
In The International Journal of Expert Systems, 8-3, pgs. 213-236, 1995

Program Evolution for Data Mining
Astro Teller

Carnegie Mellon University

Manuela Veloso
Carnegie Mellon University

Around the world there are innumerable databases of information. The quantity of information
available has created a high demand for automatic methods for searching these databases and extracting
specific kinds of information. Unfortunately, the information in these databases increasingly contains
signals that have no corresponding classification symbols. Examples include databases of images, sounds,
etc. A few systems have been written to help solve these search and retrieve issues. But we can not
write a new system for every kind of signal we want to recognize and extract. Some work has been
done on automating (i.e. learning) the task of identifying desired signal elements. It would be useful to
automate (learn) not just a part of the classification function, but the entire signal identification program.
It would be helpful if we could use the same learning architecture to automatically create these programs
for distinguishing many different classes of the same signal type. It would be better still if we could
use the same learning architecture to create these programs even for signal types as different as images
and sound waves. We introduce PADO (Parallel Architecture Discovery and Orchestration), a learning
architecture designed to deliver this. PADO has at its core a variant of genetic programming (GP) that
extends the paradigm to explore the space of algorithms. PADO learns the entire classification algorithm
for an arbitrary signal type with arbitrary signal class distinctions. This architecture has been designed
specifically for signal understanding and classification. The architecture of PADO and its achievements
on the recovery of visual and acoustic signal classes from test databases are the subjects of this article.

1. Introduction

Searching through large sets of data for small subsets that are of particular interest is a cornerstone of the information
age. Until recently, most databases contained volumes of information on a scale that allowed each item to be labeled
with attributes of likely interest for potential searchers. In the last few years two changes have made this less feasible.
The first is the continuing increase in bandwidth and storage space. These past few years have seen humans reach the
limits of their ability to keep track of what “cyberspace” contains. These limits will surely be passed in the very near
future. The second recent change is the increasing number of databases full of non-text, non-numeric information.
There are now a plethora of places that hold photos, still and moving video, noises, sonar, etc. by the hundreds of
thousands of elements.

If we want to be able to find specific information in these large repositories of “unlabeled” information, we must
either label it automatically (e.g., by applying machine learning), or design methods for automatic recovery of particular
items of interest. This “label” problem is the source for a variety of current research. These databases are “unlabeled”
in the sense that there are an almost infinite number of possible labels for a signal database (e.g., “pictures with cars in
them,” “melodic sounds,” “dark videos,” “pithy paragraphs,” “outdoor image scenes,” etc.).

The goal of the work described in this article is the automatic recovery of signal classes from a signal database.
Clearly, such an automatic system should take as input what the user is looking for (e.g., “I want pictures that look
like these ...”), not how to find it (e.g., “Here is a set of invariant image transformations that all pictures of interest to
me preserve...”). The user should be able to use the same system for data retrieval tasks on many different kinds of
signals (e.g., image, sound, text, etc). Such a system should be able to deal with any signal type of any size. A system
that asks for a preprocessing algorithm to make the signals “manageable” or “understandable” is not a generally useful
system. We believe that machine learning will be a crucial tool in the creation of any such general, flexible system.

PADO, Parallel Algorithm Discovery and Orchestration, is a new learning architecture specifically designed for
signal understanding. Combining a powerful extension to the GP paradigm and a general program orchestration

procedure, PADO can learn a complete classification system, independent of the target signal type, size, or complexity.
Given a few labeled signal examples from a class, it can learn to distinguishand classify signals. PADO is custom-made
to be the system a user searching in a signal database would want.

Through the course of this article, PADO’s method and structure will be explained. Test experiments were
performed and some results are reported here to show PADO’s promise in the area of signal understanding for database
retrieval. We believe that the automatic understanding of signals is one of the highest current hurdles for the information
sector. PADO is a first successful step towards clearing this hurdle.

2. Background

Databases of acoustic and visual signals are becoming increasingly plentiful around the world. However, huge
databases without powerful search mechanisms are almost useless (Yu and Weiyi, 1994). Realizing this, some of
these signal databases continue to try to label their signals as they are put into the databases. That way, standard
database search technologies can be applied to these keys (Brice and W., 1990; Krishnamurthy and Imielinski, 1991).
For example there is an available database of 250,000 professional photographs (Hilts, 1994). Each entry is labeled
with enough information to find images of interest along certain dimensions (e.g., “subject”,“date”, etc.). 5000 more
images are labeled and added each week. But this is a titanic effort. And what if you were looking for photos with
old cars in them? That information is probably not available. No one will every have the time to go back and re-label
all 250,000 images. Our approach would only require that the user show PADO a few positive examples (e.g., images
with old cars) and a few negative examples (e.g., images without old cars) and then PADO does the rest, learning the
concept and retrieving other signals of interest.

The signals in such databases exist in many forms. There is no one standard for how to encode the signals, let
alone possible signal labels (Shetler, 1990). There are now immense on-line databases of multi-media information
(e.g., (Birmingham et al., 1994)). As another example, the world of video dating is now online and searchable (Wexler,
1992). How can someone find people with certain facial or vocal characteristics? Programs that “recognize” beauty
are not on the horizon, but programs that recognize long hair or deep voices are just around the corner. Text is certainly
a signal type where this problem of unstructured information is becoming epidemic. A classic example is the large
number of news articles that appear every day and must be labeled so that people can find what they are interested in.
Thinking Machines’ attempt to tackle this text version of the signal classification problem is an example of a learned
voting scheme among a number of complex “feature” extractors (Masand, 1994). These features were designed by
humans. Learning text understanding agents for taming the WEB is also being pursued (Armstrong et al., 1995). In
the long run, human written features will fall hopelessly behind the number, variety, and complexity of the signal
databases and the interests of the browsers.

