: 87.94 86.16 88.68

Average artif. 77.96 78.81 80.30

The p-val columns indicates the probability that the top algorithm is improving over the
lower algorithm.

plain C4.5 at the 99% confidence level. On the real datasets, where rele-
vance is ill-determined, Relieved-F often did worse than plain C4.5: on one
dataset its performance was significantly worse at the 99% confidence level,
and in no case was its performance better at even the 90% confidence level.
The wrapper algorithm did significantly better than plain C4.5 on two real
databases and two artificial databases, and was never significantly worse. Note
that the most significant improvement on a real database was on the one real
dataset with many features: DNA. Relieved-F was outperformed by the wrap-
per significantly on two real datasets, but it outperformed the wrapper on the
m-of-n-3-7-10 dataset.

On the Corral dataset, the wrapper selected the correct features {A1, A2, BI,
B2} as the best node early in the search, but later settled on only the features
Al and A2, which gave better cross-validation accuracy. The training set is
very small (32 instances), so the problem was that even though the wrapper
gave the ideal feature set to C4.5, it built the correct tree (100% accurate) but
then pruned it back because according to its pruning criterion the training set
data was insufficient to warrant such a large tree.

Perhaps surprisingly, the Naive-Bayes algorithm turned out to be more dif-
ficult to improve using feature selection (Table 1.2). Both the filter and wrap-
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Table 1.3 The number of features in each dataset, the number selected by Relieved-F, the
number used by the plain versions of the algorithms, and the number used by the wrapped
versions using backward best-first search with compound operators (BFS).

Dataset All RLF C4.5 C4.5-BFS NB-BFS ID3  ID3-BFS

breast cancer 10 5.7 7.0 3.9 5.9 9.1 5.3
cleve 13 10.5 9.1 5.3 7.9 11.4 4.6
crx 15 11.5 9.9 7.7 9.1 13.6 7.7
DNA 180 178 46 12 48 72 36
horse-colic 22 18.2 5.5 4.3 6.1 17.4 7.2
Pima 8 1.2 8.0 4.8 4.4 8.0 5.7
sick-euthyroid 25 24 4 3 3 14 4
soybean-large 35 34.8 22.0 17.1 16.7 25.8 17.7
Corral 6 5 4 2 5 4 4
m-of-n-3-7-10 10 7 9 6 7 10 7
Monk1 6 3 5 3 4 6 3
Monk2-local 17 8 12 6 5 14 6
Monk?2 6 4 6 0 0 6 3
Monk3 6 3 2 2 2 6 2
Average 30% 37% 46% 28% 6% 19%
Reduction vs. Al vs. Al vs. RLF vs. RLF wvs. All vs. 1D3

per approaches significantly degraded performance on the breast cancer and
crx databases. The filter caused significantly worse performance in one other
dataset, Pima diabetes, and never significantly improved on plain Naive-Bayes,
even on the artificial datasets. This is partly due to the fact that the severely
restricted hypothesis space of Naive-Bayes prevents it from doing well on the
artificial problems (except for Monk3), and partly because Naive-Bayes’ accu-
racy is hurt more by conditional dependence between features than the presence
of irrelevant features.

In contrast, the wrapper approach significantly improved performance on five
databases over the plain Naive-Bayes accuracy. In the Monk2 dataset it did
so by discarding all features! Because the conditional independence assump-
tion is violated, one actually obtains better performance with Naive-Bayes by
throwing out all features and using only the marginal probability distribution
over the classes (i.e., always predict the majority class). The wrapper approach
significantly improved over the filter in six cases, and was never significantly
outperformed by the filter approach.

Results for ID3 are detailed in Kohavi and John (1997). The filter ap-
proach significantly degraded performance on one real dataset but significantly
improved all of the artificial datasets except for Monk2, as did the wrapper
approach.
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We have focused only on accuracy above, so other criteria merit some con-
sideration, such as misclassification costs or model complexity. First, the wrap-
per method extends directly to minimizing misclassification cost. Most Irvine
datasets do not include cost information and so accuracy is a natural perfor-
mance metric, but one can trivially use a cost function instead of accuracy
as the evaluation function for the wrapper. For filter approaches, adapting to
misclassification costs is an open research topic. Second, we should compare
the number of features selected by the filter and wrapper. Table 1.3 shows
the number of features in each dataset, the number selected by the Relieved-F
filter (note that since the filter is independent of the induction algorithm, it pre-
scribes the same set of features whether using ID3, C4.5, or Naive-Bayes), and
the number selected by the plain versions of the algorithms and their wrapper-
enhanced versions. (Plain Naive-Bayes always uses all features, so it does not
have its own column.) The average reduction column shows that the wrapper
reduces the number of features used significantly more than Relieved-F.

