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Abstract: Practical pattern classification and knowledge discovery problems require selection of a
subset of attributes or features (from a much larger set) to represent the patterns to be classified.
This is due to the fact that the performance of the classifier (usually induced by some learning
algorithm) and the cost of classification are sensitive to the choice of the features used to construct
the classifier. Exhaustive evaluation of possible feature subsets is usually infeasible in practice because
of the large amount of computational effort required. Genetic algorithms, which belong to a class of
randomized heuristic search techniques, offer an attractive approach to find near-optimal solutions
to such optimization problems. This paper presents an approach to feature subset selection using a
genetic algorithm. Some advantages of this approach include the ability to accommodate multiple
criteria such as accuracy and cost of classification into the feature selection process and to find feature
subsets that perform well for particular choices of the inductive learning algorithm used to construct
the pattern classifier. Our experiments with several benchmark real-world pattern classification
problems demonstrate the feasibility of this approach to feature subset selection in the automated
design of neural networks for pattern classification and knowledge discovery.

1.1 INTRODUCTION

Many practical pattern classification tasks (e.g., medical diagnosis) require learning of an appropri-
ate classification function that assigns a given input pattern (typically represented using a vector
of attribute or feature values) to one of a finite set of classes. The choice of features, attributes,
or measurements used to represent patterns that are presented to a classifier affect (among other
things):

m  The accuracy of the classification function that can be learned using an inductive learning
algorithm (e.g., a decision tree induction algorithm or a neural network learning algorithm):
The features used to describe the patterns implicitly define a pattern language. If the lan-
guage is not expressive enough, it would fail to capture the information that is necessary
for classification and hence regardless of the learning algorithm used, the accuracy of the
clagsification function learned would be limited by this lack of information.

m  The time needed for learning a sufficiently accurate classification function: For a given rep-
resentation of the classification function, the features used to describe the patterns implicitly
determine the search space that needs to be explored by the learning algorithm. An abun-
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dance of irrelevant features can unnecessarily increase the size of the search space, and hence
the time needed for learning a sufficiently accurate classification function.

m  The number of examples needed for learning a sufficiently accurate classification function:
All other things being equal, the larger the number of features used to describe the patterns
in a domain of interest, the larger is the number of examples needed to learn a classification
function to a desired accuracy [Langley, 1995; Mitchell, 1997].

m  The cost of performing classification using the learned classification function: In many prac-
tical applications e.g., medical diagnosis, patterns are described using observable symptoms
as well as results of diagnostic tests. Different diagnostic tests might have different costs as
well as risks associated with them. For instance, an invasive exploratory surgery can be much
more expensive and risky than say, a blood test.

m  The comprehensibility of the knowledge acquired through learning: A primary task of an
inductive learning algorithm is to extract knowledge (e.g., in the form of classification rules)
from the training data. Presence of a large number of features, especially if they are irrelevant
or misleading, can make the knowledge difficult to comprehend by humans. Conversely, if
the learned rules are based on a small number of relevant features, they would much more
concise and hence easier to understand, and use by humans.

This presents us with a feature subset selection problem in automated design of pattern classifiers.
The feature subset selection problem refers the task of identifying and selecting a useful subset of
features to be used to represent patterns from a larger set of often mutually redundant, possibly
irrelevant, features with different associated measurement costs and/or risks. An example of such
a scenario which is of significant practical interest is the task of selecting a subset of clinical tests
(each with different financial cost, diagnostic value, and associated risk) to be performed as part of a
medical diagnosis task. Other examples of feature subset selection problem include large scale data
mining applications, power system control [Zhou et al., 1997], construction of user interest profiles
for text classification [Yang et al., 1998a] and sensor subset selection in the design of autonomous
robots [Balakrishnan and Honavar, 1996b].

The rest of the paper is organized as follows: Section 1.2 summarizes various approaches to the
feature subset selection. Section 1.3 describes our approach that uses a genetic algorithm for neural
network pattern classifiers. Section 1.4 explains the implementation details in our experiments.
Section 1.5 presents the results of various experiments designed to evaluate the performance of
our approach on some benchmark classification problems as well as a document classification task.
Section 1.6 concludes with summary and discussion of some directions for future research.

1.2 RELATED WORK

A number of approaches to feature subset selection have been proposed in the literature. (See
[Siedlecki and Sklansky, 1988; Doak, 1992; Langley, 1994; Dash and Liu, 1997] for surveys). These
approaches involve searching for an optimal subset of features based on some criteria of interest.
Feature subset selection problem can be viewed as a special case of the feature weighting problem.
It involves assigning a real-valued weight to each feature. The weight associated with a feature
measures its relevance or significance in the classification task [Cost and Salzberg, 1993; Punch
et al., 1993; Wettschereck et al., 1995]. If we restrict the weights to be binary valued, the feature
weighting problem reduces to the feature subset selection problem. The focus of this paper is on
feature subset selection.

Let u(S) be a performance measure that is used to evaluate a feature subset S with respect to
the criteria of interest (e.g., cost and accuracy of the resulting classifier). Feature subset selection
problem is essentially an optimization problem which involves searching the space of possible feature
subsets to identify one that is optimal or near-optimal with respect to p. Feature subset selection
algorithms can broadly be classified into three categories according to the characteristics of the
search strategy employed.
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1.2.1 Feature Subset Selection Using Exhaustive Search

In this approach, the candidate feature subsets are evaluated with respect to the performance
measure g and an optimal feature subset is found using exhaustive search. The Focus algorithm
[Almuallim and Dietterich, 1994] employs the breadth-first search algorithm to find the minimal
combination of features sufficient to construct a hypothesis that is consistent with the training
examples. The algorithm proposed by [Sheinvald et al., 1990] uses the minimum description length
criterion [Rissanen, 1978] to select an optimal feature subset using exhaustive enumeration and
evaluation of candidate feature subsets. Exhaustive search is computationally infeasible in practice,
except in those rare instances where the total number of features is quite small.

