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LSIIT UMR 7005 CNRS-Université Louis Pasteur, Pôle API, Bd Brant, 67400 Illkirch, France

Peter Flach PETER.FLACH@BRISTOL.AC.UK

Department of Computer Science, University of Bristol, Woodland Road, Bristol BS8 1UB, United Kingdom

Abstract
The probability estimates of a naive Bayes clas-
sifier are inaccurate if some of its underlying in-
dependence assumptions are violated. The deci-
sion criterion for using these estimates for classi-
fication therefore has to be learned from the data.
This paper proposes the use of ROC curves for
this purpose. For two classes, the algorithm is
a simple adaptation of the algorithm for tracing
a ROC curve by sorting the instances according
to their predicted probability of being positive.
As there is no obvious way to upgrade this algo-
rithm to the multi-class case, we propose a hill-
climbing approach which adjusts the weights for
each class in a pre-defined order. Experiments
on a wide range of datasets show the proposed
method leads to significant improvements over
the naive Bayes classifier’s accuracy. Finally,
we discuss an method to find the global opti-
mum, and show how its computational complex-
ity would make it untractable.

1. Introduction

The naive Bayes classifier has the seemingly paradoxical
property that, while the assumption of conditional inde-
pendence of the attributes is violated in many domains, the
predictions derived from its probability estimates are often
fairly accurate. The paradox can be resolved by noting that
in order to get good classification performance it is suffi-
cient that the posterior class probability estimates are well-
separated. It doesn’t matter that the posterior estimates are
uncalibrated, as long as positive instances tend to be as-
signed higher predicted probabilities of being positive than
negative instances. As far as the naive Bayes classifier is
concerned, the posterior estimates are simply scores from
which it makes predictions by applying a decision criterion.

The usual decision criterion is ‘predict the class with the
highest posterior probability’, or in two-class problems
‘predict the class whose posterior probability exceeds 0.5’.
However, given that the probability estimates are inaccu-
rate, there is no real justification for such a decision cri-
terion. In our view, the naive Bayes decision criterion is
an additional model parameter that has to be learned from
the data. In the two-class case, the decision criterion is
simply a threshold, which can be elegantly learned from
the data using (two-class) ROC analysis. However, there
is no straightforward way to upgrade this method to more
than two classes, because the necessary apparatus of multi-
class ROC analysis is lacking. The main contribution of
this paper is a method to learn a decision criterion from
the data by tuning class weights using greedy optimisation.
The method is experimentally shown to lead to significant
improvements in classification accuracy.

1.1. ROC analysis

ROC analysis (Received Operating Characteristic) was in-
troduced in signal detection theory to describe how well a
receiver could distinguish a signal from noise. It has a long
history in medical data analysis where it is used to inves-
tigate sensitivity/specificity trade-offs of diagnostic tests.
It was introduced in machine learning relatively recently
(see e.g. (Provost & Fawcett, 2001)) and is quickly gain-
ing popularity as a tool for analysing and visualising many
aspects of machine learning algorithms. Some recent de-
velopments are described in (Fawcett, 2003); many of our
notations are borrowed from that paper.

A two-class ROC curve is a two-dimensional curve in
which the True Positive rate (TPr) is plotted on the Y axis
and the False Positive rate (FPr) is plotted on the X axis.
Those rates are estimated as follows:

T Pr =
number of positive instances correctly classified

total number of positive instances
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FPr =
number of negative instances misclassified

total number of negative instances

A discrete classifier, e.g. a decision tree, produces a single
ROC point (FPr,T Pr). Many classifiers, such as Bayesian
classifiers or neural networks, naturally assign to each in-
stance i a score f (i) expressing the degree to which i is
thought to be positive. In particular, probabilistic classi-
fiers such as naive Bayes output posterior probability dis-
tributions over classes. In classification, it is often more
convenient to work with scores as they can be manipu-
lated without the need for re-normalisation. Probabilities
can be converted into scores by the following monotonic
transformation: let f (P, i) (resp. f (N, i)) denote the esti-
mated probabilities that i is positive (resp. negative), then
f (i) = f (P,i)

f (N,i) = f (P,i)
1− f (P,i) . A probabilistic classifier can be

turned into a categorical classifier by setting a threshold
on the score, i.e. instance i is classified as positive if f (i)
is greater than a fixed threshold t, and negative otherwise.
In the absence of any other information, this threshold is
usually set to 1, which corresponds to a uniform posterior
distribution in the case of a probabilistic classifier. How-
ever, we argue that this decision threshold should in fact
be learned from the data in order to maximise accuracy or
minimise cost.

