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Abstract

Concept acquisition is a form of inductive
learning that induces general descriptions of
concepts from specific instances of a given
concept. AQ15 is a conceptual inductive
learning program that uses feature-based
examples of concepts to generate rules  which
describe the underlying concept. This
program has been successfully applied to a
wide variety of domains. We have been
exploring the use of AQ15 on a difficult class
of image processing problems, namely, to
infer descriptions of textures from noisy
examples. In this context, we find that AQ15
produces rules that are sub-optimal  from two
view points: 1) we need to minimize the
number of features actually used for
classification; and 2)  we need to achieve high
recognition rates with noisy data. Our
multistrategy approach is to apply genetic
algorithms to select the best feature subset to
use in conjunction with AQ15 to achieve our
goals. The proposed approach has been
implemented and applied to an initial set of
randomly selected texture data. Our results
are encouraging and indicate significant
advantages to a multistrategy  approach in
this domain.

1. Introduction

In recent years there has been a significant
increase in research on automatic image
recognition, classification and texture

analysis. Many researchers are now
interested in texture classification based on
discriminant  properties (features) of a given
image. We have been exploring the use of
machine learning techniques on a difficult
class of image processing problems, namely,
the use of rule induction methodologies (in
particular, AQ15) to infer descriptions of
textures from noisy examples. In this
context, we find that AQ15 produces rules
that are sub-optimal  from two view points:
1) we need to minimize the number of
features actually used for classification; and
2)  we need to achieve high recognition rates
with noisy data. In order to achieve our goals
we have adopted a multistrategy approach
involving the use of genetic algorithms to
select the best feature subset to use in
conjunction with AQ15.

The appropriate selection of these properties
plays a crucial role in several aspects of the
design of robust and feasible recognition
systems. Since feature extraction is generally
a costly combination of special purpose
hardware and cpu-intensive computations,
reducing the number of features required for
classification will permit the design of
recognition systems that were otherwise
infeasible. In addition, by reducing the
number of features (by eliminating redundant
or irrelevant  properties), the performance of
the rule induction system itself (AQ15) can be
improved as well as the classification
performance of the rules produced.



2. Feature Selection

A review of previous work in this area
indicates that there are two main approaches
that the image processing community has
taken to feature selection.  One approach
selects features independent of their effect on
classification performance. The other
approach selects features based on the overall
effectiveness of the performance of the
classification system.

The first  approach involves transforming the
original features according to procedures
such as those presented by Karhunen-Loeve
or Fisher to form a new set of features. Then,
it  selects a subset of these transformed
features by choosing the first “n” transformed
features where the selected  subset has lower
dimensionality than the original one (Dom
89). The smaller set of features is assumed to
preserve most of the information provided by
the original data and be more reliable because
it  removes redundant and noisy features
(Dom 89).

The second approach directly selects a subset
“d” of the available “m” features based on
some effectiveness criteria, without
significantly degrading the performance of
the classifier system (Ichino 84a). Many
researchers have adopted this method and
have created their own variations on this
approach. For example, Blanz, Tou and
Heydorn, and Watanabe after ordering the
features use different methods (such as, take
the first  “d”, throw away the last ‘m-d’,
Branch and Bound, etc.) to select a subset of
these features (Dom 89). The main issue for
this approach is how to account for
dependencies between features when
ordering them initially and selecting an
effective subset  in a later step (Dom 89).

A related strategy involves simply selecting
feature subsets and evaluating their
effectiveness (Dom 89). This process then
requires a “criterion function” and a “search
procedure” (Foroutan 85). The evaluation of
feature set effectiveness has been studied by

many researchers. Their solutions vary
considerably and include using the Bayes
probability of  error, the Whitney and Stern
estimate of probability of error based on the
k-nearest neighbor bound (Ichino 84b), or a
measure based on  statistical separability
(Dom 89).

All of the above mentioned techniques
involve the assumption is that some a priori
information (such as a probability density
function) about the data  set is available.
However, quite frequently very little is
known about the distribution function, or this
property is not necessarily related to the
classifier’s performance and the performance
must be estimated using the available data
(Foroutan 85).