1.2.2  Feature Subset Selection Using Heuristic Search

Since exhaustive search over all possible subsets of a feature set is not computationally feasible in
practice, a number of authors have explored the use of heuristics for feature subset selection, often
in conjunction with branch and bound search, a technique that is well-known in combinatorial
optimization [Cormen et al., 1990] and artificial intelligence [Russell and Norvig, 1995]. Forward
selection and backward elimination are the most common sequential branch and bound search
algorithms used in feature subset selection [Narendra and Fukunaga, 1977; Devijver, 1982; Foroutan
and Sklansky, 1987; Fukunaga, 1990]. Forward selection starts with an empty feature set and adds a
feature at a time, at each stage choosing the addition that most increases p. Backward elimination
starts with the entire feature set and at each step drops the feature whose absence least decreases
p. Both forward and backward selection procedures are optimal at each stage, but are unable to
anticipate complex interactions between features that might affect the performance of the classifier.
A related approach, called the ezchange strategy starts with an initial feature subset (perhaps found
by forward selection or backward elimination) and then tries to exchange a feature in the selected
subset with one of the features that is outside it. We can often find a feature subset that is
guaranteed to be the best for a given size of the feature subset without considering all possible
subsets using branch and bound search [Narendra and Fukunaga, 1977] if we assume that p is
monotone. That is, adding features is guaranteed to not decrease p. It is worth pointing out that
in many practical pattern classification scenarios, the monotonicity assumption is not satisfied.
For example, addition of irrelevant features (e.g., social security numbers in medical records in
a diagnosis task) can significantly worsen the generalization accuracy of a decision tree classifier
[Quinlan, 1993]. Furthermore, feature subset selection techniques that rely on the monotonicity of
the performance criterion, although they appear to work reasonably well with linear classifiers, can
exhibit poor performance with non-linear classifiers such as neural networks [Ripley, 1996].

The use of systematic search to find a feature subset that is consistent with training data by
forward selection using a reliability measure is reported in [Schlimmer, 1993]. Five greedy hillclimb-
ing procedures (with different sequential search methods) for obtaining good generalization with
decision tree construction algorithms (ID3 and C4.5) [Quinlan, 1993] were proposed in [Caruana
and Freitag, 1994]. In related work, [John et al., 1994] used both forward selection and back-
ward elimination to minimize the cross validation error of decision tree classifiers [Quinlan, 1993];
[Kohavi, 1994; Kohavi and Frasca, 1994] used hillclimbing and best-first search for feature subset
selection for decision tree classifiers. Koller et al. [Koller and Sahami, 1996; Koller and Sahami,
1997] used forward selection and backward elimination to select a feature that is subsumed by the
remaining features (determined by the Markov blanket, the set of features that render the selected
feature conditionally independent of the remaining features) for constructing Naive Bayesian [Duda
and Hart, 1973; Mitchell, 1997] and decision tree classifiers [Quinlan, 1993]. The Preset algorithm
[Modrzejewski, 1993] employs the rough set theory [Pawlak, 1991] to select a feature subset by
rank ordering the features to generate a minimal decision tree. A class of techniques based for
feature subset selection using the probability of error and correlation among features is reported in

[Mucciardi and Gose, 1971].
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1.2.3 Feature Subset Selection Using Randomized Search

Randomized algorithms [Motwani and Raghavan, 1996] make use of randomized or probabilistic (as
opposed to deterministic) steps or sampling processes. Several researchers have explored the use of
such algorithms for feature subset selection. The Relief algorithm [Kira and Rendell, 1992] assigns
weights to features (based on their estimated effectiveness for classification) using the randomly
sampled instances. Features whose weights exceed a a user-determined threshold are selected in
designing the classifier. Several extensions of Relief have been introduced to handle noisy or missing
features as well as multi-category classification [Kononenko, 1994]. A randomized hillclimbing
search for feature subset selection for nearest neighbor classifiers [Cover and Hart, 1967; Diday,
1974; Dasarathy, 1991] was proposed in [Skalak, 1994]. The LVF and LVW algorithms [Liu and
Setiono, 1996b; Liu and Setiono, 1996a] are randomized algorithms that generate several random
feature subsets and pick the one that has the least number of unfaithful patterns in the space defined
by the feature subset (LVF) or the one that has the lowest error using a decision tree classifier (LVW)
giving preference to smaller feature subsets. (Two patterns are said unfaithful if they have the
same feature values but different class labels). Several authors have explored the use of randomized
population-based heuristic search techniques such as genetic algorithms (GA) for feature subset
selection for decision tree and nearest neighbor classifiers [Siedlecki and Sklansky, 1989; Brill et al.,
1992; Punch et al., 1993; Richeldi and Lanzi, 1996] or rule induction systems [Vafaie and De Jong,
1993]. A related approach used lateral feedback networks [Guo, 1992; Kothari and Agyepong, 1996]
to evaluate feature subsets [Guo and Uhrig, 1992]. Feature subset selection techniques that employ
genetic algorithms do not require the restrictive monotonicity assumption. They also readily lend
themselves to the use of multiple selection criteria (e.g., classification accuracy, feature measurement
cost, etc.). This makes them particularly attractive in the design of pattern classifiers in many
practical scenarios.

1.2.4 Filter and Wrapper Approaches to Feature Subset Selection

Feature subset selection algorithms can also be classified into two categories based on whether or
not feature selection is done independently of the learning algorithm used to construct the classifier.
If feature selection is performed independently of the learning algorithm, the technique is said to
follow a filter approach. Otherwise, it is said to follow a wrapper approach [John et al., 1994].

While the filter approach is generally computationally more efficient than the wrapper approach,
its major drawback is that an optimal selection of features may not be independent of the inductive
and representational biases of the learning algorithm that is used to construct the classifier. The
wrapper approach on the other hand, involves the computational overhead of evaluating candidate
feature subsets by executing a selected learning algorithm on the dataset represented using each
feature subset under consideration. This is feasible only if the learning algorithm used to train the
classifier is relatively fast. Figure 1.1 summarizes the filter and wrapper approaches. The approach
to feature subset selection proposed in this paper is an instance of the wrapper approach. It utilizes
a genetic algorithm for feature subset selection. Feature subsets are evaluated by computing the
generalization accuracy of (and optionally cost of features used in) the neural network classifier
constructed using a computationally efficient neural network learning algorithm called DistAl [Yang

et al., 1998b].