1.2. Learning the decision threshold

ROC analysis provides an elegant way to do this. Each
value of the decision threshold corresponds to an ROC
point, and a piecewise linear ROC curve can be drawn
by varying the threshold and plotting the corresponding
points. (There is a more efficient algorithm based on order-
ing the instances according to their predicted scores, which
will be explained in Section 2.) This curve gives an aggre-
gated assessment of the classification power of the scoring
classifier, without reference to a decision threshold. The
area under the curve estimates the probability that a ran-
domly chosen positive instance obtains a higher score than
a randomly chosen negative instance (Hand & Till, 2001).

Figure 1 shows an ROC curve corresponding to the per-
formance of a first-order naive Bayes classifier, 1BC2, on
predicting a desired property of drugs against Alzheimer’s
disease (see Section 4). The crossing vertical and hori-
zontal lines indicate the point corresponding to the default
threshold f (i) = 1 (i.e., classifying i as positive if f (P, i) >
f (N, i)). The diagonal line through this point is the iso-
accuracy line corresponding to all points in the ROC space
having the same accuracy a = p(P)TPr + p(N)(1−FPr)
as the default threshold, where p(P) and p(N) are the prior
class probabilities. The main point to note is that a large
part of ROC curve lies above this iso-accuracy line, and
consequently there are many thresholds that would achieve
a higher accuracy (on the same set of instances) than the
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Figure 1. (Left) ROC curve obtained with a probabilistic classi-
fier. The crosshair indicates the true and false positive rates ob-
tained by the default threshold, and the diagonal line through this
point is the iso-accuracy line connecting all points in ROC space
having the same accuracy. (Right) The same ROC curve, with the
crosshair identifying the point with optimal accuracy.

default threshold. In this particular case these thresholds
are found to the right of the default point, corresponding to
an increased number of positive predictions, hence a lower
decision threshold. The optimal decision threshold can be
found graphically by sliding the iso-accuracy line upwards
until it intersects with the ROC curve in a single point.

It is easy to factor misclassification costs into this anal-
ysis. The equation of the iso-accuracy line of all points
achieving accuracy a is TPr = p(N)

p(P) FPr + a−p(N)
p(P) . Given

an ROC curve, the optimal point on this curve is uniquely
determined by the slope of the iso-accuracy lines, i.e., the
class distribution. If we denote by c(N,P) (resp. c(P,N))
the cost of misclassifying a positive (resp. negative) in-
stance, the expected cost of applying the classifier cor-
responding to a point (FPr,TPr) in the ROC space is
c = p(P)(1−TPr)c(N,P)+ p(N)FPrc(P,N). An iso-cost
line could be drawn with all points having the same cost
c: TPr = c(P,N)p(N)

c(N,P)p(P)
FPr + 1− c

c(N,P)p(P)
. That is, unequal

misclassification costs can be simply taken into account
by modifying the class ratio and thus the slope of the iso-
performance lines. We could similarly take correct clas-
sification profits into account, or use a class ratio that is
different from the one in the set of instances from which
the ROC curve is constructed.

1.3. Contribution of this paper

An algorithm to find the optimal point on a given two-class
ROC curve is thus a fairly straightforward construction,
and all essential ingredients (probabilistic ROC curves,
iso-performance lines) were already present in (Provost &
Fawcett, 2001). However, a generalisation to more than
two classes is problematic, because there is no fully de-
veloped multi-class ROC analysis. A full n-class ROC
analysis would require n(n− 1) dimensions, distinguish-
ing all possible misclassifications (one-against-one). By



aggregating all misclassifications per class we obtain a n-
dimensional approximation (one-against-all). We briefly
review the few results in multi-class ROC analysis that we
are aware of. An analysis of the special case of 3 classes
(one-against-all) is given in (Mossman, 1999), concentrat-
ing on the proper statistical interpretation of the volume un-
der the ROC surface (in analogy with the two-class area un-
der the ROC curve). (Srinivasan, 1999) proves that, given
a set of one-against-one misclassification rates, there is a
unique convex polytope enclosing those points (in analogy
with the two-class convex hull). (Hand & Till, 2001) pro-
pose a multi-class version of area under the ROC curve by
averaging the areas of the n one-against-all curves.