In the recent past there have been some attempts at automating the recognition and classification process. This
automation has taken the form of machine learning (e.g., (Fayyad et al., 1993; Rao et al., 1993; Pazzani et al., 1994))
and statistical techniques (e.g., (Hunter, 1990; Agarwal et al., 1992)). The goal is typically to acquire knowledge
from large databases. The Skicat work is one of the few examples of machine learning applied to full resolution photo
images (Fayyad et al., 1993). We know, however, of no published research that has accomplished the examination
and retrieval of arbitrary database elements as large and unprocessed as real image and acoustic data. Any method
for data mining has, at its heart, a function or algorithm for determining whether a particular database element has
the right “features” that make it a candidate for retrieval. The intersection of machine learning and data mining is the
learning of some (or all) of that classification function or algorithm. This determination is much harder for machine
learning or statistical techniques when the signals are extremely large or unprocessed.

Because part of the PADO system is a type of genetic programming, there should be some mention here of the
sort of related work that has been done within the classification paradigm. As far as we know there are no published
results of the sort discussed in this article: that is, none that apply genetic programming or genetic algorithms directly
to arbitrary signal types and do signal understanding on the basis of that input. For example, there has been GP vision
work that seems to fall into two major categories: bitmap recognition and learned aids for vision problems (including
object recognition). There have been some examples of genetic programming applied to bitmaps (usually font bitmaps)
in order to do classification (e.g., (Andre, 1994; Koza, 1994)). In between, there are interesting works like (Johnson,
1994) that applied GP to a restricted subset of black and white silhouettes of a person and tried to learn where one of
the hands was. Learned aids to object recognition can be seen in works like (Tackett, 1993) and (Nguyen and Huang,
1994). For example, in (Tackett, 1993), GP is used to improve the performance of an army system for locating tanks

2

by learning functions applied to statistical image values.
A final note on the traditional approach to automatic techniques for data mining is warranted. PADO is a supervised

learning algorithm. It needs a few labeled examples to learn from. Unsupervised learning might be possible for some
applications of data mining, but would essentially just cluster the elements into a number of groups. This is clearly
useless for database elements as complex as image and acoustic signals. Given 100,000 photographs, how might one
cluster them? By subject? By distance to focus? Into “Human Subject” and “Nature Subject” categories? These high
level concepts, the ones database users are most likely to have interest in, are learnable with examples, but not without.

3. A Method to the Madness

The purpose of this section is not to convince, but to explain. The following section will give experimental results
and make a case that the PADO system has a promising future in this area of automated signal understanding. We will
first explain the general mechanism of genetic programming. Then PADO’s expansion of this idea will be detailed.
Finally, the section will conclude with details about exactly what sort of things PADO is evolving and what access
these programs have to the signals that will be the experimental subjects in Section 4.

3.1. Genetic Programming at a Glance

Evolutionary computation is biologically motivated. In nature, we see that the combination of survival of the fittest,
fitness proportionate reproduction, and genetic recombination is an extremely powerful tool for finding solutions to
biological problems. Assuming a basic knowledge of the nature of such genetic evolutionary processes, this subsection
gives an outline of the Genetic Programming (GP) mechanism.

Genetic Programming is a strategy for evolving functions that perform well on assigned tasks (Koza, 1992). The
process of finding a GP function that is a good or perfect approximation to the target function (in the classic machine
learning sense) can be summarized as follows. The population is initialized with a set of randomly generated functions.
Each member of the current pool of functions is tested on the task (e.g., curve fitting) to determine its approximate
error relative to the target function. It is important to understand that it is not necessary to “know” the target function
in order to measure the error for each GP function (e.g., curve fitting to a set of points). A new pool is created in which
the functions with lower error have higher representation. The new pool is then subjected to various kinds of genetic
recombination. Two popular varieties of recombination are mutation and crossover. Over time the most successful
functions in the population become increasingly accurate approximations to the correct solution to the task (i.e., the
target function). This process flow is shown in Figure 1.

Evolved functions are represented in GP as Lisp-like expressions consisting of non-terminals (atomic functions)
and terminals (e.g., variables and constants). Simple GP functions might look like these two examples:

� (* 2 (IF-THEN-ELSE (= 4 x) (/ x (- 4 x)) (cos (exp (+ x (* (+ 5 6) x))))))
� (exp (/ 9 x) (- (+ (+ 9 8) x) 12))
Given a sufficiently expressive set of mathematical, decision, and action non-terminals along with appropriate

variables and constants, this type of “language” can represent many desired functions. GP has been successfully
applied to curve fitting, simple classification, reactive agent decision making, control systems problems, and a host of
other tasks.

A small percentage of the population is chosen at random from the new population and some non-terminal or
terminal part of the each function in this small group is changed. This is called mutation. If the first function above had
its third “x” changed to a “1”, it would be removed from the population and the following function would be added.

� (* 2 (IF-THEN-ELSE (= 4 x) (/ x (- 4 1)) (cos (exp (+ x (* (+ 5 6) x))))))
In crossover, two functions are chosen at random from the new population and they exchange randomly selected

sub-expressions. This process is often described in the GP literature as “exchanging random sub-trees” in which the
sub-trees refer to the isomorphic representation of parenthesized expressions as functional trees. Crossover is done to
a large percent of the new population (often 80% to 90%). The first two examples shown above might look like this
after undergoing crossover.

