Adaptive agents for information retrieval

and data-driven knowledge discovery

by

Jihoon Yang

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Major Professor: Vasant G. Honavar

lIowa State University
Ames, lowa
1999

Copyright (©) Jihoon Yang, 1999. All rights reserved.

ii

Graduate College
lowa State University

This is to certify that the Doctoral dissertation of
Jihoon Yang

has met the dissertation requirements of lowa State University

Committee Member

Committee Member

Committee Member

Committee Member

Major Professor

For the Major Program

For the Graduate College

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ittt e e e s e s e e e e e e e xi
ABSTRACT o o e e e e e e e e e e e e e e e e e xiii
1 INTRODUCTIONottt et e e e e e e e e e e e e e e e e e 1
1.1 Imtelligent Agents e 2
1.2 Machine Learning L e 2
1.3 Artificial Neural Networks o o o 3
1.4 Feature Subset Selection L Lo o 4
1.5 Knowledge-based Theory Refinement 5
1.6 Mobile Agents and Multi-agent Systems 5

2 ARTIFICIAL NEURAL NETWORKS oo 8
2.1 Imtroduction L 8
2.2 Potential Advantages of ANN o oo 9
2.3 A Brief History of ANN in Pattern Classification 10
2.4 Taxonomy e e e e e e e e 11
2.4.1 Neuron Types. o o e e e e e e 11

2.4.2 Network Topology 12

2.4.3 Learning Algorithms L 14

3 PERCEPTRON LEARNING ALGORITHMS 17
3.1 Imtroduction L 17
3.1.1 Limitation of Perceptrons 17

3.1.2 Learning Algorithm 19

iv

3.2 Description of Three Variants of Perceptron Learning Algorithm 22
3.2.1 Pocket Algorithm 22
3.2.2 Thermal Perceptron Algorithm 24
3.2.3 Barycentric Correction Procedure 26

3.3 Datasets oL e e 31

3.4 Experiments and Results oL oo o 32
3.4.1 Classification Accuracy o o e 32
3.4.2 Training Time e 34
3.43 Learning Curve e e 37

3.4.4 The Impact of Perceptron Learning in Constructive Neural Networks . . 37

3.5 Summary and Discussiono Lo 41

CONSTRUCTIVE LEARNING ALGORITHMS FOR NETWORKS OF

PERCEPTRONS i e e e e e e i e e e 44
4.1 Introduction L 44
4.2 Tower Algorithm 49
4.3 Pyramid Algorithm 50
4.4 Upstart Algorithm 51
4.5 Perceptron Cascade Algorithm 52
4.6 Tiling Algorithm 55
4.7 Sequential Learning Algorithm o0 0. 56
4.8 Summary and Discussion oo Lo 58

DistAl: AN INTER-PATTERN DISTANCE-BASED CONSTRUCTIVE

LEARNING ALGORITHM ittt ittt i i 60
5.1 Imtroduction L 60
5.2 DistAl: A New Constructive Learning Algorithm 61
5.2.1 Distance Metricso 62
5.2.2 Network Construction 65

5.2.3 Use of Network in Classification 66

524 Example e 68
5.2.5 Convergence Proof 69
5.2.6 Complexity Analysis L 71
5.3 Experimental Evaluation of DistAl 0 0oL, 72
5.3.1 Datasets e e 72
5.3.2 Experimental Results o 0000 72
5.4 Summary and Discussion oL Lo 83

FEATURE SUBSET SELECTION USING A GENETIC ALGORITHM 87

6.1 Introduction oL 87
6.2 Approaches to Feature Subset Selection 89
6.2.1 Feature Subset Selection Using Exhaustive Search 89
6.2.2 Feature Subset Selection Using Heuristic Search 90
6.2.3 Feature Subset Selection Using Randomized Search 91
6.2.4 Filter and Wrapper Approaches to Feature Subset Selection 92

6.3 Feature Selection Using a Genetic Algorithm for Neural Network Pattern Clas-
siflers . . L L e 93
6.3.1 Genetic Algorithms L 94

6.3.2 Genetic Algorithm Wrapper approach to Feature Subset Selection for

Neural Network Pattern Classifiers: Some Practical Considerations . . . 96

6.4 Implementation Details o oo o 98
6.5 Experiments. e e 100
6.5.1 Datasets e e 100
6.5.2 Experimental Results 00000 102

6.6 Summary and Discussion Lo Lo 108

CONSTRUCTIVE THEORY REFINEMENT IN KNOWLEDGE BASED
NEURAL NETWORKS . . o i i i et e e e e e e e e e e e e e e e e e 111
7.1 Introduction e e e e e 111

7.2 Theory Refinement Using DistAl 114

vi

7.3 Previous Constructive Theory Refinement Systems 114
7.3.1 HDE e 114
7.3.2 TopGen 115
7.3.3 REGENT 115
7.3.4 MTiling-MPyramid o 116

7.4 Experiments e e e e e 116
7.4.1 Datasets e e 116
7.4.2 Experimental Results oo 0. 117

7.5 Summary and Discussion L0 e 119

8 MULTI-AGENT SYSTEMS AND MOBILE AGENTS FOR INFORMA -

TION RETRIEVAL AND KNOWLEDGE DISCOVERY 122
8.1 Introduction L 122
8.1.1 Multi-agent Systems L 123
8.1.2 Mobile Agents 125

8.2 Design of a Multi-Agent System using the Contract Net Protocol 127
8.2.1 Contract Net Protocol oo 127
8.2.2 Implementation Details o000 128
8.2.3 Evaluation e 131

8.3 Intelligent Mobile Agents for Information Retrieval 132
8.3.1 The Voyager Mobile Agent Infrastructure 132
8.3.2 Design of Customizable Document Retrieval Agents 133
8.3.3 Implementation Details 0oL 135
8.34 Evaluation 135

8.4 Summary and Discussion oL Lo Lo 137
9 CONCLUSION . . . o o e e e s e e s e e e e e e e e e e 140

BIBLIOGRAPHYt e e e e e s s e e e e 143

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 3.10

Table 3.11

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9

Table 6.1

vii

LIST OF TABLES

Datasets used in the experiments.
Classification accuracy (independent).,
Classification accuracy (WTA).,
Training time for RP (independent).
Training time for TP (independent).
Training time for BCP (independent).
Training time for RP (WTA).
Training time for TP (WTA).
Training time for BCP (WTA).
Performance in a single layer perceptron

Performance in Tiling algorithm

Datasets used in the experiments with DistAl.
Network size for parity datasets..

Results of Range, Value-difference based distance metrics.

Results of Standard Deviation, Value-difference based distance metrics.

Results of Range, Overlap based distance metrics.
Results of Standard Deviation, Overlap based distance metrics.

Results of Dice, Cosine, Jaccard Coeflicient distance metrics.
Results of Camberra and Attributed-based distance metrics.

Comparison of generalization accuracy.

Parity and document datasets used in the experiments.

Table 6.2
Table 6.3
Table 6.4

Table 6.5

Table 6.6

Table 7.1
Table 7.2
Table 7.3

Table 7.4

viii

Results for randomly partitioned datasets. 104
Results for 10-fold cross-validation. 105
Comparison between various approaches for feature subset selection. . 107

Comparison of different fitness evaluations for randomly partitioned

Comparison of different fitness evaluations for 10-fold cross-validation. 108

Results of Ribosome dataset. 118
Results of Promoters dataset. 118
Results of financial advisor rule base (DistAl and MTiling-MPyramid). . 119

Results of financial advisor rule base (HDE). 120

Figure 2.1

Figure 2.2

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

Figure 3.10

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

Figure 4.6

Figure 5.1
Figure 5.2

Figure 5.3

X

LIST OF FIGURES

An artificial neuron. Lo Lo 12
Feedforward and recurrent ANN. 13
AND patternset.. 18
XOR patternset. 18
An example of pairwise separable patternset. 20
Pocket algorithm with ratchet modification. 23
Thermal perceptron algorithm. 25
Barycentric correction procedure (independent). 29
Barycentric correction procedure (WTA). 30
Learning curve for ionosphere. oL 38
Learning curve for pima. oL oL 38
Two artificial datasets. oo oo 40
Multi-category Tower network. 50
Multi-category Pyramid network.o 51
Multi-category Upstart network. oL 53
Multi-category Perceptron Cascade network. 54
Multi-category Tiling network. 56
Multi-category Sequential network.o 57
Regions induced by DistAl based on the pattern space. 65
DistAl algorithm. 67
Process of network construction for the example in DistAl. 69

Figure 6.1

Figure 6.2

Figure 7.1
Figure 7.2

Figure 7.3

Figure 8.1
Figure 8.2
Figure 8.3

Figure 8.4

Filter and Wrapper approaches to feature subset selection. 93

GADistAl: feature subset selection using a genetic algorithm with DistAl. 98

Constructive learning for theory refinement. 113
Hybrid constructive network for theory refinement. 116
Financial advisor rule base. o000 117
Overall view of the system.. 129
The contract net protocol. L oo Lo 130
An agent using the contract net protocol. 131
Mobile agents for document retrieval.00 136

xi

ACKNOWLEDGEMENTS

I would like to express my heart-felt gratitude to my advisor Dr. Honavar for his guidance
during the entire period of my graduate studies at lowa State University. As a research advisor,
he encouraged and motivated my work by giving me invaluable, candid feedback. I thank him
for being accessible always, for giving me free access to his books and material, and for having
patience with my awkward explanations and slow progress. I am also very grateful for his help
in writing a number of papers and for his supervision of this dissertation. He has been the
exemplar of a researcher to me, and influenced me in choosing my career. I also thank him
for his considerate help and guidance when I was a teaching assistant in some of the courses
taught by him and for his supportive help and advice, in general.

Also, I would like to thank Dr. Prabhu for his guidance in my master’s work, and his help
during my studies at lowa State University. It was a great pleasure for me to be his student
and his teaching assistant.

I am grateful to Dr. Miller for his comments on my research which enabled me to improve
my work considerably. I thank him for his thoughtful concern and encouragement in my
studies. Likewise, I thank Dr. McCalley and Dr. Narayanaswami for being on my committee.
My collaboration with Dr. McCalley on feature subset selection was both enjoyable and fruitful,
as was my interaction with Dr. Ranga Narayanaswami.

I owe a lot to my colleagues from the Al research group. First of all, [am very grateful to
Rajesh Parekh for his help with various aspects of my research. Working with him on several
research projects was a delight and some of the research results described in chapters 3, 4, 5
and 7 are the outgrowth of our joint work. Getting to know him personally was one of the most

valuable experiences I have had at lowa State University. Karthik Balakrishnan is also a very

xii

good friend. T thank him for the useful discussions we had, and for his kind help in various
matters. I also thank Chun-Hsien Chen and Rushi Bhatt for our fruitful research exchanges.

I give my gratitude to Raghu Havaldar for helping me to learn Java and in implementing
the contract net protocol. I am also grateful to Prashant Pai for our work on agents for
information retrieval. Their efforts contributed significantly to chapter 8.

I also thank many current as well as previous staff members in the computer science de-
partment office including Trish Stauble, Lynn Bremer, Melaine Eckhart, Linda Young, and
Clare Polking for all that they have done for me. In addition, I am thankful to all members
of the system support group including Dave Madson and Jim Schlosser for their help in using
the computing facilities in the department.

Above all, T express my sincere appreciation to all my loving family— my wife Heewon,
my late father and grandmother, my mother, and my sisters and brothers. Their patience,

support, encouragement and sacrifices contributed greatly to my success in this endeavor.

xiii

ABSTRACT

The recent proliferation of computers and communication networks has made it possible
for individuals around the world to access a wide variety of information sources through the
Internet. However, effective use of these information sources requires fairly sophisticated tools
or software agents for locating, classifying, selectively retrieving and extracting knowledge from
data. This dissertation addresses several related research issues in the design of such intelligent
agents for information retrieval and knowledge discovery from distributed data and knowledge
sources.

Artificial neural networks, because of their potential for massive parallelism and fault toler-
ance, offer an attractive approach to the design of intelligent agents. Our work extended several
single layer perceptrons and constructive neural networks of perceptrons in order to handle
multi-category, real-valued patterns. In particular, we designed DistAl, a novel constructive
neural network learnig algorithm based on inter-pattern distance. DistAl is significantly faster
than conventional neural network algorithms and has been demonstrated to perform well on
a broad variety of benchmark data-driven knowledge discovery problems. The performance of
DistAl was further improved by using it in conjunction with a genetic algorithm for automated
selection of features used to encode the data. DistAl was also used for data-driven refinement of
incomplete or inaccurate domain knowledge. Some of these algorithms were used in a design of
a multi-agent system consisting of multiple cooperating customizable intelligent mobile agents

for selective information retrieval and knowledge discovery from distributed data sources.

1 INTRODUCTION

Recent advances in high throughput data acquisition technologies, digital storage tech-
nologies, computers and communications have made it possible to gather and store scientific,
business, and military data in electronic form in databases and computerized information sys-
tems. In order to translate the advances in our ability to acquire and store data in increasing
volumes and at increasing rates into gains in our understanding of the respective domains
and new capabilities for effective decision-making, sophisticated tools are needed for informa-
tion retrieval, knowledge discovery, decision-making and distributed problem-solving [Honavar
et al., 1998].

Several applications (e.g., military command and control, law enforcement, scientific dis-
covery) require the use of multiple, geographically distributed, heterogeneous data and knowl-
edge sources (e.g., sensors, satellites, intelligence reports, and so on). For instance, military
commanders and intelligent analysts need to have critical information in a timely fashion to
effectively perform their responsibilities. Day-to-day operations involve intelligence data gath-
ering and analysis, situation monitoring and assessment, and looking for potentially increasing
patterns in the data gathered (e.g., the relationship between troop movements and significant
political developments in a region). This information can be extremely valuable for decision-
making to safeguard a nation’s security concerns. Therefore, it is important to have the right
information at the right time at the disposal of the decision-makers instead of overwhelming
them with large volumes of irrelevant data.

In this dissertation, we attempt to address several related research problems concerning

the design and development of such tools, and describe some approaches to solving them.

1.1 Intelligent Agents

It is assumed here that an agent purports a software agent. An agent is an entity that
perceives its environment and performs a set of tasks on behalf of a user with some degree
of autonomy [Russell & Norvig, 1995; Honavar, 1999]. In order to do this, an agent has to
embody a certain amount of intelligence (e.g., the ability to choose among alternative courses
of action, plan, communicate, adapt to changes in the environment, and learn from experience).
An agent consists of program code, a persistent internal state, and a set of attributes (e.g.,
movement history, authentication keys, and so on) [Russell & Norvig, 1995; Honavar, 1999].

Design of such mechanisms for intelligent agents has been the subject of study in artificial
intelligence for over three decades. A broad variety of architectures for agents with differing
degrees of intelligence have been proposed in the literature. These include: reactive agents
which respond reactively to changes that they perceive in their environment, deliberative agents
that plan and act in a goal-directed fashion, utility-driven agents that act in ways designed to
maximize a suitable utility function, learning agents which modify their behavior as a function
of experience, and agents that combine different modes of behavior [Russell & Norvig, 1995;
Honavar, 1999].

In this dissertation, we are interested in designing agents for intelligent, selective, and

context-sensitive gathering of data and its assimilation prior to analysis.

1.2 Machine Learning

Selective and context-sensitive retrieval of data requires familiarity with the user’s interests.
Once the datais retrieved, there is a need to extract knowledge from data. This calls for the use
of techniques for automated knowledge acquisition. Machine Learning is probably the most
practical and cost-effective approach to automated knowledge acquisition. A key objective
of machine learning is to design and analyze programs that learn from experience [Langley,
1995; Mitchell, 1997; Honavar et al., 1999a]. A typical machine learning system interacts with
its environment, takes actions and observes their effect on the environment, and improves its

performance over time.

There are several different types of machine learning approaches based on the learning
mechanism used: rote learning (memorization); learning through instruction; learning from
analogy; deductive learning (learning how to apply given principles); inductive learning (learn-
ing from examples). Among those, inductive learning approaches are the most prevalent type.
Inductive learning attempts to find a succinct model to explain the examples. In other words, a
hypothesis (represented by a proper language) that approximates (or describes) the target con-
cept best is pursued in the hypothesis space by a well-defined procedure. In particular, we are
interested in inductive learning systems for pattern classification tasks that involve classifying
examples into appropriate categories. Pattern classification tasks are of interest since many
real-world applications can boil down to pattern classification with appropriate transformation
of representation and simplification. Artificial neural networks [Gallant, 1993; Haykin, 1994;
Hassoun, 1995] and decision trees [Quinlan, 1986; Quinlan, 1993] are representative examples

of inductive learning well-suited for pattern classification.

1.3 Artificial Neural Networks

An artificial neural network is a massively parallel system of simple processing units that
are interconnected via trainable connection weights. Artificial neural networks have been
successfully used in the design of pattern classification, function approximation, and knowledge
acquisition systems. A wide variety of neural network architectures have been proposed in the
literature. These differ in terms of the choice of the mathematical functions implemented by the
individual neurons (processing units), the network topology (fixed or dynamic), the network
architecture (number of layers and neurons), the network interconnections (connectivity among
the existing neurons), the activity propagation (feedforward or recurrent), and the training
methodology (one-shot or iterative) [Dayhoff, 1990].

A perceptron (or Threshold Logic Unit) [McCulloch & Pitts, 1943] is a simple neuron capable
of classifying a set of patterns into two classes. The perceptron learning algorithm is a well-
defined, iterative procedure for training perceptrons that guarantees correct classification for

linearly separable sets of patterns [Rosenblatt, 1958; Minsky & Papert, 1969]. There are

a number of variants of the perceptron learning algorithm to optimize the performance (in
terms of say, misclassification error) for linearly non-separable datasets while preserving the
classification capability for linearly separable datasets [Gallant, 1990; Gallant, 1993; Frean,
1992; Poulard, 1995].

Constructive neural network learning algorithms [Honavar & Uhr, 1993; Gallant, 1993;
Honavar et al., 1999b] generate a set of neurons in a systematic, incremental way to obtain the
desired accuracy on the training set. They have a significant advantage over conventional neural
networks with fixed architecture in that they obviate the need for an ad hoc, a priori choice of
the network topology, and possibly generate the optimal network with perceptron-style weight
update procedures (e.g., pocket algorithm [Gallant, 1990; Gallant, 1993]) that are faster and
simpler than the error backpropagation algorithm [Rumelhart et al., 1986]. In addition, other
constructive neural network learning algorithms that do not rely on the perceptron learning

algorithm can be designed [Yang et al., 1998b; Yang et al., 1999a).

1.4 Feature Subset Selection

The performance of neural network classifiers depends critically on the choice of features
used to represent the input patterns to be classified. The existence of irrelevant and redundant
features can degrade the performance, cause unnecessary search effort, and bring computational
overhead. Each feature also has its own measurement cost. For instance, in medical diagnosis,
patterns are described using different diagnostic tests that might have different costs and risks
associated with them. The fealure subset seleclion task involves selecting a relevant subset of
features from the entire feature set to satisfy some criteria such as improving the classification
accuracy and minimizing the overall (measurement) cost of features. Constructive neural
network learning algorithms can be used for the feature subset selection task (in determining

the quality of feature subsets).

1.5 Knowledge-based Theory Refinement

Constructive neural network learning algorithms, since they obviate the need for a priori
choice of the network topology and adaptively recruit neurons as needed, provide a framework
for cumulative multi-task learning [Caruana, 1993; Thrun, 1995] as well as for knowledge-
based theory refinement which provides a means for extending incomplete knowledge [Towell
et al., 1990; Fletcher & Obradovié¢, 1993; Parekh & Honavar, 1998]. Domain specific knowledge
exists in many real-world applications, and the prior knowledge (which is often incomplete)
can be exploited in learning. This is because domain specific prior knowledge can easily be
incorporated into the initial network configuration, and then the learning is carried out to
refine the knowledge [Shavlik, 1994]. Multi-task learning can also be done in a similar way.
Tasks that are learned previously can be represented by a constructive network, which can be

used in learning a new task.

1.6 Mobile Agents and Multi-agent Systems

As described before, an agent is an intelligent, autonomous entity that perceives the envi-
ronment and performs tasks on behalf of a user. Agents might need to move within heteroge-
neous networks of computers to accomplish useful tasks. Agents that can move in a computer
network from host to host are called mobile agents. They are able to make intelligent decisions
regarding their itinerary and modify it in a dynamic fashion in response to information that
becomes available as they move from one host to another. Mobile agents provide a potentially
efficient framework for performing computation in a distributed fashion at sites where the rele-
vant data is available instead of expensive shipping of large volumes of data across the network.
Unlike remote procedure calls (RPC) which require ongoing communication through a failsafe
network connection from the time of initiation of the task until its completion, a major ad-
vantage of mobile agents is that ongoing interaction does not require ongoing communication
[White, 1997].

The design of systems for non-trivial tasks (such as information retrieval and knowledge

discovery from heterogeneous and distributed data and knowledge sources) can be simplified by

decomposing the overall task into several atomic and more manageable subtasks. Multi-agent
systems are a natural consequence of this modular approach to designing complex agent-based
information systems. In such multi-agent systems, satisfactory completion of the tasks depends
on effective communication, negotiation, and collaboration among several independent agents
that each offer a particular service associated with some cost. KQML (Knowledge Query
and Manipulation Language) [Finin et al., 1997] and contract net protocol [Smith, 1980] are
examples of such tools that have been proposed for multi-agent coordination.

This dissertation explores several research problems related to the discussion above in the
design of adaptive agents for information retrieval and data-driven knowledge discovery. The

rest of the dissertation is organized as follows:

e Chapter 2
A brief and general introduction to artificial neural networks is given. The definition,
practical advantages, brief history and taxonomy of artificial neural networks are de-

scribed along with their learning mechanisms.

e Chapter 3
The perceptron learning algorithm is introduced and its limitations are explained. We
also study three different variants of the perceptron learning algorithm (especially for

linearly non-separable data) for both independent and winner-take-all training of neurons.

e Chapter 4
Most of the constructive neural network learning algorithms proposed in the literature are
capable of solving two-class problems with binary/bipolar inputs only. However, many
real-world applications include multiple classifications and real-valued input patterns. We
extend several constructive neural network learning algorithms proposed in the literature
to deal with multi-category, real-valued problems [Yang et al., 1996; Parekh et al., 1997b;
Parekh, 1998].

e Chapter 5

The perceptron-style weight training algorithms are still iterative and time-consuming

even though they are faster than gradient-descent based learning algorithms like the error
backpropagation algorithm [Rumelhart et al., 1986]. We propose a new non-iterative
constructive neural network algorithm, DistAl, based on the inter-pattern distances [Yang
et al., 1998b; Yang et al., 1999a]. DistAl is significantly faster than other constructive
learning algorithms and is not restricted to binary inputs or two output classes. DistAl

is introduced in detail with comparative studies of its performance.

Chapter 6

We apply DistAl in conjunction with a genetic algorithm to the feature subset selection
task to improve its performance by selecting the appropriate set of features. DistAl is
used to evaluate the fitness value of each individual (i.e., possible solution). Experimental
results verify the feasibility of this approach [Yang & Honavar, 1997; Yang & Honavar,

1998a; Yang & Honavar, 1998b].

Chapter 7
We apply DistAl to the task of theory refinement. The prior knowledge is incorporated
into the initial network and then refined. Experimental results verify feasibility of this

approach [Yang et al., 1999b].

Chapter 8

We design intelligent mobile agents for retrieving relevant information. They demonstrate
the feasibility and efficiency of using mobile agents for retrieving information from remote
sites [Yang et al., 1998d; Yang et al., 1998c]. We also design a multi-agent system for
information retrieval and knowledge discovery using the contract net protocol. The
agents in the system negotiate and cooperate among themselves to improve the overall

performance of the system. [Yang et al., 1998a).

Chapter 9
We conclude with a summary of the research contribution of this dissertation and present

some interesting directions for future research.

2 ARTIFICIAL NEURAL NETWORKS

2.1 Introduction

Artificial Neural Networks (ANN) or connectionist networks are massively parallel, highly
interconnected, shallowly serial networks of relatively simple computing elements (or neurons)
inspired by biological neural systems [Gallant, 1993; Honavar, 1994; Hassoun, 1995; Ripley,
1996; Mitchell, 1997; Honavar et al., 1999a; Honavar et al., 1999b]. The neurons are intercon-
nected via one-way (and generally trainable) connections. Each connection has an associated
weight that represents the strength of connection. Fach neuron takes inputs from neurons
it is connected to via its incoming weights and computes a function of the weighted sum of
its inputs. The output is then transmitted to other neurons to which it is connected via its
outgoing weights.

Learningis applied to ANN as it is happening with experience in its biological counterparts
(animal brains). Learning plays an important role in ANN to accomplish certain tasks. Learn-
ing includes changing and finetuning some parameters in ANN with respect to well-defined
criteria (e.g., minimizing the mean squared error). In general, learning involves modifying the
weights in networks of a certain a priori chosen network architecture. It might involve modify-
ing the network architecture as well. Learning makes use of a set of labeled examples called the
training set. Each example is referred to as a pattern and is typically represented by a vector
of real-valued elements. Learning in ANN roughly mimics the learning from experience that
is in animal and biological brains. Typically prevalent learning in ANN involves modifying
some parameters (such as connection weights) with respect to the patterns in the training set.
Although ANN can adjust their behavior to accomplish tasks through learning, it should be

noted that ANN are not precise models of the animal brain. It has been suggested there exist

vast differences in the models of computation in ANN and biological neural networks, and

ANN are believed to have limited capabilities compared to biological neurons in the brain.

2.2 Potential Advantages of ANN

Some of the attractive features of ANN include [Gallant, 1993; Honavar, 1994; Uhr &

Honavar, 1994]:

e ANN provide attractive approaches to implementing elegant learning algorithms for cer-
tain types of networks. A variety of machine learning algorithms have been developed
for ANN with different characteristics (e.g., network architecture, activation function,

connections, and so on) proposed to solve various problems.

o ANN are designed for massively parallel computation with each neuron operating inde-
pendently and in parallel with others. Thus, ANN are well suited to the design of parallel

hardware and algorithms.

e ANN have a potential for noise and fault tolerance. Since neurons work with a number
of inputs, they are insensitive to noise. In other words, a larger number of correct inputs
can outweigh a smaller number of incorrect inputs. Similarly, the effect of a few faulty

neurons can be nullified by a larger number of properly functioning neurons.

e ANN might offer representational and computational efficiency over disjunctive normal
form (DNF') expressions and decision trees. For instance, perceptrons (or threshold logic
units to be described shortly) are simple and efficient in representing and computing a

particular type of problems.

e ANN are similar to the networks of neurons in the brain. ANN are used as mathematical

models for studying the information processing capability of the biological brain.

e ANN are shown to be Turing-equivalent as other computational models are such as
Lambda-calculus [Church, 1941] and post-productions [Post, 1943]. The Turing machine

is a universal model of computation in that the Turing machine can be designed to

10

implement any computable function [Turing, 1936]. Thus, ANN are a powerful model of

computation.

ANN have been successfully applied to different types of practical problems including pat-
tern classification, function approximation, optimization, pattern association, clustering, vector
quantization, prediction, control and the like [Gallant, 1993; Kung, 1993; Haykin, 1994; Ripley,
1996; Zalzala & Morris, 1996; Mehrotra et al., 1997; Mitchell, 1997]. In this dissertation, we
focus only on pattern classification using ANN. Pattern classification involves matching a pat-
tern with the right class it belongs to and typically makes use of a set of training patterns along
with the corresponding class labels. ANN are trained to learn a mapping from the training
patterns to their corresponding output classes. After the training, the neural network can be

used to classify new formally unseen patterns.

2.3 A Brief History of ANN in Pattern Classification

In the early 1940’s, McCulloch and Pitts proposed and explored a mathematical model of
a biological neuron [McCulloch & Pitts, 1943]. It is variously referred to as McCulloch-Pitts
neuron, Threshold Logic Unit (TLU), or Perceptron.

Hebb conceived the idea of correlating the strength of the connection weights to the activity
of neurons which the weight connects [Hebb, 1949]. If both the neurons are simultaneously
active (inactive), the weight connecting the neurons is increased. This Hebbian learning became
the basis of many learning algorithms.

Rosenblatt proposed the perceptron learning algorithm to train a TLU [Rosenblatt, 1958].
It is a simple, iterative procedure to find the weight setting to compute a function implicitly
specified in a set of training examples. In other words, it attempts to find a separating hyper-
plane that partitions the patterns space into two regions. A perceptron thus acts as a binary
classifier. The perceptron learning algorithm and its variants will be described in detail in
chapter 3. Perceptrons are fairly limited in their capability. Minsky and Papert pointed out
the limitation of a single perceptron by demonstrating that perceptrons can solve only linearly

separable problems [Minsky & Papert, 1969].

11

Widrow and Hoff developed a learning algorithm for perceptrons based on the gradient
descent technique called the Widrow-Hoff or delta rule [Widrow & Hoff, 1960]. The delta rule
tries to find an optimal weight setting for a given task with respect to certain criteria (e.g.,
minimizing the mean squared error) regardless of the linear separability of the dataset, while
the perceptron learning algorithm is not guaranteed to converge to an optimal solution for
non-separable datasets.