None of these works addresses the issue of constructing
a multi-class ROC hypersurface for a given probabilistic
model. Current indications are that such a construction,
which would be necessary to find a globally optimal multi-
class decision criterion, is computationally intractable (we
discuss this at the end of the paper). Our approach works
as follows. The kind of decision criterion that we consider
simply assigns the class with maximum score, taking into
account positive weights for each class. The n−1 weights
(one can be set arbitrarily) are learned using greedy hill-
climbing search assuming a fixed ordering of classes. The
two-class procedure for finding a global optimum outlined
above is a special case of this procedure.

The outline of the paper is as follows. In Section 2 we
present in detail the optimisation algorithm for two-class
domains. Section 3 presents the main contribution of the
paper, which is an optimisation algorithm for multi-class
domains. In Section 4 we give experimental results vali-
dating our approach on a variety of propositional and first-
order datasets. Section 5 discusses issues related to finding
the global optimum. Section 6 concludes.

2. Optimisation on two-class domains

Given the relationships between a point on a two-class
ROC curve and the accuracy or cost of the corresponding
classifier, accuracy/cost can easily be optimised by con-
sidering all the points of the ROC curve. We now show
how this optimisation can be achieved by a variant of the
practical method for constructing an ROC curve given by
(Fawcett, 2003). The basic idea of such an algorithm is
to sort the instances i according to decreasing scores f (i);
starting in (0,0), the curve is drawn by moving 1/P up if the
next instance is an actual positive, and moving 1/N to the
right if it is an actual negative, until we reach (1,1) (P and
N are the total number of positive and negative instances).
In the case of draws, i.e. x positives and y negatives get-
ting the same score, we draw a single diagonal segment by
moving x/P steps up and y/N steps to the right at once.

Table 1 modifies this algorithm such that it returns the best
threshold from a list of instances i and their scores f (i).
If desired, this algorithm can be merged with the previous
one into a single algorithm for drawing the curve and calcu-
lating the optimal threshold simultaneously. The threshold
is always chosen in between two successive scores f and
f ′ by setting it to

√
f f ′ (since our implementation of the

naive Bayes classifier actually maintains logarithms of the
scores, this corresponds to averaging the log scores).

Table 1. Algorithm to find the threshold that optimises accuracy
or cost on a given ROC curve.

algorithm findBestThreshold
Inputs: instances i, scores f(i)
Output: threshold t resulting in optimal

cost/accuracy
optimum = cost/accuracy assuming all
instances i are classified as negative

current = optimum
sort scores f(i) in decreasing order
best_threshold = highest score
for each different score f
current = update cost/accuracy assuming

all instances s.t. f(i) > f
are classified positive

if current improves on optimum then
optimum = current
best_threshold = sqrt(f * next(f))

return best_threshold

Algorithm findBestThreshold is optimal in the sense
that it results in the highest accuracy or lowest cost achiev-
able with the given scores on the given set of instances.
In practice, the quality of the optimisation depends on the
quality of the scores, i.e. of the probabilistic model. If the
model is overfitting, then what appears to be the optimal
point on the ROC curve may actually lead to worse perfor-
mance. On the other hand, if the model is good then the
optimisation will not decrease performance.

3. Optimisation on multi-class domains

In this section we adapt the two-class optimisation method
to deal with more than two classes. In our approach, a
multi-class probabilistic classifier is turned into a categori-
cal classifier by setting weights on the class scores f (Q, i)
for all classes Q, and assigning the class which maximises
the weighted score. The main difficulty is that there is no
simple algorithm tracing the ROC surface by sorting in-
stances. We are not aware of any algorithm that, given the
scores f (Q, i), efficiently calculates all possible classifica-
tions of a set of instances that can be achieved by setting
weights on these scores. Section 5 gives some further con-
siderations regarding the complexity of this problem. In the
absence of such a method, we develop in this section a hill-
climbing algorithm that optimises the weights separately.