� (* 2 (IF-THEN-ELSE (= 4 x) (/ x (- 4 x)) (- (+ (+ 9 8) x) 12)))
� (exp (/ 9 x) (cos (exp (+ x (* (+ 5 6) x)))))

3

Create Mating Pool by Fitness Proportionate

Quit if Fitness Goal
is Achieved

Mating Pool Becomes New Population

Apply Genetic Recombination to Mating Pool

Reproduction. (Temporary Population)

Initialize Population with Random Functions

Measure the Fitness of each Function

New Population of Functions

Figure 1: The typical Genetic Programming Cycle.

Genetic Programming, as a sub-set of evolutionary computation, is a form of best-first search (Tackett, 1994;
Tackett, 1995). Exponentially increasing representation is given to those functions that have highest fitness and
so those points in the space are exponentially more likely to be examined next, relative to the other points under
consideration (i.e. the other functions in the group).

In the vocabulary of GP, a pool of functions is called a population. To distinguish one population from another
they are referred to as generations. The initial population is traditionally called “Generation 0” and each successive
generation is numbered in increasing integer order.

In PADO, the things that are evolved are programs, not functions. This is because functions are not expressive
enough to capture high level features of arbitrary sized signals in a tractable space. For a discussion on the distinction
between functions and algorithms (programs) see (Teller and Veloso, 1996) or (Teller, 1994b). The form that PADO
programs take is represented in a specific language described below. The language of PADO differs from traditional
GP because the Lisp-like functional language of GP, even when it is augmented to allow the evolution of algorithms,
is poorly equipped for the task (Teller and Veloso, 1995c).

The similarity between syntax and functionality breaks down when programs (PADO) rather than functions (GP)
are evolved (Teller, 1994b). This means that the PADO representation (section 3.3) is critical to PADO’s success.
Though more subtle and less PADO-specific, it should be remembered that the representation of the signals is also a
factor in the learnability of particular concepts within a particular signal space.

3.2. PADO Learning

Part of the PADO architecture falls under the general heading of evolutionary computation. This subsection will
discuss the way PADO works and how its central component is an instance of evolutionary computation. Because the
PADO architecture was designed to apply to any signal type, that is how it will be introduced.

The goal of the PADO architecture is to learn to take signals as input and output correct labels. When there are�
classes to choose from, PADO starts by learning

�
different systems. System � is responsible for taking a signal

as input and returning a confidence that class � is the correct label. In the real world, none of the
�

systems will work
perfectly; even humans make discrimination errors. Two questions of the PADO architecture recur: “How does PADO
learn good individual, single-class discrimination systems?” and “How does PADO orchestrate them for maximum
effect?”

Each individual System � is built out of several programs. Each of these programs does exactly what the system as a
whole does: it takes a signal as input and returns a confidence value that label � is the correct label. The reason for this
seeming redundancy can be seen in (Teller and Veloso, 1996). The following is a description of a simple orchestration

4

scheme that was used in the experiments described later in the article. System � is built from the
�

programs that best
(based on the training results) learned to recognize the features of a signal that define it as an instance of class � . The�

responses that the
�

programs return on seeing a particular signal are all weighted and their weighted average of
responses is interpreted as the confidence that System � has as to whether the signal in question contains an object
from class � . That is the low level orchestration. PADO does object recognition by orchestrating the responses of the�

single class discrimination systems . The confidence response of each system is initially weighted equally. Then,
on a particular test case a function � (e.g. MAX) takes the weighted confidences from each System � and selects a ��
1 ����� ���

as the image object class. That is the high level orchestration. Figure 2 pictures this bi-level orchestration
learning process.

W2 W3 ...W WC-1
W1

V1 V2 V3 ...V S-1V

VJ
VTotal

I = 1

C

F WI I* Output(System)

WC

J* Output(Program)

ProgI Prog I Prog I ProgI Prog I Prog I ProgI

VS

S-1......1 2 3 S

System Confidence

Object Classification

S

J = 1
I

Figure 2: The weights W and V that are trained in the orchestration phase

In the experiments we followed an orchestration method in which the orchestration phase occured early in the
test phase. During the first few test images the weights are adjusted by telling PADO after its guess whether it was
right or wrong. Then, the rest of the test examples were run to compile results. Specifically, each Program 	 in a
particular System � has its weight
 	 adjusted after each of these initial tests so that its weight increases when it returns
a confidence near the correct confidence and decreases if its returned confidence is far from the correct confidence.
Similarly, System � has its weight � � adjusted in the same manner. This strategy (as shown in Figure 2) is only one
of many ways that the orchestration could be accomplished. A few other orchestration strategies have also been tried
with similar success.

PADO evolves its programs in a PADO-specific graph structured language. At the beginning of a learning session,
the main population is filled with � programs that have been randomly generated using a grammar for the legal syntax
of the language. All programs in this language are constrained by the syntax to return a number that is interpreted as a
confidence value between some minimum confidence and some maximum confidence.

During each generation, each program is presented with a few training examples from each signal class to be
classified. A program’s response to a signal is a confidence value. If a program is a recognizer of signal class � , then it
will receive positive reward for returning high confidence values when it sees a signal from class � and low confidence
values otherwise. At the end of the generation each program is placed into one of sub-pools (recall that is the
number of classes to classify). A particular program is placed in sub-pool � if its fitness can be maximized by treating
it as a recognizer of signal class � . This placement is subject to the constraint that each of the C pools must contain��� programs. It is from the best programs in sub-pool � that System � is created.