Also, the search procedure used in these
techniques to select a  subset of the given
features plays an important role in the success
of the approach. Exhaustively trying all the
subsets is computationally prohibitive when
there are a large number of features. Non-
exhaustive search procedures such as
sequential backward elimination and
sequential forward selection pose many
problems (Kittler 78). These search
techniques do not allow for back tracking;
therefore, after a selection has been made it is
impossible to make any revisions to the
search. In order to avoid a combinatorial
explosion in search time, these search
procedures generally do not take into
consideration any inter-dependencies that
may exist between the given features when
choosing a subset.

Since genetic algorithms are best known for
their ability to efficiently search large spaces
about which little is known, and spaces
involving noise,  they seem to be an excellent
choice for the combinatorially explosive
problem of searching the space of all possible
subsets of a given feature set for a minimally
effective set of features for use with AQ15 to
infer texture descriptions.  We describe this
approach in more detail to the following
sections.



3. A Multistrategy Approach

The overall architecture of our system is
given in Fig. 1.  We assume that the low
level feature extraction will be done for us,
and that we will start with a feature set from
which an optimal subset is to be selected. As
indicated, genetic algorithms are used to
explore the space of all subsets of a given
feature set. Each of the selected feature
subsets is evaluated (its fitness measured) by
invoking AQ15 and measuring the
recognition rate of the rules produced. Each
of these components is described in more
detail in the following sections.

3.1 Genetic Algorithms as the Search
Procedure

Genetic algorithms (GAs), a form of
inductive learning strategy, are adaptive
search techniques initially introduced by
Holland (Holland 75). Genetic algorithms
derive their name from the fact that their

operations are similar to the mechanics of
genetic models of natural systems.

Genetic algorithms maintain a constant-sized
population of individuals. The initial
population is commonly a randomly
generated collection of individuals
representing samples of the space to be
searched. Each individual is evaluated,
selected and recombined with other
individuals on the basis of its overall fitness
with respect to the given application domain.
Therefore, high performing individuals may
be chosen for replication several times. This
eventually leads to a population that has
improved fitness with respect to the given
goal.

New individuals (offspring) for the next
generation are   formed  by   using two   main
genetic operators,  crossover  and    mutation.
Crossover operates by randomly selecting a
point in the two selected parents gene
structures and exchanging the remaining
segments of the parents to create new

Figure 1: Block diagram of the adaptive feature selection process
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offspring. Therefore, crossover combines the
features of two individuals to create two
similar offspring. Mutation operates by
randomly changing one or more components
of a selected individual. It acts as a
population perturbation operator and is a
means for inserting new information into the
population. This operator prevents any
stagnation that might occur during the search
process.

Genetic    algorithms     have     demonstrated
substantial improvement over a variety of
random and local search methods (De Jong
75). This is accomplished by their ability to
exploit accumulating information about an
initially unknown search space in order to
bias subsequent search into promising
subspaces (De Jong 88). Since GAs are
basically a domain independent search
technique, they are ideal for applications
where domain knowledge and theory is
difficult or impossible to provide (De Jong
88).

 The main issues in applying GAs to this
problem are selecting an appropriate
representation and an adequate evaluation
function. We discuss both of these issues in
more detail in the following sections.

3.2 Representation Issues

The first  step in applying GAs to the
problem of feature selection is to map the
search space into a representation suitable for
genetic search. Since we are only interested
in representing the space of all possible
subsets of the given feature set, the simplest
form of representation is to consider each
feature in the candidate feature set as a binary
gene (Holland 75). Then, each individual
consists of fixed-length binary string
representing some subset of the given feature
set. An individual of length ‘d’ corresponds
to a d-dimensional binary feature vector ‘X’,
where each bit represents the elimination  or
inclusion of the associated  feature. For

example, Xi=0 represents elimination and
Xi=1 indicates inclusion of the ith feature.
Hence, an individual of the form <1101>
represents the subset containing all but the
third feature.

The advantage to this representation is that
the classical  GA’s operators as described
before ( binary mutation and crossover) can
easily be applied to this representation
without  any modification. This eliminates the
need for designing new genetic operators,  or
making any other changes to the standard
form of genetic algorithms.