3.1. From ROC curves to ROC polytopes

Let r(P,A) be the proportion of instances of actual
class A that are predicted in class P. Then the ex-
pected accuracy is ∑A p(A)r(A,A) and the expected cost is
∑A ∑P6=A p(A)r(P,A)c(P,A), where p(A) is the prior prob-
ability of class A, and c(P,A) is the cost of misclassify-
ing an instance of A as class P. Therefore, for an n-class
domain, an (n2 − n)-dimensional ROC space has to be
considered where points have coordinates (r(P,A)), for all
classes A,P 6= A. That is, any n-class classifier produces an
(n2−n)-tuple of misclassification rates, which corresponds
to a single point in ROC space. The two-dimensional ROC
curve becomes an (n2 −n)-dimensional polytope.

In order to obtain a multi-class decision criterion that can
be optimised, the single decision threshold used with two
classes is replaced by weights wA associated with each class
A (one weight can be set to 1, since there are n−1 degrees
of freedom). The weighted probabilistic classifier classi-
fies instance i into class P maximising wP f (P, i), where
f (P, i) denotes the probabilistic classifier’s estimate of the
probability that instance i belongs to class P. For two
classes, this reduces to classifying an instance as positive
if f (P, i) > wN f (N, i), i.e. the weight on the negative class

plays the role of the threshold on f (P,i)
f (N,i) = f (i) (assuming

wP has been set to 1). In the multi-class case, however,
there is no direct relation between weights and global prob-
ability thresholds. For any two classes P and Q, the only
thing we can say is that an instance will not be classified in
class Q, but possibly in class P, if f (P,i)

f (Q,i) >
wQ
wP

.

3.2. Setting the weights

The trick of the two-class algorithm in Table 1 is not to
consider all possible thresholds, but only those such that
the classification of a single instance changes from posi-
tive to negative. To achieve this, the instances are sorted
according to f (i): f (i1) > f (i2) > .. . > f (im), so consid-
ering any threshold value between f (ik) and f (ik+1) classi-
fies the k first instances as positive and the m−k remaining
instances as negative. As a result, the algorithm only con-
siders at most m + 1 classifications out of the 2m possible
distributions of m instances over 2 classes. Our aim is to
upgrade this algorithm from two classes to n classes.

The main difficulty is that there are n2−n
2 orderings of the

m instances, according to f (P,i)
f (Q,i) for all classes P,Q 6= P.

Definition 1 Given two classes P and Q, and two instances
i and j, >P/Q is the ordering defined by

i >P/Q j if and only if
f (P, i)
f (Q, i)

>
f (P, j)
f (Q, j)

Given two classes P and Q, Q 6= P, it would be straight-

forward to fix all other weights wR to 0, wP to 1 and tune
wQ in order to change step by step the classifications of all
instances from class P to class Q, in order to find the opti-
mal accuracy or cost. This could be repeated for all classes
P,Q 6= P. However, it is obvious that such an approach does
not consider all possible classifications of the instances, for
instance those classifications corresponding to more than
two weights being strictly greater than 0. At the other ex-
treme, a blind exhaustive search algorithm could enumer-
ate all possible classifications of the m instances. How-
ever, there are nm ways of classifying m instances into n
classes. Obviously this is untractable in most cases, for in-
stance in the diterpene domain (cf. Section 4.2), there are
231503 ∼ 102046 combinations.

Therefore we propose a hill-climbing approach. Given
an ordering of the classes and assuming they are labelled
1,2, . . . ,n, the weights are fixed in that order, by consid-
ering only instances of the class currently being optimised
against all classes whose weights already have been fixed.
The optimisation consists either in minimising the expected
cost, or in maximising the expected accuracy. Table 2
gives the main steps of this algorithm. It starts by fix-
ing the first weight w1 = 1. At step P, the first P − 1
weights have been fixed, and weight wP is tuned by call-
ing findBestWeight, taking into account only predic-
tions into classes Q≤P (since the weights of the remaining
classes are still zero).