Each sub-pool is then sorted by increasing fitness and each program is ranked accordingly. A new total population
is created by putting a copy of Program � in the new population with probability 2 ���������

�
�
� � � ��� � . The expected

number of copies of the best program in sub-pool � is 2, the expected number of copies of the median program is 1,
and the expected number of copies of the worst program in sub-pool � is 2

� � ��� � . This is fitness rank proportionate

5

reproduction.
Finally, 85% of the programs within each sub-pool are subjected to crossover and another 5% are subjected to

mutation. All crossovers take place between two programs in the same sub-pool. That means they are both recognizers
of the same class. Crossover and mutation in PADO are more complicated than their standard forms in genetic
algorithms or genetic programming. Both the crossover and mutation operators are “SMART” operators that are
co-evolved with the main population. Further details on how these operators work is available in (Teller, 1996).

3.3. PADO Representation

Figure 3 sketches the structure of a PADO program. Each program is constructed as an arbitrary directed graph
of nodes. As an arbitrary directed graph of

�
nodes, each node can have as many as

�
arcs outgoing. These arcs

indicate possible flows of control in the program. In a PADO program each node has two parts: an action and a
branch-decision. Each program has a private stack and an indexed memory. All actions pop their inputs from this
stack and push their result back onto the stack. These actions are the equivalent of GP’s terminals and non-terminals.
The indexed memory is effected in the usual way via READ and WRITE actions (Teller, 1994a).

M

L11

L91
L17

M

X

Mini Program(s)Main Program
q

M

mq

mX

Indexed Memory

Figure 3: This is the basic structure of a PADO program. There can be one or more Mini programs for each PADO program. Each
Mini program may be referenced from the Main program, another local Mini program, or a Library program.

After the action at node � is executed, an arc will be taken to a new node. The branch-decision function at the
current node will make this decision. Each node has its own branch-decision function that may use the top of the stack,
the previous state number, the memory, and constants to pick an arc.

There are several special nodes shown in Figure 3. Node � is the start node. It is special in no other way than it is
always the first node to be executed when a program begins. Node � is the stop node. When this node is reached, its
action is executed and then the program halts. When a program halts, its response is considered to be the current value
residing in some particular memory location (e.g., response = Memory[0]). If a program halts sooner than a pre-set
time threshold, it is started again at its start node (without erasing its memory or stack) to give it a chance to revise its
confidence value. A weighted average of the responses the program gives on a particular execution is computed and
interpreted as the answer (confidence). The weight of a response at time ��� is � . Later responses count more towards
the total response of the program. Because of the time threshold, PADO’s programs are guaranteed to halt and respond
in a fixed amount of time.

Node � executes the private Mini program as its action. It then executes its branch-decision function as normal.
The Mini program associated with each Main program bears similarity to the concept of ADF’s (automatically defined
functions) (Koza, 1994). It may be called at any point in the Main program and it evolves along with the Main program.
Mini programs are in every way normal PADO programs. Their size is not constrained to be smaller than the Main
programs. The name Mini denotes only that it is owned by the Main program. The Mini programs may recursively
call themselves or the globally available Library programs, just like a Main program may.

6

The Library programs (e.g.,
�

91 in Figure 3) are globally available programs that can be executed at any time and
from anywhere just like the Mini programs. But unlike the Mini programs, where each Mini may be run only during the
execution of the PADO program of which it is a part, the Library programs are available to the entire population. The
method by which these Library programs change can be seen in some detail (Teller and Veloso, 1996). See (Angeline
and Pollack, 1993) for a similar concept.

This is certainly not the only possible structure for evolving programs. The details of how PADO arrived at this
particular arrangement of syntax, Mini programs, Libraries, and SMART genetic operators are too lengthy to include
here. A relevant note is that this structure was arrived at partly through intuition and has been verified largely through
empirical results. In retrospect there are probable reasons for the success of this arrangement, but the justification for
the PADO architecture is currently more empirical than theoretical.

Here is a brief summary of the language actions and their effects:
Algebraic Primitives: ADD, SUB, MULT, DIV, NOT, MAX, MIN
These functions allow basic manipulation of the integers. All values are constrained to the range 0 to 255. For example,
DIV(X,0) results in 255 and NOT(X) maps � 1..255 � to 0 and � 0 � to 1.
Memory Primitives: READ, WRITE
These two functions access the memory of the program. Each program has a memory which is organized as an array
of 256 integers that can take on values between 0 and 255. READ(X) returns the integer stored in position X of the
memory array. WRITE(X,Y) takes the value X and writes it into position Y of the indexed memory. WRITE returns
the OLD value of position Y (i.e. a WRITE is a READ with a side-effect). The memory is cleared (all positions set to
zero) at the beginning of a program execution.
Branching Primitives: IF-THEN-ELSE, EITHER
In both cases the primitive pops X,Y, and Z off the stack and then replaces either Y or Z (not both) depending on the
value of X. For IF-THEN-ELSE the test is (X greater than 0). For EITHER the test is (X less than RandomNumber)
where RandomNumber varies between 0 and 255. These primitives can be used as an action or a branch-decision
function. In the former case, they have no effect on the flow of control.
Signal Primitives: POINT, LEAST, MOST, AVERAGE, VARIANCE, DIFFERENCE
These are the language functions that can access the signals. In order to demonstrate PADO’s power and flexibility,
these same primitives were used for both the image and sound data! POINT returns the intensity value at that point
in the image or sound. The other five return the respective functions applied to the region in the signal that their
four parameters (from the stack) specify. For the image experiments these four number (X1,Y1) and (X2,Y2) are
interpreted as the upper left and lower right corners of a rectangle in the image. For the sound experiments a start and
stop position are indicated as the section. These positions are specified by 256*X1 + Y2 and 256*X2 + Y2. For both
cases, if the points specify a negative area then the opposite interpretation is taken and the function is applied to the
positive area region. DIFFERENCE is the difference between the average values on two halves of a line segment. This
is the diagonal of the rectangle for the image experiments.
Routine Primitives: MINI, LIBRARY[i]
These are programs that can be called from the Main program. In addition, they may be called from each other. Because
they are programs, and not simple functions, the effect they will have on the stack and memory before completion (if
they ever stop) is unknown.

