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Abstract

Face detection is a canonical example of a rare event detection problem, in
which target patterns occur with much lower frequency than non-targets. Out of
millions of face-sized windows in an input image, for example, only a few will
typically contain a face. Viola and Jones recently proposed a cascade architecture
for face detection which successfully addresses the rare event nature of the task.
A central part of their method is a feature selection algorithm based on AdaBoost.
We present a novel cascade learning algorithm based on forward feature selection
which is two orders of magnitude faster than the Viola-Jones approach and yields
classifiers of similar quality. This faster method could be used for more demanding
classification tasks, such as on-line learning or searching the space of classifier
structures. Our experimental results highlight the dominant role of the feature set
in the success of the cascade approach.

1 Introduction

Fast and robust face detection is an important computer vision problem with applica-
tions to surveillance, multimedia processing, and HCI. Face detection is often formu-
lated as a search and classification problem: a search strategy generates potential image
regions and a classifier determines whether or not they contain a face. A standard ap-
proach is brute-force search, in which the image is scanned in raster order and every
n× n window of pixels over multiple image scales is classified [16, 13].

When a brute-force search strategy is used, face detection is arare event detection
problem, in the sense that among the millions of image regions, only very few contain
faces. The resulting classifier design problem is very challenging: The detection rate
must be very high in order to avoid missing any rare events. At the same time, the false
positive rate must be very low (e.g.10−6) in order to dodge the flood of non-events.
From the computational standpoint, huge speed-ups are possible if the sparsity of faces
in the input set can be exploited. In their seminal work [18], Viola and Jones proposed
a face detection method based on a cascade of classifiers, illustrated in figure 1. Each
classifier node is designed to reject a portion of the nonface regions and pass all of the
faces. Most image regions are rejected quickly, resulting in very fast face detection
performance.
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Figure 1: Illustration of the cascade architecture withn nodes.

There are three elements in the Viola-Jones framework: the cascade architecture,
a rich over-complete set of rectangle features, and an algorithm based on AdaBoost
for constructing ensembles of rectangle features in each classifier node. Much of the
recent work on face detection following Viola-Jones has explored alternative boosting
algorithms such as FloatBoost [10], GentleBoost [11], and Asymmetric AdaBoost [19].
This paper is motivated by the observation that the AdaBoost feature selection method
is anindirect way to meet the learning goals of the cascade. It is also an expensive al-
gorithm. For example, weeks of computation are required to produce the final cascade
in [18].

In this paper we present a new cascade learning algorithm which uses direct for-
ward feature selection to construct the ensemble classifiers in each node of the cascade.
We describe two variations of this approach, a symmetric method which weights false
positives and false negatives equally, and an asymmetric approach which is based on a
Bayes risk criterion that assigns more weight to false negatives. We demonstrate em-
pirically that our algorithms are two orders of magnitude faster than the Viola-Jones
algorithm, and produce cascades which are very close in face detection performance.
These faster methods could be used for more demanding classification tasks, such as
on-line learning or searching the space of classifier structures. Our results also suggest
that a large portion of the effectiveness of the Viola-Jones detector should be attributed
to the cascade design and the choice of the feature set.

2 Cascade Architecture for Rare Event Detection

The learning goal for the cascade in figure 1 is the construction of a set of classifiers
{Hi}n

i=1. EachHi is required to have a very high detection rate, but only amoderate
false positive rate (e.g. 50%). An input image region is passed fromHi to Hi+1 if it is
classified as a face, otherwise it is rejected. If the{Hi} can be constructed to produce
independenterrors, then the overall detection rated and false positive ratef for the
cascade is given by

∏n
i=1 di and

∏n
i=1 fi respectively. In a hypothetical example, a 20

node cascade withdi = 0.999 andfi = 0.5 would haved = 0.98 andf = 9.6e− 7.
As in [18], the overall cascade learning method in this paper is a stage-wise, greedy
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feature selection process. Nodes are constructed sequentially, starting withH1. Within
a nodeHi, features are added sequentially to form an ensemble. Following Viola-
Jones, the training dataset is manipulated between nodes to encourage independent
errors. Each nodeHi is trained on all of the positive examples and a subset of the neg-
ative examples. In moving from nodeHi to Hi+1 during training, negative examples
that were classified successfully by the cascade are discarded and replaced with new
ones, using the standard bootstrapping approach from [16]. The difference between
our method and Viola-Jones is the feature selection algorithm for the individual nodes.