Table 2. Algorithm to set the class weights.

algorithm setWeights
Inputs: instances i, actual_classes,

ordering < on classes
Outputs: weights for all classes and

corresponding cost/accuracy
initialise all weights w(P) to 0
w(1) = 1
for P=2 to n
I = []
for each instance i

find class Q<P maximising w(Q)*f(Q,i)
store predicted_classes(i) = Q
f(i) = f(P,i) / (w(Q)*f(Q,i))
add i to I

w(P) = findBestWeight(I,f,P)
return weights w(P)

end algorithm

The findBestWeight algorithm (Table 3) is actually a
variant of the findBestThreshold algorithm (Table
1). Since there are more than 2 classes, and the misclas-
sification costs depend on the actual and predicted classes,
three changes are required. The ‘predicted’ class is Q =
argmaxR<P(wR f (R, i)), i.e., the class in which the instance
would be classified if only the first classes R < P were
considered; this is stored for each instance before calling



findBestWeight. The score f (i) of each instance is
calculated as follows: the ‘positive’ class is P, and the ‘neg-
ative’ class is Q = argmaxR<P(wR f (R, i)), therefore the

score is f (i) = f (P,i)
maxR<P(wR f (R,i)) = f (P,i)

wQ f (Q,i) . Given the score,

the predicted and actual classes of each instance, the third
novelty of the findBestWeight algorithm is the addi-
tion of class P as input, to estimate the appropriate costs
when instances become misclassified into the class P due
to an increase of its weight wP.

Table 3. Algorithm to find the best weight.

algorithm findBestWeight
Inputs: instances i, scores f, class P,

actual_classes, predicted_classes
Output: weight for class P resulting in

optimal cost/accuracy
optimum = cost/accuracy assuming all i
are classified in predicted_classes(i)

current = optimum
sort scores f in decreasing order
best_weight = highest score
for each different score f
current = update cost/accuracy assuming

all instances s.t. f(i) > f
are classified in class P

if current improves on optimum then
optimum = current
best_weight = sqrt(f * next(f))

return best_weight
end algorithm

3.3. Discussion

In the three-class case, the effect of reweighting the naive
Bayes scores can be visualised as follows.1 For each in-
stance to be classified, the naive Bayes classifier predicts
a triple of probabilities, one for each class (here we as-
sume normalised scores). These triples can be visualised
as points in a probability cube; since the probabilities add
up to 1, the points lie in an equilateral triangle connect-
ing three corners of the cube. Each corner of this triangle
represents a particular class to which it assigns probability
1; each side of the triangle represents a probability of zero
for the class opposite that side (Figure 2). More generally,
the probability for a particular class in a given point corre-
sponds to the distance to the side opposite that class.

The decision criterion of assigning the class with maxi-
mum probability corresponds to class boundaries that are
perpendicular to the sides of the triangle; in the case of
equal weights these lines intersect at the triangle’s centre
of gravity (dotted lines in Figure 2). Our algorithm will
first adjust class 2 against class 1; this fixes the vertical de-
cision boundary. By taking class 3 into account, we find the
optimal point on this vertical boundary. Notice that this last

1This visualisation was inspired by (Mossman, 1999).

Figure 2. Three-class probability triangle with uniformly
weighted decision criterion (dotted lines), increased weight of
class 2 relative to class 1 (dashed line), and increased weight of
class 3 relative to classes 1 and 2 (solid lines).

step may change some class 1 or 2 predictions into class 3
predictions, but it will never change class 1 predictions into
class 2 or vice versa.

The algorithm is not guaranteed to find a local optimum:
for instance, it might be possible to find, given the weights
for classes 2 and 3 just determined, a better weight for class
1. Also, the approach depends on the order of the classes:
if we start by adjusting class 3 against class 1 (i.e., mov-
ing the decision boundary perpendicular to the 1-3 side),
we may end up in a different point altogether. Intuitively,
it seems a good idea to start with the largest classes, since
adjustments involving those classes have (potentially) the
biggest impact. This has been verified experimentally by
comparing with random orderings as well as the reverse or-
dering (smallest classes first). A more sophisticated strat-
egy would be to take the unweighted predictions (and the
cost matrix) into account.