� MINI : Each MINI program is private to the MAIN program that uses it and can be called as many times as
desired from this MAIN program. Because each MINI is an arbitrarily complex program, it has an arbitrary
number of “parameters” which it can pull of the stack. For this paper, each MAIN program was given exactly
one MINI. In general, a MAIN program could have many MINI programs for its private use.

� (LIBRARY[i] X Y U V ...) : There are 150 library programs. The i is not really a parameter. Instead an
Action calling a Library program from some program’s MAIN, MINI, or from another Library program might
look like Library57. Like the MINI programs, the Library programs “take” an unknown number of parameters
by popping the parameters they “expect” off the parameter stack. All 150 Library programs are available to all
programs in the population.

4. Experimental Results

In order to show PADO’s ability to successfully extract the right signals from a signal database, we must first
produce such a database to be searched. For the purposes of this article, two databases were generated with certain

7

properties in mind. Both of the database are made of signals from the real world (i.e., large, unprocessed data from
a microphone and a video camera). In order to run a large number of trials, these experimental databases needed
to be reasonably small. For experimental purposes it served to pick a few signal classes that are easy for people to
distinguish but do not have simple properties through which they could be classified. One test of the non-existence
of these overly simple classification concepts was that all of the individual primitives were applied to signals of each
signal type. For example, we applied a global average test (e.g., Average(0,0,255,255) on signal �) to all the signals
in both databases. The resulting values did not give enough information to distinguish the signals.

The first database contains 525 three second sound samples. These sounds were taken from the SPIB ftp site in
Rice University (anonymous ftp to spib.rice.edu). This database has an appealing seven way clustering (75 from each
class): the sound of a Buccanneer Jet Engine, the sound of a Machine gun, the sound of an M109 Tank Engine, the
sound on the floor of a car factory, the sound in a car production hall, the sound of a Volvo engine, and the sound of
babble in an army mess hall. There are many possible ways of subdividing this sound database; the classes chosen for
these experiments are typical of the sort of distinctions that might interest a database searcher.

The second database, a set of 700 video images, was created by Sebastian Thrun for use in his robotics experiments.
The lighting, position and rotation of the objects in the image signal varies widely. The floor and wall behind and
underneath the objects are constant. Nothing else except the object is in the image. However, the distance from the
object to the camera ranges from 1.5 to 4 feet and there is often severe foreshortening of the objects in the image. This
database also has an appealing seven way clustering (100 from each class): Book, Bottle, Cap, Coke Can, Glasses,
Hammer, and Shoe. This particular set of classes was used in these experiments because they are easily distinguished
by people and they are disjoint sets. This database, like any database of complex signals, has an almost infinite number
of class clusterings (e.g., “Objects farther than 3.5 feet from the camera”, “Non-rigid objects”, etc.) PADO can learn
to classify signals from any of these class, not just the ones shown in this article. See Figure 4 for sample images.

Sample Train Images Sample Test Images

Figure 4: 4 randomly chosen images from the experimental train and test image databases.

For each of the following experiments, the database was broken into two halves. The first half was used to train
PADO and the second half was used as a test set. From this test set, seven examples from each class were used to learn
the orchestration. The rest of the test set was used to actually test PADO and produce the results shown below. Each
point of each curve in Figures 5 and 6 is an average over 5 runs.

For identifying elements of a class within elements from many classes, accuracy and coverage are traditional
measures of performance. Accuracy is the number of true positives divided by the number of false positives plus true
positives. Coverage is the number of true positives divided by the total number of positive examples seen. The fitness
used for evolutionary learning (training of the PADO programs) was based upon distance from correct confidence for
each training example. So accuracy and coverage were never specifically trained for, but were effectively weighted
equally in the fitness measure. In the experiments below, PADO gives exactly one positive response for each test
example seen. In other words, “Sound � is Machine Gun” or “Sound � is Volvo Engine”, but not both. Given this model
of one class chosen per image, if PADO just guessed, it could achieve an accuracy of 1

�
7 (14.28%) and a coverage of

1
�
7 (14.28%).

8

4.1. Sound

Figure 5 shows PADO’s performance on the sound database. In both graphs there is some discrepancy between
the PADO’s performance for different sound classes. This is natural since some sounds are more unique or constant.
Sounds that can easily be confused with other sounds or sounds whose characteristics vary widely between samples,
are necessarily harder to pick out with high accuracy and high coverage. It can not be over stressed that these are test
sounds that the PADO system has never heard. The training sounds were similar, but not the same.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80
Generations

SOUND Signal Prediction Accuracy

Volvo
M109

Factory1
Factory2

Buccaneer
MachineGun

Babble
Random

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80
Generations

SOUND Signal Prediction Coverage

Volvo
M109

Factory1
Factory2

Buccaneer
MachineGun

Babble
Random

Figure 5: PADO’s sound classification accuracy and PADO’s sound classification coverage

As an example, let’s look at PADO’s performance in Figure 5 with respect to the sound of the M109 tank engine.
The accuracy graph shows that by generation 80 PADO has achieved a database retrieval accuracy of about 70% on
M109 tank engine sounds it has never heard before. That means that 70% of the sounds it returns will in fact be
sounds of an M109 tank engine. The coverage graph shows that PADO database retrieval coverage is about 60% on the
previously unheard M109 tank engine sounds. That means that the pool of sounds PADO retrieved includes 60% of
all the tank sounds in the entire database. Both of these numbers, as mentioned before, would be about 14% if PADO
had just been guessing.