In summary, feature subset selection using the wrapper approach signifi-
cantly improves ID3, C4.5 and Naive-Bayes on some of the datasets tested. On
the real datasets, the wrapper approach is clearly superior to the filter method.
Perhaps the most surprising result is how well Naive-Bayes performs on real
datasets once discretization and feature subset selection are performed. Some
explanations for the apparently high accuracy of Naive-Bayes even when the
independence assumptions are violated, are given in Domingos and Pazzani
(1997). However, we can see that in some real-world domains such as DNA,
the feature selection step is important to improve performance.

1.4.4 Overfitting

An induction algorithm overfits the dataset if it models the training data too
well and its predictions are poor. An example of an over-specialized hypothesis,
or classifier, is a lookup table on all the features. Overfitting is closely related
to the bias-variance tradeoff (Kohavi and Wolpert, 1996; Geman et al., 1992;
Breiman et al., 1984): if the algorithm fits the data too well, the variance term
is large, and hence the overall error is increased.

Most accuracy estimation methods, including cross-validation, evaluate the
predictive power of a given hypothesis over a feature subset by setting aside
instances (holdout sets) that are not shown to the induction algorithm and
using them to assess the predictive ability of the induced hypothesis. A search
algorithm that explores a large portion of the space and that is guided by
the accuracy estimates can choose a bad feature subset: a subset with a high
accuracy estimate but poor predictive power.

Overuse of the accuracy estimates in feature subset selection may cause over-
fitting in the feature-subset space. Because there are so many feature subsets,
it is likely that one of them leads to a hypothesis that has high predictive ac-
curacy for the cross-validation holdout sets. A good example of overfitting can
be shown using a no-information dataset where the features and the label are
binary and completely random. When run on a small sample of 100 instances,
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the best-first search found a feature subset with estimated accuracy of 76%
(26% optimistic) after 300 node expansions, illustrating the problem of over-
searching leading to subsets with high estimated accuracy, but not necessarily
high real accuracy Although the theoretical problem exists, our experiments
with the wrapper approach indicate that overfitting is mainly a problem when
the number of instances is small (Kohavi and Sommerfield, 1995). Moreover,
even if the estimates are biased, the algorithm may still choose the correct
feature subsets because it is the relative accuracy that matters most.

1.5 RELATED WORK

The pattern recognition and statistics literature offers many filter approaches
for feature subset selection (Devijver and Kittler, 1982; Neter et al., 1990).
Sequential backward elimination was introduced by Marill and Green (1963).
Most machine learning induction algorithms do not obey the monotonic restric-
tions that underlie much of the early work in statistics and pattern recognition,
and they are applied to databases with a large number of features, so they re-
quire special heuristic methods.

More recent work in feature selection in the machine learning community
includes Langley (1994), which reviews feature subset selection methods in
machine learning and contrasted the wrapper and filter approaches. A filter
approach by Koller and Sahami (1996) based on cross-entropy seems to work
well in practice. Turney (1996) defines primary and contertual features, which
are related to but different from our ideas of strong and weak relevance.

The idea of wrapping around induction algorithms appeared several times
in the literature without the explicit name “wrapper approach.” The closest
formulation is the Search of the Bias Space approach described in Provost and
Buchanan (1995). Moore and Lee (1994) describe an algorithm for feature
subset selection that uses a search method motivated by genetic algorithms with
leave-one-out cross-validation. Using a clever trick, instead of fully evaluating
each node in their search space, they perform partial evaluations of all frontier
nodes in parallel in a “race,” until one node becomes a clear winner.

Since the introduction of the wrapper approach (John et al., 1994), several
authors have experimented with it in various contexts. Langley and Sage (1994)
used the wrapper approach to select features for Naive-Bayes. Pazzani (1995)
joined features (created super-features that compound others) for Naive-Bayes
using the wrapper approach and showed that it indeed finds correct combi-
nations when features interact. Singh and Provan (1995) used the wrapper
approach to select features for Bayesian networks and showed significant im-
provements over the original K2 algorithm. Kohavi and John (1997) describe
the wrapper with other search methods and as search using probabilistic esti-
mates.

The wrapper idea has been used in several contexts in addition to feature
selection. In other work, we have applied the wrapper approach to parameter
tuning (specifically, setting the parameters of C4.5 for maximal performance)
in Kohavi and John (1995). Brunk, Kelly and Kohavi (1997) describe a com-
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mercial data mining system, MineSet, that includes the wrapper algorithm for
feature subset selection. Atkeson (1991) used leave-one-out cross-validation
to search a multidimensional real-valued space which includes feature weights
in addition to other parameters for local learning, similar to the generalized
memory-based learning approach (Moore et al., 1992). Skalak (1994) uses the
wrapper approach for selecting a prototype subset to use with nearest-neighbor,
in addition to feature selection—an interesting example of choosing training in-
stances as opposed to features.