It should be noted that, when adjusting class 3 against
classes 1 and 2, it is possible to distinguish between dif-
ferent kinds of misclassifications (3 misclassified as 1, 3
misclassified as 2, 1 misclassified as 3, etc.) and thus take
class-against-class misclassification costs into account. In
fact, even when adjusting class 2 against class 1, we take
class 3 instances into account, because misclassifying them
as class 1 may have different cost from misclassifying them
as class 2.

4. Experimental results

Experiments have been carried out to evaluate the improve-
ment in accuracy of a naive Bayes classifier obtained with
our method. Two first-order Bayesian classifiers were used:
1BC (Flach & Lachiche, 1999) and its successor 1BC2
(Lachiche & Flach, 2002). 1BC applies dynamic propo-
sitionalisation, while 1BC2 is a true first-order classifier
which works by decomposing probability distributions over



structured terms. On propositional domains both classifiers
return the same probabilistic model. We considered propo-
sitional (i.e., attribute-value) as well as relational datasets.
All experiments were performed using a 10-fold cross-
validation: training the probability model as well as the de-
cision criterion on the training set, evaluating the weighted
classifier thus obtained on the test set and averaging the re-
sults.

4.1. Propositional datasets

All 25 propositional datasets were taken from the UCI ma-
chine learning repository (Blake & Merz, 1998). Table 4
reports the number of classes and the accuracies of 1BC
without optimisation, 1BC with optimisation, and Weka
Naive Bayes (Witten & Frank, 2000), for each dataset
(sometimes for different targets of a given dataset). Fig-
ures are indicated in boldface whenever the observed dif-
ference of the accuracy between 1BCwith optimisation and
the other classifier is significant using a one-sided paired t-
test with a confidence of 95%.

Table 4. Accuracies on propositional datasets.

Settings cl. 1BC 1BC opt. NB
Audiology 24 67.5% 78.5% 65.5%
Bridges 2 (t-or-d) 2 85.3% 88.2% 82.4%
Bridges 2 (material) 3 86.8% 84.9% 86.8%
Bridges 2 (span) 3 67.4% 67.4% 69.6%
Bridges 2 (rel-l) 3 68.0% 68.9% 68.0%
Bridges 2 (type) 7 58.5% 59.4% 57.5%
Car 4 85.3% 88.8% 85.3%
Credit 2 86.5% 85.5% 81.4%
Dermatology 6 97.5% 97.3% 97.3%
Ecoli 8 83.6% 82.1% 85.1%
Flag (religion) 8 64.9% 62.4% 56.2%
Flare 2 (common) 9 76.1% 82.8% 76.4%
Flare 2 (moderate) 9 91.5% 96.3% 93.1%
Flare 2 (severe) 9 97.5% 99.4% 97.4%
Glass 7 67.3% 65.4% 48.6%
Horse-colic (surgical) 2 79.6% 79.6% 79.3%
Horse-colic (site) 12 40.2% 45.7% 45.4%
Horse-colic (type) 5 55.1% 56.8% 55.2%
Horse-colic (subtype) 4 56.0% 63.0% 62.5%
Horse-colic (code) 11 37.8% 38.3% 35.9%
Image segmentation 7 88.9% 88.4% 85.7%
Mushroom 2 95.5% 98.1% 95.8%
Nursery 5 90.3% 91.5% 90.3%
Post-operative 3 70.0% 71.1% 70.0%
Vote 2 90.1% 88.0% 90.1%

Table 5. Weka Naive Bayes and 1BC without optimisation com-
pared to 1BC with optimisation on propositional datasets.

Measure 1BC Weka NB
Number of wins 15 - 8 20 - 4
Number of significant wins 9 - 1 10 - 2

Table 5 summarises the significance results. The optimisa-
tion decreases accuracy significantly only once when com-

pared with unoptimised 1BC, and twice when compared
with Weka Naive Bayes (indicating that in one of these
cases the lower accuracy was caused by the poorer prob-
ability model learned by unoptimised 1BC).