As a way around for the limitation of single layered ANN with perceptrons, several ap-
proaches and algorithms were proposed. Werbos proposed the basis of the famous backpropaga-
tion learning algorithm [Werbos, 1974] and several researchers developed the algorithm [Parker,
1985; Rumelhart et al., 1986]. The backpropagation algorithm is a generalized version of the
delta rule for networks with multiple layers, and thus is also called as generalized delta rule.
The success of the backpropagation algorithm resuscitated the neural network community and
revitalized ANN in both the theory and applications. Several variants of the backpropagation

learning algorithm have appeared in the literature during the last decade.

2.4 Taxonomy

We present a taxonomy of ANN based on factors such as neuron types, network topology,

and learning algorithms.

2.4.1 Neuron Types

An artificial neuron consists of a set of inputs and an output. The inputs are fed into the
neuron as a vector of (typically) numeric elements. The output is computed using the inputs,
the weights associated with the inputs, and the activation function associated with the neuron.
The output is then propagated to adjacent neurons connected via outgoing weights.

The output is determined as follows: First, the net input (net) is typically computed as
the weighted sum of the inputs. A neuron has an additional input connection called the
bias or threshold. The input associated with the threshold is assumed to be always 1. Let

W = [Wy, Wy, -+, W,] and X = [Xg, X1, -+, X,] (Xo = 1) be the weight and input vectors,

12

respectively. Then, net = W-X = 3"" , W;-X;. Second, an activation function f is applied to

the net input to compute the output: output = f(net). The choice of the activation function

for the neurons depends on the learning algorithm and the application. Figure 2.1 depicts a

neuron.

Xl

Figure 2.1 An artificial neuron.

Some of the activation functions that are widely used in the literature include:

o Linear
f(net) = net
o Slep
a if net > 0
Jnet) =
bif net <8

where ¢ and b are desired output values and 6 is a threshold.

e Sigmoid
1
)= ———
f(ne) 1 + e_net
o (Gaussian
f(net) = 1 6_%(%2_“)2
2ro

where p is the mean and o is the standard deviation.

2.4.2 Network Topology

ANN consist of different sets of neurons: input, output, and possibly intermediate (or

hidden) neurons. The input neurons receive inputs from the environment, and the output

13

neurons compute the final outputs of the network. Generally, the total number of input and
output neurons are equal to the total number of input attributes of the training patterns
and output classes in the training patterns, respectively. There might exist one or more
intermediate layers between the input layer and the output layer each of which includes a set
of hidden neurons. Hidden neurons are introduced for the problems that can not be solved by
networks with input and output layers only. The number of hidden neurons and hidden layers
depend on the learning algorithm and the task being solved. The network architecture can be
either fixed a priori or determined dynamically.

ANN can be classified as feedforward networks or recurrent networks. In feedforward net-
works, neurons in each layer are connected only to neurons in layers above the current layer.
In recurrent networks, neurons are allowed to be connected to neurons in layers below the cur-
rent layer, and thus cyclic interconnections among the neurons are allowed. Figure 2.2 shows

examples of networks with different topologies.

output layer
\\% hidden layer
input layer

(a) feedforward network (b) recurrent network

Figure 2.2 Feedforward and recurrent ANN.

14

2.4.3 Learning Algorithms

Learning in ANN generally involves one or both of the following approaches [Honavar,

1994]:

e Learning as parameter modification:

This approach involves changing the weights in ANN with a certain a priori chosen net-
work architecture. The number of layers, the number of hidden neurons in each hidden
layer, and the connections between each neuron are defined a priori for each classification
task. This is done on the basis of problem-specific knowledge (if available), or in an ad
hoc fashion (requiring a process of trial and error). Finding the right architecture that
has the potential for producing an optimal solution is the crucial requirement in this
approach. A set of training patterns is used to finetune the weights to approximate an
unknown function or to classify the patterns correctly.

There are two different methods to update weights: First, the weights can be ad-
justed so as to decrease the number of misclassified patterns in the pattern space. The
weight vector can be moved toward a better position geometrically for this purpose. The
perceptron learning algorithm [Rosenblatt, 1958] belongs to this category. (See chapter 3
for detailed descriptions on the perceptron learning algorithm).

Second, the weights can be adjusted by the gradient descent technique using a well-
defined objective function. The backpropagation algorithm [Parker, 1985; Rumelhart
et al., 1986] is an example of this method. There are two phases in the backpropagation
algorithm: forward and backward. In the forward phase, the pattern is presented, outputs
are produced in intermediate neurons, and final outputs are determined in the output
layer. Then, the objective function (typically the mean squared error) is computed.
In the backward phase, the error is propagated backward and the weights (and other
modifiable parameters) are adjusted in the direction of negative gradient of the objective
function. This process is repeated iteratively until the objective function reaches a (local)
minimum. See [Dayhoff, 1990; Gallant, 1993; Mitchell, 1997] for detailed explanation on

backpropagation algorithm and the derivation of weight update rule. The backpropga-

15

tion algorithm is perhaps the most popular and practical algorithm and has been used
in many applications. However, it has the following drawbacks as well: slow learning
and local minima. The algorithm requires expensive computations for error propagation
and iterative weight updates. The algorithm typically requires smaller learning rates in
order to converge to a solution, which entails a large number of iterations. Even though
several approaches are proposed to speed up the learning (e.g., use of momentum con-
stant), backpropagation algorithm has a significant disadvantage in terms of speed. In
addition, the gradient descent method does not guarantee the global minimum. In the

search space with multiple minima the algorithm is susceptible to local minima.

Learning by changing network architecture:

This approach is called a constructive or generative neural network learning [Honavar,
1990; Honavar & Uhr, 1993]. It attempts to find an appropriate network architecture for
a given task as well as proper weight settings within the network architecture. This is
motivated by the fact that there is no guarantee of discovering the solution weights within
the search space defined by the network architecture and the search algorithm chosen
a priori. The topology of the target network is determined dynamically by introducing
new mneurons, layers, and connections in a controlled fashion. In some cases, pruning
mechanisms that discard redundant neurons and connections are used in conjunction with
the network construction mechanisms [Reed, 1993; Parekh et al., 1997c]. The problem
of determining the network architecture a priori in the fixed architecture approach no
longer exists in this case, and the chance of discovering a near minimal network increases.
Finding parsimonious or compact network topologies is of interest because they provide
a potential for simpler hardware design, easier interpretation of the network, better
matching of the intrinsic complexity of the given task, superior generalization capability,
and so on. While networks with a fixed architecture do not even guarantee the existence
of solutions in the space defined by the architecture, constructive learning algorithms
attempt to find a suitable architecture that contains a solution.

A variety of constructive neural network learning algorithms have been proposed in

16

the literature. We will explore several constructive neural network learning algorithms
that use perceptrons. We will also propose a new constructive neural network learning
algorithm based on the inter-pattern distances of patterns. These will be described in

detail in chapter 4 and chapter 5, respectively.

17

3 PERCEPTRON LEARNING ALGORITHMS

3.1 Introduction

A perceptron (or TLU) is a simple mathematical model motivated by the McCulloch and
Pitts model of the biological neuron [McCulloch & Pitts, 1943]. A perceptron implements the
step function and can be trained to classify a set of patterns into two classes. Consider a
pattern set defined over the N-dimensional Euclidean space. The output OF of a perceptron
with a weight vector W = (Wp, Wy, -+, Wy) for an input pattern X? = (X[, X7,---, X} is

computed as follows:
1if W-X? >0
oFf =
—1 otherwise
The pattern classification properties of a perceptron (and networks of perceptrons) are
better understood in geometrical terms [Nilsson, 1965; Chen et al., 1995]. A perceptron im-

plements a (N — 1)-dimensional hyperplane given by W - X? = 0. The hyperplane partitions

the N-dimensional pattern space (defined by the coordinates Xq,---, Xx) into two regions.

3.1.1 Limitation of Perceptrons

A perceptron is only capable of correctly classifying patterns that are linearly separable. A
set of patterns § = ST U S~ where ST = {(X?,C?)|CP = 1} and S~ = {(XP,C?)| C? = -1}
(C? is the desired output for the input pattern X?) is said to be linearly separable if there exists
a weight vector W such that YX? € §T, W.XP > 0and YX? € §—, W-X? < 0. For instance,
consider the AND pattern set S = {[(-1 - 1), —1],[(-11), —1],[(1 —1), —=1],[(1 1), 1]}.

The AND pattern set is linearly separable since there exist lots of hyperplanes separating the

18

X2
('111)\ (111)
N ®
PN

N i N X1+X»-1=0
(1-1) (L-1)

Figure 3.1 AND pattern set.

patterns into two classes including the one with W = [—-1 1 1] as shown in Figure 3.1. Note
that the first component of the weight vector is the threshold (Wj).

On the contrary, there are patterns sets for which there does not exist a hyperplane
to separate the pattern sets into two regions. In other words, perceptrons alone are not
sufficient to implement arbitrarily complex decision regions that may be necessary to deal
with linearly non-separable training sets. For instance, consider the XOR pattern set S =
{{(-1 = 1), 1],[(-11), =1],[(1 = 1), =1],[(1 1), 1]} in Figure 3.2. The patterns can never
be separated into corresponding classes by any hyperplanes. A perceptron has this limited

capability of handling linearly non-separable training sets.

X2
('111) (111)
1 ©9) 1 X1
o — =m
(-1-1) (1-1)

Figure 3.2 XOR pattern set.

19

3.1.2 Learning Algorithm

The following learning algorithm is proposed for perceptrons [Rosenblatt, 1958; Nilsson,

1965; Minsky & Papert, 1969]:
W — W + 5(DF — OF)X?

where W is the weight vector, XP? is the pattern vector, D? is the desired output and O? is
the computed output for XP, and n > 0 is the learning rate, respectively. The perceptron
algorithm updates weights iteratively by adding (or subtracting) a fraction of the misclassified
pattern to the current weight vector in a bid to correctly classify as many patterns as possible
as learning proceeds. The perceptron weight update rule is guaranteed to converge to a weight
vector of the separating hyperplane in the pattern space if one exists. However, if the dataset
is not linearly separable, the behavior of the perceptron learning algorithm is unpredictable in
the sense that the classification accuracy might fluctuate from iteration to iteration.

A single perceptron is capable of classifying a set of linearly separable patterns into two
classes. However, a number of practical applications involve a multi-category classification
where there are M(M > 2) output classes. An extension of the simple perceptron model to
multiple output categories is rather straightforward with one TLU being allocated per output
category. Assuming that the training patterns belong to M output categories, the M TLUs
can be trained either independently or as a winner-take-all (WTA) group.

The independent training is similar to 2-category classification which involves just a single
TLU. For M categories, the TLU ¢ is trained with S being the set of patterns belonging to class
v and S_ being the set of patterns belonging to all the other classes. However, the independent
training does not consider the interrelationships among the different pattern classes.

The WTA output strategy takes into account the fact that each pattern can belong to only
one output class. Here the weight updates are geared toward pushing the target TLU to have
the highest net input among the group of M TLUs. Let D? and OP represent the desired and
obtained output vectors in response to input pattern X? respectively. The weight vectors of

the M TLUs are Wy, W, -, Wy respectively and O = [0],0%,---,0%,]. OF is computed

20

as follows: If 35 € 1, -+, M such that W; - X? > W, . XPVi # j,i=1,---, M then O? =1and
O =-1,i#j. 031,42, jk €1,--+, M such that W; - X* =W, -XP =...= W, -X?
and W, - X? > W, - XPVi & {ji1,j2,---,jx} then OF = —1,Vj € 1,---, M. The weights
are then modified according to the perceptron weight update rule as independent training:
W, — W, + (D} - 07)XPVjel,---, M.

The WTA training offers a significant advantage over independent training in that pattern
classes that are only pairwise separable from each other can be correctly classified using WTA
while in independent training only pattern classes that are independently separable from each

other can be correctly classified. Figure 3.3 depicts a set of patterns with three classes that

can be classified by WTA training (i.e., pairwise separable) but not by independent training.

Figure 3.3 An example of pairwise separable pattern set.

Some advantages of the perceptron family of learning algorithms include the existence of
well-known convergence results [Rosenblatt, 1958; Nilsson, 1965; Minsky & Papert, 1969],
and substantially faster learning as compared to typical gradient-based error minimization

strategies. However, they also have the following limitations:

e They behave poorly on datasets that are not linearly separable - i.e., the classification ac-
curacy on the training set can fluctuate considerably from iteration to iteration [Gallant,

1993].

e They alone are not sufficient to implement arbitrarily complex decision regions that may

be necessary to deal with training sets that are not linearly separable.

21

The focus of this chapter is on variants of perceptron algorithms that address these two limita-
tions. These variants, while preserving the convergence properties of the perceptron algorithm
on linearly separable data, attempt to find near-optimal weights (so as to correctly classify
as large a fraction of the training set as possible) when the training dataset is not linearly
separable. One approach to overcome the second limitation is to use generative or constructive
learning algorithms [Honavar & Uhr, 1993; Gallant, 1993; Parekh, 1998; Honavar et al., 1999b].
Such constructive algorithms rely on the addition of typically one (but in some cases, a few)
neurons at a time to build a multi-layer perceptron that correctly classifies a given training
set. Each added neuron is trained using an appropriate weight modification algorithm. Since
constructive learning algorithms are designed to deal with non-linearly separable datasets, the
behavior of the weight modification routine on such data is critical to their performance. (See
chapter 4 for constructive learning algorithms). A perceptron learning algorithm has its own
inductive bias. In other words, the process of determining the weights is different in each algo-
rithm. The bias makes a particular algorithm more suitable to a particular problem and yields
a better performance than other algorithms. It is against this background that we approach
our study of the performance of variants of perceptron algorithms on non-linearly separable
datasets.

A number of variants of the perceptron learning algorithms have been proposed by many
researchers [Krauth & Mézard, 1987; Anlauf & Biehl, 1990; Gallant, 1990; Frean, 1992; Gallant,
1993; Poulard, 1995; Raffin & Gordon, 1995]. Recently, the necessary and sufficient conditions
for a pattern set to be linearly non-separable were given in [Siu et al., 1995]. It was also shown
that the problem of identifying a largest linearly separable subset of a pattern set is NP-
complete. Therefore, the primary motivation for the variants is to find near-optimal weights
(so as to correctly classify as large a fraction of the training set as possible) when the training
dataset is not linearly separable, while preserving the convergence properties of the perceptron
algorithm on linearly separable data. This chapter considers the following three algorithms
among many approaches: pocket algorithm [Gallant, 1990; Gallant, 1993], thermal perceptron

[Frean, 1992] and barycentric correction procedure [Poulard, 1995]. The performance of the

22

algorithms is compared using a variety of both real-world and toy datasets. A majority of
these datasets are linearly non-separable. The three algorithms give 100% training accuracy
on datasets that are linearly separable and attempt to classify as large a subset of the training
set as possible in the case of non-linearly separable datasets.

The rest of this chapter is organized as follows: Section 3.2 introduces the three variants
of the perceptron learning algorithm, provides the pseudo code and analyzes the time and
space complexity of each algorithm. Section 3.3 describes the datasets used in experiments.
Section 3.4 presents the results of the comparative experiments of three algorithms. Section 3.5

concludes with a summary and discussion of future research.

3.2 Description of Three Variants of Perceptron Learning Algorithm

3.2.1 Pocket Algorithm

The perceptron algorithm updates weights iteratively by adding (or subtracting) a fraction
of the misclassified pattern to the current weight vector in a bid to correctly classify as many
patterns as possible as learning proceeds.

The key idea behind the pocket algorithm [Gallant, 1990; Gallant, 1993] which is explicitly
designed to improve the behavior of the perceptron algorithm on non-linearly separable data
is to maintain an additional weight vector W ,cre; in addition to current W. Wy, i.¢ stores
the best weight setting encountered during training. A further refinement on this idea, called
the ratchet modification (RP) [Gallant, 1993], is to ensure that replacement of W,.rer by W
is performed only if W correctly classifies a greater fraction of the training set than Wyocpes.
The pocket convergence theorem [Gallant, 1993] guarantees that the RP will find an optimal
weight setting given enough training time.

In the following discussion on multi-category algorithms, W and W, . denote the entire
set of weight vectors of M output neurons in the network. W represents a specific weight
vector of neuron j. The pseudo code for pocket algorithm with ratchet modification is depicted

in Figure 3.4.

23

Nel

. Initialize W (can be initialized to 0 or small random values);
. for k := 1 to (# of epochs) do
Select a training example (XP?, DP) at random;
Compute the output vector (O?);
if (OP = DP) then // correct classification
if (run of correct classification with W is longer than that with W ,.xe:) then
if (W correctly classifies more training examples than W ,cxe¢) then
Replace Wocrer by W and adjust the length of correct run;
endif
endif
else // incorrect classification
Update weight vectors: W; « W; + 5. (D} - ON)XP,Vje1,---, M
endif

Figure 3.4 Pocket algorithm with ratchet modification.

24

3.2.1.1 Time Complexity

Let Nepoer, be the total number of epochs for which the algorithm is trained. Let N, and
Noyt be the number of input and output neurons respectively. Let Np.¢tern, be the number of
training patterns.

Step 1,4 and 8 take O(N,;, - Noyt). Step 3 and 6 take O(1). Step 5 takes O(N,y). Step 7
takes O(Npattern * Nin - Nout). Step 9 takes O(N;y, - Noyz). Thus, the total time complexity (at

Step 2) is O(LNepoch -/ pattern * Evin . jvout)-

3.2.1.2 Space Complexity

The space requirement for input patterns and their targets is O(Npattern - Nin* Nout), and for

W ocket and W is O(N;y, - Noye). Thus, the overall space complexity is O(Npattern - Nin - Nout)-

3.2.2 Thermal Perceptron Algorithm

The rationale behind the thermal perceptron algorithm (TP) [Frean, 1992] is to control
the weight updates to avoid drastic changes for outliers as learning progresses. The fact that
the weight update rule of the standard perceptron algorithm for misclassifications is the same
irrespective of the magnitude of the error can cause severe fluctuations in the classification rate
for non-separable datasets. A damping factor is introduced in the weight update equation to
stabilize learning: W; «— W 4 n%(D? - O?)X%"*WT where ¢ is the net input for the output
neuron and 7 is the temperature. The temperature 7" is set to an initial value Ty at the start of
learning and gradually annealed to 0 as the training progresses. Since the exponent effectively
decays the learning rate, the probability of undoing previous work is decreased as training pro-
gresses. In effect, the algorithm behaves like the perceptron algorithm at the start and avoids
any large weight changes at the end of training. Note that the performance of this algorithm is
heavily dependent on the initial temperature. This difficulty can be overcome to a significant
extent if at the end of each epoch the initial temperature Ty is set to the average net input
over that particular epoch [Burgess, 1994]. The TP can be directly applied to multi-category

classification problems using WTA computation as in RP. However, it is reasonable to account

25

for the interactions between output neurons in the computation of ¢. In other words, the dif-
ference of net inputs between target output neuron and the neuron with highest net input (step
8 of the pseudo-code in Section 3.2.2) is used as ¢ in the weight update formula. (In fact, direct
extension of TP to WTA groups was found to perform poorly and thus the above heuristic

was incorporated). The pseudo code for thermal perceptron algorithm is depicted in Figure 3.5.

1. Initialize W (can be initialized to 0 or small random values);
2. Set initial temperature 7o = 1; v = 1; T = v71y;
3. for k := 1 to (# of epochs) do

4. for 1 := 1 to (# of patterns) do

5. Select a training example (X, DP) at random;
6. Compute the output vector (OF);

7. if (O? # DP) then // incorrect classification
8. Update weight vectors:

e Independent:
W; — W, + g - (DP — O0)XPe WX yje 1 ... M
e WTA (neuron 7 has the highest net input):
W, — W, + % - (DF — OF)XPe Wi XI=W; XI/T yjeq oo M
endif

9. Compute the average net input (¢,,,) over all output neurons;

10. v =7~ (1/# of Epoch); Ty = (215 + 2¢avy)/3; T = vTo;

Figure 3.5 Thermal perceptron algorithm.

26

3.2.2.1 Time Complexity

We use the same notation as described in RP. Step 1 and 6 take O(N;y, - Noyt). Step 2,
5,9 and 10 take O(1). Step 7 takes O(N,yi). Step 8 takes O(Nyy, - Noyt). Thus, step 4 takes
O(Npattern - Nin - Nout). Therefore, the total time complexity (at step 3) is O(Nepoch - Npattern *
Nin - Nout).

Note that TP has a merit of not requiring the ratchet test (i.e., computing the overall train-

ing accuracy), but it depends on expensive exponent calculations and floating point arithmetic.

3.2.2.2 Space Complexity

As in RP, input patterns and their targets need O(Npattern * Nin - Nout), and W requires

O(Nip - Noyt). Thus, the overall space complexity is O(Npattern © Nin - Nout)-

3.2.3 Barycentric Correction Procedure

The barycentric correction procedure (BCP) [Poulard, 1995] is an efficient algorithm for
training single layer neurons. It is based on the geometric properties of the training patterns
and provides a framework for rapidly determining a stable weight setting that correctly classifies
as large a subset of the training patterns as possible.

The BCP algorithm for two-category classification involves iteratively computing the barycen-
ters for each of the two classes and the threshold in a bid to minimize the number of misclassi-
fications. The BCP features separate methods for computing the weights and the threshold of
the TLU being trained. Let Ny and Ny be the number of patterns in S; and S_ respectively.
The barycenters by and by represent the weighted averages of the patterns in S; and S_ re-
spectively with a= (aq,---,an,) and p= (u1,- - -, iy,) representing the weighting coefficients
for patterns belonging to S; and S_ respectively. The weight vector W = (wq,---,wy) is
determined as W = by —bg. The threshold 8 is then chosen to optimize classification accuracy.
The sets vy = {—W - -XP|X?P € S, } and vy = {—W -XP|X? € S§_} representing the projections
of the individual patterns on the weight vector W are first computed. If max(vy) < min(vp) it is

clear that the projections of the patterns belonging to the two classes do not overlap and hence

27

w and the separating

the patterns §4 and S_ are linearly separable. 8 is set to
hyperplane is given by H = (8, W). If however, max(rv;) > min(rg) then the pattern set is not
linearly separable and @ is selected randomly from the interval [-W -by .. — W -bg]. Like RP,
BCP maintains a pocket hyperplane Hpocket = (Opocket; Wpocket) capturing the threshold and
weights encountered during training that together give minimum classification error. For each
training epoch ¢ the candidate pocket hyperplane is denoted as H;ocket = (Héocket,W). %ocket
is selected from a pool of values representing the overlapping region of patterns belonging to
both classes in the set of projections v = vy Ury. The separation (or gap) of the patterns from
the hyperplane H;Odm is computed as the sum of the distances from H;ocket of the closest
patterns on either side. Finally, Héocket replaces the current pocket hyperplane (Hocket) if the
number of misclassifications is less than the number of misclassifications of Hpocker or if the
number of misclassifications is the same and the gap is greater than the gap of Hpocrer. To end
one epoch, the weighting coeflicients of the patterns that are still misclassified are boosted up
by a positive weighting modification. Intuitively, this causes the misclassified patterns of the
two classes to be weighted more heavily in the computation of the barycenters. Training is
performed for a prespecified number of epochs at the end of which the best weights represented
by the pocket hyperplane are returned.

The multicategory extension of the BCP is implemented as a sequence of M calls to the
two-category BCP procedure once for each of the M pattern classes. The training set for
output neuron j is constructed by assigning target output 1 to patterns of class j and output
—1 to all other patterns.

The extension of the BCP to WTA groups involves treating the barycenters for each class of
patterns as the weights for the corresponding neuron. The thresholds for the neurons are then
determined by minimizing the loss due to misclassification. The loss-minimization algorithm
[Hrycej, 1992] can be adapted for this purpose. Of course, the loss minimization algorithm
can be used by itself as a weight training rule for the weights of the TLU. However, the

convergence speed of this process which is based on loss minimization by gradient decent is

excruciatingly slow for the complex loss surface when it is used to train the weights and the

28

threshold. Thus we use the loss minimization routine to compute just the thresholds in this
case. Given the set of weights, the loss can be defined as the sum squared error incurred in
classifying each pattern. Suppose the TLU numbered ¢ with weight vector W; (remember
that in the case of the BCP the threshold 6; is computed separately from the weight vector)
produces the highest activation among all the neurons for pattern X,. Suppose j is the correct
classification for pattern XP. Then the cumulative loss for the training patterns is given by
Q = Ep(*nf — *nf){‘) where n! = X? - W, is the activation of neuron i in response to pattern
XP. It can be shown that the cumulative loss function is a convex differentiable function of the
modifiable thresholds, and consequently, has a unique minimum [Shynk, 1990; Hrycej, 1992].
The thresholds that correspond to the minimum value of ¢) are found by gradient descent. It is
easy to prove that such a learning rule is guaranteed to find a set of separating thresholds if the
training set is linearly separable. Even if the training set is not linearly separable, this method
guarantees to find the thresholds that minimize the cumulative loss and hence maximize the
number of correctly classified patterns. However, the quality of the solution is a function of
the distribution of patterns in the pattern space. Because the purpose of introducing loss
minimization algorithm here is to find the optimal thresholds to minimize the misclassification
and use the routine as an inner loop of WTA BCP, we provide a limited number of iterations to
perform the gradient descent instead of allowing indefinite training time. Finally, to obviate the
oscillation of cumulative loss due to large learning rate, we dynamically decrease the learning
rate 7 if the cumulative loss diverges during the gradient descent.

The pseudo code in Figure 3.6 is the independent BCP for two class problems. For multi-
category problems, this procedure is run several times (once for each category) as described
before.

The pseudo code for WTA barycentric correction procedure is depicted in Figure 3.7. Let
a denote a collection of weighting coeflicients a;. Let W (and W ,cke¢) denote a collection of
weight vectors W (and pocket vectors W ,cket) for each class j. Let @= [0y, --,0x] be the

thresholds of the M neurons and ®,.cke; be the pocket thresholds.

29

1. Initialize @ and p to values in the range [1,al;
2. for k := 1 to (# of epochs) do
3. Compute by and by;

4. Sethbl—bg;

5. Compute vy and vp;
6. if (max vy < minvg) then begin;
7. Set 6 = %‘Fminyo;
8. Return H = [#, W] and stop;
else
9. Pick 6 randomly from [-W - by .. — W - bg];
10. Compute the candidate H;OCket and the gap of H;ocket;
11. Replace the pocket hyperplane Hpocrer by H;ocket if H;Odm correctly classifies

more training examples than Hpocker or has same classification accuracy
and a larger gap;

12. Update e and p;
endif

Figure 3.6 Barycentric correction procedure (independent).

30

1. Initialize «;

2. for k := 1 to (# of epochs) do

3.

4.

10.

11.

forj:=1to M do
Compute bj;
Set W; = b;;

Determine ® by loss minimization;

if (all patterns are correctly classified by ‘H = [@,W]) then
return ‘H and stop;

else if (H results in fewer errors compared t0 Hpocket = [@pockets Wpocket]) then

H — Hpocket;
endif

Update a;

Figure 3.7 Barycentric correction procedure (WTA).

31

3.2.3.1 Time Complexity

Using the same notation as in RP we analyze the time complexity as:

1. Independent BCP
Step 1, 3, 6 and 12 take O(Npgttern). Step 4 takes O(N;,). Step 5 and 11 take
O(Npattern - Nin). Step 7, 8 and 9 take O(1). Step 10 takes O(Nypqttern 18 Npattern)-
Thus, the total time complexity (at step 2 with multicategory) is O(max[Noyut * Nepoch -
Npattern g Npatterns Nout * Nepoch * Npattern * Nin]). (For multicategory problems, the algo-

rithm should be run for each output.)

2. WTA BCP
Step 1, 4 and 11 take O(Npgttern). Step 5 takes O(N;y,), and therefore step 3 takes
O(max[Noyt + Nin, Nout * Npattern)). Step 6 takes O(Nipnerepoch © Npattern © Nin = Nout)
(innerepoch is needed for loss minimization). Step 7 takes O(Npgstern - Nin). Step 8 and
9 take O(1). Step 10 takes O(N;, - Noyt). Thus, the total time complexity (at step 2) is

O(ATepoch . Npattern . IVin . IVout)-

3.2.3.2 Space Complexity

Asin RP, the space requirement for the input patterns and their targets is O(Npattern - Nin -
Nowt). W, Wy ooker and b require O(Nyy, - Noyt), and © and Opeer require O(Nyye). Thus,

the overall space complexity is O(Npattern - Nin - Nout)-

3.3 Datasets

In order to conduct a thorough and systematic comparison between the three algorithms,

a wide range of datasets was chosen based on a set of carefully chosen criteria which involved:
o Attribute Type: binary/bipolar, integer and real valued attributes.
o Number of Oulpul Calegories: two classes or multiple output classes.

o Linear separability: separable and non-separable sets of training patterns.

32

The real-world datasets used are available at UC Irvine’s Machine Learning repository [Murphy
& Aha, 1994]. Table 3.1 summarizes the characteristics of the datasets selected for our exper-
iments. Train and Test are the number of patterns in the training and test sets, respectively.

Attribute is the number of input attributes. Class is the number of output classes.

Table 3.1 Datasets used in the experiments.