The cascade architecture in figure 1 should be suitable for other rare event prob-
lems, such as network intrusion detection in which an attack constitutes a few packets
out of tens of millions. Recent work in that community has also explored a cascade
approach [4].

For each node in the cascade architecture, given a training set{xi, yi}, the learning
objective is to select a set of weak classifiers{ht} from a total set ofF features and
combine them into an ensembleH with a high detection rated and a moderate false
positive ratef . A weak classifier is formed from a rectangle feature by applying the
feature to the input pattern and thresholding the result.1 Training a weak classifier
corresponds to setting its threshold.

In [18], an algorithm based on AdaBoost trains weak classifiers, adds them to the
ensemble, and computes the ensemble weights. AdaBoost [14] is an iterative method
for obtaining an ensemble of weak classifiers by evolving a distribution of weights,Dt,
over the training data. In the Viola-Jones approach, each iterationt of boosting adds
the classifierht with the lowest weighted error to the ensemble. AfterT rounds of
boosting, the decision of the ensemble is defined as

H(x) =
{

1
∑T

t=1 αtht(x) ≥ θ
0 otherwise

where theαt are the standard AdaBoost ensemble weights andθ is the threshold of
the ensemble. This threshold is adjusted to meet the detection rate goal. More features
are then added if necessary to meet the false positive rate goal. The flowchart for the
algorithm is given in figure 2(a).

Viola and Jones compared their cascade detector with the Rowley-Baluja-Kanade
detector [13], the Schneiderman-Kanade detector [15], and the Roth-Yang-Ahuja de-
tector [22]. The cascade detector has similar performance and runs much faster.

The process of sequentially adding features which individually minimize the weighted
error is at best an indirect way to meet the learning goals for the ensemble. For exam-
ple, the false positive goal is relatively easy to meet, compared to the detection rate goal
which is near 100%. As a consequence, the thresholdθ produced by AdaBoost must
be discarded in favor of a threshold computed directly from the ensemble performance.
Unfortunately, the weight distribution maintained by AdaBoost requires that the com-
plete set of weak classifiers be retrained in each iteration. This is a computationally
demanding task which is in the inner loop of the feature selection algorithm.

Beyond these concerns is a more basic question about the cascade learning prob-
lem: What is the role of boosting in forming an effective ensemble?Our hypothesis is

1A feature and its corresponding classifier will be used interchangeably.
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Figure 2: Diagram for training one node in the cascade architecture, (a) is for the
original Viola-Jones method, and (b) is for the symmetric direct method.F andD are
false positive rate and detection rate goals respectively.

that the overall success of the method depends upon having a sufficiently rich feature
set, which defines the space of possible weak classifiers. From this perspective, a fail-
ure mode of the algorithm would be the inability to find sufficient features to meet the
learning goal. The question then is to what extent boosting helps to avoid this problem.
In the following section we describe a simple, direct feature selection algorithm that
sheds some light on these issues.

3 Direct Feature Selection Method

3.1 Symmetric feature selection

We propose a new cascade learning algorithm based on forward feature selection [20].
Pseudo-code of the algorithm for building an ensemble classifier for a single node is
given in table 1. The corresponding flowchart is illustrated in figure 2(b). The first step
in our algorithm is to train each of the weak classifiers to meet the false positive rate
goal for the ensemble. A classifier pool is formed from the weak classifiers with the
highest detection rates.