1.3 FEATURE SELECTION USING A GENETIC ALGORITHM FOR NEURAL NETWORK
PATTERN CLASSIFIERS

Feature subset selection in the context of many practical problems (e.g., diagnosis) presents an
instance of a multi-criteria optimization problem. The multiple criteria to be optimized include
the accuracy of classification, cost and risk associated with classification which in turn depends
on the selection of features used to describe the patterns. Genetic algorithms offer a particularly
attractive approach for multi-criteria optimization.

Neural networks offer an attractive framework for the design of trainable pattern classifiers for
real-world real-time pattern classification tasks on account of their potential for parallelism and
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Figure 1.1 Two approaches to feature subset selection based on the incorporation of the learning algorithm.
Features are selected independently of the learning algorithm in filter approach, while feature subsets are generated
and evaluated by a learning algorithm in wrapper approach.

fault and noise tolerance, [Gallant, 1993; Honavar, 1994; Hassoun, 1995; Ripley, 1996; Mitchell,
1997; Honavar, 1998a; Honavar, 1998b].

While genetic algorithms are generally quite effective for rapid global search of large search
spaces in difficult optimization problems, neural networks offer a particularly attractive approach
to finetuning promising solutions once they have been identified. Thus, it is attractive to explore
combinations of global and local search techniques in the solution of difficult design or optimization
problems [Mitchell, 1996]. Against this background, the use of genetic algorithms for feature subset
selection in the design of neural network pattern classifiers is clearly of interest.

This paper explores GADistAl, a wrapper-based multi-criteria approach to feature subset selection
using a genetic algorithm in conjunction with a relatively fast inter-pattern distance-based neural
network learning algorithm called DistAl. However, the general approach can be used with any
inductive learning algorithm. The interested reader is referred to [Honavar, 1994; Langley, 1995;
Mitchell, 1997; Honavar, 1998a; Honavar, 1998b] for surveys of different approaches to inductive
learning.

1.3.1 Genetic Algorithms

Evolutionary algorithms [Goldberg, 1989; Holland, 1992; Koza, 1992; Fogel, 1995; Michalewicz,
1996; Mitchell, 1996; Banzaf et al., 1997] include a class related randomized, population-based
heuristic search techniques which include genetic algorithms [Goldberg, 1989; Holland, 1992; Mitchell,
1996], genetic programming [Koza, 1992; Banzaf et al., 1997], evolutionary programming [Fogel,
1995], and variety of related approaches [Michalewicz, 1996; Mitchell, 1996]. They are inspired
by processes that are modeled after biological evolution. Central to such evolutionary systems
is the idea of a population of potential solutions (individuals) that corresponds to members of a
high-dimensional search space.

The individuals represent candidate solutions to the optimization problem being solved. A
wide range of genetic representations (e.g., bit vectors, LISP programs, matrices, etc.) can be
used to encode the individuals depending on the space of solutions that needs to be searched. In
genetic algorithms [Goldberg, 1989; Michalewicz, 1996; Mitchell, 1996], the individuals are typically
represented by n-bit binary vectors. The resulting search space corresponds to an n-dimensional
boolean space. In the feature subset selection problem, each individual would represent a feature
subset.



It is assumed that the quality of each candidate solution (or fitness of the individual in the
population) can be evaluated using a fitness function. In the feature subset selection problem,
the fitness function would evaluate the selected features with respect to some criteria of interest
(e.g., cost of the resulting classifier, classification accuracy of the classifier, etc.). In this case, it is
essentially the p function defined earlier.

Evolutionary algorithms use some form of fitness-dependent probabilistic selection of individ-
uals from the current population to produce individuals for the next generation. A variety of
selection techniques have been explored in the literature. Some of the most common ones are
fitness-proportionate selection, rank-based selection, and tournameni-based selection [Goldberg,
1989; Michalewicz, 1996; Mitchell, 1996]. The selected individuals are subjected to the action
of genetic operators to obtain new individuals that constitute the next generation. The genetic
operators are usually designed to exploit the known properties of the genetic representation, the
search space, and the optimization problem to be solved. Genetic operators enable the algorithm
to exzplore the space of candidate solutions. See [Balakrishnan and Honavar, 1995] for a discussion
of some desirable properties of genetic representations and operators.

Mutation and crossover are two of the most commonly used operators that are used with genetic
algorithms that represent individuals as binary strings. Mutation operates on a single string and
generally changes a bit at random. Thus, a string 11010 may, as a consequence of random mutation,
get changed to 11110. Crossover, on the other hand, operates on two parent strings to produce
two offspring. With a randomly chosen crossover position 4, the two strings 01101 and 11000
yield the offspring 01100 and 11001 as a result of crossover. Other genetic representations (e.g.,
matrices, LISP programs) require the use of appropriately designed genetic operators [Michalewicz,
1996; Mitchell, 1996; Banzaf et al., 1997].

The process of fitness-dependent selection and application of genetic operators to generate suc-
cessive generations of individuals is repeated many times until a satisfactory solution is found (or
the search fails). It can be shown that evolutionary algorithms of the sort outlined above simu-
late highly opportunistic and exploitative randomized search that explores high-dimensional search
spaces rather effectively under certain conditions [Holland, 1992]. In practice, the performance of
evolutionary algorithms depends on a number of factors including: the choice of genetic represen-
tation and operators, the fitness function, the details of the fitness-dependent selection procedure,
and the various user-determined parameters such as population size, probability of application of
different genetic operators, etc. The specific choices made in the experiments reported in this paper
are summarized in Section 1.4.

1.3.2 Neural Networks

Neural networks are densely connected, massively parallel, shallowly serial networks of relatively
simple computing elements or neurons [Gallant, 1993; Honavar, 1994; Hassoun, 1995; Ripley,
1996; Mitchell, 1997; Honavar, 1998a; Honavar, 1998b]. Each neuron computes a relatively simple
function of its inputs and transmits outputs to other neurons to which it is connected via its output
links. A variety of neuron functions are used in practice. Each neuron has associated with it a set
of parameters which are modifiable through learning. The most commonly used parameters are the
so-called weights.