4.2. Relational datasets

Three relational datasets have been considered. The
first dataset is about drugs against Alzheimer’s dis-
ease (Boström & Asker, 1999), with four distinct targets.
The second dataset concerns identifying mutagenic com-
pounds (Srinivasan et al., 1994; Muggleton et al., 1998).
We considered the ‘regression-friendly’ dataset of 188
molecular compounds. In these experiments, we used the
atom and bond structure of the molecule as one setting,
adding the lumo and logp properties to get a second set-
ting, and finally adding boolean indicators Ia and I1 as
well. We also considered the latter propositional proper-
ties separately. The third dataset is concerned with Diter-
penes, which are one of a few fundamental classes of nat-
ural products with about 5000 members known (Džeroski
et al., 1998). The classification task consists of identify-
ing types of diterpenes from NMR spectra. Table 6 reports
the accuracies of 1BC without and with optimisation, and
of 1BC2 without and with optimisation, for each of these
datasets, targets, and settings .

Table 7. Comparison on relational domains of first-order classi-
fiers with and without optimisation.

Measure 1BC 1BC2
Number of wins 7 - 5 6 - 6
Number of significant wins 4 - 1 2 - 2

Table 7 summarises the significance results on the rela-
tional data. The results are a bit more mixed than in the
propositional case, but still there are only three significant
losses out of 24 experiments. The optimisation seems to
work better for 1BC, but this may be due to the fact that in
many cases unoptimised 1BC2 comes already quite close
to the optimised accuracy. There is one quite spectacu-
lar failure of the optimisation method for the propositional
version of mutagenesis (only lumo, logp, inda and ind1).
Clearly, the probability model is overfitting here so that the
optimum on the training data does not correspond to the
optimum on the test data.

5. On finding the global optimum

In Section 3.2, a brute-force algorithm, enumerating all
possible classifications of the m instances, was discarded
due to an exponential number of possible distributions of
m instances over n classes. However, given a probabilis-
tic classifier and a set of instances, many of those com-



Table 6. Accuracies on relational datasets.

Settings cl. 1BC 1BC opt. 1BC2 1BC2 opt.
Alzheimer’s (Inhibit amine reuptake) 2 68.1% 79.7% 69.0% 78.3%
Alzheimer’s (Low toxicity) 2 74.4% 74.9% 74.5% 74.9%
Alzheimer’s (High acetyl cholinesterase inhibition) 2 68.7% 69.6% 70.9% 70.0%
Alzheimer’s (Reversal of memory deficiency) 2 62.8% 76.8% 66.5% 76.6%
Mutagenesis: lumo and logp only 2 71.3% 69.1% 71.3% 69.1%
Mutagenesis: lumo, logp, inda and ind 1 only 2 83.0% 73.9% 83.0% 73.9%
Mutagenesis: Atoms and bonds only 2 80.3% 79.3% 81.9% 80.3%
Mutagenesis: Plus lumo and logp 2 82.4% 79.3% 81.9% 83.0%
Mutagenesis: Plus inda and ind1 2 87.2% 84.6% 82.4% 81.9%
Diterpenes: Propositional 23 78.2% 78.3% 78.2% 78.3%
Diterpenes: Relational 23 67.9% 69.1% 70.9% 68.9%
Diterpenes: Propositional and relational 23 73.5% 79.9% 79.0% 79.7%

binations are impossible using weighted maximisation as
the decision criterion. In this section, we investigate some
properties of multi-class ROC space in the hope of finding
a more efficient algorithm to find the global optimum.

We can use the >P/Q orderings to detect some impossible
classifications.

Theorem 1 Given two instances i and j, if i >P/Q j, then
there are no weights wP, wQ such that i is classified in class
Q and j is classified in class P.