The output of each weak classifier on each training data item is collected in a large
look-up table. The core algorithm is an exhaustive search over possible classifiers. In
each iteration, we consider adding each possible classifier to the ensemble and select
the one which makes the largest improvement. The selection criteria directly max-
imizes the learning objective for the node. The look-up table, in conjunction with
majority vote rule, makes this feature search extremely fast.

The resulting algorithm is roughly 100 times faster than Viola-Jones. The key
difference is that we train the weak classifiers only once per node, while in the Viola-
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1. For noden, we are given thenth bootstrapped training set, the minimum detec-
tion ratedn, and the maximum false positive ratefn.

2. For every feature,j, train a weak classifierhj , whose false positive rate isfn.
Sort these weak classifiers according to their detection rate and form a classifier
poolP with the firsts weak classifiers that have largest detection rates.

3. Initialize the ensemble H to an empty set, i.e.H ← φ. t ← 0, d0 = 0.0,
f0 = 1.0.

4. while dt < dn or ft > fn

(a) if dt < dn, then, find the featurek, such that by adding it toH, the ensem-
ble will have largest detection ratedt+1.

(b) else, find the featurek, such that by adding it toH, the ensemble will have
smallest false positive rateft+1.

(c) t ← t + 1, H ← H ∪ {hk}.
5. The decision of the ensemble classifier is formed by a majority voting of weak

classifiers inH, i.e.

H(x) =
{

1
∑

hj∈H hj(x) ≥ θ

0 otherwise
,

whereθ = T
2 . Decreaseθ if necessary.

Table 1: The symmetric direct feature selection method for building an ensemble clas-
sifier at noden in the cascade.
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1. Given a training set, maintain a distributionD over it.

2. SelectN features using the algorithm in table 1. These features form a setF .

3. Initialize the ensemble classifier to an empty set, i.e.H ← ∅.
4. for i = 1 : N

(a) Select the featurek from F that has smallest errorε on the training set,
weighted over the distributionD.

(b) Update the distributionD according to the AdaBoost algorithm as in [18].

(c) Add the featurek and it’s associated weightαk = − log ε
1−ε to H. And

remove the featurek from F .

5. Decision of the ensemble classifier is formed by a weighted average of weak
classifiers inH. Decrease the thresholdθ until the ensemble reaches the detec-
tion rate goal.

Table 2: Weight setting algorithm after feature selection.

Jones method they are trained once for each feature in the cascade. LetT be the training
time for weak classifiers2 andF be the number of features in the final cascade. The
learning time for Viola-Jones is roughlyFT , which in [18] was on the order of weeks.
Let N be the number of nodes in the cascade. Empirically the learning time for our
method is2NT , which is on the order of hours in our experiments. For the cascade of
32 nodes with 4297 features in [18], the difference in learning time will be dramatic.

The difficulty of the classifier design problem increases with the depth of the cas-
cade, as the non-face patterns selected by bootstrapping become more challenging. A
large number of features may be required to achieve the learning objectives when ma-
jority vote is used. In this case, a weighted ensemble could be advantageous. Once
feature selection has been performed, a variant of the Viola-Jones algorithm can be
used to obtain a weighted ensemble. Pseudo-code for this weight setting method is
given in table 2.

3.2 Asymmetric feature selection

In the direct feature selection method described in section 3.1, an ensemble classifier
with very high detection rate and moderate false positive rate is obtained by selecting
features that optimize different criterion (i.e. detection rate and false positive rate) at
different stages of the algorithm. The key idea is that the detection rate goal is harder
to meet than the false positive rate goal. Thus, an false negative costs more than a false
positive. Instead of using the above two-stage optimizing algorithm, there is a natural

2In our experiments,T is about 10 minutes.
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1. For noden, we are given thenth bootstrapped training set, the minimum detec-
tion ratedn, and the maximum false positive ratefn.

2. For every feature,j, train a weak classifierhj , whose false positive rate isfn.
Sort these weak classifiers according to their detection rate and form a classifier
poolP with the firsts weak classifiers that have largest detection rates.