3.3 Evaluation function

Choosing an appropriate evaluation function
is an essential step for successful application
of GAs to any   problem   domain. Evaluation
functions provide GAs with the feed-back
about the fitness of each individual in the
population. GAs then use this feed-back to
bias the search process so as to provide an
improvement in the population’s average
fitness.

It is essential for the success of our system to
properly and accurately measure the
effectiveness of the image classification. A
feature subset is evaluated based on its ability
to recognize the appropriate images or proper
partitioning of classes. Performance of a
feature subset is measured by applying the
evaluation   function  presented in   Figure  2.
The evaluation function as shown is divided
into three main steps. After a feature subset is
selected, the initial training data, consisting of
the entire set of feature vectors and class
assignments corresponding to examples from
each of the given classes, is reduced. This is
done by removing the values for features  that
are not in the selected subset offeature
vectors. The second step is to apply a rule
induction  process (AQ15) to the new
reduced training data to generate the decision
rules for each of the given classes in the
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training data. The last step is to evaluate the
rules produced by the AQ algorithm in order
to perform the classification and hence,
recognition with respect to the test data. Each
of these steps will be discussed in more
detail.

3.2.1 The AQ algorithm

The AQ algorithm is a conceptual inductive
learning methodology used to produce a
complete and consistent rule-based
description of classes of examples (Michalski
86, 83). The AQ methodology works by
selecting an uncovered single positive event
or example, called the seed, in the class for
which it is producing the decision rules. This
seed is then maximally generalized through
the space of the given problem without
satisfying any negative examples (i.e.
examples describing other classes). This
process continues until  decision rules are
found that satisfy all the positive examples
and none of the negative ones.

A class description  is formed by a  collection
of disjuncts of conjuncts describing all the
training examples given for that particular
class. A decision rule is  then a  collection  of
conjuncts of allowable selector  (feature)
values.

GEM, an AQ15 based program,  provided
the required rules used for classification
process. This system (for more detail see
(Reinke 84)) basically uses a set of
parameters, feature descriptions, and a
training set as input. It then uses the given
parameters to direct the AQ algorithm in its
process of searching for a complete and

consistent class description. The following
presents a simplified version of decision rules
formed as output of GEM for a given class
containing total of nine features which can
take on integer values:

1. [Feature1=3 to 7] and  [Feature4= 4 to 9]
    and [Feature8=1 to 10]   (total:9, unique 6)

2. [Feature1=6] and [Feature4= 4 or 5 or 9]
            (total:5, unique 3)

3. [Feature1=4] and [Feature3= 3 to 9] and
    [Feature7=2 to 6] and [Feature9=1 to 8]
           (total:2, unique 1)

This class is described by three decision
rules, where each covers a total of 9, 5, and 2
training events (examples) respectively. The
term “unique” refers to the number of
positive training examples that were uniquely
covered by each rule.

3.2.2 Fitness function

In order to use genetic algorithms as the
search procedure, it is necessary to define a
fitness function which  properly assesses the
decision rules generated by the AQ algorithm.
The fitness function must be able to
discriminate between correct and incorrect
classification of examples, given the AQ
created rules. Finding an appropriate function
is not a trivial task, due to the noisy nature of
most image data. The following procedure
was followed to best achieve our goal.

The fitness function takes as an input a set of
feature or attribute definitions, a set of
decision rules created by the AQ algorithm,



and a collection of testing examples defining
the feature values for each example. The
fitness function then views the AQ generated
rules as a form of class description that,
when applied to a vector of feature values,
will evaluate to a number.