Dataset Train Test Attribute Attribute Type Class
balance 416 209 4 real 3
concentric (two concentric circles) 1666 834 2 real 2
glass 142 72 9 real 6
ionosphere 234 117 34 real 2
liver 230 115 6 real 2
p7 (7-bit parity) 128 0 7 bipolar 2
pima 512 256 8 real 2
r5 (5-bit random) 32 0 5 bipolar 3
sep (separable data) 200 100 4 real 2
soybean 33 14 35 integer 4
wdbc 380 189 30 real 2
wine 120 58 13 real 3
WTA-sep (separable data in WTA sense) 44 21 2 real 5

3.4 Experiments and Results

Several experiments were conducted to make a fair comparison between the three per-
ceptron algorithms (BCP, RP and TP) in terms of classification accuracy, training time, and
learning curve. Also, a constructive learning algorithm was chosen to study the inductive bias

of the perceptron algorithms in the constructive learning algorithm.

3.4.1 Classification Accuracy

To compare the classification accuracy, sufficient learning time (in terms of the number of
epochs) was allowed to each algorithm. An epoch indicates a single random pattern presentation
in RP, [randomly drawn patterns from the training set in TP (where [is the size of the
training set), and a presentation of the entire set of training patterns in BCP. A run of RP was

terminated upon attaining 100% accuracy on the training data or when the pocket weights

33

Table 3.2 Classification accuracy (independent).

RP TP BCP

Dataset train lest train test train test
balance 88.5+0.5 85.6+08 | 84.3+2.8 822+14 |87.7+£0.5 82.1+1.1
concentric | 62.7+0.0 64.0+0.0 | 62.7+0.0 64.0+£0.0 | 55.9+0.0 53.1+0.1
glass 468+ 1.6 41.8+45 | 39.1+£2.1 289429 |5444+2.0 40.7+4.1
ionosphere | 91.9+0.9 95.0+1.7 | 9544+ 0.5 91.6+2.3 |91.9+0.2 95.1+0.9
liver 70.7+£1.0 708+3.0 | 71.7+0.9 72.14£26 |72.0£03 70.2+1.7
p7 61.0+4.5 — 65.2+ 1.6 — 63.6 + 3.8 —
pima 68.9+1.0 68.7+£20 | 72008 71.0+1.4 | 7464+04 77.81+0.7
r5 56.9+ 3.4 — 58.6 £ 4.9 — 57.6 £ 3.8 —
sep 100+ 0.0 99.8+0.5 100 £ 0.0 99.8+ 0.5 | 100+ 0.0 99.8+04
soybean 100+ 0.0 923+74 100 £ 0.0 943+ 4.6 | 100+ 0.0 80.9+4.0
wdbc 923+03 91.4+4.1 | 92.7+0.2 90.8+1.4 | 90.3+0.0 91.6+0.2
wine 71.8+£6.3 759+£103| 77.1+1.5 854+£22 | 73.9+£39 K83.2+3.3
WTA-sep 71.1+14 78.74+3.1 | 59.94+12.2 625+11.7 | 586+ 1.1 57.0£1.0

did not undergo update for a stretch of 50,000 epochs (pattern presentations). Training was
conducted until either all patterns were correctly classified or 500 training epochs were reached
for TP and BCP. In the case of TP, a heuristic alteration of the initial temperature was
performed after each epoch (as suggested in [Burgess, 1994]).

Table 3.2 and 3.3 report the average accuracy and the standard deviation over 25 runs of the
three algorithms with independent and WTA training strategy, respectively. Datasets without
a test set have ‘—’s in the column for testing accuracy. Dynamic reduction of the learning
rate was performed in the loss minimization routine for the WTA BCP. If the cumulative
loss diverged over 5 consecutive epochs of the loss minimization routine the learning rate was
decreased to 0.95 times its current value (with the initial learning rate set to 1.0). @ is
randomly initialized and e are randomly initialized to integer values between 1 and 4.

As we can see from Table 3.2 and 3.3, given enough training time the three algorithms
are comparable in general. However, each algorithm outperforms the others on some datasets.

For almost all multi-category datasets, WTA strategy gave higher accuracies (except the wine

dataset for BCP).

34

Table 3.3 Classification accuracy (WTA).

RP TP BCP

Dataset train test train test train lest
balance 92.14+0.9 8924+1.4|91.8+1.1 89.5+0.8|923+0.3 89.9+0.2
glass 56.5+ 4.5 482+6.9 | 58.8+3.9 43.2+3.6|49.0+£0.5 51.2+1.9
r5 679+ 1.9 — 76.3 £ 1.8 — 66.6 £ 1.5 —
soybean 100+ 0.0 98.9+2.7| 100+0.0 96.9+4.2 | 100+£0.0 100%£0.0
wine 91.7+£24 95.74+1.2|91.5+£04 935+£1.1|70.24+04 81.3+£0.6
WTA-sep | 100+0.0 1004+0.0 | 100+ 0.0 100£0.0 | 100+£0.0 100£0.0

3.4.2 Training Time

In the previous set of experiments virtually unlimited training time is allowed, but it does
not guarantee monotonic increase of training accuracy. We have compared the relative speeds
of the three algorithms by measuring the total CPU time in seconds taken by each algorithm
to reach 50%, 60%, 70%, 80% and 90% classification accuracy on the training set. Tables 3.4-
3.9 show the average training times and the standard deviations needed to achieve the above
accuracy milestones for 25 runs of each dataset. The total time represents the CPU time
taken to achieve either 100% classification accuracy (on separable datasets) or the total time

to complete the maximum epochs allowed for training. A ‘-’ in a column indicates that the

Table 3.4 Training time for RP (independent).

Dataset 50% 60% 70% 80% 90% total time
balance 0.044+0.01 0.05+£0.01 0.06+0.02 0.0940.03 — 4.03+1.00
concentric 0.054+0.00 0.07+0.02 — — — 65.63 &+ 60.62
glass 4.9440.00 — — — — 12.77 £ 3.40
ionosphere 0.034+0.01 0.05+£0.01 0.07+£0.02 0.13£0.00 1.064+0.62 6.704+1.23
liver 0.014+£0.01 0.06+£0.04 0.824+0.83 — — 3.78+1.14
P7 0.02£0.02 1.16+1.34 — — — 4.124+0.97
pima 0.034+£0.01 0.04+£0.02 3.77+2.79 — — 4.92+1.65
r5 0.334+0.50 — — — — 5.83+1.48
sep 0.014+£0.00 0.01£0.00 0.01+£0.00 0.014£0.01 0.024+0.01 0.354+0.17
soybean 0.0240.01 0.03£0.01 0.03+£0.01 0.00£0.02 0.064+0.02 0.08+0.02
wdbe 0.064+0.02 0.10+£0.01 0.13+£0.03 0.11£0.03 0.214+£0.07 8.824+4.91
wine 0.234+0.25 0.59+£0.87 10.144+1.91 20.62+0.00 — 15.714+5.38
WTA-sep 0.13£0.06 0.40+£0.22 1.45+£0.51 — — 4.614+0.85

35

Table 3.5 Training time for TP (independent).

Dataset 50% 60% 70% 80% 90% total time
balance 026031 025+0.23 0.174+0.18 0.26+£0.22 — 48.48 £ 33.69
concentric 0.084+0.02 0.08+0.03 - — — 905.99 + 1001.31
glass 5.04+2.35 — — — — 59.29 4+ 30.02
ionosphere 0.044+0.02 0.06+£0.02 0.11£0.03 0.20£0.06 1.0040.52 148.13 + 27.32
liver 0.05£0.06 0.23+0.12 0.81%1.13 — — 30.50 & 12.68
p7 0.01£0.00 232+1.24 — — — 22.70 £ 2.80
pima 0.17£0.30 0.23+£0.30 8.71+3.84 — — 79.87 + 28.33
r5 0.23+£0.21 1.27+0.07 — — — 9.15+£ 3.52
sep 0.01£0.00 0.01+£0.00 0.01£0.00 0.02+£0.01 0.03+0.01 0.39+£0.13
soybean 0.04+£0.01 0.056+£0.01 0.054+0.01 0.07£0.01 0.08+0.02 0.10£0.02
wdbec 0.30£0.37 2.11+2.08 1.174+0.81 1.57+£1.00 1.72+1.18 175.08 £ 36.51
wine 0.29+£0.13 0.51+0.49 5.734+0.36 — — 88.34 +4.30
WTA-sep 0.14+0.06 0.38+£0.20 0.96+0.35 — — 7.26 £ 1.68

Table 3.6 Training time for BCP (independent).

Dataset 50% 60% 70% 80% 90% total time
concentric 0.4340.01 — — — — 206.97+ 2.21
ionosphere — — 0.04+0.01 0.144+0.08 1.294+0.68 14.08+0.28
liver — 0.024+0.01 0.28+£0.21 — — 11.54 4+ 0.32
p7 0.01£0.00 0.46+0.44 — — — 4.16 £ 0.22
pima — 0.084+0.00 0.42+£0.25 — — 39.04+0.64
sep — — — — 0.02£0.00 0.184£0.04
wdbc — — — 0.06£0.00 1.65+0.37 25.304+0.52

corresponding level of training was not achieved (i.e., either the training jumped to a higher
level of accuracy or the training could achieve only a lower accuracy level). Since the indepen-
dent BCP training algorithms for datasets with multiple output classes involves independently
training each class of patterns, it is not possible to measure the total time to achieve the various
accuracy levels.

Theoretically, the variants of the perceptron learning algorithm converge to the optimal
classification on linearly non-separable data only when unlimited training time is allowed.
However, in practice unlimited training time is not allowable and thus a limited time should
be given instead. From the results we observe that in general RP takes the least total time for

training. It reaches the highest accuracy much faster than TP and BCP. This can be attributed

36

Table 3.7 Training time for RP (WTA).

Dataset 50% 60% 70% 80% 90% total time
balance 0.124£0.03 0.15+0.04 0.204£0.07 0.23+£0.07 1.844+1.50 12.54+3.81
glass 3.594£1.92 19.484+4.23 — — — 23.94 £ 8.17
rb 0.03£0.02 0.254+0.28 5.09+£1.32 - - 10.80 4+ 2.36
soybean 0.03£0.01 0.024+0.01 0.03£0.01 0.04+0.02 0.0640.02 0.09+0.03
wine 0.14£+0.06 0.214+0.12 233£082 6.14+1.26 13.13£2.71 24.2643.49
WTA-sep 0.08£0.03 0.124+0.06 0.224£0.07 0.31+£0.09 0.5740.17 1.144+0.28
Table 3.8 Training time for TP (WTA).

Dataset 50% 60% 70% 80% 90% total time
balance 043+£054 1924+1.04 1.464£1.08 150+£1.08 296+1.63 112.16+51.20
glass 4514+3.19 17.0940.87 — — — 137.21 £ 22.79
rd 0.03£0.02 0.2240.43 1.60£0.68 - - 75.75 £+ 1.63
soybean 0.06+0.02 0.084+0.03 0.0840.02 0.12+0.01 0.1240.02 0.1540.04
wine 055030 0614+024 390£1.39 7.11x1.07 9.704+1.25 97.32410.33
WTA-sep 0.12+£0.04 0.18+0.06 0.31£0.07 0.49+0.11 0.754+0.18 1.194+0.20

to the simplicity of the algorithm. BCP on the other hand has the merit of achieving high
accuracy very rapidly. The high total training time in the case of BCP is indicative of the
time spent in training without any substantial improvement in training accuracy. The quick

convergence to high accuracy levels in the BCP can be exploited to rapidly train constructive

networks.
Table 3.9 Training time for BCP (WTA).

Dataset 50% 60% 70% 80% 90% total time
balance — — — 7.92+037 15444375 358.20+£11.19
glass — — — — — 174.25+2.31
r5 0.40+0.01 0.844+0.33 — — — 32.88 +0.39
soybean — — — — 0.13+£0.13 0.20+0.34
wine — 243+0.01 3.07+0.19 — — 130.61 £ 0.51
WTA-sep — — 0.62+0.00 0.62+£0.01 0.64+0.04 4.00 £ 5.46

37

3.4.3 Learning Curve

There can be various possibilities in the process of perceptron training. For example, an
algorithm can reach a near-optimal solution very fast but approach to the optimal solution
slowly from there. On the other hand, another algorithm can reach the optimal solution with
a constant speed. (For example, we can choose the former for problems that need a reasonable
solution within a time constraint, and choose the latter for problems that need a good solution
within a finite time limit). Therefore, studying the bias of perceptron algorithms with respect to
the learning speed is of interest. We compared the learning speeds of the algorithms by plotting
the learning curves of the algorithms on ionosphere and the pima datasets. Both datasets
are real-world and substantially large and fairly good training accuracies are possible with each
of the three algorithms on these datasets. Ten runs were performed with the same parameter
settings as described earlier. The training and generalization accuracies were measured at the
end of each epoch for each of the three algorithms. Note that for the purpose of this experiment
in the case of RP and TP, one epoch was measured as a presentation of [randomly chosen
training patterns (where [is the total number of training patterns for the dataset) while in
the case of the BCP each epoch involved seeing all the training patterns once. Training was
performed for 500 epochs.

Figure 3.8 and 3.9 show the learning curves for the three algorithms. In the case of iono-
sphere both BCP and RP climb to a high level of training accuracy very rapidly. TP performs
poorly at the start but stabilizes to a good training and test accuracy toward the end of the
training epochs. The pima dataset clearly shows the demarcation between the three training
algorithms. Here the BCP outperforms both TP and RP in both the training and generalization
accuracies. TP starts off poorly but eventually stabilizes to an accuracy level comparable to

RP.

3.4.4 The Impact of Perceptron Learning in Constructive Neural Networks

As explained in Section 5.1, a perceptron learning algorithm can not classify a linearly

non-separable data [Minsky & Papert, 1969]. Constructive neural network learning algorithms

Accuracy

Accuracy

100

901

80

70

60

50

80

40 T T
0O 100 200 300 400 500

lonosphere - Training Accuracy

0O 100 200 300 400 500

Epochs

: —--TP

38

Accuracy

lonosphere - Generalization Ability

100

70+

60 T
0 100 2

00 300

400 500

Epochs

Figure 3.8 Learning curve for ionosphere.

Pima - Training Accuracy

Epochs

Accuracy

Pima - Generalization Ability

80

40 T

0 100 200 300 400

500

Epochs

Figure 3.9 Learning curve for pima.

39

[Gallant, 1993; Honavar & Uhr, 1993; Honavar et al., 1999a] provide a framework for incre-
mental construction of networks. They keep recruiting a set of hidden neurons and setting the
connections (i.e., weights) between neurons in a systematic way until the stopping criteria are
satisfied (e.g., 100% training accuracy is reached or the number of hidden neurons recruited
exceeds some limit). Several constructive learning algorithms appeared in the literature and
are shown to guarantee 100% training accuracy theoretically [Mézard & Nadal, 1989; Nadal,
1989; Frean, 1990; Gallant, 1990; Marchand et al., 1990; Burgess, 1994; Yang et al., 1996;
Parekh et al., 1997b; Parekh, 1998; Yang et al., 1998b]. Most of them employ a perceptron
style weight update procedure (e.g., RP) to determine the weight setting between neurons.
The performance of the perceptron algorithm used in the constructive learning algorithm de-
termines the overall performance of classification. In other words, if the perceptron learning
algorithm fails to find a proper weight setting for newly recruited neurons, it would not de-
crease the classification error and thus not converge to 100% training accuracy. Therefore,
exploring the bias of a perceptron learning algorithm in the context of constructive learning
algorithm is clearly of interest.

The Tiling algorithm [Mézard & Nadal, 1989; Yang et al., 1996; Parekh, 1998] is chosen
in our experiments. The Tiling algorithm constructs a strictly layered network of TLUs. The
bottom-most layer receives inputs from each of the input neurons. The neurons in each subse-
quent layer receive inputs from those in the layer immediately below itself. Each layer maintains
M master neurons for M output classes. The network construction procedure ensures that the
master neurons in a given layer correctly classify more patterns than the master neurons of the
previous layer. Each layer maintains a set of ancillary neurons that are added and trained to
ensure a faithful representation of the training patterns. The faithfulness criterion states that
no two training examples belonging to different classes should produce identical output at any
given layer. See chapter 4 for a detailed description on Tiling algorithm. The Tiling algorithm
is shown to outperform other constructive learning algorithms in various datasets [Parekh,
1998]. The reason is most likely due to the fact that the Tiling algorithm trains neurons on

progressively smaller subset of the entire training set.

40

Three artificial datasets are used to study the internal bias of RP, TP and BCP:
e concentric: concentric circles dataset in Table 3.1.

e D1: two well-formed clusters of two classes with a region of mixed patterns belonging to

different classes (see Figure 3.10(a)). There are 250 patterns in both training and test

sets.

e D2: totally randomly generated patterns (see Figure 3.10(b)). There are 250 patterns

in both training and test sets.

In Figure 3.10, white boxes denote patterns belonging to a single class and shaded boxes

indicate patterns belonging to both classes (A and B).

A
Class 2 Class Class
A B B A&B
(a) D1: Marginally non-separable data (b) D2: Random data

Figure 3.10 Two artificial datasets.

Table 3.10 shows the average performance of 10 runs of the perceptron algorithms on the
three artificial datasets. Table 3.11 shows the average performance of 10 runs of the Tiling
algorithm combined with the perceptron algorithms for the three artificial datasets (Tiling-RP,

Tiling-TP, and Tiling-BCP). Here, success is the number of runs that succeeded to converge.

Table 3.10 Performance in a single layer perceptron

RP TP BCP
Dataset tratn test | train lest | train lest
concentric | 62.7 64.0 | 62.7 64.0 | 55.9 53.1
D1 91.9 90.7 | 91.0 90.8 | 92.1 90.2
D2 55.7 53.3 | 53.3 47.6 | 56.8 56.8

41

Table 3.11 Performance in Tiling algorithm

Tiling-RP Tiling-TP Tiling-BCP
Dataset success train lest | success {train lesl | success lrain lesl
concentric 0 - - 0 - - 10 100 99.1
D1 3 100 89.2 10 100 90.0 10 100 89.3
D2 9 100 50.5 9 100 50.0 10 100 51.7

Table 3.10 shows comparable accuracy between the three algorithms in D1 and D2. How-
ever, BCP gave lower accuracy for concentric since the barycenters of patterns in both classes
are very close.

The performance of Tiling algorithm with different perceptron algorithms is different from
that of perceptron algorithms used alone. In particular, Tiling-BCP always converged to net-
works with 100% training accuracy while Tiling-RP and Tiling-TP did not converge at all on
concentric. On D1 and D2, the Tiling-BCP always converged to networks with 100% training
accuracy while Tiling-RP and Tiling-TP failed to converge in several runs. All three algorithms
gave comparable generalization accuracy. This shows that Tiling-BCP outperforms Tiling-RP

and Tiling-TP though there was not much difference in single layer perceptron learning.

3.5 Summary and Discussion

Perceptrons are simple computing elements inspired by a biological neuron. A perceptron
is capable of classifying a linearly separable set of patterns. The perceptron learning algorithm
finds a proper weight setting to classify such patterns. However, the perceptron learning
algorithm can not classify linearly non-separable datasets, and its behavior is unpredictable.
A number of variants of the perceptron learning algorithm have been proposed to optimize the
performance for linearly non-separable datasets.

Three most commonly used variants of perceptron learning algorithms (pocket algorithm
[Gallant, 1993], thermal perceptron [Frean, 1992], and barycentric correction procedure [Poulard,

1995]) are compared experimentally on a collection of benchmark datasets. Both independent

and winner-take-all strategies were designed for the algorithms and evaluated on multiple out-

42

put classes.

The three algorithms were comparable in terms of training accuracy on the datasets used
for comparison though some algorithm performed better than others on some datasets. The
difference in the accuracy was large for some datasets due to the inductive bias of each al-
gorithm. For example, BCP performed poorly on concentric dataset which produces similar
barycenters for each class. On the contrary, BCP performed even better than RP and TP on the
difficult pima dataset. As expected, WTA training gave higher accuracies than independent
training.

BCP approached the best accuracy very fast while RP and TP required sufficient time.
Because of its simplicity, RP was the fastest given the stopping criteria set up for each algorithm.

BCP’s fast convergence was also verified by the learning curves on ionosphere and pima
datasets. Both BCP and TP showed nice performance of continuously increasing generalization
accuracies during learning.

Preliminary experiments on three artificial datasets show that BCP outperforms RP and
TP in a constructive learning algorithm.

Some avenues for future research include:

e Each variant of the perceptron learning algorithm has its own inductive bias. In other
words, some algorithm can outperform others for certain kind of tasks. Exploiting the

bias and choosing the right algorithm for a dataset will be of significant importance.

e Multilayer perceptrons are necessary to obtain 100% training accuracy for linearly non-
separable data. Constructive neural network learning algorithms generate networks of
multiple layers of perceptrons dynamically for this purpose. Most of the constructive
learning algorithms rely on a perceptron style weight update procedure to find the
weight setting for generated neurons. The performance of a constructive learning algo-
rithm heavily depends on the perceptron learning algorithm it employs. Each perceptron
learning algorithm has its own inductive bias. Exploiting the bias and choosing the right
algorithm for a dataset will be of significant importance. Further experiments with var-

ious datasets combined with several constructive learning algorithms are necessary for

43

a thorough study of the inductive bias of each perceptron learning algorithm. Chap-
ter 4 introduces several constructive neural network learning algorithms for real-valued

patterns with multiple classes.

44

4 CONSTRUCTIVE LEARNING ALGORITHMS FOR NETWORKS OF
PERCEPTRONS

4.1 Introduction

Constructive (or generative) neural network algorithms are not restricted to a priori chosen
network architectures. Instead, they attempt to dynamically discover an adequate network
architecture for a given task. Some of the motivations for using constructive neural network

learning algorithms include [Honavar, 1990; Honavar & Uhr, 1993; Parekh, 1998]:

o Limitalions of learning by weight modification alone within an a priori fixed network
architeclure:
Learning by weight modification involves searching the weight space for an acceptable
solution that satisfies the desired performance criterion (e.g., classification error). To be
successful, such a solution must lie within the weight space being searched, and the search
procedure employed must be able to locate it. If the user does not have adequate problem-
specific knowledge that could be used to choose an appropriate network architecture, the
process can try ad hoc choices of network architectures, which leads to trial-and-errors.
Constructive algorithms can potentially offer a way around this problem by extending

the search for a solution to the space of network topologies in a controlled fashion.

o Complexity of the network and the classification task:
It is desirable that a learning algorithm construct networks whose complexity (in terms
of relevant criteria such as number of nodes, number of links, connectivity, etc.) is com-
mensurate with the intrinsic complexity of the classification task (implicitly specified

by the training data). Everything else being equal, the more compact the network, the

45

more likely it is that it exhibits better generalization properties. In addition, smaller net-
works yield efficient hardware implementations. Constructive algorithms can potentially

discover near-minimal networks for correct classification of a given dataset.

e FEstimation of expected case complexity of pattern classification tasks:
Many pattern classification tasks are known to be computationally hard. However, little
is known about the expected case complexity of classification tasks that are encountered,
and successfully solved, by living systems - primarily because it is difficult to mathemat-
ically characterize the properties of such problem instances. Constructive algorithms, if
successful, can provide useful empirical estimates of expected case complexity of real-

world pattern classification tasks.

o Trade-offs among performance measures:
Different constructive learning algorithms offer natural means of trading off certain per-
formance measures against others. For instance, some algorithm can yield higher gen-
eralization accuracy and/or smaller network size but longer training time. Others can
converge to the solution faster but with lower generalization accuracy and/or larger net-

work size.

e Incorporation of prior knowledge:
Constructive algorithms provide a natural framework for incorporating problem-specific
knowledge into the initial network configuration. Knowledge refinement can then be

performed using new training examples.

Two prominent approaches to constructive learning include growing algorithms and shrink-

ing algorithms:

e Growing algorithms:
They start with an initial network composed of input and output neurons. A set of hidden
neurons are then added into the network iteratively based on some criteria [Mézard &
Nadal, 1989; Gallant, 1990; Frean, 1990; Marchand et al., 1990; Burgess, 1994; Yang

et al., 1998b]. For instance, when the current network does not yield improved training

46

accuracy, new hidden neurons are added, and then trained. This process of addition and
training of new hidden neurons is repeated until some suitably selected stopping criteria
is satisfied (e.g., the training accuracy increased up to some level or the number of hidden

neurons exceed some limit).

e Shrinking algorithms:
They are exactly the opposite of growing algorithms. They start with sufficient number
of hidden neurons in the initial network. A set of hidden neurons are then deleted from
the network based on some criteria. For example, if some hidden neurons are determined
to be redundant or irrelevant, they are eliminated [Mozer & Smolensky, 1989; Parekh
et al., 1997c]. In addition, the error function can be modified to include a penalty term
for weight decay, and the weights of insignificant magnitude are eliminated [Hanson &

Pratt, 1991; Le Cun et al., 1990; Weigend et al., 1991].

In both cases, there should be a well-defined procedures of growing or shrinking the net-
works. For instance, it should be specified that where new neurons are added, how they are
interconnected, which set of training patterns are to be used to train newly added neurons,
what learning algorithm is to be used, which neurons are deleted on what basis, and the like.
In this dissertation, we focus on growing algorithms.

A number of growing constructive learning algorithms have been proposed in the literature.
They are classified into two groups based on the type of the neurons recruited: sigmoid or
perceptron.

[Ash, 1989; Fahlman & Lebiere, 1990; Hirose et al., 1991] proposed constructive neural
network learning algorithms with sigmoid neurons. They used training algorithms for neurons
similar to the backpropagation algorithm. A constructive learning algorithm using radial basis
function was also proposed in [Roy et al., 1995].

[Mézard & Nadal, 1989; Nadal, 1989; Frean, 1990; Gallant, 1990; Golea & Marchand, 1990;
Marchand et al., 1990; Bose & Garga, 1993; Burgess, 1994; Campbell & Vicente, 1995; Def-
fuant, 1995] proposed constructive neural network learning algorithms with perceptrons. Such

networks offer significant representational and computational efficiencies and simpler digital

47

hardware realizations than their continuous counterparts. In addition, they are guaranteed
to converge to zero classification errors on all finite and non-contradictory datasets using a
perceptron learning algorithm.

There have been also several approaches in the design of neural networks using genetic
algorithms [Kitano, 1990; Andersen & Tsoi, 1993]. They produce the best neural network
based on some fitness function using either sigmoid neurons or perceptrons as hidden neurons.

Among the various constructive neural network learning algorithms with perceptrons for
2-category pattern classification tasks proposed in the literature, the Tower [Nadal, 1989;
Gallant, 1990], Pyramid [Gallant, 1990], Tiling [Mézard & Nadal, 1989], Upstart [Frean,
1990], Perceptron Cascade [Burgess, 1994], and Sequential [Marchand et al., 1990] algorithms
are studied in this dissertation. With the exception of the Sequential learning algorithm,
constructive learning algorithms are based on the idea of transforming the task of determining

the necessary network topology and weights to two subtasks:

e Incremental addition of one or more perceptrons to the network when the existing network

topology fails to achieve the desired classification accuracy on the training set.

e Training the added perceptrons using some variant of the perceptron training algorithm.

In the case of the Sequential learning algorithm, hidden neurons are added and trained by an
appropriate weight training rule to exclude as many patterns belonging to the same class as
possible from the currently unexcluded patterns.

The constructive algorithms differ in terms of their choices regarding: restrictions on input
representation (e.g., binary, bipolar, or real-valued inputs); when to add a neuron; where to
add a neuron; connectivity of the added neuron; weight initialization for the added neuron;
how to train the added neuron (or a subnetwork affected by the addition); and so on. The
interested reader is referred to [Chen et al., 1995] for an analysis (in geometrical terms) of
the decision boundaries generated by some of these constructive learning algorithms. Each of
these algorithms can be shown to converge to networks which yield zero classification errors
on any given training set wherein the patterns belong to one of two classes (i.e., 2-category

classification). The convergence proof of the Sequential learning algorithm is based on the

48

ability of the perceptron weight training algorithm to exclude at least one formerly unexcluded
pattern from the training set each time a new hidden neuron is trained. In the case of the
other algorithms the convergence proof is based on the ability of the perceptron weight training
algorithm to find a weight setting for each newly added neuron or neurons such that the
number of pattern misclassifications is reduced by at least one each time a neuron (or a set
of neurons) is added and trained and the network’s outputs are recomputed. We will refer to
such a perceptron weight training algorithm as A and assume that it will correspond to an
appropriate choice depending on the constructive algorithm being considered. In practice, the
performance of the constructive algorithm depends partly on the choice of A and its ability
to find weight settings that will reduce the total number of misclassifications (or to exclude
at least one formerly unexcluded pattern from the training set) each time new neurons are
added to the network and trained. Some possible choices for A when the desired task is to
maximize classification accuracy are the pocket algorithm [Gallant, 1990; Gallant, 1993], the
thermal perceptron algorithm [Frean, 1992], and the barycentric correction procedure [Poulard,
1995] as introduced in chapter 3. A variant of the barycentric correction procedure can be used
to efficiently exclude patterns as desired by the Sequential learning algorithm.