Looking at these results, it is hard to remember the primitive level of access that PADO was given to these sounds.
None of the many well known sound processing algorithms were used on the sounds or given to PADO to help its
access of the sound signals. Being able to get no more than the most basic data about a sequence of numbers (POINT,
AVERAGE, etc.), any real “features” had to be created as the PADO programs evolved. Our current work includes
giving PADO signal primitives that are both more signal-specific and more powerful. Early results indicate that further
PADO performance improvements are possible when PADO has to invent less for itself.

As was mentioned earlier in this article, the representation of the signals can also make a problem harder or easier.
In this case, the representation for the sounds given to PADO was purposefully made more difficult to “understand”
in order to test PADO’s ability on confusing representations. The sounds are sound waves with 8 bits per sample and
19,800 samples per second of sound. So each 3 second sound sample is, therefore, about 60,000 numbers that are
usually represented as numbers between -128 and +127. The sounds PADO was given access to were the same 60,000
numbers but now in the range � 0..255 � . So the “0 line” around which sounds are partly symmetric has been moved
to 128. No information is lost in this transformation, but the important sound features may have become a little more
difficult to extract.

9

4.2. Vision

Figure 6 shows PADO’s performance on the image database. In both graphs there is some discrepancy between
the PADO’s performance for different image classes. As with the sound results, this is natural since some images are
more unique or constant. Images that can easily be confused with other images or image classes whose characteristics
varies widely between image samples are necessarily harder to pick out with high accuracy and high coverage. Again,
it can not be over stressed that these are images that PADO has never seen. The training images were similar, but not
the same. Figure 4 shows just how different the training and testing images are.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80
Generations

IMAGE Signal Prediction Accuracy

Book
Bottle

Cap
Coke

Glasses
Hammer

Shoe
Random

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80
Generations

IMAGE Signal Prediction Coverage

Book
Bottle

Cap
Coke

Glasses
Hammer

Shoe
Random

Figure 6: PADO’s image classification accuracy and PADO’s image classification coverage

PADO’s performance data mining for images (e.g., images of shoes) is shown in Figure 6. The image accuracy
graph shows that by generation 80 PADO has achieved a 75% database accuracy retrieving images of shoes it has
never seen before. That means that 3 out of 4 images it returns will in fact be images of shoes. The image coverage
graph shows that PADO’s database coverage retrieval of previously unseen shoe images is about 65%. That means that
the pool of images PADO retrieved includes 65% of all the shoe images in the entire database. Again, both of these
numbers would be about 14% if PADO had been guessing.

There are innumerable image-specific algorithms for processing images to bring out particular image features.
These range from edge segmentation, to vanishing point analysis, to texture region grouping. None of these image-
specific algorithms were given to PADO to use in classifying the images (though PADO would certainly have done
better with access to these more “helpful” algorithms). The point of this article is that PADO can automatically produce
a usable system for signal database retrieval with no help from the user other than a few labeled examples. These
results for image signal understand were accomplished with the same basic signal access primitives used for sound
signals: POINT, AVERAGE, MOST, LEAST, VARIANCE, and DIFFERENCE.

These images are, by some metrics, not easy to distinguish (see (Teller and Veloso, 1996) for further analysis).
The apparent complexity of these image classes makes it seem likely that PADO is developing algorithms for focusing
attention and doing more “intelligent” or complex processing of the image. Specialized, signal processing algorithms
are needed in order to solve this signal understanding problem. But we do not have to figure out which algorithms
are needed or give them to PADO. We only need to give PADO the most basic signal inspection primitives (e.g.,
AVERAGE) and PADO can learn the more complex algorithms as needed!

10

4.3. Discussion

An interesting feature of Figures 5 and 6 is that the classes on which PADO achieves higher accuracy results are
not always the same classes on which PADO achieves higher coverage results. In other words, for some classes PADO
seems to be more “picky”, choosing accuracy over coverage, and for some classes, just the opposite is true. To some
extent this is a “feature” of the signal type and signal classes. Why PADO acts this way is also a subject of current
research.

This article detailed two particular experiments using a sound and a vision database. PADO has, however, been
applied to several other domains. For example, PADO has been given databases of images containing objects held by
people (Teller and Veloso, 1996), head and shoulder shots of people in natural cluttered backgrounds (Teller and Veloso,
1995a), and even manufactured shapes with particularly interesting signal properties (Teller and Veloso, 1995b). The
most exciting aspect of these results (all as positive as the results reported in Figures 5 and 6) is that they were all
achieved using the same primitives (AVERAGE, LEAST, MOST, VARIANCE, DIFFERENCE) presented in Section
3 of this article for both the sound and image databases!

Suppose that we had a database of 7000 sounds from seven classes. The accuracy and coverage graphs in Figures 5
and 6 tell us that at worst, a search for elements of a particular class would yield about 1000 returned database entries,
about 500 of which were from that particular class. In this case human post-retrieval filtering would be required, but
PADO would have dropped the human’s work load by a factor of seven. In the best case, PADO could be expected to
return about 1000 database entries, over 900 of which were instances of the desired class. In such a case PADO has
made a very laborious task almost effortless.