The computational capabilities (and hence pattern classification abilities) of a neural network
depend on its architecture (connectivity), functions computed by the individual neurons, and the
setting of parameters or weights used. It is well-known that multi-layer networks of non-linear
computing elements (e.g., threshold neurons) can realize any classification function ¢ : R* — C or
¢ : D — C where C is a finite set of classes and n is a finite number of discrete or real valued
attributes, R is the set of real numbers, and D is a finite set of discrete values. (If the attributes
are non-numeric (e.g., nominal), they have to be first mapped to numeric values using appropriate
coding scheme).

Since the function computed by a neural network is determined by its topology as well as
the computations performed by individual neurons, designing a neural network for a particular
pattern classification task reduces to determination of the network architecture (number of neurons,
their connectivity, etc.), the types of neurons (e.g., linear, sigmoid, threshold, etc.), as well as the
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parameter or weight values. This is typically accomplished through a combination of design (using
a-priori knowledge or guesswork) and inductive learning (which may be used to modify, among other
things, the weights, network architecture, or both) [Gallant, 1993; Honavar and Uhr, 1993; Honavar,
1994; Parekh et al., 1997a; Honavar, 1998a].

1.3.3 Genetic Algorithm Wrapper approach to Feature Subset Selection for Neural Network

Pattern Classifiers: Some Practical Considerations

Genetic algorithms offer an attractive technique for feature subset selection for neural network
pattern classifiers for several reasons, some of which were mentioned above. However, we are faced
with several difficulties in using this approach in practice.

Traditional neural network learning algorithms (e.g., backpropagation) perform an error gradient
guided search for a suitable setting of weights in the weight space determined by a user-specified
network architecture. This ad hoc choice of network architecture often inappropriately constrains
the search for an appropriate setting of weights. For example, if the network has fewer neurons than
necessary, the learning algorithm will fail to find the desired classification function. If the network
has far more neurons than necessary, it can result in overfitting of the training data leading to
poor generalization. In either case, it would make it difficult to evaluate the usefulness of a feature
subset employed to describe (or represent) the training patterns used to train the neural network.

Gradient based learning algorithms although mathematically well-founded for unimodal search
spaces, can get caught in local minima of the error function. This can complicate the evaluation
of a feature subset employed to represent the training patterns used to train the neural networks.
This is due to the fact that the poor performance of the classifier might be due to the failure of the
learning algorithm, and not the feature subset used.

Fortunately, constructive neural network learning algorithms [Gallant, 1993; Honavar and Uhr,
1993; Honavar, 1998a] eliminate the need for ad hoc, and often inappropriate a-priori choices of
network architectures; and can potentially discover near-minimal networks whose size is commen-
surate with the complexity of the classification task that is implicitly specified by the training
data. Several new, provably convergent, and relatively efficient constructive learning algorithms for
multi-category real as well as discrete valued pattern classification tasks have begun to appear in the
literature [Yang et al., 1996; Parekh et al., 1997a; Parekh et al.; 1997b; Yang et al., 1998b; Honavar,
1998a]. Many of these algorithms have demonstrated very good performance in terms of reduced
network size, learning time, and generalization in a number of experiments with both artificial and
fairly large real-world datasets. [Honavar and Uhr, 1993; Parekh et al., 1997a; Yang et al., 1998b].
However, most of them, with the exception of DistAl [Yang et al., 1998b] use time—consuming
iterative training algorithms for setting the weights of the neurons.

Using genetic algorithms for feature subset selection for the design of neural network pattern
clagsifiers involves running a genetic algorithm for several generations. In each generation, evalu-
ation of an individual (a feature subset) requires training the corresponding neural network and
computing its accuracy and cost. This evaluation has to be performed for each of the individuals
in the population. Thus, it is not feasible to use computationally expensive iterative weight update
algorithms for training neural network classifiers for evaluating candidate feature subsets. Against
this background, DistAl offers an attractive approach to training neural networks.

1.3.4 DistAl: A Fast Algorithm for Constructing Neural Network Pattern Classifiers

DistAl [Yang et al., 1998b] is a simple and relatively fast constructive neural network learning
algorithm for pattern classification. The results presented in this paper are based experiments using
neural networks constructed by DistAl. The key idea behind DistAl is to add hyperspherical hidden
neurons one at a time based on a greedy strategy which ensures that the hidden neuron correctly
classifies a maximal subset of training patterns belonging to a single class. Correctly classified
examples can then be eliminated from further consideration. The process terminates when the
pattern set becomes empty (that is, when the network correctly classifies the entire training set).
When this happens, the training set becomes linearly separable in the transformed space defined
by the hidden neurons. In fact, it is possible to set the weights on the hidden to output neuron
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Figure 1.2 GADistAl: Feature subset selection using a genetic algorithm with DistAl. Starting from the initial
population (of candidates having different feature subsets), new populations are generated repeatedly from the
previous ones by applying genetic operators (i.e., crossover and mutation) to the selected parents, evaluating the
fitness values of offsprings by DistAl and ranking them according to their fitness values. The best individual is
obtained after the last generation.

connections without going through an iterative process. It is straightforward to show that DistAl
is guaranteed to converge to 100% classification accuracy on any finite training set in time that
is polynomial in the number of training patterns [Yang et al., 1998b]. Experiments reported in
[Yang et al., 1998b] show that DistAl, despite its simplicity, yields classifiers that compare quite
favorably with those generated using more sophisticated (and substantially more computationally
demanding) learning algorithms. This makes DistAl an attractive choice for experimenting with
evolutionary approaches to feature subset selection for neural network pattern classifiers. Key steps
in our approach are shown in Figure 1.2.

1.4 IMPLEMENTATION DETAILS
As explained earlier, the use of a genetic algorithm in any search or optimization problem requires:

m  the choice of a representation for encoding candidate solutions to be manipulated by the
genetic algorithm

m  the definition of a fitness function that is used to evaluate the candidate solutions
m  the definition of a selection-scheme (e.g., fitness-proportionate selection)

m  the definition of suitable genetic operators that are used to transform candidate solutions
(and thereby explore the search space)

m  setting of user-controlled parameters (e.g., probability of applying a particular genetic oper-
ator, size of the population, etc.)