Pattern classification tasks often require assigning patterns to one of M (M > 2) classes.
Although in principle, an M-category classification task can be reduced to an equivalent set
of M 2-category classification tasks (each with its own training set constructed from the given
M -category training set), a better approach might be one that takes into account the inter-
relationships between the M output classes. For instance, the knowledge of membership of
a pattern X? in category W; can be used by the learning algorithm to effectively rule out
its membership in a different category ¥; (j # i) and any internal representations learned
in inducing the structure of ¥; can therefore be exploited in inducing the structure of some
other category ¥; (j #). In the case of most constructive learning algorithms, extensions to
multiple output classes have not been explored. In other cases, only some preliminary ideas
(not supported by detailed theoretical or experimental analysis) for possible multi-category

extensions of 2-category algorithms are available in the literature.

49

Additionally, practical classification tasks often involve patterns with real-valued attributes.
The perceptron weight training algorithms like the pocket algorithm , thermal perceptron al-
gorithm , and barycentric correction procedure do handle patterns with real-valued attributes.
However, extensions of the constructive learning algorithms to handle patterns with real-valued
attributes have only been studied for the Upstart [Saffery & Thornton, 1991] and the Percep-
tron Cascade [Burgess, 1994] algorithms.

Against this background, this chapter revisits the extended versions of the Tower(Section 4.2),
Pyramid (Section 4.3), Tiling (Section 4.6), Upstart (Section 4.4), Perceptron Cascade (Section 4.5),
and Sequential(Section 4.7) algorithms for multi-category pattern classification with real-
valued patterns studied in [Parekh, 1998]. Detailed algorithmic description, convergence proof,
and performance evaluations of these algorithms are given in [Parekh, 1998]. Section 4.8 con-

cludes with summary and future research directions.

4.2 Tower Algorithm

The 2-category Tower algorithm [Nadal, 1989; Gallant, 1990] constructs a tower of per-
ceptrons. The bottom-most neuron receives inputs from each of the N input neurons. The
tower is built by successively adding neurons to the network and training them using A until
the desired classification accuracy is achieved. FEach newly added neuron receives input from
each of the N input neurons and the output of the neuron immediately below itself and takes
over the role of the network’s output.

To handle patterns with real valued attributes it is necessary to consider the projection of
the patterns onto a parabolic surface [Burgess, 1994]. The extension of the 2-category Tower
algorithm to deal with multiple (M) output categories is accomplished by simply adding M
neurons each time a new layer is added to the tower. Each neuron in the newly added layer
(which then serves as the network’s output layer) receives inputs from the N + 1 input neurons
(including the extra input of projection) as well as the M neurons in the preceding layer (if
one exists). The newly added neurons are trained using A. A Tower network with two hidden

layers is shown in Figure 4.1.

50

= Q Q rrrrr Q Output Layer: M neurons

,,,,, Hidden Layer 2: M neurons

— Q Q ,,,,, Q Hidden Layer 1. M neurons

|| Q Q ,,,,,,,,,,,,,, Q Input Layer: N+1 neurons

—_— Group connection: full connectivity between the two blocks connected

Figure 4.1 Multi-category Tower network.

4.3 Pyramid Algorithm

The 2-category Pyramid algorithm [Gallant, 1990] constructs a network in a manner similar
to the Tower algorithm, except that each newly added neuron receives input from each of the
N input neurons as well as the outputs of all the neurons in each of the preceding layers. The
newly added neuron becomes the output of the network. As in the case of the Tower algorithmn,
the extension of the 2-category Pyramid algorithm to handle M output categories and real-
valued pattern attributes is quite straightforward. Each pattern is modified by appending the

extra attribute (Xﬁ,_l_l). Each newly added layer of M neurons receives inputs from the N + 1

51

= Q Q rrrrr Q Output Layer: M neurons

rrrrr Hidden Layer 2: M neurons

— Q Q ,,,,, Q Hidden Layer 1. M neurons

|| Q Q ,,,,,,,,,,,,,, Q Input Layer: N+1 neurons

—_— Group connection: full connectivity between the two blocks connected

Figure 4.2 Multi-category Pyramid network.

input neurons and the outputs of each neuron in each of the previously added layers. A

Pyramid network with two hidden layers is shown in Figure 4.2.

4.4 Upstart Algorithm

The 2-category Upstart algorithm [Frean, 1990] constructs a binary tree of threshold neu-
rons. A simple extension of this idea to deal with M output categories would be to construct
M independent binary trees (one for each output class). This approach fails to exploit the

inter-relationships that might exist between the different outputs. We therefore follow an al-

52

ternative approach [Frean, 1990] using a single hidden layer instead of a binary tree. Again, to
handle patterns with real-valued attributes we consider the projection of the pattern vectors!.

The extension of the Upstart algorithm to handle multiple output categories is described
as follows. First, an output layer of M neurons is trained using the algorithm A. If all the
patterns are correctly classified, the procedure terminates without the addition of any hidden
neurons. If that is not the case, the output neuron (L) that makes the most number of errors
(in the sense C} # O%k) is identified. Depending on whether the neuron k is wrongly-on (i.e.,
Cp = 0,07, = 1) or wrongly-off (i.e., C; = 1,07 = 0) more often, a wrongly-on corrector
daughter (X) or a wrongly-off corrector daughter (Y') is added to the hidden layer and trained
to correct some errors of neuron L. For each pattern X? in the training set, the target outputs

(C% and CY) for the X and Y daughters are determined as follows:

If Cp =0 and O =0 then C% =0, Cf, = 0.

If Cp = 0and Of =1 then C% =1, Cy = 0.

o If C} =1and O] =0then C% =0,Cy = 1.

If Cf = 1and OF =1 then C% =0, Cy = 0.

The daughter is trained using the algorithm A. The daughter is connected to each neuron
in the output layer and its weights are frozen. Then the output weights are retrained. The

resulting network is shown in Figure 4.3.

4.5 Perceptron Cascade Algorithm

The Perceptron Cascade algorithm [Burgess, 1994] draws on the ideas used in the Upstart
algorithm and constructs a neural network that is topologically similar to the one built by
the Cascade correlation algorithm [Fahlman & Lebiere, 1990]. However, unlike the Cascade
correlation algorithm the Perceptron Cascade algorithm uses perceptrons. Initially an output

neuron is trained using the algorithm A. If the output neuron does not correctly classify the

! An extension of the Upstart algorithm to handle patterns with real valued attributes using stereographic
projection was originally proposed by [Saffery & Thornton, 1991].

53

Q Q ,,,,,,,,,,,,,, Q Output Layer: M neurons
N

Q Q ,,,,,,,, Q Q Single Hiden Layer

Current

Previously daughter
added daughters

Q Q ,,,,,,,,,,,,,,,,,,,,,,, Q Input Layer: N+1 neurons

— = |Individua connection between two neurons

9 Group connection: full connectivity between the two blocks connected

Figure 4.3 Multi-category Upstart network.

training set, a daughter neuron (wrongly-on or wrongly-off as desired) is added and trained to
correct some of the errors. The daughter neuron receives inputs from each of the input neurons
and from each of the previously added daughters. As shown in Figure 4.4 each daughter neuron
is added to a new hidden layer during the construction of the Perceptron Cascade network.
The targets for the daughter are determined exactly as in the case of the Upstart network.
The extension of the Perceptron Cascade algorithm to M output classes is relatively straight
forward. First, an output layer of M neurons is trained. If all the patterns are correctly
classified, the procedure terminates without the addition of any hidden neurons. If that is not
the case, the output neuron, L, that makes the largest number of errors (in the sense that
Cr # O%k) is identified and a daughter neuron (an X daughter if the neuron is wrongly-on

more often or a Y daughter if the neuron is wrongly-off more often) is added to a new hidden

54

Output Layer - M neurons Q Q ,,,,,, Q

Hidden Layer 2

,,,,,, > Qutput Layer connections
Q '

,,,,,,,, > Hidden Layer connections

Hidden Layer 1

o !

O
@ }

(oo !

—= Individual connection
Input Layer - N+1 neurons % Group connection: full connectivity between the blocks connected

Figure 4.4 Multi-category Perceptron Cascade network.

layer and trained to correct some of the errors made by the output neurons. For each pattern
XP in the training set, the target outputs for the daughter neuron are determined as in the
Upstart algorithm. The daughter receives its inputs from each of the input neurons and from
the outputs of each of the previously added daughters. After the daughter is trained it is
connected to each of the M output neurons and the output weights are retrained. Figure 4.4
shows the construction of a Perceptron Cascade network. The extension to handle real-valued

pattern attributes involves taking the projection of the patterns.

55

4.6 Tiling Algorithm

The Tiling algorithm [Mézard & Nadal, 1989] constructs a strictly layered network of
threshold neurons. The bottom-most layer receives inputs from each of the NV input neurons.
The neurons in each subsequent layer receive inputs from those in the layer immediately below
itself. Each layer maintains a master neuron. The network construction procedure ensures that
the master neuron in a given layer correctly classifies more patterns than the master neuron of
the previous layer. Ancillary neurons may be added to layers and trained to ensure a faithful
representation of the training set. The faithfulness criterion simply ensures that no two training
examples belonging to different classes produce identical output at any given layer. Faithfulness
is clearly a necessary condition for convergence in strictly layered networks [Mézard & Nadal,
1989].

The proposed extension to multiple output classes involves constructing layers with M
master neurons (one for each of the output classes). Unlike the other algorithms seen before,
it is not necessary to take the projection of the input patterns to guarantee convergence for
patterns with real-valued attributes. Sets of one or more ancillary neurons are trained at a time
in an attempt to make the current layer faithful: Among all the unfaithful output vectors at the
current output layer, identify the one that the largest number of input patterns map to. (An
output vector is said to be unfaithful if it is generated by input patterns belonging to different
classes); Determine the set of patterns that generate the output vector identified; Add a set of
k(1 <k < M) ancillary neurons where k is the number of target classes represented in the set
of patterns identified, and train them; Repeat these (adding and training ancillary neurons) till
the output layer representation of the patterns is faithful. Then, train a new layer M master
neurons that are connected to each neuron in the previous layer. If desired classification
accuracy is obtained, stop. Otherwise, repeat the process described above. Figure 4.5 shows

the construction of a Tiling network.

56

O Q ,,,,,, Q Output Layer: M neurons
Hidden Layer 2:
,,,,,,,,, M+k2 neurons
Hidden Layer 1.
,,,,,,,,, M+k1 neurons

o o
O Input / Master neurons D Ancillary neurons

—_— Group connection: full connectivity between the blocks connected

Figure 4.5 Multi-category Tiling network.

4.7 Sequential Learning Algorithm

The Sequential learning algorithm [Marchand et al., 1990] offers an alternative scheme for
network construction where instead of training neurons to correctly classify a maximal subset
of the training patterns, the idea is to train neurons to sequentially exclude patterns belonging
to one class from the remaining patterns. The algorithm constructs a two layer network of
threshold neurons where the hidden layer neurons are trained to sequentially exclude patterns
belonging to a one class. When all the patterns in the training set have been thus excluded,
the internal representation of the patterns at the hidden layer is guaranteed to be linearly
separable. The weights of the single output layer neuron are fixed to correctly classify all

patterns. Recently, Poulard has shown that a variation of the barycentric correction procedure

57

can be used effectively in Sequential learning to exclude as many patterns belonging to one
class as possible [Poulard, 1995].

The extension of the Sequential learning algorithm to multiple output categories follows the
same principles as the original version. Using a simple modification of the barycentric correction
procedure , hidden neurons can be trained to exclude patterns belonging to one of the M classes
from the remaining patterns. Once all the patterns in the training set have been excluded by
the hidden layer neurons, the output layer with M neurons can be constructed to correctly
classify all patterns without going through perceptron weight update procedures [Marchand
et al., 1990; Parekh, 1998; Yang et al., 1998b]. As in the case of the Tiling algorithm, it is
not necessary to consider the projection of the training patterns to prove the convergence for

patterns with real-valued attributes. Figure 4.6 depicts a network constructed by Sequential

Q Q Q Output Layer: M neurons
Q Q ---------- Q Single Hidden Layer

learning.

Q Q """""""""""" Q Input Layer: N neurons

—_— Group connection: full connectivity between the two blocks connected

Figure 4.6 Multi-category Sequential network.

58

4.8 Summary and Discussion

Constructive learning algorithms offer an attractive approach to the automated design
of neural networks for pattern classification. In particular, they obviate the need for an ad
hoc, a priori choice of the network topology. Instead, a network architecture is dynamically
determined in proportion to the complexity of the task. Therefore, they have a potential
to generate parsimonious, near-optimal networks. In addition, they offer natural ways to
incorporate prior knowledge into the network to guide learning.

We have focused on a family of such algorithms that incrementally construct networks of
perceptrons. Using perceptrons (instead of its continuous counterparts) enables us to use a
simple, fast perceptron style weight update procedures without too much parameter finetuning.
Although a number of such algorithms have been proposed in the literature, most of them are
limited to 2-category pattern classification tasks with binary/bipolar valued input attributes.
We extended several existing constructive learning algorithms to handle multi-category classi-
fication for patterns having real-valued attributes. All of the algorithms considered were shown
to converge to 100% training accuracy on finite and non-contradictory datasets. The conver-
gence of the algorithms relies on the weight training rules used inside. Under the assumption
that the weight update procedure finds a proper weight setting successfully, all the algorithms
are guaranteed to converge to zero classification error.

Simulation results [Parekh, 1998] demonstrated the usefulness of the constructive neural
network learning algorithms in classification tasks. Detailed description of the algorithms,
convergence proofs, and experimental results are shown in [Parekh, 1998].

Some avenues for future research include:

e All algorithms shown in this chapter depends on a perceptron learning algorithm and
each perceptron algorithm also has its own set of inductive biases implicit in the weight
update procedure. A systematic and theoretic characterization of this bias would help
us determine proper algorithms (combined with the constructive learning algorithms) for

different tasks to maximize the performance.

59

e Hybrid network training schemes that dynamically select an appropriate network con-
struction strategy, an appropriate perceptron weight training algorithm, an appropriate
output computation strategy and such to obtain locally optimal performance at each

step of the classification task are also of interest.

e Various pre-processing techniques are responsible for transforming the training data in
a manner that might simplify the learning task. Normalization and quantization of the
training patterns are proposed to handle real-valued patterns [Yang & Honavar, 1996;

Parekh, 1998].

o Post-processing techniques such as pruning of networks eliminate nodes and connections
that do not adversely affect the network’s performance. Pruning can potentially overcome
the over-fitting problem by yielding more compact networks with superior generalization.
In recent work it was demonstrated that the application of simple pruning strategies on
the Tiling networks leads to substantial reduction in the network sizes [Parekh et al.,

1997¢].

e The algorithms studied in this chapter generate networks of perceptrons. The behavior
and performance of the algorithms heavily depend on the perceptron learning algorithm
employed inside. Design of new constructive neural network learning algorithms (possibly
with different types of neurons, different learning algorithms, etc.) is of interest. A new
constructive learning algorithm, DistAl, is designed and introduced in chapter 5. DistAl is
based on inter-pattern distance and does not rely on iterative, time-consuming perceptron

learning algorithms.

60

5 DistAl: AN INTER-PATTERN DISTANCE-BASED CONSTRUCTIVE
LEARNING ALGORITHM

5.1 Introduction

Several constructive neural network learning algorithms with perceptrons were introduced
in chapter 4. They rely on a perceptron style weight update procedure to find proper weight
settings. The time-consuming, iterative nature of the perceptron training algorithm (though
considerably faster than the corresponding error guided backpropagation training) often makes
the use of such algorithms impractical for very large datasets (e.g., in largescale data mining and
knowledge acquisition tasks), especially in applications where reasonably accurate classifiers
have to be learned in almost real time. Similarly, hybrid learning systems that use neural
network learning as the inner loop of a more complex optimization process (e.g., feature subset
selection using a genetic algorithm where evaluation of fitness of a solution requires training a
neural network based on a subset of input features represented by the solution and evaluating
its classification accuracy [Yang & Honavar, 1997; Yang & Honavar, 1998a; Yang & Honavar,
1998b]) call for a fast neural network training algorithm.

Instance-based learning (IBL) [Aha, 1991; Aha et al., 1991; Turney, 1994; Domingos,
1995] is an approach to learning in which the learning algorithm typically stores some or all
of the training examples as prototypes. Each prototype is stored as an ordered pair (X, ¢)
where X is a patlern represented in some chosen instance language (typically, in the form of
a vector of attribute values), and ¢ is the class to which X belongs. Such a system, when
used to classify a new pattern Y, uses some distance function (e.g., Euclidean distance in
the case of real-valued patterns) that computes the distance of Y from each stored prototype

and predicts the classification of Y using the known classification of the nearest prototype

61

(or prototypes). Such algorithms, also referred to as nearest neighbor techniques have been
investigated by researchers in pattern recognition [Cover & Hart, 1967; Diday, 1974; Dasarathy,
1991], case-based reasoning [Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Kolodner, 1993],
artificial neural networks [Carpenter & Grossberg, 1991], cognitive psychology [Tversky,
1977; Nosofsky, 1986], and text classification [Salton & McGill, 1983]. Such distance-based
techniques are also related to radial basis function networks [Broomhead & Lowe, 1988; Powell,
1987; Honavar & Uhr, 1993; Girosi et al., 1995].

Rule induction algorithms [Michalski et al., 1986; Clark & Niblett, 1989] learn sets of rules
corresponding to given sets of training examples. They induce a rule to cover a subset of
training examples. New rules are induced iteratively until all training examples are covered.

We present a new constructive neural network learning algorithm (DistAl), which can be
viewed as a variant of the instance-based, nearest-neighbor, radial-basis function-based, and
rule induction approaches to pattern classification. DistAl replaces the iterative weight update
of neurons that is typically used in constructive learning algorithms by a comparison of pair-
wise distances among the training patterns. Since the inter-pattern distances are computed
only once during the execution of the algorithm our approach achieves a significant speed
advantage over other constructive learning algorithms.

The rest of this chapter is organized as follows: Section 5.2 describes DistAl. Section 5.3
presents the results of various experiments designed to evaluate the performance of neural
networks trained using DistAl on some benchmark classification problems as well as a document
classification task. Section 5.4 concludes with a summary and discussion of some directions

for future research.

5.2 DistAl: A New Constructive Learning Algorithm

DistAl differs from other constructive learning algorithms mentioned above in two respects:

o [t uses spherical threshold units — a variant of the TLU — as hidden neurons. The regions
that are defined (or separated) by TLUs are unbounded. This motivates us to use

spherical threshold units that cover locally bounded regions [Langley, 1995]. A spherical

62

threshold neuron ¢ has associated with it a weight vector W;, two thresholds — 6; ;,,, and
0; high, and a suitably defined distance metric d. It computes the distance d(W;, X?)
between a given input pattern X? and W;. The corresponding output Of =1if 0; 100 <
d(W;,X?) < 0; pigr and 0 otherwise. The spherical neuron thus identifies a cluster
of patterns that lie in the region between two concentric hyperspherical regions. W,
represents the common center and 6; jo.,, and 6; j;q5, Tespectively represent the boundaries

of the two regions.

e DistAl does not use an iterative algorithm for finding the weights and the thresholds.
Instead, it computes the inter-pattern distance once between each pair of patterns in the
training set and determines the weight values for hidden neurons by a greedy strategy
(that attempts to correctly classify as many patterns as possible with the introduction
of each new hidden neuron). The weights and thresholds are then set without the com-

putationally expensive iterative process (see section 5.2.2 for details).

The use of one-time inter-pattern distance calculation instead of (usually) iterative, expensive
and time-consuming perceptron training procedure makes the proposed algorithm significantly
faster than most other constructive learning algorithms. In fact, the time and space complex-
ities of DistAl can be shown to be polynomial in the size of the training set (see section 5.2.6

for details).

5.2.1 Distance Metrics

Each hidden neuron introduced by DistAl essentially represents clusters of patterns that
fall in the region bounded by two concentric hyperspherical regions in the pattern space. The
weight vector of the neuron defines the center of the hyperspherical regions and the thresholds
determine the boundaries of the regions (relative to the choice of the distance metric used).
The choice of an appropriate distance metric for the hidden layer neurons is critical to achieving
a good performance. Different distance metrics represent different notions of distance in the
pattern space. They also impose different inductive biases [Langley, 1995; Mitchell, 1997] on

the learning algorithm. Consequently, many researchers have investigated the use of alternative

63

distance functions for instance-based learning [Duda & Hart, 1973; Diday, 1974; Salton &
McGill, 1983; Batchelor, 1978; Wilson & Martinez, 1997]. The number and distribution of the
clusters that result from specific choices of distance functions is a function of the distribution
of the patterns as well as the clustering strategy used. Since it is difficult to identify the best
distance metric in the absence of knowledge about the distribution of patterns in the pattern
space, we chose to explore a number of different distance metrics proposed in the literature.

The distance between two patterns is often skewed by attributes that have high values.
Normalization of individual attributes overcomes this problem in the distance computation.
Normalization can be achieved by dividing each pattern attribute by the range of possible
values for that attribute, or by 4 times the standard deviation for that attribute [Wilson &
Martinez, 1997].

Normalization also allows attributes with nominal and/or missing values to be considered
in distance computation. The distance for attributes with nominal values (say with attribute

values z and y) is computed as follows [Wilson & Martinez, 1997]:
o Overlap: dy(z,y) = 0if = y; 1 otherwise.

o Value difference:
C

dyi(z,y) =Y

c=1

q
-
jVa,z*,c Aa,y,c

Ny Ngy

where
— Ny z(Ngy): number of patterns in the training set that have value z(y) for attribute
a

— Ngzo(Ngy,c): number of patterns in the training set that have value z(y) for at-

tribute ¢ and output class ¢

C': number of output classes

¢: a constant (Euclidean: 2, Manhattan: 1)

If there is a missing value in either of the patterns, the distance for that component (of the

entire pattern vector) is taken to be 1.

64

Let X7 = [XF,... XP

Pl and X? = [X{, -+, X1] be two pattern vectors. Let maz;, min;

and o; be the maximum, minimum, and the standard deviation of values of the ¢th attribute of
patterns in a dataset, respectively. Then the distance between X? and X7, for different choices

of the distance metric d is defined as follows:

1. Range, value-difference based Euclidean (point-to-point):

Ji[XX g g7, XY

mazr; — min;

2. Range, value-difference based Manhattan (city-block):

n X?P - X1
SN xr x)
=1

max; — min;

3. Range, value-difference based Maximum Value:

|X2p — ‘ngl
max|

imar; — min;

or dy(XF, X7)]

Similarly, 4% o; can be used instead of maxz; — min; for standard deviation based metrics,

and dy(X?, X7) can be used instead of dyq(X!, X7) for overlap based metrics in above

7

formulas.

4. Dice coeflicient:
230, XX

LTS XN+ o (X0

5. Cosine coeflicient:
n Pvyva
1=1 ‘Xi Xz

1-—
VI (XD - S (X))

6. Jaccard coeflicient:

E?:l ‘Xszq
Z?ZI(XZP)Q + E?:l(‘ng)Z - E;(L:l sz)(zq

1—

7. Camberra:
zn: Xp XQ|
= |XP+ X]|

65

Attribute based clustering:

Occasionally, the values of a single attribute between two bounds (say a;, and ap;) might
exclusively identify patterns belonging to a particular output class. Thus, a hidden neuron
that remembers the name of the attribute ¢ and the two thresholds (a;, and a;) can be used to
form a cluster of patterns belonging to the same class. We use the attribute based comparison

in conjunction with the inter-pattern distance based clustering to obtain homogeneous clusters.

5.2.2 Network Construction

DistAl determines a “region” (defined by a spherical hidden neuron) iteratively by a greedy
strategy (in terms of the number of training patterns). In other words, it finds a maximal
subset of training patterns that can be clustered in a region. The training patterns included in
a region are eliminated from further consideration. This set of ordered regions are generated
until all patterns are included in a region. In testing, a test pattern is checked to see if it lies
in a region. The first match is chosen for the classification. If there is no match, the closest
region (by a distance metric) is chosen for the classification. Figure 5.1 shows how regions
are generated for a dataset of 15 patterns with two classes, O and X. R1, R2, R3, R4 and R5
are determined sequentially to cover 5, 4, 3, 2 and 1 training patterns, respectively. (Another

example will be given in Section 5.2.4 with a detailed explanation of network construction).

R5

R2

Figure 5.1 Regions induced by DistAl based on the pattern space.

66

Let § = {X',X2,..., X"} represents the N training patterns. DistAl calculates the pair-
wise inter-pattern distances for the training set (using the chosen distance metric d) and stores
them in the distance matrix D. FEach row of D is sorted in ascending order. Thus, row
E of D corresponds to the training pattern X* and the elements D[k,] correspond to the
distance of X* to the other training patterns. D[k, 0] is the distance to the closest pattern and
D[k, N] is the distance to the farthest pattern from X*. Simultaneously, the attribute values
of the training patterns are stored in D'. D' is essentially the entire training set with D' [k, 1]
representing the ith attribute value of the kth training pattern. Each column (attribute) of D’
is sorted in ascending order.

The key idea behind DistAl is to generate a single layer of hidden neurons each of which
separates a subset of patterns in a training set using D (or ’Dl). Then, they are fully connected
to M output TLUs (1 for each output class) in an output layer. The representation of the
patterns at the hidden layer is linearly separable [Marchand et al., 1990]. Thus, an iterative
perceptron learning rule can be used to train the output weights. However, the output weights
can be directly set as follows: The weights between output and hidden neurons are chosen
such that each hidden neuron overwhelms the effect of the hidden neurons generated later. If
there are a total of A hidden neurons (numbered 1,2, ..., h from left to right) then the weight
between the output neuron j and the hidden neuron 7 is set to 2% if the hidden neuron %
excludes patterns belonging to class 7 and zero otherwise.

Let Wlh be the weights between the /th hidden neuron and inputs. Let W? be the weights
between the output neuron for class m and hidden neurons, and W, be the weight between
the output neuron for class m and the /th hidden neuron, respectively. The pseudo-code shown

in Figure 5.2 summarizes the process of network construction.

5.2.3 Use of Network in Classification

The outputs in the output layer are computed by the winner-take-all (WTA) strategy. The
output neuron m that has the highest net input produces 1 and all the other neurons produce

0’s. The WTA strategy and the weight setting explained in section 5.2.2 guarantee 100%

67

Initialize the number of hidden neurons: h = 0;

while S # ¢

do

6.

Double all existing weights (if any) between hidden and output neurons:
WO =W? x2 Vmel,---,h

. Increment the number of hidden neurons: h=h + 1

. Inter-pattern distance based:

Identify a row k of D that excludes the largest subset of patterns in .5 that belong to
the same class m as follows:

(a) Foreachrowr=1,---,N do

i. Let ¢, and j, be column indices (corresponding to row r) for the matrix D
such that the patterns corresponding to the elements D[r, .|, D[r, i, + 1],
..., D[r,j,] all belong to the same class and also belong to 5.

ii. Let ¢, = j, — ¢, + 1 (the number of patterns excluded).

(b) Select k to be the one for which the corresponding ¢y is the largest:
k = argmax, ¢,

(c) Let Sk be the corresponding set of patterns that are excluded by pattern Xk,
df ., = Dlk,ix] (distance to the closest pattern of the cluster) and

low

dfm»gh = DIk, ji] (distance to the farthest pattern of the cluster).

. Attribute based:

Analogously, using D’ identify an attribute a that excludes the largest number of
patterns in S that belong to the same output class m (i.e., identify a for which ¢, is
the largest among all attributes.); Let S, be the corresponding set of patterns from 5
that are excluded by attribute a, di\,, and d},, be the minimum and maximum
values respectively for attribute ¢ among the patterns in set Sj,.

if [Inter-pattern distance based]| then

(a) Define a spherical threshold neuron with W = X* 4,,,, = dfow, Onigh = déz’gh-
(b) §=5-25;

else

(a) Define a neuron corresponding to attribute @ with 8., = d},,, Onigh = d}‘ﬂgh.
(b)y S=5-25,
endif

Connect the new hidden neuron to output neurons: W2, = 1; WS =0 Vn #m

end while

Figure 5.2 DistAl algorithm.

68

training accuracy for any finite non-contradictory set of training patterns. (See section 5.2.5
for the detailed convergence proof.)

The generalization accuracy of a test set is computed in the same way. Fach test pattern is
fed into the network and the outputs are computed by the WTA strategy. If there are one or
more hidden neurons that produce 1 (i.e., there exist one or more hidden neurons that include
the test pattern within their thresholds), the outputs are computed by the WTA strategy in the
output layer. Otherwise (i.e., all hidden neurons produce 0’s and all output neurons produce
0’s as well), the distance between the test pattern and the thresholds of each hidden neuron is
computed. The hidden neuron that has the minimum distance is chosen to produce 1. Then

the outputs are computed again in the output layer to compare with the desired classification.

5.2.4 Example

We illustrate the operation of DistAl using the simple XOR problem. We will assume the

use of Manhattan distance metric. There are four training patterns (5 = {X!, X2 X3 X*}):

input class
Xt 0 0
X% 0 1 B
X* 1 0| B
X+t 1 1| A

This yields the following distance matrix after sorted:

0112
0112

0112

0112

The first row of the matrix is the distance of X!, X2, X3 and X* from pattern X'. The second
row of the matrix is the distance of X2, X!, X* and X? from X?. The third row of the matrix
is the distance of X3, X! X* and X? from X?3. The last row of the matrix is the distance of

X4 X2 X2 and X! from X*.