3. Initialize the ensemble H to an empty set, i.e.H ← φ. t ← 0, d0 = 0.0,
f0 = 1.0.

4. while dt < dn or ft > fn

(a) Find the featurek, such that by adding it toH, the ensemble will have
smallest asymmetric cost. The asymmetric cost of the ensemble is defined
as its false positive rate plusλ times its false negative rate, in whichλ is
the cost ratio.

(b) t ← t + 1, H ← H ∪ {hk}.
(c) Calculate the new ensemble’s detection rate and false positive rate.

5. The decision of the ensemble classifier is formed by a majority voting of weak
classifiers inH, i.e.

H(x) =
{

1
∑

hj∈H hj(x) ≥ θ

0 otherwise

whereθ = T
2 . Decreaseθ if necessary.

Table 3: The asymmetric direct feature selection method for building an ensemble
classifier.

way to incorporate the difference between false negatives and false positives.
Both the original Viola-Jones algorithm and the direct feature selection algorithm

in section 3.1 used asymmetriccost function, in which the cost associated with a false
negative and a false positive are both 1. If we use anasymmetriccost function in
which a false positive costs 1, while a false negative costsλ, the algorithm in table 1
can be further simplified. The resulting algorithm, which we call asymmetric direct
feature selection, is listed in table 3.3 The parameterλ is the cost ratio between false
negatives and false positives. In [19], Viola and Jones present an alternative asymmetric
version of their original feature selection method which incorporates asymmetry into
the AdaBoost weights. See section 5 for a detailed comparison.

The asymmetric cost function can be viewed as a Bayes risk criterion [17] which
is derived from the original cascade learning problem. It is worth noting that the sym-

3The algorithm in table 1 is called the symmetric direct feature selection algorithm accordingly.
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metric feature selection algorithm can be treated as a special case of the asymmetric
algorithm, in whichλ is set to zero if the detection rate goal is met, or infinity if other-
wise.

3.3 Stopping Criteria

One critical issue in the implementation of the feature selection algorithm is the choice
of the target detection and false positive rates,dn andfn, for each noden in the cas-
cade. As specified in the pseudocode (see tables 1 and 3), these target rates determine
the stopping criteria for feature selection in a single node. Ideally, we would like to be
able to setdn andfn in advance, resulting in a completely automatic cascade learning
algorithm which yields high quality classifiers. In practice, this is not possible because
the bestdn andfn that can be achieved will vary withn due to the increasing diffi-
culty of the learning task with increasing depth in the cascade. If thedn andfn goals
are enforced too rigidly, the algorithm will not terminate. This is also true with the
Viola-Jones AdaBoost-based algorithm.

In order to ensure that the algorithm terminates, we adopt a manual stopping criteria
in our experiments. If the current targets have not been met after 201 features have been
added to the ensemble, then the targets are slowly relaxed until they can be achieved.
The relaxation schedule is tuned to allow the false positive target to grow more rapidly
than the detection rate target.

In addition to the manual stopping criteria, we also explored a fully automatic ap-
proach in the case of asymmetric feature selection. In the automatic stopping criteria,
each ensemble is trained to use 201 features where the parameters are chosen to min-
imize the asymmetric cost of the ensemble (as defined in Table 3). This allows an
automatic trade-off between false positives and false negatives, controlled by the cost
ratio λ. Since we are minimizing a cost function over a fixed number of features, the
algorithm will always terminate. Experiments in section 4.3 consider the effects of
different values ofλ.

4 Experimental Results

4.1 Symmetric feature selection

We conducted three experiments to compare our symmetric feature selection method
to the Viola-Jones algorithm. Our training set contained 5000 example face images
from the data set in [18] and 5000 initial non-face examples, all of size 24x24. We
used approximately 2284 million non-face patches to bootstrap the non-face examples
between nodes. For testing purposes we used the MIT+CMU frontal face test set [13]
in all experiments. Although many researchers use automatic procedures to evaluate
their algorithm, we decided to manually count the missed faces and false positives.4

When scanning a test image at different scales, the image is re-scaled repeatedly by a
factor of 1.25. Post-processing is similar to [18].