Our experiments were run using a genetic algorithm [Goldberg, 1989; Mitchell, 1996] using
rank-based selection strategy. The probability of selection of the highest ranked individual is p
(where 0.5 < p < 1.0 is a user-specified parameter), that of the second highest ranked individual
is p(1 — p), that of the third highest ranked individual is p(1 — p)?,..., that of the last ranked
individual is 1—(sum of the probabilities of selection of all the other individuals). The rank-based
selection strategy gives a non-zero probability of selection of each individual [Mitchell, 1996]. Our
experiments used the following parameter settings:

m  Population size: 50

m  Number of generation: 20

m  Probability of crossover: 0.6

m  Probability of mutation: 0.001

m  Probability of selection of the highest ranked individual: 0.6
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The parameter settings were based on results of several preliminary runs. They are comparable to
the typical values mentioned in the literature [Mitchell, 1996].

Each individual in the population represents a candidate solution to the feature subset selection
problem. Let m be the total number of features available to choose from to represent the patterns
to be classified. In a medical diagnosis task, these would be observable symptoms and a set of
possible diagnostic tests that can be performed on the patient. It is represented by a binary
vector of dimension m (where m is the total number of features). If a bit is a 1, it means that
the corresponding feature is selected. A value of 0 indicates that the corresponding feature is not
selected. The fitness of an individual is determined by evaluating the neural network constructed by
DistAl using a training set whose patterns are represented using only the selected subset of features.
If an individual has n bits turned on, the corresponding neural network has n input nodes.

The fitness function has to combine two different criteria — the accuracy of the classification
function realized by the neural network and the cost of performing classification. The accuracy of
the classification function can be estimated by calculating the percentage of patterns in a test set
that are correctly classified by the neural network in question. A number of different measures of the
cost of classification suggest themselves: cost of measuring the value of a particular feature needed
for classification (or the cost of performing the necessary test in a medical diagnosis application),
the risk involved, etc. To keep things simple, we chose a 2-criteria fitness function defined as follows:

cost(x)

fitness(z) = accuracy(x) — + costmar (1.1)

accuracy(z) + 1
where fitness(z) is the fitness of the feature subset represented by z, accuracy(z) is the test
accuracy of the neural network classifier trained using DistAl using the feature subset represented
by z, cost(z) is the sum of measurement costs of feature subset represented by #, and costpqz
is an upper bound on the costs of candidate solutions. In this case, it is simply the sum of the
costs associated with all of the features. This is clearly a somewhat ad hoc choice. However, it
does discourage trivial solutions (e.g., a zero cost solution with a very low accuracy) from being
selected over reasonable solutions which yield high accuracy at a moderate cost. It also ensures
that Vo 0 < fitness(z) < (100 4+ costmqs). In practice, defining suitable tradeoffs between the
multiple objectives has to be based on knowledge of the domain. In general, it is a non-trivial
task to combine multiple optimization criteria into a single fitness function. A wide variety of
approaches have been examined in the utility theory literature [Keeney and Raiffa, 1976].

1.5 EXPERIMENTS

1.5.1 Description of Datasets

The experiments reported here used a wide range of real-world datasets from the machine learning
data repository at the University of California at Irvine [Murphy and Aha, 1994] as well as a carefully
constructed artificial dataset (3-bit parity) to explore the feasibility of using genetic algorithms for
feature subset selection for neural network classifiers. The feature subset selection using DistAl is
also applied to document classification problem for journal paper abstracts and news articles.

3-bit Parity Dataset. This dataset was constructed to explore the effectiveness of the genetic
algorithm in selecting an appropriate subset of relevant features in the presence of redundant
features so as to minimize the cost and maximize the accuracy of the resulting neural network
pattern classifier. The modified training set is constructed as follows: The original features are
replicated once (to introduce redundancy) thereby doubling the number of features. Then an
additional set of irrelevant features are generated and are assigned random boolean values. 100
7-bit random vectors were generated and augmented with the 6-bit vectors (corresponding to the
original 3 bits plus an identical set of 3 bits). Each feature in the resulting dataset is assigned a
random cost between 0 and 9. The performance considering the random costs in addition to the
accuracy (see equation (1.1)) was compared with that obtained by considering the accuracy alone.

Datasets from UCI Repository. In our experiments with real world datasets, our objective
was to compare the neural networks built using feature subsets selected by the genetic algorithm
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Table 1.1 Datasets used in the experiments. Size is the number of patterns in the dataset, Features is the
number of input features, and Class is the number of output classes.

Dataset Size Features Feature Type Class
3-bit parity problem (3P) 100 13 numeric 2
annealing database (Annealing) 798 38 numeric, nominal 5
audiology database (Audiology) 200 69 nominal 24
pittsburgh bridges (Bridges) 105 11 numeric, nominal 6
breast cancer (Cancer) 699 9 numeric 2
credit screening (CRX) 690 15 numeric, nominal 2
flag database (Flag) 194 28 numeric, nominal 8
glass identification (Glass) 214 9 numeric 6
heart disease (Heart) 270 13 numeric, nominal 2
heart disease [Cleveland](HeartCle) 303 13 numeric, nominal 2
heart disease [Hungarian](HeartHun) 294 13 numeric, nominal 2
heart disease [Long Beach](HeartLB) 200 13 numeric, nominal 2
heart disease [Swiss](HeartSwi) 123 13 numeric, nominal 2
hepatitis domain (Hepatitis) 155 19 numeric, nominal 2
horse colic (Horse) 300 22 numeric, nominal 2
ionosphere structure (Ionosphere) 351 34 numeric 2
pima indians diabetes (Pima) 768 8 numeric 2
DNA sequences (Promoters) 106 57 nominal 2
sonar classifiction (Sonar) 208 60 numeric 2
large soybean (Soybean) 307 35 nominal 19
vehicle silhouettes (Vehicle) 846 18 numeric 4
house votes (Votes) 435 16 nominal 2
vowel recognition (Vowel) 528 10 numeric 11
wine recognition (Wine) 178 13 numeric 3
zoo database (Zoo) 101 16 numeric, nominal 7
paper abstracts 1 (Abstractl) 100 790 numeric 2
paper abstracts 2 (Abstract2) 100 790 numeric 2
news articles 1 (Reutersl) 939 1568 numeric 6
news articles 2 (Reuters2) 139 435 numeric 4
news articles 3 (Reuters3) 834 1440 numeric 8

with those that use the entire set of features available. Table 1.1 summarizes the characteristics
of the datasets. Some medical datasets include measurement costs for the features, but most
of the datasets lack this information. Therefore, our experiments with the datasets from UCI
repository focused on identifying a minimal subset of features that yield high accuracy neural
network classifiers. Where measurement costs were available, the performance considering the cost
in addition to the accuracy was compared with that obtained by considering the accuracy alone.