69

X! excludes the maximum number of patterns from a single class (i.e., 5 = {XZ% X3},
class = B). A hidden neuron is introduced for this cluster with W{L =10 0],60100 = Onigh =
LWg, = 1,Wg, = 0. X? and X? are now eliminated from further consideration (i.e.,
S =85 -5, = {X!,X*}) The remaining patterns (S, = {X!,X*}, class = A) can be ex-
cluded by any pattern (say, X! again) with another hidden neuron with W% = [0 0], 8, =
0,0nigr, =2,W3, =1, W5, =0,W3, = Wi, x2=0,W3, = W5, 2 =2. Now the algorithm
stops since the entire training set is correctly classified (i.e., S = 5 — 5 = ¢). Figure 5.3 shows

the network construction process.

output

hidden

input

(a) after the first neuron isintroduced (b) after the second neuron isintroduced
(final network)

Figure 5.3 Process of network construction for the example in DistAl.

5.2.5 Convergence Proof

Theorem:
Given a finite non-contradictory set of training examples F, DistAl is guaranteed to converge
to zero classification error after adding a finite number (k) of hidden neurons, where h < |E|.

(In practice, h < | F|).

70

Proof:
Let Z; be the set of patterns that are excluded by ¢th hidden neuron. Each hidden neuron
finds the largest subset of patterns to be excluded. DistAl keeps introducing a hidden neuron
until § becomes an empty set (i.e., § = § — Z;). Since § = {X!,---, XV} is the training set
with the cardinality of N, h = |Zy,Zy,---, Zy| < N where Zj is the last subset of patterns
to be eliminated. It is clear that at least one pattern (X?) can be excluded by a new hidden
neuron i with W% = X? and 0 thresholds. ! Since there are a finite number of patterns
in the training set, and since each added hidden neuron is guaranteed to correctly classify a
non-empty subset of the training set which is then eliminated from further consideration, no
more than |E| hidden neurons are needed.

The internal representation of the hidden layer for a pattern X? (which is a member of the

ith cluster) has the form
Hp:(0,0,"',O,l,*,"-,*) (51)

(it has 0’s in the first 4 — 1 hidden neurons, 1 in the 7th hidden neuron and either 0 or 1 in the
remaining hidden neurons) for a network with ~ hidden neurons. The weights from hidden to

output neurons are set directly as explained in Section 5.2.2:

o 2h=i if j is the right class of hidden neuron i

Jt
0 otherwise

Consider a pattern X? which belongs to the subset Z; of patterns excluded by the ith hidden
neuron that represents the pattern XF. Let c; be the classification of X*. Then Wi >
Wy Vj # 1. Also, the internal representation (5.1) guarantees the net input of output neuron
7 to be larger than that of any other output neuron. Consequently, X? is correctly classified
in the output layer by the WTA strategy. As an example, assume H? = (1,1, 1) for a pattern
XP? belonging to class A, and the hidden neurons represent clusters for class A, B and B,

respectively. Then, when XP? is fed into input neurons, the net input to the output neuron for

!Note that this is not always true for maximum value distance metric and attribute-based approach. That is
because there can be many patterns of different classifications that have the same maximum values/attributes
values. Therefore, the convergence proof given here and the complexity analysis in Section 5.2.6 apply to
distance-based approaches (excluding Maximum value metric), but not attribute-based approach.

71

class A will be 22~1 = 4 and that to the output neuron for class B will be 2372 4 233 = 3,
Thus, X? will be correctly classified as class A.
Therefore, DistAl is guaranteed to converge to zero classification error after adding a finite

number of hidden neurons for a finite non-contradictory set of training examples. O

5.2.6 Complexity Analysis

This section presents the complexity analysis for DistAl. The complexity analysis assumes
that network construction is based on a single distance metric.

Let Npq¢ be the number of training patterns and Ny be the number of attributes in a
dataset, respectively. Let N,,s be the number of output neurons. Assume N,qo; > Ny and

Npat > maz[Noye, h].

1. Time Complexily
Computing and sorting the distance matrix D takes O(maz[NZ,; - Natt, N2,; - 108 Npay]).

2 Now, consider the pseudo-code given in Section 5.2.2. Step 1 takes O(N,y; - h). Step
2 takes O(1). Step 3 takes O(N?

sat) because we need to go through the entire matrix

D to determine Si. ? Step 5 takes O(N,q:) to update S. Step 6 takes O(N,y:). Thus,

the while loop takes O(N3

sat) in the worst case. Therefore, the overall worst-case time

complexity is (’)(Ngat). In practice, DistAl runs significantly faster than the worst-case
time complexity because it eliminates a subset of elements from the original training set
instead of a single pattern. This makes DistAl particularly well-suited for largescale data

mining tasks.

2. Space Complezity
The space requirement for the input patterns and their targets is O(Npqat - [Natt + Nout))-
The weights require O(Nyys - h + h - Niy,). The distance matrix requires (’)(N;at). Thus,

the total space complexity is O(N2,;).

2Computation of D' in attribute-based approach takes only O(Natt - Npat log Npat) because distance compu-
tation is not necessary.

3Step 4 is not considered here because it is used only with the attribute-based metric. The time required for
step 4 is comparable to the time required for step 3.

72

5.3 Experimental Evaluation of DistAl

This section presents results of experiments using DistAl on several benchmark problems

and compares them with the results of other learning algorithms.

5.3.1 Datasets

Two artificial datasets (parity and two spirals) and a wide range of real-world datasets from
the machine learning data repository at the University of California at Irvine [Murphy & Aha,
1994] were chosen to test the performance of DistAl. Table 5.1 summarizes the characteristics
of the datasets selected for our experiments. Size is the number of patterns in the dataset,
Dimension is the number of input attributes, Missing? is whether there are any missing values,

and Class is the number of output classes in the table.

5.3.2 Experimental Results

DistAl is deterministic in the sense that its behavior is always identical for a given training
set. Most other constructive learning algorithms are non-deterministic because their behavior
is not always identical in different runs with the same training set and even with the same
learning parameters due to the randomness in selecting initial weights, pattern presentations,

and so on. Therefore, just one run of DistAl per dataset is sufficient to study the performance.

5.3.2.1 Parity Datasets

The seven, eight and nine-bit parity datasets (P7, P8, P9) were used to evaluate the
performance of DistAl in terms of the network size. The Manhattan distance metric was used
to train the entire set of patterns. Table 5.2 presents the size of the network generated by several
algorithms. (A ‘-’ indicate that the result is not reported in the corresponding reference). It
shows that DistAl is capable of generating compact networks comparable to other algorithms
for non-trivial tasks like the parity problem. Note that DistAl is also fast. Since DistAl does

not require iterative perceptron training procedure and keeps eliminating a subset of patterns

73

Table 5.1 Datasets used in the experiments with DistAl.

Dataset Size Dimension Attribute Type Missing? Class
7-bit parity (P7) 128 7 numeric No 2
8-bit parity (P8) 256 8 numeric No 2
9-bit parity (P9) 512 9 numeric No 2
two spirals (2SP) 192 2 numeric No 2
annealing database (Annealing) 798 38 numeric, nominal Yes)
audiology database (Audiology) 200 69 nominal Yes 24
pittsburgh bridges (Bridges) 105 11 numeric, nominal Yes 6
breast cancer (Cancer) 699 9 numeric Yes 2
credit screening (CRX) 690 15 numeric, nominal Yes 2
flag database (Flag) 194 28 numeric, nominal No 8
glass identification (Glass) 214 9 numeric No 6
heart disease (Heart) 270 13 numeric, nominal No 2
heart disease [Cleveland](HeartCle) 303 13 numeric, nominal Yes 2
heart disease [Hungarian](HeartHun) 294 13 numeric, nominal Yes 2
heart disease [Long Beach](HeartLB) 200 13 numeric, nominal Yes 2
heart disease [Swiss](HeartSwi) 123 13 numeric, nominal Yes 2
hepatitis domain (Hepatitis) 155 19 numeric, nominal Yes 2
horse colic (Horse) 300 22 numeric, nominal Yes 2
ionosphere structure (Ionosphere) 351 34 numeric No 2
iris plants (Iris) 150 4 numeric No 3
liver disorders (Liver) 345 6 numeric No 2
monks problems (Monks-1,2,3) 432 6 nominal No 2
pima indians diabetes (Pima) 768 8 numeric No 2
DNA sequences (Promoters) 106 57 nominal No 2
sonar classification (Sonar) 208 60 numeric No 2
large soybean (Soylarge) 307 35 nominal Yes 19
small soybean (Soysmall) 47 35 nominal No 4
vehicle silhouettes (Vehicle) 846 18 numeric No 4
house votes (Votes) 435 16 nominal Yes 2
vowel recognition (Vowel) 528 10 numeric No 11
wine recognition (Wine) 178 13 numeric No 3
zoo database (Zoo) 101 16 numeric, nominal No 7

74

Table 5.2 Network size for parity datasets.

Algorithm P7 | P8 | P9
DistAl 5 5 6
GA-MLP [Andersen & Tsoi, 1993] 9 | 15 | -
Perceptron cascade [Burgess, 1994] 3 4 4

Cascade correlation [Fahlman & Lebiere, 1990] | 4-5 | 5-6 | -

Upstart [Frean, 1990] 6 7 8
Growth algorithm [Golea & Marchand, 1990] 7 8 9
Sequential [Marchand et al., 1990] 7 8 9
Tiling [Mézard & Nadal, 1989] 7 8 9
Tower [Nadal, 1989; Gallant, 1990] 35| 4 |45

that are not considered further in the learning process, it converges significantly fast. *

5.3.2.2 Various Datasets from UCI Repository

DistAl was run once for each distance metric to compare the performance in terms of the
generalization accuracy and the network size. A simple pruning technique was implemented
to produce compact networks: When a new hidden neuron is introduced, the generalization
accuracy of the network is computed. The current best generalization accuracy is stored in
a pocket along with the network size. After the training is completed (i.e., 100% training
accuracy is obtained) or no further training is possible (i.e., the limit of allowable hidden
neurons (currently set to 100) is reached or no more patterns can be eliminated in Maximum
value metric or attribute-based approach), the network with the best generalization accuracy
in the pocket is restored by pruning the unnecessary hidden neurons.

A 10-fold cross-validation was performed for each dataset with all the distance metrics
introduced in Section 5.2.1 and its performance was shown in Tables 5.3-5.8. Different methods
of normalization are indicated by either r (range-based) or s (standard deviation-based), and

different methods for handling nominal values are indicated by either v (value difference) or

*It is not feasible to make a fair, thorough comparison of speeds of different algorithms. DistAl converged
fairly quickly for almost all datasets. (See Section 5.2.6 for detailed analysis of time complexity). GA-MLP
[Andersen & Tsoi, 1993] is based on a genetic algorithm and thus it usually takes significant amount of time to
get a quality solution. Cascade correlation [Fahlman & Lebiere, 1990] uses Quickprop [Fahlman, 1988]. Quickprop
uses an iterative gradient descent method based on a second order heuristic.

Table 5.3 Results of Range, Value-difference based distance metrics.

75

Euclidean [r,v]

Manhattan [r,v]

Maximum value [r,v]

Dataset Accuracy Hidden Accuracy Hidden Accuracy Hidden
2SP 795+£10.1 8715 72.1+£5.8 8.5+ 3.7 705+8.9 10.1+3.7
Annealing | 96.6+£2.0 12.14+24 | 93.3+28 15.5+34 0.0£0.0 0.0+0.0
Audiology | 66.0+9.7 24.74+48 | 59.0+£86 26.7£3.0 1.0+£2.0 0.6+1.2
Bridge 55,0156 35+21 |59.0+£104 324+£26 |450£16.9 34£1.5
Cancer 978+ 1.2 294+1.2 975+ 1.7 39+£14 95.1+£1.5 6.2+5.1
CRX 87.7+3.3 7.7+£6.9 87.5+3.8 7.3+43 86.4+ 3.3 T7+35
Flag 63.7+ 8.0 5.7+£3.2 | 647113 6.0+£3.6 579+ 5.8 7.0+2.7
Glass 70.5+ 8.5 9.8+6.9 66.2+4.5 9.94+6.5 676176 10.1+5.6
Heart 83.7£5.3 33+£18 84.8+4.8 5.7+ 3.6 8524+ 3.3 7.6+4.5
HeartCle 853+ 7.2 46+3.8 853134 6.0+2.9 823+45 109+6.7
HeartHun 84.5+£5.8 6.7+ 2.8 84.8+5.6 6.6 +2.9 0.0£0.0 0.04+0.0
HeartLB 785+£9.2 5.0+ 3.5 77.5+6.8 49430 0.0£0.0 0.04+0.0
HeartSwi 93.3£3.3 2.04+0.0 93.3+5.0 22408 0.0£0.0 0.0+0.0
Hepatitis 83.3£4.5 3.0+1.3 83.3+6.2 25408 79.3 £ 8.7 2.04+0.0
Horse 86.0+ 3.6 5.3+4.5 84.7+4.3 5.14+3.2 63.7+5.9 2.04+0.0
Ionosphere | 93.14+4.5 6.8+ 1.4 90.0£5.8 5.8+2.1 91.4+4.2 5.5+ 1.7
Iris 93.1£4.5 6.8+ 1.4 90.0£5.8 5.8+ 2.1 91.4+4.2 55+ 1.7
Liver 67.7+£6.8 7.8+4.5 63.5+8.2 6.4+6.8 67.4+5.3 71437
Monks-1 90.0£9.3 74+44 89.14&7.7 74451 82.8+ 9.1 9.6+4.9
Monks-2 798+ 104 84+45 |795+104 13.0£95 | 828+94 6.44+2.9
Monks-3 99.14+ 15 3.0+0.0 98.6 1.9 3.0+0.6 98.6+ 1.9 2.14+0.3
Pima 74.3+£3.2 9.5+6.7 73.4+4.0 132478 | 73.7+5.2 8.3+5.0
Promoters | 87.0+11.0 28+04 88075 22+04 85.0+ 8.1 2.8+ 0.6
Sonar 83.0+7.38 6.4+ 2.7 81.5+9.5 48+24 78.5+ 8.1 7.5+3.8
Soylarge 81.0+56 202+£3.2 | 7T43+£93 216450 | 67.7+45 16.7+£24
Soysmall 90.0£ 166 34+£05 | 925160 3.64+0.5 975+ 7.5 3.6+0.5
Vehicle 64.1£6.5 295+133 | 61.7+3.2 2594183 | 57.0+£4.7 494+£222
Votes 96.1+ 1.5 32415 954423 3.7+£1.2 78.8+ 8.1 36+1.4
Vowel 652+69 346+85 | 65.84£64 40785 | 61783 39577
Wine 92.9+£5.8 43+£0.8 92.94£5.8 41407 94.1+6.4 4.74+0.6
Zoo 96.0+ 4.9 6.1+1.1 96.0 £8.0 6.1+£0.9 93.9+4.6 6.0+1.2

76

Table 5.4 Results of Standard Deviation, Value-difference based distance metrics.

Euclidean [s,v]

Manhattan [s,v]

Maximum value [s,v]

Dataset Accuracy Hidden Accuracy Hidden Accuracy Hidden
2SP 83.7+7.6 T7+£1.8 69.5+6.1 7.1+39 | T2.1+£6.7 8.8+3.1
Annealing 96.3+14 106+2.8 | 93.9+£23 13.7+34| 0.0+0.0 0.0+0.0
Audiology | 66.0+9.7 24.74+48 | 59.0+86 26.7+3.0| 1.0£20 0.6+1.2
Bridge 56.0+ 174 4.0+36 |59.0+£13.0 34427 |520+£147 4.0£28
Cancer 96.8 £ 2.0 40£1.6 96.8+1.9 45426 | 954+1.7 104+44
CRX 87.4+£3.6 7T2+£3.7 8§7.0+4.1 7.0+45 | 86.4+45 6.1+4.6
Flag 60.5£ 8.2 6.4+4.6 65.8+95 9.14+6.2 |55.34+£103 11.1+£9.2
Glass 68.1+77 115477 | 66.2+£58 T734+36 | 695168 9.5+ 7.7
Heart 82.6£5.0 36+1.6 85.6+5.1 4.7+3.1 | 81.5+6.2 7.7+5.9
HeartCle 81.7+£4.8 3.9+27 83.7+4.6 46+33 | 83.7+£6.7 5.6+4.5
HeartHun 84.8+6.4 7.0+4.1 83.1+4.7 55134 0.0£0.0 0.0+0.0
HeartLB 76.5+ 8.7 3.34+£28 77.5+6.8 3.9+25 0.0£0.0 0.0+0.0
HeartSwi 94.2 + 3.8 22406 942438 23409 0.0£0.0 0.0+0.0
Hepatitis 84.7+95 6.2+4.0 84.0+£68 46+3.1 | 84.7+95 42+18
Horse 83.0£5.7 44435 83.7+6.9 79+44 | 63.7+£5.9 2.04+0.0
Ionosphere | 92.94+5.5 6.9+2.1 914+£59 58+14 | 926+£4.1 5.3+1.9
Iris 92.9+£5.5 6.9+2.1 91.3+6.0 33+10 | 940+6.3 40+1.2
Liver 66.5+£5.1 9.9+£5.7 644+4.6 106+83 | 66.2+6.2 11.34+7.6
Monks-1 90.0£9.3 74+44 89.1+7.7 74451 | 828+09.1 9.6+4.9
Monks-2 798+ 104 84+45 | 795+104 13.0£9.5| 828+94 6.44+2.9
Monks-3 99.1+15 3.0+0.0 986+1.9 3.0+06 | 986+1.9 21403
Pima 742+£39 100+38 | 76.3+£5.1 81+£49 | 74.7+4.0 13.1+10.8
Promoters | 87.0+11.0 28404 880+75 22404 | 8.04£8.1 2.84+0.6
Sonar 73.5+£74 46+£3.1 785+8.1 48+21 | 735+£74 5.6+ 3.6
Soylarge 81.0+56 202+£32 | 7T43+£93 216+£50 | 67745 167124
Soysmall 90.0+16.6 34+05 |9254+160 36+£05 | 97.56+75 3.6+0.5
Vehicle 65.1£4.0 244496 | 654+35 23.7+£50| 62.1+4.7 5291186
Votes 96.1+ 1.5 32+1.5 954+23 3.7+12 | 788+£8.1 36+1.4
Vowel 66.7+75 31.24+10.1 | 65.0£7.7 36.3+£85 | 579+8.8 3924135
Wine 95.9+£4.6 49+£0.3 924+75 444107 | 929+£5.8 44409
Zoo 96.0 +4.9 6.1+1.1 96.0+80 6.1+0.9 | 93.0£4.6 6.0+1.2

7

Table 5.5 Results of Range, Overlap based distance metrics.

Euclidean [r,0]

Manhattan [r,0]

Maximum value [r,0]

Dataset Accuracy Hidden Accuracy Hidden Accuracy Hidden
2SP 79.5+10.1 8.7+£1.5 72.1+£5.8 8.5+ 3.7 70.5+£8.9 10.14+3.7
Annealing 94.7+£ 1.8 14.6 3.6 93.24+£25 15.6+£5.0 0.0£0.0 0.0£0.0
Audiology | 66.0+10.0 273+74 |66.0£100 273x7.4 1.0£2.0 0.6+1.2
Bridge 60.0 £ 10.0 48430 60.0 £+ 10.0 6.3£50 | 36.0+18.0 10.0+£17.1
Cancer 978+ 1.2 29+1.2 975+ 1.7 39+14 95.1+1.5 6.2+5.1
CRX 83.8+5.3 9.7+£5.1 83.9+3.8 9.1+44 61.9+79 56.4420.7
Flag 4744+7.1 6.9+54 505+ 10.8 103+64 | 24.7+9.4 2.1+£03
Glass 70.5 £ 8.5 9.8+6.9 66.2+4.5 9.9+£6.5 67.6+£7.6 10.1+5.6
Heart 86.7+7.6 57+4.4 86.3+5.8 41430 73.3+£4.9 26.5+25.0
HeartCle 83.0£5.5 49+27 853+ 2.7 34411 | 71.7+£10.3 23.6+£15.3
HeartHun 85.94+6.3 5.0+ 2.9 84.8+ 3.8 45430 0.0£0.0 0.0£0.0
HeartLB 7T7.0£9.8 34425 800+74 5.1+2.6 0.0£0.0 0.0£0.0
HeartSwi 94.2 + 3.8 23+0.9 9424+ 3.8 23+£09 0.0£0.0 0.0£0.0
Hepatitis 83.3£4.5 3.0+1.3 83.3+6.2 25+£08 79.3+£8.7 2.0£0.0
Horse 84.0£6.3 5.6+ 2.2 85779 41425 63.7+£5.9 2.0£0.0
Ionosphere | 93.1+4.5 6.8+ 1.4 90.0£5.8 5.8+ 2.1 91.44+4.2 5.5+ 1.7
Iris 96.0+ 4.4 3.44+0.7 96.0+ 3.3 3.4+£07 91.3+£6.7 3.3+£05
Liver 67.7+£6.8 7.8+4.5 63.5+8.2 6.4+6.8 67.4+5.3 7.1+£3.7
Monks-1 909+7.1 269475 | 9094+7.1 269£75 | 493+£7.1 2.0£0.0
Monks-2 100+ 0.0 2.7+2.1 100+ 0.0 2.7+ 2.1 33.0+4.3 2.0£0.0
Monks-3 91.6+4.4 16.24+4.4 91.6+4.4 16.24+4.4 | 49.34+6.6 2.0£0.0
Pima 74.3+£3.2 9.5+6.7 73.4+4.0 1324+78 | 73.7+5.2 8.3+5.0
Promoters | 83.0+6.4 34+14 83.0+6.4 34+14 56.0+£6.6 20.0+ 36.0
Sonar 83.0+7.38 6.4+ 2.7 81.54+9.5 48424 76.0£9.2 75+38
Soylarge 75.0£5.2 26.3+4.7 75.0+5.2 263+4.7 | 12.3+£6.8 2.0£0.0
Soysmall 975+ 7.5 3.94+0.3 975+ 7.5 0.9+£03 | 30.0+21.8 13.3+18.2
Vehicle 64.1£6.5 295£133 | 61.7£3.2 259+£183 | 57.0+4.7 49.4422.2
Votes 95.6 £ 2.6 6.1+2.3 95.6 +£2.6 6.1+ 2.3 47.0+£8.1 425429.2
Vowel 65.2+£6.9 346+ 8.5 65.8+6.4 40.7£85 | 61.7+£83 39577
Wine 92.9+£5.8 43+£0.8 929458 41407 94.1+6.4 4.74+0.6
Zoo 920475 6.2+£0.9 92.0+7.5 6.2£09 | 75.0+£129 334+174

78

Table 5.6 Results of Standard Deviation, Overlap based distance metrics.

Euclidean [s,0]

Manhattan [s,o]

Maximum value [s,o]

Dataset Accuracy Hidden Accuracy Hidden Accuracy Hidden
2SP 83.7+7.6 7T7+1.8 695+6.1 T7.1+39 | 72.1+£6.7 8.8+3.1
Annealing 952+ 1.9 145+24 | 948430 175+£25| 0.0£0.0 0.0£0.0
Audiology | 66.0+10.0 273+£74 |66.0+10.0 273+£74 | 1.0£2.0 0.6+1.2
Bridge 63.0+7.8 5.2+3.3 60078 42427 | 38.0+£14.7 153+21.9
Cancer 96.8 £ 2.0 40£1.6 96.8+1.9 45426 | 9544+1.7 104+44
CRX 85.2+£5.6 105+54 | 849463 9.1+£63 | 58.7+6.5 44.0+24.0
Flag 46.8 £ 7.2 72+4.4 51.14+88 91482 | 31.6+£108 3.6+1.4
Glass 68.1+£7.7 115+7.7 | 662458 7.34+£36 | 69.5+6.8 9.5+ 7.7
Heart 85.9+6.4 5.5+ 3.3 8.6+4.5 52436 | 71.1£52 264+17.0
HeartCle 82.0£4.5 39+24 83.3+7.0 5H54+42 | 67.0£7.1 267175
HeartHun 82.1+£4.8 54+4.4 85.5+4.6 52437 0.0£0.0 0.0£0.0
HeartLB T7T0£75 43+34 79.0+6.2 59+4.4 0.0£0.0 0.0£0.0
HeartSwi 94.2 + 3.8 224+0.6 942438 22406 0.0£0.0 0.0£0.0
Hepatitis 84.7+95 6.21+4.0 84.0+68 46+3.1 | 84.7+9.5 42+18
Horse 80.0£5.2 10.1+6.2 | 84.3+4.2 45420 | 63.7£5.9 2.0£0.0
Ionosphere | 92.9+5.5 6.9+ 2.1 9144+£59 58414 | 926+4.1 5.3+£1.9
Iris 94.0£3.6 3.8+1.2 91.3+£6.0 33+1.0 | 94.0+£6.3 40412
Liver 66.5+£5.1 9.94+5.7 644+46 106+83 | 66.2+6.2 113176
Monks-1 909+7.1 269475 | 9094+7.1 269+£75 | 493+£7.1 2.0£0.0
Monks-2 100+ 0.0 2.7+2.1 100+£0.0 2.7+2.1 | 33.1+0.5 2.0£0.0
Monks-3 91.6+4.4 16.24+44 | 91.6+44 162444 | 49.3+6.6 2.0£0.0
Pima 74.2+£3.9 10.0+3.8 | 76.3+5.1 81449 | 747+£4.0 13.1£10.8
Promoters | 83.0+6.4 34+14 83.0+64 34+14 | 56.0£6.6 20.0+ 36.0
Sonar 82.0£6.8 46+3.1 785+8.9 48+21 | 73.5+£74 5.6+ 3.6
Soylarge 75.0£5.2 263+4.7 | 75.0+£5.2 2634147 | 123+£6.9 2.0£0.0
Soysmall 975+ 7.5 3.94+0.3 975+75 39403 | 30.0+£21.8 13.3+18.2
Vehicle 65.1£4.0 244+£96 | 65.4+£35 23.7+£50| 62147 529+ 18.6
Votes 95.6 £ 2.6 6.1+2.3 956426 6.14+23 | 47.0+£8.1 425429.2
Vowel 66.7+75 31.24+10.1 | 65.0+£7.7 36.3+£85 | 57.9+8.8 39.2413.5
Wine 95.9+£4.6 49+£0.3 924475 444107 | 929+£5.8 44409
Zoo 920475 6.2+£0.9 92075 62409 | 75.0+£129 334+174

79

Table 5.7 Results of Dice, Cosine, Jaccard Coeflicient distance metrics.

Dataset

Dice coefficient

Cosine coefficient

Jaccard coefficient

Accuracy

Hidden

Accuracy

Hidden

Accuracy

Hidden

2SP
Annealing
Audiology
Bridge
Cancer
CRX

Flag

Glass
Heart
HeartCle
HeartHun
HeartLLB
HeartSwi
Hepatitis
Horse
Ionosphere
Iris

Liver
Monks-1
Monks-2
Monks-3
Pima
Promoters
Sonar
Soylarge
Soysmall
Vehicle
Votes
Vowel
Wine

Zoo

56.8 8.4

66.2+ 8.9

92.6+3.9
95.3+£6.7
66.8+5.8

71.6+28

79.5+7.2
58.8+3.9
69.8+6.4
943+ 34

47+£27

7.9+4.6

13.0+10.2

8.2+3.0
20.2+£20.7
38.0£8.3
6.0£3.6

56.8+ 7.4

68.6 £5.7

943+ 5.0
973+ 3.3
70.6 +6.2

68.2+5.9

76.5£8.1
61.0+3.3
57.3+6.1
83.5+6.3

6.4+ 10.0

11.0+54

173£7.5

35.7+£12.1
6.7+£4.0

55.3+5.9

66.2+ 8.9

929+ 3.7
95.3+£6.7
65.9+5.3

72.4+3.0

79.0x£7.7
58.7+3.9
69.6 £ 7.4
80.6 £6.5

9.5£3.2

79+4.6

114+ 8.7

6.9+2.3
20.1£20.8
38.1+£8.6
6.3+4.1

80

Table 5.8 Results of Camberra and Attributed-based distance metrics.

Camberra Attribute-based
Dataset Accuracy Hidden Accuracy Hidden
2SP * * 63.7£9.0 1644192

Annealing - - - -

Audiology - - - -
Bridge - - - -
Cancer - - - -
CRX - - - -
Flag - - - -
Glass * * 65.7+ 87 22.74+9.0
Heart - - - -
HeartCle - - - -
HeartHun - - - -
HeartLB - - - -
HeartSwi - - - -
Hepatitis - - - -
Horse - - - -
Tonosphere * * 92.6+4.3 85+29
Iris 95.3+£6.0 3.1x03 | 92.6+4.3 8.5+29
Liver * * 72.9+5.1 21.5£27.3
Monks-1 - - - -
Monks-2 - - - -
Monks-3 - - - -
Pima * * 747+£39 3954279
Promoters - - - -
Sonar 775112 45423 | 785+£6.3 53+£34
Soylarge - - - -
Soysmall - - - -
Vehicle * * 569+ 5.2 T76.14+23.7
Votes - - - -
Vowel * * 50.24+6.2 48.74+28.1
Wine 95.3+£58 42408 971440 55+1.7

Zoo - - - -

81

o (overlap) as described in Section 5.2.1. The entries in the tables correspond to means and
standard deviations and are shown in the form mean + standard deviation. An ‘+’indicates that
the distance computation was not possible (e.g., the denominator might be zero in Camberra
metric) and a ‘-’ indicates that the distance metric was not applicable (e.g., Dice coefficient
metric can not be used for nominal or missing values). The best generalization accuracy among
different distance metrics are shown in bold face. As we can see from Table 5.3-5.8, no single
distance metric outperformed other metrics on all datasets. That is because the performance
depends on the distribution of the data. A particular distance metric might be appropriate for
certain kinds of datasets while it might not for others. The Euclidean and Manhattan distance
metrics outperformed other metrics in many datasets, and gave comparable results to the best
ones in other datasets considered.