Consider the familiar process of requesting a list of articles from an online library card catalog. We spend a minute
describing what we are looking for (e.g., “Teller/author and (genetic? or learn?)/subject”). Then we activate the search
and wait. If the database is large (e.g., INSPEC) it can take a few minutes. What we get back is often a long list that
we have to page through to find articles worth reading. The length and interest density of this list depends on how we
specify the search, but generally we do not know exactly what we are looking for and so this human post processing is
an inevitable part of the process. The insight we can draw from this familiar search procedure is that “perfect” recovery
is probably not as important as the ease with which the search can be specified and time the search takes to complete.
The search specification is a relatively unexplored aspect of PADO. The kind of results described in this article would
require a small number of examples from each class to be distinguished. The experiments reported in this article used
14 examples from each class to train a generation. For example, if only one class were of interest, about 14 positive
and 14 negative examples would suffice in order for PADO to learn to find more positive instances in a database with
the accuracy and coverage seen in Figures 5 and 6.

PADO’s learning and searching speeds will now be addressed. It took about 2 days on a Dec-Alpha to complete one
run for the experiments above. Some of this time was taken running the actual tests, but the learning for 80 generations
took at least 36 of the 48 hours. However, during this 48 hour period, seven problems were solved and tested, not just
one. A typical user would probably be looking for one specific signal type in a particular search. So PADO need only
label each database element as YES or NO rather than picking one of many classes for each element.

PADO, in its current incarnation, is still a research tool. However, it has been designed so that its learning and
testing speeds can be significantly increased. Because both the learning and generalization performance of PADO
require many independent evolutionarily “discovered” algorithms to be run, linear speed-ups can easily be achieved
using parallel processors. In addition, PADO’s learned programs are currently interpreted. These interpreted programs
could be compiled for another considerable increase in speed.

For the learning phase, if 24 processors were available, the learning for all seven classes (all seven experiments)
would have taken two hours, not two days. For the learning phase compilation of the programs under evolution
would speed up the system, but would be partially offset by the time required to do a few thousand compilations each
generation. Our current estimate for the training phase speed up due to compilation learning time is a factor 2. For
the database retrieval phase PADO can currently look through a database of 100,000 signals in a day. With the same
24 processors at PADO’s disposal, this retrieval would take an hour, not a day. Because the same few dozen programs
will be used repeatedly during the database retrieval phase, compilation now becomes a larger benefit. On a single
processor, if PADO’s programs were compiled, the database retrieval would probably take 3 or 4 hours. Compiled
PADO programs running on 24 processors might take as little as 5 to 10 minutes for the entire 100,000 signal mining
expedition.

11

5. Future Work

The issue of scalability is critical to the success of PADO. We are trying to design a learning architecture that
can build up useful systems to be applied to databases of real signals. Because PADO was designed with an eye for
practical application as well as scientific advancement, it must be able to scale up to harder problems.

The three crucial areas of improvement for PADO are speed, accuracy/coverage, and the requirement of even fewer
training examples. Speed, as has already been discussed, can and is being improved in a variety of ways. Using
parallel processors and compiling PADO programs are both part of our near future research plan. In addition, there are
a variety of environment and representation issues that are being investigated for further speed ups in PADO’s learning
and performance.

PADO’s performance results (accuracy and coverage) are far better than random, but they are not perfect. Many
applications can be useful even if there is some error, but many applications require error rates of 5% to 10% and some
cannot tolerate even that. Fortunately the retrieval of signals from databases is not an all or nothing enterprise (just
like the online card catalog search mentioned above) and even with the error rates shown in this article, PADO can be
of significant value. Our current work now concentrates on understanding PADO better and using this understanding
to improve PADO’s future performance.

PADO currently requires few examples relative to most other machine learning techniques. This is due in part to
added signal noise at training time (to prevent overfitting) and the exact method that PADO uses to test the fitness of
each program against subsets of the training signals. For some signal understanding tasks (e.g., finding guns in the
airport x-ray images), providing a large number of labeled examples to PADO would be worth the correspondingly
higher accuracy and coverage rates PADO could achieve. For tasks such as data mining, a user should be asked to
specify just enough examples that PADO can still perform a useful search. Therefore, finding ways for PADO to
extract high level features from even a few images is an avenue of current research.

Interestingly, the number of classes is not really a scalability issue with respect to data mining tasks. For most
data mining tasks there will be two or at most a few classes of interest because generally each signal will fall into the
“Retrieve” or the “Don’t Retrieve” classes. So even in a database of 100,000 signals, PADO will usually be determining
which of a very limited number of classes each signal is. In short, the number of possible classes in a signal database
is almost infinite, but a particular search will usually involve a YES/NO distinction for each signal.

6. Conclusion

The goal of this article is to have shown the reader that autonomous search in large databases of unlabeled or poorly
labeled signals for subjectively specified elements is on the horizon. The motivation for this article is the following
sort of scenario: a graphic designer wants to find pictures of “old cars” in a photography databases. It would save her
enormous amounts of time if, rather than scrolling through 100,000 images manually, she could show a dozen example
pictures of “old cars” to PADO and then allow PADO to find similar pictures. Clearly a system that could do this for a
broad range of signal types and signal element specifications would be invaluable.

This article gave a brief description of PADO and the process involved in the creation of a PADO system: the
discovery of algorithms that can be executed in parallel and the orchestration of these algorithms into a useful system.
The representation of these algorithms, and their “discovery” through an extension of the Genetic Programming
paradigm was summarized. PADO, through this process of evolutionary computation discovery and multi-level
program orchestration, can take a few examples from a signal class and, through supervised learning, learn to correctly
classify new signals as IN or OUT of that class. And most importantly, PADO can do this for any signal type, size or
complexity with no human intervention or signal preprocessing.