Proof: i is classified in class Q implies that wP f (P, i) <

wQ f (Q, i), so f (P,i)
f (Q,i) <

wQ
wP

. j is classified in class P implies

that wP f (P, j) > wQ f (Q, j), so f (P, j)
f (Q, j) >

wQ
wP

. So f (P,i)
f (Q,i) <

f (P, j)
f (Q, j) , which contradicts i >P/Q j. 2

Another issue consists in finding a set of weights corre-
sponding to a given classification. Notice that the classi-
fication of an instance i in class P corresponds to n − 1
inequalities: ∀Q 6= P,wP f (P, i) > wQ f (Q, i). Considering
two classes P and Q, each instance i classified in class P
implies the constraint f (P,i)

f (Q,i) >
wQ
wP

on the weights wP and
wQ. Since the instances are ordered according to >P/Q,
considering the instance classified in class P minimising
f (P,i)
f (Q,i) , i.e. the bottom instance classified in class P accord-
ing to >P/Q, is the only necessary constraint. Symmetri-
cally, only the top instance classified in class Q according
to >P/Q should be considered.

Theorem 2 Let IP be the set of instances that are classi-
fied in class P, and let mP/Q = maxi∈IQ( f (P,i)

f (Q,i) ) and MP/Q =

mini∈IP( f (P,i)
f (Q,i) ), then mP/Q <

wQ
wP

< MP/Q.

Proof: For all instances i ∈ IQ, wP f (P, i) < wQ f (Q, i),

i.e. f (P,i)
f (Q,i) <

wQ
wP

. So mP/Q <
wQ
wP

. Similarly, for all in-

stances i ∈ IP, wP f (P, i) > wQ f (Q, i), i.e. f (P,i)
f (Q,i) >

wQ
wP

. So
wQ
wP

< MP/Q. 2

Suppose that the n classes are labelled 1,2, . . . ,n. w1 can
be fixed to an arbitrary value, e.g. 1. Then the weights wQ

should satisfy the constraint: maxP<Q(mP/QwP) < wQ <
minP<Q(MP/QwQ). An open issue is whether this set of
constraints is always satisfiable. If it is, it would mean that
the orderings >P/Q are the only necessary tools to detect
impossible classifications.

Note that this process of finding possible weights, which
is linear in the number of instances m and quadratic in the
number of classes n, has to be repeated for each possible
classification. In other words, it does not prevent enumerat-
ing all classifications. Moreover, preliminary experiments
indicated that the number of possible classifications is ex-
ponential itself. So it might be impractical to find the global
optimum by upgrading the algorithm in Table 1 from two-
class to multi-class domains.

As we noticed earlier, two different possible classifications
of the instances might lead to the same point. So an alter-
native approach considering the ROC space might be more
successful. This is a perspective for future work.

6. Conclusions

The probability estimates of a naive Bayes classifier are
inaccurate if some of its underlying independence assump-
tions are violated. The decision criterion for using these
estimates for classification therefore has to be learned from
the data. This paper proposes the use of ROC curves to ex-
perimentally find better decision boundaries. The method
can easily take non-uniform misclassification costs into ac-
count. For two classes, the algorithm is a simple adaptation
of the algorithm for tracing a ROC curve by sorting the
instances. There is no obvious way to upgrade this algo-
rithm to the multi-class case. We propose a hill-climbing
approach which adjusts the weights for each class in a pre-
defined order, determining the weight for class P only on
the basis of the weights of classes Q already determined.



The method starts from an initial probabilistic model and
constructs an ROC curve and a set of weights determining
the decision boundaries. This makes the approach applica-
ble to any learning method which outputs class scores: for
instance, our method could equally well be applied to recal-
ibrate decision trees. Experimental evaluation on a range of
propositional and relational datasets demonstrates that the
method works very well in practice. For instance, when
used in combination with 1BC we achieved 13 significant
wins, 22 draws and only 2 losses.

Future work includes a further study of the feasibility of
finding a global optimum. The main open problem here is
how a set of weights on class scores constrains the possi-
ble classifications of a test set. It might be a good idea to
start from decision tree classifiers rather than naive Bayes
classifiers, since a decision tree ROC curve can be obtained
by ordering leaves rather than instances (Ferri et al., 2002)
and therefore the constraints on possible classifications and
weights will be stronger. Another topic for future work is
to employ stochastic optimisation techniques.
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