Document Datasets. The paper abstracts were chosen from three different sources: IEEE Ex-
pert magazine, Journal of Artificial Intelligence Research and Neural Computation. The news
articles were obtained from Reuters dataset. Each document is represented in the form of a vector
of numeric weights for each of the words (terms) in the vocabulary. The weights correspond to the
term frequency and inverse document frequency (TFIDF) [Salton and McGill, 1983; Yang et al.,
1998a] values for the corresponding words. The training sets for paper abstracts were generated
based on the classification of the corresponding documents into two classes (interesting and not
interesting) by two different individuals, resulting in two different data sets (Abstractl and Ab-
stract2). The classifications for news articles were given based on their topics (6, 4 and 8 classes)
following [Koller and Sahami, 1997], resulting in three different datasets (Reutersl, Reuters2 and
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Reuters3), respectively. These datasets are also summarized in Table 1.1. Since these datasets do
not have measurement costs for the features, our experiments with document datasets also focused
on identifying a minimal subset of features that yield high accuracy neural network classifiers.

1.5.2 Experimental Results

Two different sets of experiments were run to explore the performance of GADistAl.

The first set of experiments were designed to explore the effect of feature subset selection on
the performance of DistAl on a given choice of training and test sets. Each dataset was randomly
partitioned into a training and test set (with 90% of the data used for training and the remaining
10% for testing). The genetic algorithm was used to select the best feature subset on the basis
of this choice of training and test sets. The results were averaged over 5 independent runs of the
genetic algorithm, for a given choice of training and test set. This process was repeated 10 times
with 10 different choices of training and test set. The results of these experiments (which represent
5 x 10 = 50 runs of the genetic algorithm) are shown in Table 1.2 and 1.5. The entries in the tables
give the means (and standard deviations) in the form mean (£ standard deviation).

The second set of experiments explored a somewhat different, but related question. Since feature
subset selection in GADistAl is guided by the fitness function, it seems reasonable to expect that
the quality of fitness estimates will have some impact on the performance of DistAl. Thus, it is
interesting to explore the performance of GADistAl when the fitness estimates are obtained using
several training and test sets. Thus, in this set of experiments, fitness estimates used by GADistAl
were obtained by averaging the observed fitness values for 10 different partitions of the data into
training and test sets. The reported results represent averages over 5 independent runs of the
algorithm. The results are shown in Table 1.3, 1.4 and 1.6.

Improvement in Generalization using Feature Subset Selection. To study the effect of
feature subset selection on generalization, experiments were run using classification accuracy as
the fitness function. The results in Table 1.2 indicate that the networks constructed using GA-
selected subset of features compare quite favorably with networks that use all of the features in
all randomly partitioned datasets. In particular, feature subset selection resulted in substantial
improvement in generalization on many of the datasets. (For example, 100% accuracy were yielded
in P3, Promoters, and Zoo datasets). Also, the number of features selected is significantly
smaller than the total number of features present in the original data representation in all of the
datasets.

The results shown in Table 1.3 indicate that the networks constructed using GA-selected subset
of features are comparable to the networks that use all of the features in most of the datasets with
10-fold cross-validation. Clearly, GADistAl outperformed plain DistAl (with all features) in the parity
problem in the sense that it successfully selected important features giving 100% generalization.
For the remaining datasets, the improvement is generalization ranged from modest in some cases
to marginal in others. The best individual generated by GADistAl outperformed DistAl in almost
all datasets. Again, the number of features selected is significantly smaller than the total number
of features present in the original data representation in all of the datasets.

Table 1.4 compares the results of GADistAl with the results of other GA-based [Richeldi and
Lanzi, 1996] and several non GA-based approaches that are available in the literature [Liu and Se-
tiono, 1996a; Liu and Setiono, 1996b; Kohavi, 1994; Kohavi and Frasca, 1994; Koller and Sahami,
1996; Koller and Sahami, 1997]. A ‘-’ indicates that the result is not reported in the corresponding
reference. The results indicate that GADistAl gave higher generalization accuracy than the other
techniques or comparable accuracy in almost all cases (except Vehicle dataset) although it occa-
sionally selected more features. GADistAl produced feature subsets with larger number of features
than the approach in [Koller and Sahami, 1996; Koller and Sahami, 1997] for Reuters datasets.
This can be explained by that the former found the feature subsets using a genetic algorithm for
datasets with relatively large number of features while the latter set up the number of features to
select a-priori. It should be noted that it is not generally feasible to do a completely fair and thor-
ough comparison between different approaches without the complete knowledge of the parameters
and the set up used in the experiments.
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Table 1.2 Comparison of neural network pattern classifiers constructed by DistAl using the entire set of features
with the best network constructed by GADistAl using GA-selected subsets of features for randomly partitioned
datasets. Features is the number of features used and Accuracy is the generalization accuracy obtained in the
neural networks. The reported accuracy of DistAl is obtained by 10-fold cross-validation, and that of GADistAl
represents averages over 50 runs of genetic algorithm (10 partitions of the dataset, 5 runs for each partition). See
Section 1.5.2. for details.