Two sets of experiments were presented in which PADO was asked to search through a database of large signals
and label each element with one of seven classes. Figures 5 and Figures 6 showed the accuracy and coverage achieved
by PADO for each class for both sound and image signals. The results show that PADO’s ability to find specific signals
of interest, while not perfect, is high enough to have real application value.

The number of applications in need of increased autonomous signal understanding is innumerable. Most of these
applications don’t know in advance what form all the signals will take or what aspects of the signals will be of greatest
interest. The creation of a system that can meet the needs of these applications is one of the most exciting current

12

demands of the information age.

Acknowledgements: We would like to thank Sebastian Thrun for the permission to use his images.

REFERENCES

Agarwal, R., Ghosh, S., Imielinski, T., Iyer, B., and Swami, A. (1992). An interval classifier for database mining
applications. In Very Large Data Bases.

Andre, D. (1994). Automatically defined features: The simultaneous evolution of 2-dimensional feature detectors
and an algorithm for using them. In Kinnear, K., editor, Advances In Genetic Programming, pages 477–494. MIT
Press.

Angeline, P. and Pollack, J. (1993). Evolutionary module acquisition. In Fogel, D., editor, Proceedings of the Second
Annual Conference on Evolutionary Programming, pages 154–163. Evolutionary Programming Society.

Armstrong, R., Freitag, D., Joachims, T., and Mitchell, T. (1995). Webwatcher: A learning apprentice for the world
wide web. In AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments.
AAAI Press.

Birmingham, W. P., Drabenstott, K. M., Frost, C. O., Warner, A. J., and Willis, K. (1994). The university of michigan
digital library: This is not your father’s library. In Proceedings of Digital Libraries, pages 53–60.

Brice, R. and W., A. (1990). Finding interesting things in lots of data. In 23rd Hawaii International Conference on
System Sciences. Morgan Kauffman.

Fayyad, U. M., Weir, N., and Djorgovski, S. (1993). Skicat: A machine learning system for automated cataloging
of large scale sky surveys. In Proceedings of the Tenth International Conference on Machine Learning. Morgan
Kauffman.

Hilts, P. (1994). New software lets designers Seymour. Publishers Weekly, 24:28.

Hunter, L. (1990). Knowledge acquisition planning for inference from large databases. In 23rd Hawaii International
Conference on System Sciences. Morgan Kauffman.

Johnson, M. (1994). Evolving visual routines. In Brooks, R. and Maes, P., editors, Artificial Life IV. MIT Press.

Koza, J. (1992). Genetic Programming. MIT Press.

Koza, J. (1994). Genetic Programming 2. MIT Press.

Krishnamurthy, R. and Imielinski, T. (1991). Practioner problems in need of database research: Research direction
in knowledge discovery. In Sigmod Record.

Masand, B. (1994). Optimizing confidence of text classification by evolution of symbolic expressions. In Kenneth
E. Kinnear, J., editor, Advances In Genetic Programming, pages 459–476. MIT Press.

Nguyen, T. and Huang, T. (1994). Evolvable 3d modeling for model-based object recognition systems. In Kinnear,
K., editor, Advances In Genetic Programming. MIT Press.

Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., and Brunk, C. (1994). Reducing misclassification costs. In
Proceedings of the Eleventh International Conference on Machine Learning. Morgan Kauffman.

Rao, R. B., Voigt, T. B., and Fermanian, T. W. (1993). Data mining of subjective agricultural data. In Proceedings of
the Tenth International Conference on Machine Learning. Morgan Kauffman.

Shetler, T. (1990). Birth of the blob. Byte, 15:221–226.

13

Tackett, W. A. (1993). Genetic programming for feature discovery and image discrimination. In Forrest, S., editor,
Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kauffman.

Tackett, W. A. (1994). Recombination, Selection, and the Genetic Construction of Computer Programs. PhD thesis,
University of Southern California. Available as: Technical Report CENG 94-13. Dept. of Electrical Engineering
Systems.

Tackett, W. A. (1995). Greedy recombination and genetic search on the space of computer programs. In Whitley,
L. and Vose, M., editors, Proceedings of the Third International Conference on Foundations of Genetic Algorithms,
pages 118–130. Morgan Kauffman.

Teller, A. (1994a). The evolution of mental models. In Kinnear, K. E., editor, Advances In Genetic Programming,
pages 199–220. MIT Press.

Teller, A. (1994b). Genetic programming, indexed memory, the halting problem, and other curiosities. In Proceedings
of the 7th annual FLAIRS, pages 270–274. IEEE Press.

Teller, A. (1996). Evolving programmers: The co-evolution of intelligent recombination operators. In Kinnear, K.
and Angeline, P., editors, Advances in Genetic Programming 2. MIT.

Teller, A. and Veloso, M. (1995a). Algorithm evolution for face recognition: What makes a picture difficult. In
Proceedings of the International Conference on Evolutionary Computation. IEEE Press.

Teller, A. and Veloso, M. (1995b). A controlled experiment: Evolution for learning difficult image classification. In
Seventh Portuguese Conference On Artificial Intelligence, pages 165–76. Springer-Verlag.

Teller, A. and Veloso, M. (1995c). Language representation progression in PADO. In AAAI Fall Symposium Series.
AAAI Technical Report. AAAI Press.

Teller, A. and Veloso, M. (1996). PADO: A new learning architecture for object recognition. In Ikeuchi, K. and
Veloso, M., editors, Symbolic Visual Learning. Oxford University Press.

Wexler, J. M. (1992). Great expectations for multimedia courtship. Computer World, 26:65.

Yu, C. and Weiyi, M. (1994). Progress in database search strategies. IEEE Software, 11:11–19.

14