The fitness function is evaluated for the given
feature subset  by applying the following
steps. For every testing example a match
score (which will be described in more detail)
is evaluated for all the classification rules
generated by the AQ algorithm, in order to
find the rule(s) with the highest or best
match. At the end of this process, if there is
more than one rule having the highest match
score, one rule will be selected based on the
chosen conflict resolution process. This rule
then represents the classification for the given
testing example. If this is the appropriate
classification, then the testing example has
been recognized correctly. After all the testing
examples have been classified, the overall
fitness function will be evaluated by adding
the weighted sum of the match score of all of
the correct recognitions and subtracting the
weighted sum of the match score of all of the
incorrect recognitions, i.e.

       n                    m
F = ∑ Si * Wi  -  ∑ Sj * Wj
       i=0                j=n

where :
 Si is the best match score evaluated 
     for the test example ‘i’

 n  is the number of testing examples
     that were classified correctly

m is the total number of testing 
                 examples (i.e. m-n is the total
                 number of incorrectly classified
                 testing examples).

wi is the weight  allocated to the class
                 associated with test example ‘i’.

In order to normalize and scale the fitness
function  ‘F’ to a value acceptable for GAs,
the following operations were performed:

Fitness = 100 - [ ( F / total testing examples)
*100 ]

As indiciated in the above equation, after the
value  of  ‘F’  was normalized  to  the  range
[-100,100], the subtraction was performed in
order to ensured that the final evaluation is
always positive, as required by GAs, (i.e.,
fitness falls in the range [0,200]). Then, the
final fitness value decreases as the
classification is improved. For example, a
fitness value of zero indicates that all the
testing examples have been classified
correctly.

There are two main parameters that define
how the fitness function evaluates the
performance of the decision rules on the
testing examples. These are the weight
associated with each classification, and the
way that the degree of matching is evaluated
for a  given selector.

weight (W):

This parameter is useful when encoding user
or expert’s knowledge into the evaluation
function. However, for our preliminary
experiments all the classes were assumed to
have equal weight or importance (i.e.
weight=1).

Match score (S):

The degree of match between a rule and a
testing example may be treated as strict or
partial.
 In strict match, the degree of consonance
between a selector and a feature value of a
testing example is treated as a boolean value.
That is, it  evaluates to zero if the example's
feature value is not within the selector’s
specified range, and is one otherwise.

A rule’s overall match score is calculated as
the minimum of the degree of match for all



the selectors in that rule. Therefore, for each
selector in a given rule, if all the selectors
match the example value, the match score is
‘1’, otherwise it is ‘0’.

Ss = min (Si)

In the partial form of matching we allow for
real valued numbers which are evaluated in
the following manner. For each selector in a
given rule, if the variable or feature in that
selector has linear domain , then find the
closest distance as its match score. This
measure is evaluated using the following
formula:

S = (1- |aj - ak| /n)

where:
aj is the selectors closest feature value
       to the testing example's value ak,

ak is the testing example’s feature
                     value , and

n  is the total number of values given
                    for the variable or feature.

Otherwise, the domain is non-linear and the
match score for a given selector is ‘1’ when a
match occurs, and is zero in other situations.
The total partial match score for a given rule
is evaluated by averaging all the selectors
match score for the given rule.

Sp = Average (Si)

Aside from  the weight associated to each
class and match score of a given testing
example, conflict resolution process plays an
important role in the classification step.

Conflict resolution:

For any testing example, after the appropriate
match score is evaluated for all the  rules
generated by the AQ algorithm, the rule with
best  match score must be selected. However,
there may be situations where more than one
rule satisfies this condition. This is when the

conflict resolution process plays an important
role in selecting a single rule. This process is
performed by selecting a rule with highest
typicality, that is, a rule that covers the most
training examples as specified by the total
number of examples it covers (see example of
section 2.2.1).  However, there may be
situations that all the selected rules have the
same typicality. In this situation a rule is
randomly selected as the one having the best
match score, and hence, is assumed to have
the proper classification.

4. Experimental results

In performing the experiments for this
research we used GEM, an AQ15 based
inductive learning system,  and GENESIS, a
general purpose genetic algorithm program.
In order to search for an optimum subset of
features, two important steps were followed.
The first step was to find the optimum set of
parameters for the GEM system, so that it can
provide the best possible performance in
terms of rule induction. After careful
consideration, is was concluded that  there
are only a few (four) parameters with a small
number of legal values that affect the AQ’s
classification performance. Therefore, using
a genetic approach for parameter tuning  with
such a small space was ruled out, and instead
we decided to perform a systematic search for
optimal settings. This test was performed on
two different type of domains in order to find
a more robust parameter settings. It was
concluded that both domains result in best
classification performance with the same type
of parameter settings. These AQ parameter
settings were then used through out all our
experiments.