4We found that the criterion for automatically finding detection errors in [11] was too loose. This criterion
yielded higher detection rates and lower false positive rates than manual counting.
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In the first experiment we constructed two face detection cascades and compared
their performance to the classifier in [18]. One cascade used the symmetric direct
feature selection method from table 1. The second cascade used the weight setting
algorithm in table 2. The algorithm stopped when it exhausted the set of non-face
training examples. The first cascade had 19 nodes and the second cascade had 37
nodes. ROC curves for our two cascades and the Viola-Jones method are depicted
in figure 3(a). We constructed our ROC curves by removing nodes from the cascade
to generate points with increasing detection and false positive rates. The Viola-Jones
ROC curve came from Table 3 of [18].

These curves demonstrate that the test performance of our method is remarkably
close to that of Viola-Jones. The direct feature selection algorithm comes within 2% of
the Viola-Jones result. The weight setting algorithm produces superior performance for
less than 50 false positives and identical performance for more than 200 false positives.

The second experiment explored the ability of the rectangle feature set to meet the
detection rate goal for the ensemble on a difficult node. Figure 3(b) shows the false
positive and detection rates for the ensemble as a function of the number of features
that are added to the 17th node in the direct feature selection cascade from figure 3(a).
Even for this difficult learning task, the algorithm can improve the detection rate from
0.6 to 0.9 using only 10 features, without any significant increase in false positive rate.
This suggests that the rectangle feature set is sufficiently rich. Our hypothesis is that
the strength of this feature set in the context of the cascade architecture is the key to
the success of the Viola-Jones approach.

We cannot reproduce all of the details of the experiment in [18] which produced the
ROC curve in figure 3(a). To address this limitation, we conducted a third experiment
in which the learning conditions for both algorithms were carefully controlled. In
particular, the feature set and training data were identical. The experiment focused on
learning the 17th node in a cascade. Figure 4 shows ROC curves for the Viola-Jones,
direct feature selection, and weight setting methods. Unlike the previous ROC curves,
these curves show the performance of the node in isolation using a hold-out set of the
training data. These curves reinforce the similarity in the performance of our method
compared to Viola-Jones. In particular, the false positive target for this node was0.8,
and the curves are quite close at this point. It’s interesting that weight setting does not
improve the performance in this case.

4.2 Feature set size

We conducted two experiments to examine the effect of feature set size on the detection
performance. Instead of using the full feature set which contains all possible rectangle
features defined in a 24 by 24 pixel window, we sampled 10% of the features.

The first experiment build a cascade with 36 nodes, using the symmetric feature
selection algorithm in table 1 and the training set described in section 4.1. The features
are sampled by selecting the first feature of every 10 features. The ROC curve on
the MIT+CMU test set of this cascade and the 2 cascades described in section 4.1 are
depicted in figure 5. The performance of the cascade trained from the 10% sub-sampled
feature set is very close to those cascades trained by the full feature set.
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Figure 3: Experimental Results. (a) is ROC curves on MIT+CMU of the symmetric
feature selection method and the Viola-Jones method and (b) is trend of detection and
false positive rates when more features are combined in one node.
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Figure 4: ROC curve of controlled experiment.
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Figure 5: ROC curves on MIT+CMU comparing cascades trained on the full feature
set and a 10% down-sampled feature set.
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Figure 6: ROC curve on a holdout set of controlled experiment to compare the effect
of down-sampled feature set and asymmetric feature selection.

The second experiment compared the abilities to achieve the learning objective in
one node. We used the same training set as in figure 4 and examined the performance
of different algorithms on a hold-out validation set. Figure 6 shows ROC curves for
3 different ensemble classifiers trained by the asymmetric feature selection algorithm
with full feature set, the symmetric algorithm with full feature set, and the asymmet-
ric algorithm with a 10% down-sampled feature set. The cost ratioλ is set to 10 in
this experiment. Comparing the two ROC curves trained by asymmetric feature se-
lection algorithm, it is clear that although the feature set size is greatly reduced, the
performance is essentially unchanged.