It is impossible to do a thorough and fair comparison between various learning algorithms
since each algorithm has its own oplimal parameter settings which is usually unknown and
not feasible to obtain within a reasonable amount of time. Also, the training and test sets
that had been generated and used are not identical in general under the assumption that the
experiments have been done a finite number of times. (An infinite number of experiments with
random partitions of training and test sets from the same distributions of data can increase
the confidence level). Following comparisons (summarized in Table 5.9) should be interpreted
in light of those considerations. The best results of DistAl are compared with the best results
produced by various learning algorithms in the literature [Weiss & Kapouleas, 1989; Yang
& Honavar, 1991; Kohavi, 1994; Lowe, 1995; Andersen & Martinez, 1996; Richeldi & Lanzi,
1996; Parekh, 1998] (Reported in Table 5.9). In particular, the results in [Wilson & Martinez,
1997] are compared separately since they are recent and also obtained by a nearest-neighbor
algorithm with a 10-fold cross-validation (NN in Table 5.9). A ‘-’ indicate that the result is
not reported in the corresponding reference.

As we can see from Table 5.9, DistAl gave comparable results on most datasets (except

Audiology, Soylarge and Vehicle).

82

Table 5.9 Comparison of generalization accuracy.

Dataset DistAl | NN | Reported
2SP 83.7 - -
Annealing 96.6 | 96.1 95.6
Audiology 66.0 | 77.5 7.7

Bridge 63.0 | 60.6 56.0
Cancer 97.8 | 95.6 95.9
CRX 87.7 | 81.5 85.0
Flag 65.8 | 58.8 -

Glass 70.5 | 724 66.3
Heart 86.7 | 83.0 74.8

HeartCle 85.3 | 80.2 77.0
HeartHun 85.9 | 81.3 77.0
HeartLB 80.0 | 71.5 79.0
HeartSwi 94.2 | 93.5 81.0
Hepatitis 84.7 | 82.6 83.0

Horse 86.0 | 76.8 80.9
Ionosphere | 94.3 | 92.6 96.7
Iris 97.3 | 96.0 98.0
Liver 72.9 | 63.5 69.8
Monks-1 90.9 | 77.1 100
Monks-2 100 | 97.5 100
Monks-3 99.1 100 100
Pima 76.3 | 71.9 76.0
Promoters 88.0 | 924 96.2
Sonar 83.0 | 87.0 84.7
Soylarge 81.0 | 92.2 97.1
Soysmall 97.5 | 100 100
Vehicle 65.4 | 70.9 79.1
Votes 96.1 | 95.2 95.2
Vowel 69.8 | 99.2 61.0
Wine 97.1 | 97.8 100

Zoo 96.0 | 98.9 -

83

The network size of three algorithms (perceptron cascade [Burgess, 1994], cascade correla-
tion [Fahlman & Lebiere, 1990], upstart [Frean, 1990]) for the two spirals problem is shown
in [Burgess, 1994]: 17.8 (perceptron cascade), 15.2 (cascade correlation), 91.4 (upstart). DistAl

generated more compact networks with 7.7 hidden neurons.

5.4 Summary and Discussion

A fast inter-pattern distance-based constructive learning algorithm, DistAl, is introduced
and its performance on a number of datasets is demonstrated. DistAl is different from other
constructive learning algorithms in two aspects. First, it does not require an iterative percep-
tron style weight update rules for determining the connections between neurons. Instead, it
computes the distance (using one of the pre-defined distance metrics) between each pattern
pair and uses it to set the weights (and the thresholds) between hidden neurons and inputs.
The weights between the hidden and output neurons are set using a one-shot (as opposed
to iterative) learning algorithm. Thus, DistAl is relatively fast compared in comparison with
most neural network training algorithms that rely on an iterative update of weights and con-
sequently require multiple passes through the training set. Furthermore, DistAl is guaranteed
to converge to 100% classification accuracy on any non-contradictory training set for most of
the distance metrics used in this paper. Second, it generates a single hidden layer composed of
hyperspherical threshold neurons instead of threshold logic units. Thus, the induced network
can potentially discover natural clusters that exist in the data.

Despite its simplicity, experiments reported in this paper show that DistAl yields good
performance on almost all real-world datasets that were considered. It also produced good
performance on difficult artificial tasks such as parity and the two spirals data which have been
used by numerous researchers for evaluation of supervised learning algorithms. In particular,
DistAl is suitable to problems that have well-formed clusters and/or certain regularity (e.g.,
parity) in the pattern space.

A potential disadvantage of DistAl is its need for maintaining the inter-pattern distance

matrix during learning. The memory needed to store this matrix grows quadratically with the

84

size of the training set. This problem can be mitigated by freeing the memory for those patterns
that are excluded by a new hidden neuron as learning progresses. It would be interesting to
explore variants of DistAl that can avoid the need for maintaining the entire inter-pattern
distance matrix during learning.

Because of its speed, DistAl is particularly well-suited to many real-world applications
involving large amount of data and/or requesting real-time response such as largescale data
mining and knowledge acquisition tasks and hybrid learning systems that use neural network
learning as the inner loop of a more complex knowledge discovery process For instance, DistAl,
because of its reliance on inter-pattern distances, is sensitive to the presence of irrelevant or
misleading attributes in the pattern representation. Consequently, its classification accuracy
can be further improved by incorporating a suitable feature subset selection algorithm. This is
borne out by the experiments using DistAl in conjunction with a genetic algorithm for feature
subset selection [Yang & Honavar, 1998a; Yang & Honavar, 1998b]. See Chapter 6 for details.

DistAl is also a good candidate for knowledge-based theory refinement. The domain knowl-
edge can be translated into the initial network and then refined using DistAl. See Chapter 7
for details.

Some avenues for future research include:

e Each constructive learning algorithm has its own set of inductive and representational
biases implicit in the design choices that determine when and where a new neuron is
added and how it is trained. A systematic characterization of this bias would be useful

in guiding the design of constructive algorithms exhibiting improved performance.

o A systematic comparison of the performance of the constructive learning algorithms
against the performance of other classification algorithms (e.g., algorithms in chap-
ter 4), backpropagation learning algorithm [Rumelhart et al., 1986], decision tree al-
gorithms [Quinlan, 1986; Quinlan, 1993], nearest neighbor algorithms [Duda & Hart,
1973; Dasarathy, 1991], etc.) would be useful in gaining a better understanding of their

relative advantages and disadvantages.

85

e The constructive learning algorithms can be modified for incremental learning. This
is significant for learning wherein a single network is trained over a period of time to
perform different tasks so that each task can exploit the useful regularities about the
environment discovered by the network in the course of learning to perform the previous
tasks. Also, constructive learning algorithms can offer framework for knowledge-based
theory refinement. The domain theory can be incorporated into the initial network
architecture and then refined by a constructive learning algorithm. (See chapter 7 for

some approaches to this purpose).

o All the constructive neural network learning algorithms considered in this dissertation
are for pattern classification tasks. Adaptation of these algorithms for function approxi-

mation is also of interest.

e A cross-validation based criterion for training constructive networks must be employed
wherein the training is stopped when the network’s generalization begins to deteriorate
after the addition of a new neuron (or a group of neurons). It is likely to generate com-
pact networks that exhibit good generalization properties with relatively little training
as opposed to the current stopping-criterion of zero classification errors which might
lead to over-fitting of the training set. This is verified in our comparative study of the

performance of DistAl with other algorithms (Table 5.9).

e The theoretical analysis of DistAl is of significant interest. For instance, the sample
complexity of DistAl to obtain a certain degree of classification accuracy can be explored

in the PAC-learning framework [Valiant, 1984].

o [t is often the case that the generalization performance of inductive learning algorithms
can be substantially improved by augmenting them with suitable algorithms for selecting
a relevant subset of a much larger set of input attributes many of which might be ir-
relevant or misleading. Exploration of constructive learning algorithms augmented with
suitable feature subset selection techniques will thus be of interest. In chapter 6, we

demonstrate the effectiveness of genetic algorithms for feature subset selection for pat-

86

tern classification using DistAl [Yang & Honavar, 1997; Yang & Honavar, 1998a; Yang &

Honavar, 1998b].

87

6 FEATURE SUBSET SELECTION USING A GENETIC ALGORITHM

6.1 Introduction

Many practical pattern classification tasks (e.g., medical diagnosis) require learning of an
appropriate classification function that assigns a given input pattern (typically represented
using a vector of attribute or feature values) to one of a finite set of classes. The choice
of features, attributes, or measurements used to represent patterns that are presented to a

classifier affect (among other things):

e The accuracy of the classification function that can be learned using an inductive learning
algorithm (e.g., a decision tree induction algorithm or a neural network learning algo-
rithm): The features used to describe the patterns implicitly define a pattern language.
If the language is not expressive enough, it would fail to capture the information that is
necessary for classification and hence regardless of the learning algorithm used, the ac-

curacy of the classification function learned would be limited by this lack of information.

e The time needed for learning a sufficiently accurate classification function: For a given
representation of the classification function, the features used to describe the patterns
implicitly determine the search space that needs to be explored by the learning algorithm.
An abundance of irrelevant features can unnecessarily increase the size of the search space,

and hence the time needed for learning a sufliciently accurate classification function.

e The number of examples needed for learning a sufficiently accurate classification function:
All other things being equal, the larger the number of features used to describe the
patterns in a domain of interest, the larger is the number of examples needed to learn a

classification function to a desired accuracy [Langley, 1995; Mitchell, 1997].

88

e The cost of performing classification using the learned classification function: In many
practical applications e.g., medical diagnosis, patterns are described using observable
symptoms as well as results of diagnostic tests. Different diagnostic tests might have
different costs as well as risks associated with them. For instance, an invasive exploratory

surgery can be much more expensive and risky than say, a blood test.

e The comprehensibility of the knowledge acquired through learning: A primary task of
an inductive learning algorithm is to extract knowledge (e.g., in the form of classification
rules) from the training data. Presence of a large number of features, especially if they
are irrelevant or misleading, can make the knowledge difficult to comprehend by humans.
Conversely, if the learned rules are based on a small number of relevant features, they

would be much more concise and hence easier to understand, and use by humans.

This presents us with a fealure subset selection problem in automated design of pattern
classifiers. The feature subset selection problem refers the task of identifying and selecting a
useful subset of features to be used to represent patterns from a larger set of often mutually
redundant, possibly irrelevant, features with different associated measurement costs and/or
risks. An example of such a scenario which is of significant practical interest is the task of
selecting a subset of clinical tests (each with different financial cost, diagnostic value, and
associated risk) to be performed as part of a medical diagnosis task. Other examples of
feature subset selection problem include large scale data mining applications, power system
control [Zhou et al., 1997], construction of user interest profiles for text classification [Yang
et al., 1998d] and sensor subset selection in the design of autonomous robots [Balakrishnan &
Honavar, 1996a].

The rest of this chapter is organized as follows: Section 6.2 summarizes various approaches
to the feature subset selection. Section 6.3 describes our approach that uses a genetic algorithm
for neural network pattern classifiers. Section 6.4 explains the implementation details in our
experiments. Section 6.5 presents the results of various experiments designed to evaluate the
performance of our approach on some benchmark classification problems as well as a document

classification task. Section 6.6 concludes with summary and discussion of some directions for

89

future research.

6.2 Approaches to Feature Subset Selection

A number of approaches to feature subset selection have been proposed in the literature.
(See [Siedlecki & Sklansky, 1988; Doak, 1992; Langley, 1994; Dash & Liu, 1997] for surveys).
These approaches involve searching for an optimal subset of features based on some criteria
of interest. Feature subset selection problem can be viewed as a special case of the feature
weighling problem. It involves assigning a real-valued weight to each feature. The weight
associated with a feature measures its relevance or significance in the classification task [Cost
& Salzberg, 1993; Punch et al., 1993; Wettschereck et al., 1995]. If we restrict the weights to be
binary valued, the feature weighting problem reduces to the feature subset selection problem.
The focus of this paper is on feature subset selection.

Let p(.5) be a performance measure that is used to evaluate a feature subset S with respect
to the criteria of interest (e.g., cost and accuracy of the resulting classifier). Feature subset
selection problem is essentially an optimization problem which involves searching the space
of possible feature subsets to identify one that is optimal or near-optimal with respect to p.
Feature subset selection algorithms can broadly be classified into three categories according to

the characteristics of the search strategy employed.

6.2.1 Feature Subset Selection Using Exhaustive Search

In this approach, the candidate feature subsets are evaluated with respect to the perfor-
mance measure p and an optimal feature subset is found using exhaustive search. The Focus
algorithm [Almuallim & Dietterich, 1994] employs the breadth-first search algorithm to find the
minimal combination of features sufficient to construct a hypothesis that is consistent with the
training examples. The algorithm proposed by [Sheinvald et al., 1990] uses the minimum de-
scription length criterion [Rissanen, 1978] to select an optimal feature subset using exhaustive
enumeration and evaluation of candidate feature subsets. Exhaustive search is computation-

ally infeasible in practice, except in those rare instances where the total number of features is

90

quite small.

6.2.2 Feature Subset Selection Using Heuristic Search

Since exhaustive search over all possible subsets of a feature set is not computationally
feasible in practice, a number of authors have explored the use of heuristics for feature subset
selection, often in conjunction with branch and bound search, a technique that is well-known in
combinatorial optimization [Cormen et al., 1990] and artificial intelligence [Russell & Norvig,
1995]. Forward selection and backward elimination are the most common sequential branch
and bound search algorithms used in feature subset selection [Narendra & Fukunaga, 1977;
Devijver, 1982; Foroutan & Sklansky, 1987; Fukunaga, 1990]. Forward selection starts with an
empty feature set and adds a feature at a time, at each stage choosing the addition that most
increases pu. Backward elimination starts with the entire feature set and at each step drops
the feature whose absence least decreases u. Both forward and backward selection procedures
are optimal at each stage, but are unable to anticipate complex interactions between features
that might affect the performance of the classifier. A related approach, called the exchange
strategy starts with an initial feature subset (perhaps found by forward selection or backward
elimination) and then tries to exchange a feature in the selected subset with one of the features
that is outside it. We can often find a feature subset that is guaranteed to be the best for
a given size of the feature subset without considering all possible subsets using branch and
bound search [Narendra & Fukunaga, 1977] if we assume that p is monotone. That is, adding
features is guaranteed to not decrease u. It is worth pointing out that in many practical
pattern classification scenarios, the monotonicity assumption is not satisfied. For example,
addition of irrelevant features (e.g., social security numbers in medical records in a diagnosis
task) can significantly worsen the generalization accuracy of a decision tree classifier [Quinlan,
1993]. Furthermore, feature subset selection techniques that rely on the monotonicity of the
performance criterion, although they appear to work reasonably well with linear classifiers, can
exhibit poor performance with non-linear classifiers such as neural networks [Ripley, 1996].

The use of systematic search to find a feature subset that is consistent with training data

91

by forward selection using a reliability measure is reported in [Schlimmer, 1993]. Five greedy
hillclimbing procedures (with different sequential search methods) for obtaining good gen-
eralization with decision tree construction algorithms (ID3 and C4.5) [Quinlan, 1993] were
proposed in [Caruana & Freitag, 1994]. In related work, [John et al., 1994] used both forward
selection and backward elimination to minimize the cross validation error of decision tree clas-
sifiers [Quinlan, 1993]; [Kohavi, 1994; Kohavi & Frasca, 1994] used hillclimbing and best-first
search for feature subset selection for decision tree classifiers. Koller et al. [Koller & Sahami,
1996; Koller & Sahami, 1997] used forward selection and backward elimination to select a fea-
ture that is subsumed by the remaining features (determined by the Markov blanket, the set of
features that render the selected feature conditionally independent of the remaining features)
for constructing Naive Bayesian [Duda & Hart, 1973; Mitchell, 1997] and decision tree classi-
fiers [Quinlan, 1993]. The Preset algorithm [Modrzejewski, 1993] employs the rough set theory
[Pawlak, 1991] to select a feature subset by rank ordering the features to generate a minimal
decision tree. A class of techniques based for feature subset selection using the probability of

error and correlation among features is reported in [Mucciardi & Gose, 1971].

6.2.3 Feature Subset Selection Using Randomized Search

Randomized algorithms [Motwani & Raghavan, 1996] make use of randomized or proba-
bilistic (as opposed to deterministic) steps or sampling processes. Several researchers have
explored the use of such algorithms for feature subset selection. The Relief algorithm [Kira &
Rendell, 1992] assigns weights to features (based on their estimated effectiveness for classifica-
tion) using the randomly sampled instances. Features whose weights exceed a user-determined
threshold are selected in designing the classifier. Several extensions of Relief have been intro-
duced to handle noisy or missing features as well as multi-category classification [Kononenko,
1994]. A randomized hillclimbing search for feature subset selection for nearest neighbor clas-
sifiers [Cover & Hart, 1967; Diday, 1974; Dasarathy, 1991] was proposed in [Skalak, 1994].
The LVF and LVW algorithms [Liu & Setiono, 1996b; Liu & Setiono, 1996a] are randomized

algorithms that generate several random feature subsets and pick the one that has the least

92

number of unfaithful patterns in the space defined by the feature subset (LVF) or the one that
has the lowest error using a decision tree classifier (LVW) giving preference to smaller feature
subsets. (Two patterns are said to be wunfaithful if they have the same feature values but
different class labels). Several authors have explored the use of randomized population-based
heuristic search techniques such as genetic algorithms (GA) for feature subset selection for
decision tree and nearest neighbor classifiers [Siedlecki & Sklansky, 1989; Brill et al., 1992;
Punch et al., 1993; Richeldi & Lanzi, 1996] or rule induction systems [Vafaie & De Jong, 1993].
A related approach used lateral feedback networks [Guo, 1992; Kothari & Agyepong, 1996] to
evaluate feature subsets [Guo & Uhrig, 1992]. Feature subset selection techniques that employ
genetic algorithms do not require the restrictive monotonicity assumption. They also readily
lend themselves to the use of multiple selection criteria (e.g., classification accuracy, feature
measurement cost, etc.). This makes them particularly attractive in the design of pattern

classifiers in many practical scenarios.

6.2.4 Filter and Wrapper Approaches to Feature Subset Selection

Feature subset selection algorithms can also be classified into two categories based on
whether or not feature selection is done independently of the learning algorithm used to con-
struct the classifier. If feature selection is performed independently of the learning algorithm,
the technique is said to follow a filler approach. Otherwise, it is said to follow a wrapper ap-
proach [John et al., 1994]. While the filter approach is generally computationally more efficient
than the wrapper approach, its major drawback is that an optimal selection of features may
not be independent of the inductive and representational biases of the learning algorithm that
is used to construct the classifier. The wrapper approach on the other hand, involves the com-
putational overhead of evaluating candidate feature subsets by executing a selected learning
algorithm on the dataset represented using each feature subset under consideration. This is
feasible only if the learning algorithm used to train the classifier is relatively fast. Figure 6.1
summarizes the filter and wrapper approaches. The approach to feature subset selection pro-

posed in this paper is an instance of the wrapper approach. It utilizes a genetic algorithm

93

for feature subset selection. Feature subsets are evaluated by computing the generalization
accuracy of (and optionally cost of features used in) the neural network classifier constructed

using a computationally efficient neural network learning algorithm called DistAl [Yang et al.,

1998b].
All All
Features Features
Feature Subset
Selection
Feature Subset Feature Subset
Selection Generation
optimal features \L evaluation
feature subset _
Learning Learning / optimal
i feature subset
Algorithm Algorithm I\ _ |
performance performance
(a) Filter approach (b) Wrapper approach

Figure 6.1 Filter and Wrapper approaches to feature subset selection.

6.3 Feature Selection Using a Genetic Algorithm for Neural Network Pat-

tern Classifiers

Feature subset selection in the context of many practical problems (e.g., diagnosis) presents
an instance of a multi-criteria optimization problem. The multiple criteria to be optimized
include the accuracy of classification, cost and risk associated with classification which in turn
depends on the selection of features used to describe the patterns. Genetic algorithms offer a
particularly attractive approach for multi-criteria optimization.

Neural networks offer an attractive framework for the design of trainable pattern classifiers
for real-world real-time pattern classification tasks on account of their potential for parallelism

and fault and noise tolerance, [Gallant, 1993; Honavar, 1994; Hassoun, 1995; Ripley, 1996;

94

Mitchell, 1997; Honavar et al., 1999a; Honavar et al., 1999b]. (See chapter 2 for detailed
description on artificial neural networks).

While genetic algorithms are generally quite effective for rapid global search of large search
spaces in difficult optimization problems, neural networks offer a particularly attractive ap-
proach to finetuning promising solutions once they have been identified. Thus, it is attractive
to explore combinations of global and local search techniques in the solution of difficult design
or optimization problems [Mitchell, 1996]. Against this background, the use of genetic algo-
rithms for feature subset selection in the design of neural network pattern classifiers is clearly
of interest.

This chapter explores GADistAl, a wrapper-based multi-criteria approach to feature sub-
set selection using a genetic algorithm in conjunction with DistAl. However, the general ap-
proach can be used with any inductive learning algorithm. The interested reader is referred to
[Honavar, 1994; Langley, 1995; Mitchell, 1997; Honavar et al., 1999a; Honavar et al., 1999b]

for surveys of different approaches to inductive learning.

6.3.1 Genetic Algorithms

Evolutionary algorithms [Goldberg, 1989; Holland, 1992; Koza, 1992; Fogel, 1995; Michalewicz,
1996; Mitchell, 1996; Banzaf et al., 1997] include a class related randomized, population-based
heuristic search techniques which include genetic algorithms [Goldberg, 1989; Holland, 1992;
Mitchell, 1996], genetic programming [Koza, 1992; Banzaf et al., 1997], evolutionary program-
ming [Fogel, 1995], and variety of related approaches [Michalewicz, 1996; Mitchell, 1996]. They
are inspired by processes that are modeled after biological evolution. Central to such evolu-
tionary systems is the idea of a population of potential solutions (individuals) that corresponds
to members of a high-dimensional search space.

The individuals represent candidate solutions to the optimization problem being solved. A
wide range of genetic representations (e.g., bit vectors, LISP programs, matrices, etc.) can be
used to encode the individuals depending on the space of solutions that needs to be searched.

In genetic algorithms [Goldberg, 1989; Michalewicz, 1996; Mitchell, 1996], the individuals are

95

typically represented by n-bit binary vectors. The resulting search space corresponds to an
n-dimensional boolean space. In the feature subset selection problem, each individual would
represent a feature subset.

It is assumed that the quality of each candidate solution (or fitness of the individual in the
population) can be evaluated using a fitness function. In the feature subset selection problem,
the fitness function would evaluate the selected features with respect to some criteria of interest
(e.g., cost of the resulting classifier, classification accuracy of the classifier, etc.). In this case,
it is essentially the p function defined earlier.

Evolutionary algorithms use some form of fitness-dependent probabilistic selection of indi-
viduals from the current population to produce individuals for the next generation. A variety
of selection techniques have been explored in the literature. Some of the most common ones are
fitness-proportionate selection, rank-based selection, and tournament-based selection [Goldberg,
1989; Michalewicz, 1996; Mitchell, 1996]. The selected individuals are subjected to the action
of genetic operators to obtain new individuals that constitute the next generation. The genetic
operators are usually designed to exploit the known properties of the genetic representation,
the search space, and the optimization problem to be solved. Genetic operators enable the
algorithm to exzplore the space of candidate solutions. See [Balakrishnan & Honavar, 1995] for
a discussion of some desirable properties of genetic representations and operators.

Mutation and crossover are two of the most commonly used operators that are used with
genetic algorithms that represent individuals as binary strings. Mutation operates on a single
string and generally changes a bit at random. Thus, a string 11010 may, as a consequence
of random mutation, get changed to 11110. Crossover, on the other hand, operates on two
parent strings to produce two offspring. With a randomly chosen crossover position 4, the
two strings 01101 and 11000 yield the offspring 01100 and 11001 as a result of crossover.
Other genetic representations (e.g., matrices, LISP programs) require the use of appropriately
designed genetic operators [Michalewicz, 1996; Mitchell, 1996; Banzaf et al., 1997].

The process of fitness-dependent selection and application of genetic operators to gener-

ate successive generations of individuals is repeated many times until a satisfactory solution

96

is found (or the search fails). It can be shown that evolutionary algorithms of the sort out-
lined above simulate highly opportunistic and exploitative randomized search that explores
high-dimensional search spaces rather effectively under certain conditions [Holland, 1992]. In
practice, the performance of evolutionary algorithms depends on a number of factors includ-
ing: the choice of genetic representation and operators, the fitness function, the details of
the fitness-dependent selection procedure, and the various user-determined parameters such
as population size, probability of application of different genetic operators, etc. The specific

choices made in the experiments reported in this paper are summarized in section 6.4.

6.3.2 Genetic Algorithm Wrapper approach to Feature Subset Selection for

Neural Network Pattern Classifiers: Some Practical Considerations

Genetic algorithms offer an attractive technique for feature subset selection for neural
network pattern classifiers for several reasons, some of which were mentioned above. However,
we are faced with several difficulties in using this approach in practice.

Traditional neural network learning algorithms (e.g., backpropagation) perform an error
gradient guided search for a suitable setting of weights in the weight space determined by a user-
specified network architecture. This ad hoc choice of network architecture often inappropriately
constrains the search for an appropriate setting of weights. For example, if the network has
fewer neurons than necessary, the learning algorithm will fail to find the desired classification
function. If the network has far more neurons than necessary, it can result in overfitting of
the training data leading to poor generalization. In either case, it would make it difficult to
evaluate the usefulness of a feature subset employed to describe (or represent) the training
patterns used to train the neural network.

Gradient based learning algorithms although mathematically well-founded for unimodal
search spaces, can get caught in local minima of the error function. This can complicate the
evaluation of a feature subset employed to represent the training patterns used to train the
neural networks. This is due to the fact that the poor performance of the classifier might be

due to the failure of the learning algorithm, and not the feature subset used.

97

Fortunately, constructive neural network learning algorithms [Gallant, 1993; Honavar &
Uhr, 1993; Honavar et al., 1999a] eliminate the need for ad hoc, and often inappropriate a-priori
choices of network architectures; and can potentially discover near-minimal networks whose
size is commensurate with the complexity of the classification task that is implicitly specified
by the training data. Several new, provably convergent, and relatively efficient constructive
learning algorithms for multi-category real as well as discrete valued pattern classification tasks
have begun to appear in the literature [Yang et al., 1996; Parekh et al., 1997a; Parekh et al.,
1997b; Yang et al., 1998b; Honavar et al., 1999a]. Many of these algorithms have demonstrated
very good performance in terms of reduced network size, learning time, and generalization in
a number of experiments with both artificial and fairly large real-world datasets. [Honavar
& Uhr, 1993; Parekh et al., 1997a; Yang et al., 1998b]. However, most of them, with the
exception of DistAl [Yang et al., 1998b] (in Chapter 5) use time-consuming iterative training
algorithms for setting the weights of the neurons.

Using genetic algorithms for feature subset selection for the design of neural network pat-
tern classifiers involves running a genetic algorithm for several generations. In each generation,
evaluation of an individual (a feature subset) requires training the corresponding neural net-
work and computing its accuracy and cost. This evaluation has to be performed for each of
the individuals in the population. Thus, it is not feasible to use computationally expensive
iterative weight update algorithms for training neural network classifiers for evaluating candi-
date feature subsets. Against this background, DistAl offers an attractive approach to training
neural networks. Key steps in our approach are shown in Figure 6.2: Starting from the initial
population (of candidates having different feature subsets), new populations are generated re-
peatedly from the previous ones by applying genetic operators (i.e., crossover and mutation)
to the selected parents, evaluating the fitness values of offsprings by DistAl and ranking them

according to their fitness values. The best individual is obtained after the last generation.

Generate
initial
population

Rank-based selection

98

Pool of
candidate
feature
subsets

Apply

genetic
operators

New pool of

candidate
feature
subsets

DistAl
(Evaluate

fitness

values)

Best

individual

Figure 6.2 GADistAl: feature subset selection using a genetic algorithm
with DistAl.

6.4 Implementation Details

As explained earlier, the use of a genetic algorithm in any search or optimization problem

requires:

e the choice of a representation for encoding candidate solutions to be manipulated by the

genetic algorithm

o the definition of a fitness function that is used to evaluate the candidate solutions

e the definition of a selection-scheme (e.g., fitness-proportionate selection)

e the definition of suitable genetic operators that are used to transform candidate solutions

(and thereby explore the search space)

e setting of user-controlled parameters (e.g., probability of applying a particular genetic

operator, size of the population, etc.)