DistAl GADistAl
Dataset Features Accuracy Features Accuracy
3P 13 79.0£12.2 6.6 £ 1.6 100 £ 0.0
Annealing 38 96.6+2.0 21.0 4+ 3.1 99.5 + 0.9
Audiology 69 66.0£9.7 36.4 £ 3.5 83.5 + 8.2
Bridges 11 63.0+7.8 5.6+ 1.5 81.6+ 7.6
Cancer 9 97.8+ 1.2 54+14 99.3+0.9
CRX 15 87.7£3.3 8.0+2.1 91.5+28
Flag 28 65.8£9.5 14.0 £2.6 78.1 £7.8
Glass 9 70.5£8.5 55 %14 80.8 £5.0
Heart 13 86.7£7.6 7.2 £1.6 93.9 £3.8
HeartCle 13 85.3+£2.7 7.3 £1.7 92.9 £3.6
HeartHun 13 85.9+6.3 7.0+1.2 93.0 £4.0
HeartLB 13 80.0£7.4 7.1 £1.7 91.0 £5.7
HeartSwi 13 94.2+£3.8 6.6 +1.7 98.3 £3.3
Hepatitis 19 84.7£9.5 9.2 £2.3 97.1 £4.3
Horse 22 86.0£3.6 11.1 £2.3 92.6 £3.4
Ionosphere 34 94.3£5.0 17.3 £3.5 98.6 £2.4
Pima 8 76.3£5.1 3.8 £1.5 79.5 £3.1
Promoters 57 88.0£7.5 28.8 £3.3 100 £0.0
Sonar 60 83.0£7.8 30.7 £3.7 97.2 4£2.9
Soybean 35 81.0+5.6 194+ 2.7 92.8 £5.9
Vehicle 18 654+ 3.5 9.1 £1.7 68.8 +£4.3
Votes 16 96.1£1.5 8.9 £1.8 98.8 +£1.2
Vowel 10 69.8+6.4 6.5 £1.2 78.4 £3.8
Wine 13 97.1£4.0 6.7 £1.6 99.4 £2.1
Zoo 16 96.0£4.9 9.3 £1.6 100 £0.0
Abstractl 790 89.0+9.4 393.7 £ 12.9 97.6 £ 4.7
Abstract2 790 84.0£12.0 393.8 + 14.6 944+ 73
Reutersl 1568 91.6£2.9 786.14+ 19.1 949+25
Reuters2 435 88.5+10.5 218.3 £ 9.7 97.5+ 4.7
Reuters3 1440 96.4+1.6 715.4 + 20.3 98.7+£ 1.0

Minimizing Cost and Maximizing Accuracy using Feature Subset Selection. The se-
lection was based on both the generalization accuracy and the measurement cost of features. (See
the fitness function in equation (1.1)). The 3-bit parity problem, Cleveland heart disease, hepatitis
domain and pima indians diabetes datasets were used for the experiment (with the random costs
in the 3-bit parity problem). The results are shown in Table 1.5 and 1.6 for randomly partitioned
and 10-fold cross-validation datasets, respectively.

As we can see from Table 1.5, the fitness function that combined both accuracy and cost outper-
formed that based on accuracy alone in every respect: the number of features used, generalization
accuracy, and the cost. This is not surprising because the former tries to minimize cost (while
maximizing the accuracy), which reduces the number of features, while the latter emphasizes only
on the accuracy.

Table 1.6 also shows the fitness function that combined both accuracy and cost outperforms that
based on accuracy alone in all datasets except HeartCle. The generalization accuracy was higher
and the cost was also higher with the fitness function that is based on accuracy alone in HeartCle
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Table 1.3 Comparison of neural network pattern classifiers constructed by DistAl using the entire set of fea-
tures with the best network constructed by GADistAl using fitness estimates based on 10-fold cross-validation.
GADistAl (best) represents the mean (and the standard deviation) of the accuracy of the best network produced
by GADistAl using 10-fold crossvalidation among the 5 independent runs of the genetic algorithm. GADistAl
(average) represents the mean and the standard deviation (computed over 5 independent runs of the genetic
algorithm) of the accuracy of the best network produced by GADistAl. See Section 1.5.2 for details.

DistAl GADistAl (average) GADistAl (best)
Dataset Features Accuracy Features Accuracy Features Accuracy
3P 13 79.0+12.2 48+0.7 100 + 0.0 4 100 + 0.0
Annealing 38 96.61+2.0 200+£14 98.8+ 04 18 99.5+1.2
Audiology 69 66.0£9.7 372+ 18 72628 39 76.5+£13.8
Bridges 11 63.0+£7.8 49+0.6 569+ 7.6 ) 67.0£11.9
Cancer 9 97.8+ 1.2 6.0+1.1 98.0+£0.3 8 98.6+£0.9
CRX 15 87.7+3.3 74+2.6 87.7+£04 6 88.0+2.8
Flag 28 65.8+9.5 1424+ 2.8 63.9 £6.1 18 70.0+8.8
Glass 9 70.5+8.5 44+0.8 69.3 £2.5 ) 71.0+£94
Heart 13 86.7+ 7.6 7.6+0.8 85.5 £0.7 7 85.9+5.4
HeartCle 13 853+ 2.7 8.4+ 0.8 86.9 +0.6 9 87.7+4.0
HeartHun 13 85.9+6.3 7T4+14 85.4 £1.3 8 87.2+2.2
HeartLLB 13 80.0+74 76+1.0 79.8 £1.9 6 83.0+6.0
HeartSwi 13 9424+ 3.8 T4+ 1.7 953 £1.1 8 96.7+4.1
Hepatitis 19 84.7+9.5 102+ 1.6 85.2 £2.9 10 88.7+9.5
Horse 22 86.0£ 3.6 9.6+2.7 83.2 £1.6 ) 85.0£7.0
Ionosphere 34 94.3+5.0 16.6 £ 3.0 94.5+ 0.8 13 96.0£4.3
Pima 8 76.3£5.1 40+£1.7 73.1 £3.1 2 76.8+ 3.8
Promoters a7 88.0£7.5 30.6 +2.1 89.8 £1.7 31 92.0£7.5
Sonar 60 83.0+£7.8 322422 84.0 £1.6 28 85.5+7.6
Soybean 35 81.0£5.6 21.0+14 83.1+1.1 19 843+ 7.2
Vehicle 18 65.4+ 3.5 944+2.1 50.1+£7.9 11 59.44+4.7
Votes 16 96.1+ 1.5 82+1.5 97.0 £0.7 7 979+ 1.3
Vowel 10 69.8+6.4 6.8+1.2 70.2 £1.6 6 71.5+5.7
Wine 13 97.1+4.0 8.2+1.2 96.7 £0.7 7 97.1+3.9
Zoo 16 96.0+ 4.9 88+1.6 96.8 +£2.0 9 99.0£ 3.0
Abstractl 790 89.04+9.4 402.24+14.2 89.2+1.0 387 91.0+9.4
Abstract2 790 84.0+12.0 389.8+5.2 84.0+£1.1 382 85.0£10.2
Reutersl 1568 91.6+2.9 766.0 £ 12.0 90.2+£ 0.7 750 915+ 0.7
Reuters2 435 88.5+10.5 22244+ 14.7 90.3£0.8 195 91.5+£10.6
Reuters3 1440 96.44+1.6 721.0£ 16.6 96.2+ 0.7 712 96.9+ 1.6