These experiments show that even if the feature set is reduced to 10% of its original
size, the difference in detection performance is negligible. This is more evidence for
the richness and diversity of the feature set of the Viola-Jones method.

4.3 Asymmetric feature selection

The three experiments in this section were designed to examine the performance of the
asymmetric feature selection algorithm.

The first experiment compared performance of symmetric and asymmetric versions
of the proposed method on a single node. The experimental setup was the same as the
second experiment in section 4.2 and the result is shown in figure 6. Using the full
feature set, the asymmetric feature selection algorithm’s performance is consistently
better than the symmetric one.

In the second experiment, we trained a cascade with 35 nodes using the asymmetric
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Figure 7: ROC curves of the asymmetric and symmetric feature selection algorithm on
MIT+CMU, using a 10% down-sampled feature set.

feature selection method and the 10% down-sampled feature set, following the experi-
mental setup in section 4.2. The cost ratioλ was set to 10 in this experiment. This ROC
curve is tested against the symmetric ROC curve from section 4.2 on the MIT+CMU
test set. The result is shown in figure 7. The performance of these two cascades are
close, but the asymmetric feature selection algorithm’s performance is consistently bet-
ter than the symmetric one.

The third experiment examines the effect of different values ofλ. Four cascades
were trained using the values 2,5,10 and 25. The ROC curves are shown in figure 8.
These cascades were trained using the automatic stopping criterion for the asymmet-
ric algorithm proposed in section 3.3. The ROC curves were generated on a holdout
set consisting of 5832 face patches and 6000 non-face patches. Only ten nodes were
trained for each cascade; improvements from additional nodes would occur in the re-
gion of very small false positive rate, which would not be reflected well with this val-
idation set. We cannot directly compare the curves in this graph with the other ROC
curves for cascades because of the use of the validation set, rather than manual evalua-
tion on the MIT+CMU face set.

We can see that there is a definite correlation between the value of the cost ratio and
the performance on the ROC curve. The larger values ofλ result in better ROC curves,
though there is some overlap in the area of low false positive rate. However, we cannot
make the cost ratio too large. Experiments withλ = 100 resulted in the stopping
criterion choosing ensembles with perfect detection rate and false positive rates greater
than 99%. Each additional node then adds very little discriminative power, and the
training sets for each successive node are nearly identical, resulting in very similar
(and poor) ensembles. Perhaps using a larger training set would allow for the use of
large cost ratios. Allowing the cost ratio to change from node to node, using large
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Figure 8: ROC curves of the asymmetric feature selection algorithm on a holdout set
using different cost ratios.

values in the first nodes and decreasing it as the classification problem grows more
difficult, may also alleviate this problem.

5 Related Work

A preliminary version of this paper was submitted toNIPS 2003. In comparison to
this earlier version, we have introduced a newasymmetricversion of our direct fea-
ture selection method which gives significantly better performance. In addition, we
introduced an automatic stopping criterion. Finally we have conducted additional ex-
periments which study the effect of feature set size on performance. Sections 3.2, 3.3,
4.2, and 4.3 are all new to this paper.

A survey of face detection methods can be found in [21]. We restrict our atten-
tion here to frontal face detection algorithms related to the cascade idea. The neural
network-based detector of Rowley et. al. [13] incorporated a manually-designed two
node cascade. Other cascade structures have been constructed for SVM classifiers. In
[12], a set of reduced set vectors is calculated from the support vectors. Each reduced
set vector can be interpreted as a face or anti-face template. Since these reduced set
vectors are appliedsequentiallyto the input pattern, they can be viewed as nodes in a
cascade. An alternative cascade framework for SVM classifiers is proposed by Heisele
et. al. in [5]. Based on different assumptions, Keren et al. proposed another object
detection method which consists of a series of anti-face templates [7]. Carmichael and
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Hebert propose a hierarchical strategy for detecting chairs at different orientations and
scales [3].