The second step was to select  appropriate
parameter settings for GENESIS. For our
preliminary experiments, the standard
parameter settings recommended by De Jong
were used: a population size=50, a mutation
rate= 0.001, and a crossover rate=0.6.

The proposed approach was tested on four
texture   images    randomly    selected    from



Brodatz (Brodatz 66) album of textures.
These images  are  depicted in  Figure 3. Two
hundred  feature  vectors, each  containing 18
features were then randomly extracted from
an arbitrary selected area of 30 by 30 pixels
from each of the chosen textures. These
feature vectors were then divided equally for
training generation of decision rules, and
testing examples.

 Water  Beach pebble

 Handmade paper Cotton canvas

Figure 3: The texture images used in our
experiments.

Our preliminary results suggested several
advantages to the adopted approach as
indicated in graph of figure 4 and Table 1.

The results obtained from  our experiments
with 80 generations  is  shown  in Figure 4.
This figure  shows the  changes  in  the
evaluation function and improvement in the
classification process over the generations of
population.

Table 1 summarizes the results of our
experiments comparing the best performance
of the AQ generated classification rules to that
of our multistrategy approach.

In all our experiments classification was
improved with respect to that of running the
AQ algorithm independent of GAs as shown
in figure 4.  The best performance found
(Table 1),  indicated an  8.0%  improvement
in the recognition rate of the AQ generated
rules. This improvement can play an
important role when dealing with crucial
decision making (such as military).

The result of the feature selection process
was to reduce the initial feature set consisting
of 18 elements to a subset of having only 9
elements for the best performing individual.
This represented a 50% reduction in the
number of features.

Another important advantage of using this
approach is that choosing the appropriate
subset of features reduces the time required to
perform the rule induction on textures or
images. This is a direct result of feature
selection process. In our experiments the time
required for the AQ15 to generate decision
rules used for classification was reduced by
36.54%. This reduction in learning time may
then permit using the AQ algorithm as a
means of classification   for many   problems
that were otherwise computationally
prohibitive.

It  should also be noted that feature
selection   also reduces the complexity of AQ
generated  class descriptions.  In this case the
complexity of the generated rules (Table 1)
was     defined   to     be   the     number      of
complexes (conditions) per class.

5.0 Summary and Conclusions

The experimental results obtained indicate the
power of applying a multistrategy approach
to the problem of learning rules for
classification of texture images. Our initial



#1

8 06 04 02 00
98

100

102

104

106

108

generations

a
v

er
a

g
e 

p
er

fo
rm

a
n

ce
 

(e
va

lu
at

io
n

 
fu

n
ct

io
n

)

Figure 4: The evaluation function for the depicted textures

Learning                  complexity
   time  

  Best
performance

AQ15

GA-AQ

111.5                  5.2                            301.5

95.5                    3.3                           211.5

Table 1: Results of our experiments

[0,200] (sec) (#complexes/class)

experiments and results indicate a small but
significant improvement in the classification
and recognition of real world images. In
addition, the reduction of the number of
features improved the execution time required
for rule induction substantially. This is a step
towards development of real-time
classification systems.

More testing is needed in order to substantiate
our results. This includes examining any
changes to the classification or recognition
when increasing one or all of the numbers of
texture classes, features, and testing and
training examples. This method could also be



extended to more complex problems that exist
in general field of computer vision.

The classification can be further improved by
using genetic algorithms to refine the AQ
generated rules. This was demonstrated by
Bala et al.(Bala 91).

One future direction would be to use GAs
with some background knowledge. For
example, including user/expert provided
estimates of the relative importance of various
features for texture classification could
further improve speed and performance.

Another extension involves applying our
multistrategy method for constructive
induction. That is, a more complex set of
features could be constructed by including
combinations of the given features in the
initial set. The feature selection process then
could be applied to this set  in order to find a
more effective subset.
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