dataset. This explains how the fitness function (equation (1.1)) works in GADistAl and verifies the
rationale behind it. Also, note that some of the runs resulted in feature subsets which did not
necessarily have minimum cost. This suggests the possibility of improving the results by the use of
a more principled choice of a fitness function that combines accuracy and cost.

1.6 SUMMARY AND DISCUSSION

An approach to feature subset selection using a genetic algorithm for neural network pattern clas-
sifiers is proposed in this paper. A fast inter-pattern distance-based constructive neural network
algorithm, DistAl, is employed to evaluate the fitness (in terms of the generalization accuracy) of
candidate feature subsets in the genetic algorithm. The results presented in this paper indicate
that genetic algorithms offer an attractive approach to solving the feature subset selection problem
(under a different cost and performance constraints) in inductive learning of pattern classifiers in
general, and neural network pattern classifiers in particular.
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Table 1.4 Comparison between various approaches for feature subset selection. The first column (non-GA) shows
the best performance among the several non GA-based approaches cited in Section 1.2 [Liu and Setiono, 1996a; Liu
and Setiono, 1996b; Kohavi, 1994; Kohavi and Frasca, 1994; Koller and Sahami, 1996; Koller and Sahami, 1997],
the second column (ADHOC) shows the performance reported in [Richeldi and Lanzi, 1996], and the last column
(GADistAl) shows the performance of our approach.

non-GA ADHOC GADistAl
Dataset Features Accuracy Features Accuracy Features Accuracy
Annealing - - 8 95.0 18 99.5
Cancer 4 74.7 - - 8 98.6
CRX 6 85.0 7 85.1 6 88.0
Glass 4 62.5 4 70.5 5 71.0
Heart 3 79.2 5 80.8 7 85.9
Hepatitis 4 84.6 - - 10 88.7
Horse 4 85.3 - - ) 85.0
Pima - - 3 73.2 2 76.8
Sonar - - 16 76.0 28 85.5
Vehicle - - 7 69.6 11 59.4
Votes 4 97.0 5 95.7 7 97.9
Reutersl 40 94.1 - - 750 91.5
Reuters2 40 90.0 - - 195 91.5
Reuters3 80 98.6 - - 712 96.9

Table 1.5 Comparison of performance of neural network pattern classifiers constructed by GADistAl that use
features selected based on accuracy alone vs. features selected using both accuracy and cost for randomly partitioned

datasets.

Accuracy only Accuracy & Cost
Dataset Features Accuracy Cost Features Accuracy Cost
3P 6.6 100 46.1 4.3 100 26.7
HeartCle 7.3 92.9 335.7 6.1 93.0 261.5
Hepatitis 9.2 97.1 22.8 8.3 97.3 19.0
Pima 3.8 79.5 28.5 3.1 79.5 22.8

Table 1.6 Comparison of performance of neural network pattern classifiers constructed by GADistAl that use
features selected based on accuracy alone vs. features selected using both accuracy and cost for datasets arranged
by 10-fold cross-validation.

Accuracy only Accuracy & Cost
Dataset Features Accuracy Cost Features Accuracy Cost
3P 4.8 100 35.6 3.8 100 25.4
HeartCle 8.4 86.9 390.5 7.2 85.7 317.8
Hepatitis 10.2 85.2 23.4 10.0 85.3 23.2
Pima 4.0 73.1 29.3 4.2 76.1 20.8

The GA-based approach to feature subset selection does not rely on monotonicity assumptions
that are used in traditional approaches to feature selection which often limits their applicability
to real-world classification and knowledge acquisition tasks. It also offers a natural approach to
feature subset selection by taking into account, the distribution of available data. This is due to
the fact that feature selection is driven by estimated fitness values, which if based on multiple
partitions of the dataset into training and test data, provide a robust measure of performance of
the feature subset. This is not generally the case with many of the greedy stepwise algorithms that
select features based on a single partition of the data into training and test sets. Consequently, the
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feature subsets selected by such algorithms are likely to perform rather poorly on other random
partitions of the data into training and test sets.

The approach to feature subset selection is able to naturally incorporate multiple criteria (e.g.,
accuracy, cost) into the feature selection process. This finds applications in cost-sensitive design of
classifiers for tasks such as medical diagnosis, computer vision, among others. Another interesting
application is automated data mining and knowledge discovery from datasets with an abundance
of irrelevant or redundant features. In such cases; identifying a relevant subset that adequately
captures the regularities in the data can be particularly useful, particularly in scientific knowledge
discovery tasks. Techniques similar to the one discussed in this paper have been successfully used
recently to select feature subsets for pattern classification tasks that arise in power system security
assessment [Zhou et al., 1997], sensor subsets in the design of behavior and control structures for
autonomous mobile robots [Balakrishnan and Honavar, 1996a; Balakrishnan and Honavar, 1996b;
Balakrishnan and Honavar, 1996¢].

Additional experiments with GADistAl in scientific knowledge discovery tasks in bioinformat-
ics (e.g., discovery of protein structure-function relationships, carcinogenicity prediction, gene se-
quence identification) are currently in progress. Some directions for future research include: Ex-
tension of feature subset selection by incorporating feature construction and genetic programming
[Koza, 1992]; Extensive experimental (and wherever feasible, theoretical) comparison of the per-
formance of the proposed approach with that of conventional methods for feature subset selection;
More principled design of multi-objective fitness functions for feature subset selection using domain
knowledge as well as mathematically well-founded tools of multi-attribute utility theory [Keeney

and Raiffa, 1976].
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