One might consider the wrapper methods in a larger class of methods that
involve running an induction algorithm multiple times to get better results.
This class would include ensemble methods such as bagging, boosting, and
stacking (cf. Dietterich, 1998). The question arises whether, for a given amount
of computation, it would be better to use an ensemble method than a wrapper
for feature subset selection. Generally, ensembles produce high accuracy models
that are much more complex than a single model produced by one run of an
inducer. In contrast, the model produced by running an inducer on the feature
subset selected by the wrapper will usually be even simpler than the model
produced by the inducer without subset selection. So, if interpretability of the
final model is important, using the wrapper for subset selection might be a
better choice.

1.6 FUTURE WORK

Many variations and extensions of the current work are possible. In this and
previous papers, we have investigated hill-climbing and best-first search engines,
starting with either the full or empty subset. Other search methods or initial
states might lead to better candidate subsets. The algorithm described in
this paper explores one general area of the search space heavily when it is
found to be good. It might be worthwhile to introduce some diversity into the
search by restarting at random points. Exploring the search space more fully
could magnify the problems with overfitting, as discussed above. Strategies for
evaluating promising states more fully, by doing extra cross-validation runs or
possibly using another accuracy estimation method altogether, might improve
the results.

Both of these extensions—considering more nodes in the search space, and
evaluating candidate nodes more fully—will obviously increase the running time
of the wrapper, which can already be very slow, so another area for future work
would be runtime performance enhancements. A method similar to Moore and
Lee’s races would allow the wrapper to waste less time evaluating unpromising
nodes. For larger datasets, it is possible to use cheaper accuracy estimation
methods, such as holdout, or decrease the number of folds. Even if we continue
to do a full cross-validation on every candidate subset, some inducers allow in-
cremental addition and deletion of instances, leading to the possibility of doing
incremental cross-validation as suggested in Kohavi (1995), thus drastically re-
ducing the running time. The wrapper approach is also very easy to parallelize.
In a node expansion, all children can be evaluated in parallel, which will cut
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the running time by a factor bounded by the number of attributes (assuming
enough processors are available).

1.7 CONCLUSION

We have described the feature subset selection problem in supervised learning,
which involves identifying the relevant or useful features in a dataset and giving
only that subset to the learning algorithm. We have investigated the relevance
and irrelevance of features, and defined two degrees of relevance: weak and
strong. We have then shown that these definitions are mainly useful with re-
spect to a Bayes optimal rule, but that in practice one should look for optimal
features with respect to the specific learning algorithm and training set at hand.
Such optimal features do not necessarily correspond to relevant features (either
weak or strong). The optimal features depend on the specific biases and heuris-
tics of the learning algorithm, and hence the wrapper approach naturally fits
with this definition. Feature relevance helped motivate compound operators,
which work well in practice and are currently the only practical way to conduct
backward searches for feature subsets using the wrapper approach when the
datasets have many features.

We compared Relieved-F, a filter algorithm, and our wrapper algorithm on
two different families of induction algorithms: decision trees and Naive-Bayes.
Significant performance improvement is achieved for both on some datasets.
For the DNA dataset, the wrapper approach using Naive-Bayes reduced the
error rate from 6.1% to 3.9% (a relative error reduction of 36%), making it the
best induction algorithm for this problem out of all the methods used in the
StatLog experiments (Taylor et al., 1994). One of the more surprising results
was how well Naive-Bayes performed overall: Naive-Bayes outperforms C4.5
(with and without feature selection) on the real datasets. On average, the
performance using feature subset selection improved both algorithms.

With both C4.5 and Naive-Bayes, Relieved-F degraded the average accu-
racy on real datasets, whereas the wrapper improved accuracy. Both feature
selection algorithms improved average accuracy on the artificial datasets. The
wrapper algorithm’s accuracy was significantly higher than Relieved-F’s in eight
cases, and significantly worse on only one. Relieved-F significantly improved
upon the plain inducers in three cases but was significantly worse in four. The
wrapper was significantly better than the plain inducers in nine cases, and
worse on only two. The wrapper reduced the number of features significantly
more than the filter.

These results support our claim that subset selection can improve accuracy,
and that a wrapper method should be preferable to a filter. However, we have
also shown some problems with the wrapper approach, namely overfitting and
the large amounts of CPU time required.
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