Our experiments were run using a genetic algorithm [Goldberg, 1989; Mitchell, 1996] using

rank-based selection strategy. The probability of selection of the highest ranked individual

is p (where 0.5 < p < 1.0 is a user-specified parameter), that of the second highest ranked

individual is p(1 — p), that of the third highest ranked individual is p(1 — p)Z%,..., that of the

last ranked individual is 1—(sum of the probabilities of selection of all the other individuals).

The rank-based selection strategy gives a non-zero probability of selection of each individual

[Mitchell, 1996]. Our experiments used the following parameter settings:

99

Population size: 50

Number of generation: 20

e Probability of crossover: 0.6

Probability of mutation: 0.001
e Probability of selection of the highest ranked individual: 0.6

The parameter settings were based on results of several preliminary runs. They are comparable
to the typical values mentioned in the literature [Mitchell, 1996].

Fach individual in the population represents a candidate solution to the feature subset
selection problem. Let m be the total number of features available to choose from to represent
the patterns to be classified. In a medical diagnosis task, these would be observable symptoms
and a set of possible diagnostic tests that can be performed on the patient. It is represented
by a binary vector of dimension m (where m is the total number of features). If a bit is a 1, it
means that the corresponding feature is selected. A value of 0 indicates that the corresponding
feature is not selected. The fitness of an individual is determined by evaluating the neural
network constructed by DistAl using a training set whose patterns are represented using only
the selected subset of features. If an individual has n bits turned on, the corresponding neural
network has n input nodes.

The fitness function has to combine two different criteria — the accuracy of the classification
function realized by the neural network and the cost of performing classification. The accuracy
of the classification function can be estimated by calculating the percentage of patterns in a
test set that are correctly classified by the neural network in question. A number of different
measures of the cost of classification suggest themselves: cost of measuring the value of a
particular feature needed for classification (or the cost of performing the necessary test in
a medical diagnosis application), the risk involved, etc. To keep things simple, we chose a

2-criteria fitness function defined as follows:

cost(x)

fitness(z) = accuracy(z) — + costyax (6.1)

accuracy(z) + 1

100

where fitness(z) is the fitness of the feature subset represented by z, accuracy(z) is the
test accuracy of the neural network classifier trained using DistAl using the feature subset
represented by z, cost(z) is the sum of measurement costs of feature subset represented by z,
and cost,,q, is an upper bound on the costs of candidate solutions. In this case, it is simply
the sum of the costs associated with all of the features. This is clearly a somewhat ad hoc
choice. However, it does discourage trivial solutions (e.g., a zero cost solution with a very
low accuracy) from being selected over reasonable solutions which yield high accuracy at a
moderate cost. It also ensures that Vo 0 < fitness(z) < (100 + costyqz). In practice, defining
suitable tradeoffs between the multiple objectives has to be based on knowledge of the domain.
In general, it is a non-trivial task to combine multiple optimization criteria into a single fitness

function. A wide variety of approaches have been examined in the utility theory literature

[Keeney & Raiffa, 1976].

6.5 Experiments

6.5.1 Datasets

The experiments reported here used a wide range of real-world datasets from the machine
learning data repository at the University of California at Irvine [Murphy & Aha, 1994] as
well as a carefully constructed artificial dataset (3-bit parity) to explore the feasibility of
using genetic algorithms for feature subset selection for neural network classifiers. The feature
subset selection using DistAl is also applied to document classification problem for journal

paper abstracts and news articles.

e 3-bit Parity Dataset
This dataset was constructed to explore the effectiveness of the genetic algorithm in
selecting an appropriate subset of relevant features in the presence of redundant features
so as to minimize the cost and maximize the accuracy of the resulting neural network
pattern classifier. The modified training set is constructed as follows: The original

features are replicated once (to introduce redundancy) thereby doubling the number

101

of features. Then an additional set of irrelevant features are generated and are assigned
random boolean values. 100 7-bit random vectors were generated and augmented with
the 6-bit vectors (corresponding to the original 3 bits plus an identical set of 3 bits).
Each feature in the resulting dataset is assigned a random cost between 0 and 9. The
performance considering the random costs in addition to the accuracy (see equation (6.1))
was compared with that obtained by considering the accuracy alone. Table 6.1 includes
this dataset. Size is the number of patterns in the dataset, Dimension is the number
of input attributes, Missing? is whether there are any missing values, and Class is the

number of output classes in Table 6.1.

Table 6.1 Parity and document datasets used in the experiments.

Dataset Size Dimension Attribute Type Missing? Class
3-bit parity problem (3P) 100 13 numeric No 2
paper abstracts 1 (Abstractl) 100 790 numeric No 2
paper abstracts 2 (Abstract2) 100 790 numeric No 2
news articles 1 (Reutersl) 939 1568 numeric No 6
news articles 2 (Reuters2) 139 435 numeric No 4
news articles 3 (Reuters3) 834 1440 numeric No 8

o Dalasets from UCI Repository
In our experiments with real world datasets, our objective was to compare the neural
networks built using feature subsets selected by the genetic algorithm with those that
use the entire set of features available. Some of the datasets (with reasonable size of
feature sets) were chosen in our experiment from Table 5.1. Some medical datasets
include measurement costs for the features, but most of the datasets lack this information.
Therefore, our experiments with the datasets from UCI repository focused on identifying
a minimal subset of features that yield high accuracy neural network classifiers. Where
measurement costs were available, the performance considering the cost in addition to

the accuracy was compared with that obtained by considering the accuracy alone.

102

o Document Datasets
The paper abstracts were chosen from three different sources: IEEE Expert magazine,
Journal of Artificial Intelligence Research and Neural Computation. The news articles
were obtained from Reuters dataset. Each document is represented in the form of a
vector of numeric weights for each of the words (terms) in the vocabulary. The weights
correspond to the term frequency and inverse document frequency (TFIDF) [Salton &
McGill, 1983; Yang et al., 1998d] values for the corresponding words (see also section
8.3.2). The training sets for paper abstracts were generated based on the classification of
the corresponding documents into two classes (interesting and not interesting) by two dif-
ferent individuals, resulting in two different data sets (Abstractl and Abstract2). The
classifications for news articles were given based on their topics (6, 4 and 8 classes) follow-
ing [Koller & Sahami, 1997], resulting in three different datasets (Reutersl, Reuters2
and Reuters3), respectively. These datasets are also summarized in Table 6.1. Since
these datasets do not have measurement costs for the features, our experiments with
document datasets also focused on identifying a minimal subset of features that yield

high accuracy neural network classifiers.

6.5.2 Experimental Results

Two different sets of experiments were run to explore the performance of GADistAl. The
first set of experiments were designed to explore the effect of feature subset selection on the
performance of DistAl on a given choice of training and test sets. Each dataset was randomly
partitioned into a training and test set (with 90% of the data used for training and the re-
maining 10% for testing). The genetic algorithm was used to select the best feature subset on
the basis of this choice of training and test sets. The results were averaged over 5 independent
runs of the genetic algorithm, for a given choice of training and test set. This process was
repeated 10 times with 10 different choices of training and test set, which makes 5 x 10 = 50
runs of the genetic algorithm.

The second set of experiments explored a somewhat different, but related question. Since

103

feature subset selection in GADistAl is guided by the fitness function, it seems reasonable
to expect that the quality of fitness estimates will have some impact on the performance
of DistAl. Thus, it is interesting to explore the performance of GADistAl when the fitness
estimates are obtained using several training and test sets. Thus, in this set of experiments,
fitness estimates used by GADistAl were obtained by averaging the observed fitness values for
10 different partitions of the data into training and test sets. The reported results represent
averages over 5 independent runs of the algorithm.

The results of those two different sets of experiments are shown in Tables 6.2-6.6. The
entries in the tables give the means (and standard deviations) in the form mean (+ standard

deviation).

6.5.2.1 Improvement in Generalization using Feature Subset Selection

To study the effect of feature subset selection on generalization, experiments were run
using classification accuracy as the fitness function. The results in Table 6.2 indicate that
the networks constructed using GA-selected subset of features compare quite favorably with
networks that use all of the features in all randomly partitioned datasets. In particular, feature
subset selection resulted in substantial improvement in generalization on many of the datasets.
(For example, 100% accuracy were yielded in P3, Promoters, and Zoo datasets). Also, the
number of features selected is significantly smaller than the total number of features present
in the original data representation in all of the datasets.

The results shown in Table 6.3 indicate that the networks constructed using GA-selected
subset of features are comparable to the networks that use all of the features in most of the
datasets with 10-fold cross-validation. Clearly, GADistAl outperformed plain DistAl (with all
features) in the parity problem in the sense that it successfully selected important features giv-
ing 100% generalization. For the remaining datasets, the improvement is generalization ranged
from modest in some cases to marginal in others. The best individual generated by GADistAl
outperformed DistAl in almost all datasets. Again, the number of features selected is signifi-

cantly smaller than the total number of features present in the original data representation

104

Table 6.2 Results for randomly partitioned datasets.

DistAl GADistAl
Dataset Features Accuracy Features Accuracy
3P 13 79.0+£12.2 6.6 + 1.6 100 £+ 0.0
Annealing 38 96.6+2.0 21.0+ 3.1 995+ 0.9
Audiology 69 66.0£9.7 364+ 3.5 83.5+ 8.2
Bridges 11 63.0£ 7.8 5.6+ 1.5 81.6+ 7.6
Cancer 9 97.8+ 1.2 54+14 99.34+ 0.9
CRX 15 87.7+3.3 8.0+ 2.1 91.5+ 2.8
Flag 28 65.8 £ 9.5 14.0 £2.6 78.1 £7.8
Glass 9 70.5+£8.5 55 +1.4 80.8 +£5.0
Heart 13 86.7 £ 7.6 7.2 £1.6 93.9 +3.8
HeartCle 13 85.3+£2.7 7.3 £1.7 92.9 +3.6
HeartHun 13 85.94+6.3 7.0 £1.2 93.0 £4.0
HeartLB 13 80.0£ 74 7.1 +£1.7 91.0 £5.7
HeartSwi 13 94.2 £ 3.8 6.6 £1.7 98.3 £3.3
Hepatitis 19 84.71+9.5 9.2 £2.3 97.1 £4.3
Horse 22 86.0 £ 3.6 11.1 £2.3 92.6 £3.4
Ionosphere 34 94.3+5.0 17.3 £3.5 98.6 £2.4
Pima 8 76.3+£5.1 3.8+1.5 79.5 +3.1
Promoters 57 88.0+ 7.5 28.8 £3.3 100 0.0
Sonar 60 83.0£ 7.8 30.7 £3.7 97.2 +2.9
Soybean 35 81.0+ 5.6 19.4 £ 2.7 92.8 £5.9
Vehicle 18 65.4 £ 3.5 9.1 £1.7 68.8 +4.3
Votes 16 96.1 £ 1.5 8.9 +1.8 98.8 £1.2
Vowel 10 69.8 £ 6.4 6.5 £1.2 78.4 +£3.8
Wine 13 97.1 £ 4.0 6.7 £1.6 99.4 £2.1
Zoo 16 96.0 £ 4.9 9.3 +1.6 100 £0.0
Abstractl 790 89.0£9.4 | 393.7 £ 12.9 97.6 £ 4.7
Abstract2 790 84.0£12.0 | 393.8 £ 14.6 94.44+ 7.3
Reutersl 1568 91.6£2.9 | 786.1+19.1 949425
Reuters2 435 88.5£10.5 | 2183 £ 9.7 97.5+4.7
Reuters3 1440 96.4+£1.6 | 715.4 £ 20.3 98.7+ 1.0

105

Table 6.3 Results for 10-fold cross-validation.

DistAl GADistAl (average) GADistAl (best)
Dataset Features Accuracy Features Accuracy | Features — Accuracy
3P 13 79.0+12.2 | 4.8+0.7 100 + 0.0 4 100 £ 0.0
Annealing 38 96.6+£2.0 200£14 98.840.4 18 995+ 1.2
Audiology 69 66.0+9.7 37.24+1.8 72.6+28 39 76.5 + 13.8
Bridges 11 63.0+ 7.8 4.940.6 56.9+ 7.6 5 67.0+11.9
Cancer 9 97.84+ 1.2 6.0+1.1 98.0+ 0.3 8 98.6+ 0.9
CRX 15 87.7+ 3.3 74426 87.7+04 6 88.0+ 2.8
Flag 28 65.8+9.5 | 14.24+2.8 63.9 £6.1 18 70.0 + 8.8
Glass 9 70.5+ 8.5 4.440.8 69.3 +2.5 5 71.0+ 94
Heart 13 86.7+ 7.6 7.6 +0.8 85.5 0.7 7 859+ 5.4
HeartCle 13 85.3+ 2.7 8.440.8 86.9 +0.6 9 87.7+£4.0
HeartHun 13 85.9 £ 6.3 74+14 85.4 +1.3 8 872+ 2.2
HeartLB 13 80.0+ 74 7.6+1.0 79.8 £1.9 6 83.0£6.0
HeartSwi 13 94.2 £ 3.8 74+1.7 95.3 £1.1 8 96.7+ 4.1
Hepatitis 19 84.7+9.5 | 10.24+1.6 85.2429 10 88.7+ 9.5
Horse 22 86.0+ 3.6 9.6 +2.7 83.2+1.6 5 85.0+ 7.0
Ionosphere 34 94.34+5.0| 16.6+3.0 94.5+0.8 13 96.0+ 4.3
Pima 8 76.3 + 5.1 4.0+ 1.7 73.1 £3.1 2 76.8 + 3.8
Promoters 57 88.0+7.5 | 30.6+2.1 89.8 £1.7 31 92.0+ 7.5
Sonar 60 83.0+7.8 | 322422 84.0+1.6 28 85.5+ 7.6
Soybean 35 81.0+56 | 21.0+1.4 83.1+1.1 19 843+ 7.2
Vehicle 18 65.4 £ 3.5 9.44+2.1 50.1+ 7.9 11 594+ 4.7
Votes 16 96.1+ 1.5 8.2+1.5 97.0 £0.7 7 979+ 1.3
Vowel 10 69.8+ 6.4 6.8+ 1.2 70.2 +1.6 6 71.5+5.7
Wine 13 97.1 £ 4.0 8.2+1.2 96.7 +0.7 7 97.1+ 3.9
Zoo 16 96.0+4.9 8.8+ 1.6 96.8 +2.0 9 99.0+ 3.0
Abstractl 790 89.0+9.4 | 402.2+14.2 89.2+ 1.0 387 91.0+ 94
Abstract2 790 84.0+12.0 | 389.84+5.2 84.0+1.1 382 85.0+10.2
Reutersl 1568 91.6+2.9 | 766.0+ 12.0 90.2+0.7 750 91.5+ 0.7
Reuters2 435 88.5+10.5 | 222.4+14.7 90.3+0.8 195 91.5+10.6
Reuters3 1440 96.4+1.6 | 721.0+ 16.6 96.2+ 0.7 712 96.9+ 1.6

106

in all of the datasets.

Table 6.4 compares the results of GADistAl with the results of other GA-based (ADHOC)
[Richeldi & Lanzi, 1996] and several non GA-based approaches that are available in the liter-
ature (non-GA) [Liu & Setiono, 1996a; Liu & Setiono, 1996b; Kohavi, 1994; Kohavi & Frasca,
1994; Koller & Sahami, 1996; Koller & Sahami, 1997]. ‘-7 indicates that the result is not
reported in the corresponding reference. The results indicate that GADistAl gave higher gener-
alization accuracy than the other techniques or comparable accuracy in almost all cases (except
Vehicle dataset) although it occasionally selected more features. GADistAl produced feature
subsets with larger number of features than the approach in [Koller & Sahami, 1996; Koller
& Sahami, 1997] for Reuters datasets. This can be explained by that the former found the
feature subsets using a genetic algorithm for datasets with relatively large number of features
while the latter set up the number of features to select a priori. It should be noted that it
is not generally feasible to do a completely fair and thorough comparison between different
approaches without the complete knowledge of the parameters and the set up used in the

experiments.

6.5.2.2 Minimizing Cost and Maximizing Accuracy using Feature Subset

Selection

The selection was based on both the generalization accuracy and the measurement cost
of features. (See the fitness function in equation (6.1)). The 3-bit parity problem, Cleveland
heart disease, hepatitis domain and pima indians diabetes datasets were used for the experiment
(with the random costs in the 3-bit parity problem). The results are shown in Table 6.5 and
6.6 for randomly partitioned and 10-fold cross-validation datasets, respectively.

As we can see from Table 6.5, the fitness function that combined both accuracy and cost
outperformed that based on accuracy alone in every respect: the number of features used, gen-
eralization accuracy, and the cost. This is not surprising because the former tries to minimize
cost (while maximizing the accuracy), which reduces the number of features, while the latter

emphasizes only on the accuracy.

107

Table 6.4 Comparison between various approaches for feature subset selec-

tion.
non-GA ADHOC GADistAl
Dataset Features Accuracy | Features Accuracy | Features Accuracy
Annealing - - 8 95.0 18 99.5
Cancer 4 74.7 - - 8 98.6
CRX 6 85.0 7 85.1 6 88.0
Glass 4 62.5 4 70.5 5 71.0
Heart 3 79.2 5 80.8 7 85.9
Hepatitis 4 84.6 - - 10 88.7
Horse 4 85.3 - - 5 85.0
Pima - - 3 73.2 2 76.8
Sonar - - 16 76.0 28 85.5
Vehicle - - 7 69.6 11 59.4
Votes 4 97.0 5 95.7 7 97.9
Reutersl 40 94.1 - - 750 91.5
Reuters2 40 90.0 - - 195 91.5
Reuters3 80 98.6 - - 712 96.9

Table 6.5 Comparison of different fitness evaluations for randomly parti-

tioned datasets.

Accuracy only Accuracy & Cost
Dataset Features Accuracy Cost | Fealures Accuracy Cost
3P 6.6 100 46.1 4.3 100 26.7
HeartCle 7.3 92.9 335.7 6.1 93.0 261.5
Hepatitis 9.2 97.1 22.8 8.3 97.3 19.0
Pima 3.8 79.5 28.5 3.1 79.5 22.8

108

Table 6.6 Comparison of different fitness evaluations for 10-fold
cross-validation.

Accuracy only Accuracy & Cost
Dataset Features Accuracy Cost | Fealures Accuracy Cost
3P 4.8 100 35.6 3.8 100 25.4
HeartCle 8.4 86.9 390.5 7.2 85.7 317.8
Hepatitis 10.2 85.2 23.4 10.0 85.3 23.2
Pima 4.0 73.1 29.3 4.2 76.1 20.8

Table 6.6 also shows the fitness function that combined both accuracy and cost outperforms
that based on accuracy alone in all datasets except HeartCle. The generalization accuracy
was higher and the cost was also higher with the fitness function that is based on accuracy
alone in HeartCle dataset. This explains how the fitness function (equation (6.1)) works in
GADistAl and verifies the rationale behind it. Also, note that some of the runs resulted in
feature subsets which did not necessarily have minimum cost. This suggests the possibility of
improving the results by the use of a more principled choice of a fitness function that combines

accuracy and cost.

6.6 Summary and Discussion

An approach to feature subset selection using a genetic algorithm for neural network pattern
classifiers is proposed in this paper. A fast inter-pattern distance-based constructive neural
network algorithm, DistAl, is employed to evaluate the fitness (in terms of the generalization
accuracy) of candidate feature subsets in the genetic algorithm. The results presented in this
paper indicate that genetic algorithms offer an attractive approach to solving the feature subset
selection problem (under a different cost and performance constraints) in inductive learning of
pattern classifiers in general, and neural network pattern classifiers in particular.

The GA-based approach to feature subset selection does not rely on monotonicity as-
sumptions that are used in traditional approaches to feature selection which often limits their

applicability to real-world classification and knowledge acquisition tasks. It also offers a nat-

109

ural approach to feature subset selection by taking into account, the distribution of available
data. This is due to the fact that feature selection is driven by estimated fitness values, which
if based on multiple partitions of the dataset into training and test data, provide a robust
measure of performance of the feature subset. This is not generally the case with many of
the greedy stepwise algorithms that select features based on a single partition of the data into
training and test sets. Consequently, the feature subsets selected by such algorithms are likely
to perform rather poorly on other random partitions of the data into training and test sets.

The approach to feature subset selection is able to naturally incorporate multiple criteria
(e.g., accuracy, cost) into the feature selection process. This finds applications in cost-sensitive
design of classifiers for tasks such as medical diagnosis, computer vision, among others. Another
interesting application is automated data mining and knowledge discovery from datasets with
an abundance of irrelevant or redundant features. In such cases, identifying a relevant subset
that adequately captures the regularities in the data can be particularly useful, particularly
in scientific knowledge discovery tasks. Techniques similar to the one discussed in this paper
have been successfully used recently to select feature subsets for pattern classification tasks
that arise in power system security assessment [Zhou et al., 1997], sensor subsets in the design
of behavior and control structures for autonomous mobile robots [Balakrishnan & Honavar,
1996a; Balakrishnan & Honavar, 1996b].

Some avenues for future research include:

e Extensive experimental (and wherever feasible, theoretical) comparison of the perfor-
mance of the proposed approach with that of conventional methods for feature subset

selection is of interest and significance.

e Our approach, GADistAl can be applied to more real-world applications, and its effective-
ness can be verified. For instance, GADistAl can be used in scientific knowledge discovery
tasks in bioinformatics (e.g., discovery of protein structure-function relationships, car-

cinogenicity prediction, gene sequence identification).

e Different machine learning algorithms can be used within the genetic algorithm for feature

110

subset selection as our approach used a constructive neural network learning algorithm,
DistAl. For instance, we incorporated the naive Bayesian classifier into a genetic algorithm

and verified a much improved generalization accuracy.

Feature subset selection can be extended by incorporating feature construction and ge-

netic programming [Koza, 1992] as well.

A simple fitness evaluation is used in our experiments to consider both the generalization
accuracy and the measurement costs of attributes. More principled design of multi-
objective fitness functions for feature subset selection using domain knowledge as well
as mathematically well-founded tools of multi-attribute utility theory [Keeney & Raiffa,

1976].

111

7 CONSTRUCTIVE THEORY REFINEMENT IN KNOWLEDGE
BASED NEURAL NETWORKS

7.1 Introduction

As described in chapter 1, inductive learning [Langley, 1995; Mitchell, 1997; Honavar et al.,
1999a) is an approach to learn concept descriptions (or knowledge) from a set of labeled ex-
amples. For instance, the various neural network learning algorithms described in chapter 2,
4, 5, and the decision tree algorithms [Quinlan, 1986; Quinlan, 1993] are inductive learning
algorithms. Such inductive learning systems have yielded good generalization in many appli-
cations. However, the generalization is from the set of labeled examples not knowing how the
examples are labeled. The performance of inductive learning systems can potentially improve
by using domain specific knowledge or a domain theory about the concept being learned (when
such domain knowledge/theory is available). Hybrid learning systems that incorporate domain
knowledge in inductive learning can yield better performance (in terms of learning speed and
generalization capability, for instance) than learning systems that rely on induction with the
labeled data only. On the other hand, the domain specific knowledge is often incomplete or
inaccurate in many applications of interest.

Inductive learning systems that use information from training examples to modify an ex-
isting domain theory by either augmenting it with new knowledge or by refining the existing
knowledge are called theory refinement systems.

Theory refinement systems can be classified into the following three categories [Parekh,

1998]:

e Symbolic approaches

Symbolic learning algorithms (e.g., decision tree learning algorithm [Quinlan, 1986; Quin-

112

lan, 1993]) are used for revising the theory in this category. For instance, the EITHER
system [Ourston & Mooney, 1994] finds a subset of examples that the domain theory is
not able to correctly classify, and generates new rules that correctly classify the previously

misclassified subset of examples using the decision tree learning algorithm.

e [nductive Logic Programming (ILP) based approaches
This approach uses computational logic as the knowledge representation mechanism and
refine the theory using the inductive inference rather than the traditional deductive
inference. For instance, the FORTE [Richards & Mooney, 1995] employs a hill-climbing
search for refining theories represented by first-order Horn-clauses. It identifies errors in
the theory and keep revising it using a library of operators until no further revisions are

possible.

e Connectionist approaches
Neural networks are good candidate to theory refinement. The domain knowledge can
be embedded into an initial network architecture either by explicitly setting the values
for the connection weights or by training them. Then it can be refined by training the
network on a set of labeled examples. For instance, the KBANN [Towell et al., 1990;
Towell & Shavlik, 1994] determines an initial network architecture by translating A ND-
OR graph representation of the domain knowledge, and applies the backpropagation
learning algorithm [Rumelhart et al., 1986] to refine the knowledge. KBANN is reported
to outperform symbolic approaches (such as EITHER) and other learning algorithms (such
as backpropagation and ID3 [Towell & Shavlik, 1994; Parekh, 1998]. However, KBANN
is limited in that the network topology is not allowed to change, and thus theory is
refined in terms of weight modifications only. In addition, new set of rules can not be

incorporated.

We attempt to use prior knowledge in neural network learning as it is demonstrated and
claimed to be efficient in [Shavlik, 1994]. We incorporate the domain specific knowledge into

the initial network and refine it using a neural network learning algorithm. As explained

113

in chapter 4, constructive neural network learning algorithms have potential for generating
near-minimal networks commensurate with the task dynamically, and have advantages over
backpropagation style learning algorithms. Constructive learning algorithms also offer an in-
teresting approach to the use of (possibly inaccurate and incomplete) domain knowledge for
refining it. The domain theory can be translated into an initial network architecture (either
by explicitly setting the values for the connection weights or by training them), and any new
rules can be easily incorporated into the network. Then, any inaccuracy or inconsistency in
the domain theory can now be refined by adding neurons to the network and training them on

a set of labeled examples. Figure 7.1 depicts this process.

Constructive Neural Network

Domain
Theory

Input Units

Figure 7.1 Constructive learning for theory refinement.

Against this background, this chapter describes a constructive approach to theory refine-
ment using knowledge based neural networks. The rest of this chapter is organized as follows:
Section 7.2 describes the process of incorporating the domain knowledge into an initial network
architecture and refining it using DistAl. Section 7.3 summarizes several related constructive
theory refinement systems to be compared with our approach. Section 7.4 presents the results
of our experiments to compare our approach with DistAl with other constructive theory refine-

ment systems described in section 7.3. Section 7.5 concludes with summary and discussion of

114

some directions for future research.

7.2 Theory Refinement Using DistAl

The domain theory is typically represented as a set of rules. The set of rules constitutes a
hierarchy. Each rule in the hierarchy determines its output based on rules below it, and the
rule at the top of the hierarchy produces an output, which is the final decision of the set of
rules.

The rules can be translated into neural networks as suggested in [Towell et al., 1990; Parekh,
1998]. The rules can be arranged in the form of having only one antecedent in each rule. Then
the modified set of rules can be converted into an AND-OR graph, which can be incorporated
in a neural network with perceptrons with proper weight settings. (See [Parekh, 1998] for
detailed description and examples of rule incorporation into a neural network).

In our system, the set of rules are incorporated into neural networks as a blackbox. As
shown in Figure 7.1, it computes an output using the rules inside and the inputs. This elimi-
nates the need for converting the rules into an AND-OR graph, and then into a neural networks
of perceptrons.

The domain theory is incorporated into the initial network architecture as shown in Fig-
ure 7.1 and refined using DistAl in our constructive theory refinement system. Both the inputs
and an additional value out of the blackbox of domain theory are fed into DistAl, and the

network is trained.

7.3 Previous Constructive Theory Refinement Systems

In this section, we will introduce several constructive theory refinement systems to make

comparisons with our approach.

7.3.1 HDE

Fletcher and Obradovi¢ proposed a constructive theory refinement system [Fletcher &

Obradovié¢, 1993]. They start with an initial network representing the domain theory and refines

115

the theory by training a single hidden layer of perceptrons using a set of labeled examples.
The hyperplane detection from ezamples algorithm [Baum & Lang, 1991] is used to generate
the hidden neurons. The hyperplane detection from examples algorithm divides pattern space
with hyperplanes. A hyperplane is randomly constructed by choosing two points that belong
to different classes and localizing a split between them. This process is repeated until a
fixed number of hyperplanes are generated. The hyperplanes are mapped to perceptrons in
the hidden layer of the network, and the output unit is trained using the pocketl algorithm

[Gallant, 1990; Gallant, 1993]. We will name this Fletcher and Obradovié¢’s approach HDE.

7.3.2 TopGen

The TopGen algorithm [Opitz & Shavlik, 1995] searches the space of possible extensions of
a KBANN network, and determines an extension with the best generalization accuracy on the
cross-validation set. In other words, TopGen generates a KBANN using the domain theory,
trains it using the backpropagation algorithm and puts it on a queue of candidate hypotheses.
The algorithm chooses the best (in terms of classification accuracy) network from the queue and
generates new networks by adding neurons at different locations in the best network chosen.
These new networks are trained and placed on the queue. After this process is repeated for a

number of iterations, the best network on the queue is returned.

7.3.3 REGENT

The REGENT algorithm [Opitz & Shavlik, 1997] extends TopGen by performing a genetic
search in the space of network architectures. It starts with a population of networks from the
initial KBANN. The fitness value of an individual network is the error on a cross-validation
set. Two genetic operators, crossover and mulation, are specialized for connectionist theory
refinement, and applied to the individuals in the population to generate new candidate net-
works. The crossover operator tries to maintain the rule structure of the network, and the

mutation operator adds a node to the network using the TopGen algorithm. It is reported that

both TopGen and REGENT outperform the backpropagation and KBANN algorithms.