Following [18], several authors have developed alternative boosting algorithms for
feature selection. Li et al. incorporated floating search into the AdaBoost algorithm
(FloatBoost) and proposed some new features for detecting multi-view faces [10].
Lienhart et al. [11] experimentally evaluated different boosting algorithms and dif-
ferent weak classifiers. Their results showed that Gentle AdaBoost and CART decision
trees had the best performance. In an extension of their original work [19], Viola and
Jones proposed an asymmetric AdaBoost algorithm. All of these methods explore vari-
ations in AdaBoost-based feature selection, and their training times are similar to the
original Viola-Jones algorithm.

Although the word ‘asymmetric’ is used in both the asymmetric AdaBoost method
of Viola and Jones and our asymmetric feature selection algorithm, its implications
are different within these two algorithms. In the asymmetric AdaBoost algorithm, a
symmetric cost function was used. To achieve asymmetry, the weights of positive
examples are increased after each weak classifier is added into the AdaBoost ensemble.
In our asymmetric feature selection algorithm, we do not maintain weights for training
examples. We use an asymmetric cost function, in which a false negative costs more
than a false positive. The asymmetric cost function can be applied to different learning
algorithms, including the AdaBoost algorithm.

While all of the above methods adopt a brute-force search strategy for generating
input regions, there has been some interesting work on generating candidate hypotheses
from more general interest operators. Three examples are [9, 1, 8].

6 Conclusions

Face detection is a canonical example of a rare event detection task, in which target
patterns occur with much lower frequency than non-targets. It results in a challenging
classifier design problem: The detection rate must be very high in order to avoid miss-
ing any rare events and the false positive rate must be very low to dodge the flood of
non-events. A cascade classifier architecture is well-suited to rare event detection.

The Viola-Jones face detection framework consists of a cascade architecture, a
rich over-complete feature set, and a learning algorithm based on AdaBoost. We
have demonstrated that a simpler direct algorithm based on forward feature selection
can produce cascades of similar quality with two orders of magnitude less computa-
tion. Our algorithm directly optimizes the learning criteria for the ensemble, while
the AdaBoost-based method is more indirect. This is because the learning goal is a
highly-skewed tradeoff between detection rate and false positive rate which does not
fit naturally into the weighted error framework of AdaBoost. Our experiments sug-
gest that the feature set and cascade structure in the Viola-Jones framework are the key
elements in the success of the method.

We have described two variations of the direct feature selection approach, a sym-
metric method which weights false positives and false negatives equally, and an asym-
metric approach which is based on a Bayes risk criterion that assigns different weights
to these two types of mistakes. The asymmetric cost is more consistent with the def-
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inition of the rare event detection problem and leads to improved performance in our
experiments. We also describe some surprising preliminary experimental results on
feature set size which suggest that using a greatly reduced feature set (10% of the orig-
inal set) yields equivalent performance to the full set. This is further evidence for the
richness of the rectangle feature set for face detection.

Three issues that we plan to explore in future work are: the necessary properties for
feature sets, global feature selection methods, and the incorporation of search into the
cascade framework. The rectangle feature set seems particularly well-suited for face
detection. What general properties must a feature set possess to be successful in the
cascade framework? In other rare event detection tasks where a large set of diverse
features is not naturally available, methods to create such a feature set may be useful
(e.g. the random subspace method proposed by Ho [6]).

In our current algorithm, both nodes and features are added sequentially and greed-
ily to the cascade. More global techniques for forming ensembles could yield better
results. Finally, the current detection method relies on a brute-force search strategy for
generating candidate regions. We plan to explore the cascade architecture in conjunc-
tion with more general interest operators, such as those defined in [2, 8].

The authors are grateful to Mike Jones and Paul Viola for providing their training
data, along with many valuable discussions. This work was supported by NSF grant
IIS-0133779 and the Mitsubishi Electric Research Laboratories.
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