116

7.3.4 MTiling-MPyramid

The domain knowledge (e.g., set of rules) is translated into a network of perceptrons as
described in section 7.2. Among the various constructive neural network algorithms introduced
in chapter 4, a combination of MTiling and M Pyramid algorithms is used in this system [Parekh
& Honavar, 1998]. The former is used to discretize the inputs for the latter, and the latter
is used for the constructive theory refinement. In other words, this hybrid approach takes in
real-valued patterns and produces a binary representation using the MT7Tiling algorithm, and
apply the binary representation to the MPyramid algorithm to refine the theory. Figure 7.2

depicts this hybrid system.

MPyramid
Constructive Neural Network

Domain
Theory MTiling Layer
(Discretization)

Input Units

Figure 7.2 Hybrid constructive network for theory refinement.

7.4 Experiments
7.4.1 Datasets
Three different datasets were used in our experiments:

e Ribosome

This data is from the Human Genome Project. It comprises of a domain theory and a

117

set of labeled examples. The input is a short segment of DNA nucleotides, and the goal

is to learn to predict whether the DNA segments contain a ribosome binding site. There

are 17 rules in the domain theory, and 1880 examples in the dataset.

¢ Promoters

This data is also from the Human Genome Project, consists of a domain theory and a
set of labeled examples. The input is a short segment of DNA nucleotides, and the goal

is to learn to predict whether the DNA segments contain a promoter site. There are 31

rules in the domain theory, and 940 examples in the dataset.

e financial advisor

The financial advisor rule base contains 9 rules as shown in Figure 7.3.

if (sav_adeq and inc_adeq) then

if dep_sav_adeq then

if assets_hi then

if (dep_inc_adeq and earn_steady) then
if debt_lo then

if (sav > dep * 5000) then

if (assets > income * 10) then

if (income > 25000 + dep * 4000) then
if (debt_pmt < income * 0.3) then

© 0~ S O k= W N

invest_stocks
sav_adeq
sav_adeq
inc_adeq
inc_adeq
dep_sav_adeq
assets_hi
dep_inc_adeq
debt_lo

Figure 7.3 Financial advisor rule base.

As in [Fletcher & Obradovi¢, 1993], a set of 5500 labeled examples that is consistent

with the rule base are randomly generated. 500 examples are used for training and the

remaining 5000 is used for testing.

7.4.2 Experimental Results

We compare the performance of our approach using DistAl with the approaches shown in

Section 7.3 for each dataset.

118

7.4.2.1 Human Genome Project Datasets

A ten-fold cross validation is used in each approach. The average training and test accu-
racies of the rules in domain theory alone were 87.29 £+ 0.22 and 87.29 £ 2.03 for Ribosome
dataset and 77.45 £ 0.56 and 77.45 £ 5.01 for Promoters dataset, respectively. Table 7.1 and
7.2 shows the average generalization accuracy and the average network size (along with the

standard deviations where available) for Ribosome and Promoters datasets, respectively.

Table 7.1 Results of Ribosome dataset.

Test % Size
Rules alone 87.3 £ 2.0 —
DistAl 86.3 £ 2.4 | 40.3+1.3
MTiling-MPyramid | 90.3 + 1.8 | 234+ 0.0
TopGen 90.9 42.14+9.3
REGENT 91.8 70.1 +£25.1

Table 7.2 Results

of Promoters dataset.

Test % Size
Rules alone 77.5 £ 5.0 —
DistAl 93.0 £ 2.8 | 12.2+1.0
MTiling-MPyramid | 96.3 £ 1.8 | 34+ 0.0
TopGen 94.8 40.2 £+ 3.3
REGENT 95.8 74.9 + 38.9

As we can see in Table 7.1 and 7.2, our approach yielded a reasonable performance. For
Ribosome datset, it produced a lower generalization accuracy than other approaches. it also
generated bigger networks than MTiling-MPyramid and REGENT. For Promoters dataset, it
produced comparable generalization accuracy with smaller network size.

The time taken in our approach is significantly faster than other approaches. This is

because DistAl is much faster (see in Chapter 5) than perceptron learning algorithms and the

backpropagation algorithm. REGENT is even slower since it employs the genetic search.

119

7.4.2.2 Financial Advisor Rule Base

As explained earlier, 5500 patterns were generated randomly to satisfy the rules in Fig-
ure 7.3, of which 500 patterns were used for training and the remaining 5000 patterns were
used for testing the network. In order to experiment the algorithms with several different
incomplete domain theories, some of the rules were pruned with its antecedents in each exper-
iment. For instance, if sav_adeq was selected as the pruning point, then the rules for sav_adeg,
dep_sav_adeq, and assels_hi are eliminated from the rule base. In other words rules 2, 3, 6, and
7 are pruned. Further, rule 1 is modified to read “if (inc_adeq) then invest_stocks”. Then the
initial network is constructed from this modified rule base and augmented using constructive
learning.

Our experiments follow those performed in [Fletcher & Obradovi¢, 1993] and [Parekh &
Honavar, 1998; Parekh, 1998]. As we can see in Table 7.3 and 7.4, our approach either
outperformed other approaches or yielded comparable results. It output higher accuracies
than other approaches in several cases, and it always produced compact networks. As discussed
earlier, the speed advantage of our approach is significant.

Table 7.3 Results of financial advisor rule base (DistAl and MTil-
ing-MPyramid).

Pruning point DistAl MTiling-MPyramid Rules alone
Test % | Size | Test % Size Test %

dep_sav_adeq 89.2 17 [9124+ 1.7] 282+ 3.6 52.4
assets_hi 99.5 2 99.4 £ 0.2 | 10% 0.0 99.5

dep_inc_adeq 97.5 6 94.3 £ 1.5 | 21.0 £ 3.1 90.4
debt_lo 92.9 9 |194.1+£2.0]22.1+4.0 81.2
sav_adeq 98.4 9 90.8 £ 1.5 | 26.4 £ 3.3 87.6
inc_adeq 92.3 15 | 83.8+£2.2 | 32.7+£ 29 67.4

7.5 Summary and Discussion

Theory refinement techniques offer an attractive approach to exploiting available domain
knowledge to enhance the performance of data-driven knowledge acquisition systems. Neural

networks have been used extensively in theory refinement systems that have been proposed in

120

Table 7.4 Results of financial advisor rule base (HDE).

Pruning point HDE Rules alone
Test % | Hidden Units Test %

dep_sav_adeq 92.7 31 75.1
assets_hi 92.4 23 93.4

dep_inc_adeq 85.8 25 84.5
debt_lo 84.7 30 61.7
sav_adeq 92.2 19 90.9
inc_adeq 81.2 32 64.6

the literature. Most of such systems translate the domain theory into an initial neural net-
work architecture and then train the network to refine the theory. The KBANN algorithm is
demonstrated to outperform several other learning algorithms on some domains [Towell et al.,
1990; Towell & Shavlik, 1994]. However, a significant disadvantage of KBANN is its fixed net-
work topology. TopGen and REGENT algorithms are proposed to eliminate this limitation and
attempt to modify the network architecture. Experimental results demonstrate that TopGen
and REGENT outperform KBANN on several applications [Opitz & Shavlik, 1995; Opitz &
Shavlik, 1997]. The MTiling-MPyramid algorithm builds a network of perceptrons. Its perfor-
mance, in terms of classification accuracies attained, as reported in [Parekh & Honavar, 1998],
is comparable to that of REGENT and TopGen, but at significantly lower computational cost.

We proposed a connectionist theory refinement system based on DistAl and compared its
performance with several other connectionist theory refinement systems. While many connec-
tionist strategies translate the domain theory into an initial network architecture, our approach
directly uses the set of rules to utilize the domain theory without any translation. More impor-
tantly, our approach is significantly faster other connectionist approaches compared because
DistAl trains the network without iterative weight update procedures (e.g., perceptron learn-
ing, backpropagation algorithm) and/or the expensive genetic search. Experimental results
demonstrate that our approach yields comparable generalization accuracies and favorable net-
work size.

Some directions for future research include:

121

e Our current framework does not allow any changes to the original rules of the domain
theory. In some scenarios it might be beneficial to allow the theory refinement system to
explicitly modify the original rules. Design of a constructive learning scheme that allows
for direct modification of the existing domain theory and also adds new knowledge rules
is worth exploring in depth. In addition, considering uncertainty in the domain theory

is of interest.

e Extraction of rules from the trained neural networks is an actively pursued area of re-
search and finds direct applicability in data mining. We have not yet explored approaches
for extracting the refined knowledge rules from the trained network. We conjecture that
our method for training constructive learning algorithms would make the knowledge
extraction task simpler. Qur approach uses hyperspherical threshold neurons whose op-
eration can more easily be translated into rules than the sigmoid neurons typically used in
backpropagation type algorithms. Further, since the original rules are left uncorrupted in
our approach, the comprehensibility of rules extracted from the trained network is likely
to improve significantly. There is significant interest in the study of efficient techniques
for knowledge extraction from trained neural networks. The interested reader is referred

to [Towell & Shavlik, 1993; Fu, 1993; Craven, 1996] for additional details.

e Recent research has focused on the use of neural networks for cumulative multi-task
learning [Thrun, 1995]. The goal here is to exploit the prior knowledge acquired while
learning the earlier tasks to make the learning of the later (possibly more difficult) tasks
easier. A constructive neural network learning algorithm is also good candidate for

multi-task learning.

122

8 MULTI-AGENT SYSTEMS AND MOBILE AGENTS FOR
INFORMATION RETRIEVAL AND KNOWLEDGE DISCOVERY

8.1 Introduction

As introduced in chapter 1, translating recent advances in our ability to gather, store, and
analyze a wide variety of data on multiple, geographically distributed, heterogeneous data and
knowledge sources into significant breakthrough in distributed problem-solving and decision-

making in various applications presents the following problems [Honavar et al., 1998]:

e The large volumes of data, the range of potentially relevant and useful complex inter-
relationships that need to be discovered, and the diversity of data sources challenge
approaches to data mining and knowledge discovery. Hence, tools are necessary to sup-
port data-driven knowledge acquisition and incremental theory refinement from multi-
ple, heterogeneous, structured as well as semi-structured data and knowledge sources
(including multiple types of sensor data, text, images, and the like). Machine learning is
a practical approach to data mining and knowledge discovery. Among various machine
learning algorithms, artificial neural networks, methods to improve their performance,
and some applications are introduced and studied for this purpose in previous chapters

(chapter 2, 3,4, 5,6, 7).

e Design of complex information systems in order to be feasible, often requires modular
design which involves the decomposition of the overall task into more manageable sub-
tasks. Multi-agent systems are appropriate tools for this purpose, A multi-agent system
consists of multiple autonomous agents, each of which is responsible for a data source

(e.g., independently managed database) or analysis capability (e.g., a knowledge discov-

123

ery tool). Modular design also lends itself to being adapted and extended for a broader
class of knowledge network applications. There should be mechanisms for communica-
tion, coordination and control of collections of agents to ensure satisfactory operation of

multi-agent systems.

e The data and knowledge sources are often geographically distributed. This calls for the
use of information assistants or software agents for intelligent, selective, and context-
sensitive data gathering and data assimilation prior to large scale data analysis. Hence,
tools for monitoring different data sources and routing the appropriate information se-
lectively to relevant sites or specific users are needed. Since the information of interest
is user and context-dependent, such tools have to be customizable to specific users and
information contexts. Furthermore, given the large volumes of data involved, it is de-
sirable to perform as much analysis as feasible at the sites where the data is located
and transmit only the results of analysis rather than flooding the network with data.
Such mobile software agents are of significant interest that can transport themselves to

appropriate sites, carry out the computation on site, and return with useful results.

This chapter gives more detailed descriptions on multi-agent systems and mobile agents,

and introduces our approaches to those problems.

8.1.1 Multi-agent Systems

A multi-agent system consists of a set of agents that cooperate each other to accomplish
certain tasks of interest. Multi-agent systems, because of their modularity, offer an attrac-
tive approach to the design of such systems that utilize multiple, heterogeneous, and often
autonomous resources in decision support, scientific, distributed manufacturing, business, mil-
itary command and control, and other applications. In such multi-agent systems, satisfactory
completion of the tasks at hand depend critically on effective communication and coordination
among the agents. In order to harvest the potential power of such systems in practical appli-
cations, it is essential that suitable mechanisms be devised to exercise adequate control over

the behavior of such systems. In multi-agent systems, the notion of control suggests such func-

124

tions as coordination among agents, synchronization among multiple agents, activation and
deactivation of individual agents or groups of agents, selection among agents, creation of new
agents when needed, elimination of agents that are no longer needed, adaptation of individual
agents and agent populations to changes in the environments or task demands, learning (both
at the individual as well as group levels) from experience, and (at a much slower timescale)
evolution of agent populations toward more desirable behaviors. Both natural systems (e.g.,
cells, brains, immune systems, evolution, groups, social organizations, economies, societies)
and artificial systems (computers, multi-computers, computer networks, programs, factories)
offer rich sources of examples of a wide variety of coordination and control mechanisms that
can be beneficially incorporated into the design of complex information processing systems in
general [Honavar & Uhr, 1990; Uhr, 1984]: coordination that emerges from interaction among
large number of agents that exhibit relatively simple behaviors inspired by organizations such
as the ant colonies [Hofstadter, 1979]; hierarchical control where the flow of control follows
the structure of the hierarchy (e.g., in the military); coordination that emerges from interac-
tion (including communication and negotiation) among self-interested agents as exemplified
in the contract net protocol (CNP) [Smith, 1980; Sandholm, 1993; Sandholm, 1998] and re-
lated negotiation mechanisms [Rosenschein & Zlotkin, 1994] and distributed routing in large
self-managing communication networks [Mikler et al., 1996]; control that emerges from compe-
tition for resources under the influence of environmental rewards as exemplified by evolutionary
processes modeled by genetic algorithms [Mitchell, 1996].

The Knowledge Query and Manipulation Language (KQML) [Finin et al., 1997] and the
CNP [Smith, 1980] are two candidates that have been proposed for multi-agent coordination.
The KQML provides a set of performatives which define the communicative acts that can be
performed by the agents. Agent tell facts to other agents, evaluate expressions, subscribe to
services, and so on. The CNP provides a framework for negotiation using bidding and contracts
among agents in a distributed problem solver [Smith, 1980]. In other words, agents announce,
bid, award and take awards for certain tasks continuously to maximize the overall utility of the

system. (See Section 8.2.1 for details).

125

The CNP can be applied to different kinds of applications that can be solved efficiently by
a distributed problem solver. The CNP can be used to support interactive negotiations among
multiple agents in a distributed problem solver. Omne such application involves information
retrieval and knowledge discovery from heterogeneous, autonomous, and distributed data and
knowledge sources. Section 8.2 describes our approach to coordination and control of multiple

agents for information retrieval through inter-agent negotiation using the CNP.

8.1.2 Mobile Agents

Mobile agents are such agents that can move in a computer network from host to host as
needed in accomplishing their tasks. Mobile agents offer a natural extension of the remote
programming paradigm in several interesting ways. In particular, mobile agents are generally
thought to be able to act with a certain degree of autonomy. That is, the agent is able to make
intelligent decisions regarding its itinerary and modify it in a dynamic fashion in response to in-
formation that becomes available as it moves from one host to another. Multiple mobile agents,
when equipped with the ability to communicate with each other, can negotiate, collaborate,
and compete with each other as appropriate in the pursuit of their objectives [Rosenschein &
Zlotkin, 1994], as described earlier. Mobile agents provide a potentially efficient framework
for performing computation and analysis in a distributed fashion at sites where the relevant
data is available, and transmitting only the results of analysis instead of expensive shipping of
large volumes of data across the network. For example, in many data mining and knowledge
discovery tasks, a mobile agent can visit multiple, geographically distributed data repositories
and return with knowledge (e.g., in the form of a few concise rules) that captures the observed
regularities in the data. Unlike remote procedure calls which require ongoing communication
through a failsafe network from the time of initiation of the task until its completion, a major
advantage of mobile agents is that ongoing interaction does not require ongoing communication
[White, 1997]. Mobile agents provide an attractive paradigm for design and implementation
of scalable, flexible, and extensible systems for selective information retrieval and knowledge

discovery from multiple, geographically distributed, heterogeneous data sources. Also, mobile

126

agents can easily adjust their behavior as needed based on the status of the network. For
instance, in case of network failure, it can wait until the network connection is restored, or it
can find alternative routes.

Mobile agent infrastructures support the creation, deployment, and management of mo-
bile software agents. There is considerable ongoing research on mobile agent infrastructures
[White, 1997; Kiniry & Zimmerman, 1997; Wong et al., 1999]. Most of them have a similar
architecture consisting of at least three components: agent servers, agent interface, and agent
brokers (service directory). Agent servers support basic agent migration mechanisms, authen-
tication, and perhaps provide other services. Agent brokers provide addresses of agent servers
and support mechanisms for uniquely naming agents and agent servers. Agent interface is
used by application programs to create and interact with agents. The different mobile agent
infrastructure proposals differ from each other in terms of detailed implementation (e.g., choice
of agent transport mechanism, agent programming languages, and so on). For the experiments
described in this chapter, we used ObjectSpace’s Voyager ! which is a platform-independent
mobile agent infrastructure that is written completely in Java. (See Section 8.3.1 for details).

Nowadays, it is possible for individuals around the world to access a wide variety of in-
formation sources on the Internet. However, effective use of these information sources (e.g.,
documents, articles, electronic mail messages, news, and the like), requires fairly sophisticated
tools for locating, classifying, and retrieving only those items that are of interest to a given
user of a group of users. For instance, a researcher might be interested in selectively retrieving
recently published papers related to his or her research from a variety of sources. Similarly, an
individual might be interested in selectively retrieving and reading news articles. This presents
us with a document classification problem. This is just one of many similar tasks that need to
be automated in order for people to be able to make effective use of the emerging computing,
communications, and information infrastructure.

Document retrieval has been the subject of study for several decades [Salton, 1982]. How-

ever, work on personalized document retrieval agents is relatively new. Some examples include

'Thttp://www.objectspace.com/Products/voyagerl.htm]

127

WebWatcher [Joachims et al., 1997], Personal WebWatcher [Mladenic, 1996], Fab [Balabanovic &
Shoham, 1997] which learn user interests using user feedback and recommend and/or prefetch
web pages; and software agents for mail handling and electronic news filtering [Maes, 1997].
We implemented simple mobile agents for information retrieval from multiple, possibly hetero-
geneous knowledge and data sources using Voyager. The mobile agents are also customizable
to individuals to consider their interests.

Against this background, the rest of this chapter is organized as follows: Section 8.2 de-
scribes the CNP and its implementation, and presents the results of simulations designed to
evaluate the performance of CNP in a multi-agent system for information retrieval. Section 8.3
focuses on the design and implementation of customizable intelligent mobile agents for docu-
ment retrieval from distributed document collections. Section 8.4 concludes with a summary

and discussion of some directions for future research.

8.2 Design of a Multi-Agent System using the Contract Net Protocol

In this section, we describe the design and implementation of a multi-agent system for

information retrieval and knowledge discovery using the CNP.

8.2.1 Contract Net Protocol

The CNP was originally proposed as a tool for communication and control in a distributed
problem solver [Smith, 1980]. Its use was demonstrated in a distributed sensing system in
[Smith, 1980] and for a distributed delivery system in [Sandholm, 1993]. CNP provides a
mechanism for agents to communicate and negotiate to solve a distributed problem via con-
tracts. A contract is a set of tasks to be accomplished. Agents announce tasks that they need
performed, make bids to perform tasks announced by other agents, evaluate the bids and award
contracts. Each agent has a set of capabilities and needs. An agent’s capabilities indicate the
set of tasks that the agent can perform for other agents (perhaps at a certain cost). An agent’s
needs indicate the set of tasks that the agent needs to accomplish. The tasks that are part

of an agent’s needs candidates to be delegated to other agents: the tasks are announced to

128

other agents, the bids for the tasks are collected, the best bid (which yields the highest utility
e.g., profit, quality of the service, etc.) is determined and then the tasks are awarded to the
agent submitting the best bid. Under certain assumptions, it can be shown that in successive
contracts each contract leads to a task allocation that is more beneficial to the entire society

of agents that is involved in the negotiation process [Sandholm, 1997].

8.2.2 Implementation Details

Our CNP implementation is based on a modular, object-oriented design which contains
several domain-independent modules as well as a few domain-dependent (application-specific)
modules. This design lends itself to being adapted for use in a broad range of applications.
The domain-independent modules include: Announcer, Bidder, Awarder, Awardee as well as
certain auxiliary modules. They work closely with the Local Optimizer module which calls

application-dependent functions. The domain-independent modules operate as follows:

o Directory provides assistance in locating agents. When an agent enters into the network,

it registers with the directory.

o Messenger handles sending and receiving of messages between agents. It queries the
directory to locate agents. It also manages the storage and organization of messages.

Other modules use these stored messages.

e Phase Controller controls the orderly execution of different stages of the negotiation

process by calling the announcer, bidder, awarder and awardee.

e Announcer sends announcements to an appropriate set of agents. Fach message defines
the task to be fulfilled and sets any limitations (e.g., the maximum price it is willing to
pay, the time limit it will be waiting to receive bids, and so on). The local optimizer
selects a task from among the current needs for making an announcement. Only one

announcement message is sent per cycle.

e Bidder generates bids in response to announcements received. The process is completed

in two stages: It first discards announcements that correspond to tasks that can not be

129

performed given the current capabilities of the agent or announcement that have expired.

It then determines the appropriate bids by consulting the local optimizer.

o Awarder works with the local optimizer to process various bids (received within some
time limit), generating awards based on some criteria (e.g., lowest cost, highest quality,
etc.), and sends awards to appropriate agents. The agents whose bids are not selected

are sent loser messages.

o Awardee accepts an award that is received, communicates with the local optimizer to
update the state of the system (e.g., if it is supposed to supply some products, it decreases

the quantity of products and increases the income/assets).

The local optimizer is a domain or application dependent module which incorporates
domain-specific features to make decisions. Each phase of negotiation relies on certain func-
tions performed by the local optimizer which ensures that each agent behaves rationally so as
to maximize its utility.

The four phases of Announcer, Bidder, Awarder and Awardee are repeated until the negoti-
ation reaches an equilibrium (i.e., no agent is in a position to improve its utility by delegating or
accepting tasks to be performed) or an acceptable solution with anticipated utility is obtained.

The overall view of the multi-agent system, the pseudo-code that summarizes the CNP.

and the structure of an agent are shown in Figure 8.1, Figure 8.2 and Figure 8.3, respectively.

Directory

Agent

Figure 8.1 Overall view of the system.

130

do forever (in Phase Controller)
Bidder:

e Read all the announcements received and check their expiration times;

e Generate bids within the limit of resources available (e.g., cash) for announcements
that has not expired;

e Send the bids to the corresponding agents;

e Delete announcements processed;

Awarder:
e Read all the bids for announcements received, and drop any bids that are late;
e Pick the best bids for announcements whose time limit is expired;

e Send an awarding message to the winning agent, and send a loser message to
all the other agents who had bid;

e Delete all expired announcements;

Awardee:
o Accept all awarding messages; Update the state of the system;
o Get all the loser messages;

e Remove all the announcements received corresponding to the awarding/loser
messages;

Announcer:

e Pick one item from Needs set (that gives highest utility) and send out announcements
to agents;

e Re-announce announcements that did not receive any bids within the time limit;

end

Figure 8.2 The contract net protocol.

131

M essenger
/ Messages
Phase Controller \
Announcer

Local Optimizer)<——= Bidder

Awarder

Awardee

Figure 8.3 An agent using the contract net protocol.

8.2.3 Evaluation

In order to explore the feasibility of using CNP for coordination among agents in a dis-
tributed knowledge network, we designed and implemented a multi-agent system for informa-
tion retrieval and knowledge discovery from distributed data sources. Fach agent maintains
a needs table and a capabilities table. The needs table contains description of the data (e.g.
a list of queries) that the agent needs, and the capabilities table contains description of the
agent’s capabilities (e.g., the information that is able to supply, or analysis functions that is
able to perform on data) that can be utilized by other agents. Items in both tables have costs
associated with them. The cost in needs table is the maximum cost the agent is willing to pay
to get the information. The cost in capabilities table represents the cost (measured in some
suitable units) of accomplishing the task in question. These costs are used by the local opti-
mizer during the negotiation process. Fach agent seeks to maximize its utility. The framework
is flexible enough to allow an agent to provide value-added information to other agents. For

example, an agent can obtain data from other agents, perform analysis of the data to extract

132

some useful knowledge, and then provide the knowledge back to the agents that need it. Six
agents were used in the CNP in our experiments.

The simulation results revealed the effectiveness of the CNP. Each agent was able to acquire
the information that it needed from other agents at minimum cost attainable through the
negotiation process. Sometimes, it was observed that some agents’ bids were not sent in time
(because of processing and communication delays) and thus were eliminated in the awarding
phase. However, each agent was able to take advantage of the best bid among those that were
available at any given time. More systematic experiments under a variety of conditions are

needed to more completely characterize the performance of this system.

8.3 Intelligent Mobile Agents for Information Retrieval

In this section, we describe the design and implementation of intelligent mobile agents for

retrieving relevant information using the Voyager mobile agent infrastructure.

8.3.1 The Voyager Mobile Agent Infrastructure

Several groups have designed and implemented mobile agent infrastructures. Most of them
provide basic capabilities for creating, transporting, and managing mobile agents. An agent
system, Agent TCL, is designed and implemented in [Gray et al., 1996; Kotz et al., 1997]. It
includes network-sensing tools and a docking system for agents to move between computers.
Three leading commercial mobile agent systems — General Magic’s Odyssey 2, IBM’s Aglets 2,
and ObjectSpace’s Voyager — are introduced and compared in [Kiniry & Zimmerman, 1997].
Recently, a set of standards for Mobile Agent System Interoperability Facilities (MAF) [FOKUS
et al., 1997] has been proposed by a consortium of several companies and research groups in-
cluding the GMD FOKUS and IBM. MAF standardizes several key aspects of mobile agent
infrastructure including: agent management, agent transfer, agent and agent system names,
agent system types, and location (address) syntax. This will facilitate interoperability among

different mobile agent systems that are based on different architecture, design, and implemen-

?[http://www.genmagic.com/technology/odyssey.html]
[http://www.trlibm.co.jp/aglets]

133

tation choices. (See [Wong et al., 1999] for a discussion of an MAF-compliant Java-based
implementation of a mobile agent infrastructure).

Voyager is designed to help developers produce high impact distributed systems quickly.
Voyager is implemented entirely in Java and designed to use the Java language object model.
Voyager allows regular message syntax to construct remote objects, send them messages and
move them between programs. The Voyager Object Request Broker (ORB) provides services
for mobile objects and autonomous agents. It also provides services for mobile objects and
autonomous agents. It also provides services for persistence, scalable group communication,
and basic directory services.

Agent platforms like Odyssey or Aglets allow developers to create an agent, program it
with a set of tasks, and launch it into a network to fulfill its mission. However, they have
minimal support for basic distributed computing and treats agents differently than simple
objects. Aglets use sockets and Odyssey uses Remote Method Invocation (RMI) to move agents
between machines. However, none of these platforms allow sending a regular Java message to
a stationary or moving agent. As a result, it is very difficult for objects to communicate with
an agent after the agent has been launched and for agents to communicate with other agents.

An attractive feature of Voyager is that it seamlessly integrates distributed computing with
agent technology. An agent in the Voyager system is a special kind of object that can move
independently, can continue to execute as it moves, and otherwise behaves like any other Java
object. Voyager enables objects and other agents to send standard Java messages to an agent
even as the agent is moving. In addition, Voyager allows us to remote-enable any Java class,
even a third party library class, without modifying the class source in any way. (See Voyager

User Guide for further details).

8.3.2 Design of Customizable Document Retrieval Agents

We focus on the design of customizable agents for information retrieval from distributed
data sources. We illustrate our approach to this problem using the customized document

retrieval task. However, the proposed approach can be easily adapted to handle a wide range

134

of selective information retrieval tasks (e.g., image retrieval, DNA sequence retrieval, etc.).

Classification of documents necessarily has to involve some analysis of the contents of a
document. In the absence of a satisfactory solution to the natural language understanding
problem, most current approaches to document retrieval use a bag of words representation of
documents [Salton, 1989; Korfhage, 1997]. A document is represented as a vector of weights for
terms (or words) from a vocabulary. Although a variety of approaches can be used to design
document classifiers using the bag of words representation, to keep the discussion focused,
we restrict ourselves to a relatively simple yet effective approach based on the TFIDF (term
frequency — inverse document frequency) classifier [Salton & McGill, 1983; Korfhage, 1997;
Yang et al., 1998d].

The TFIDF approach to document classification works as follows: Let V be the vocabulary
used. Let d be a document. The document is processed using stopping and stemming proce-
dures [Salton, 1989; Korfhage, 1997] to obtain a bag of words for document d. The stopping
procedure eliminates all commonly used terms, and the stemming procedure [Porter, 1980]
produces a list of representative (root) terms. Let w; be the ith word in the vocabulary V.
The term frequency of w;, TF(w;,d), is the number of times w; occurs in d. The document
frequency of w;, DF(w;), is the number of documents in which w; occurs at least once. The

inverse document frequency of w;, I DF(w;), is defined as

IDF(w;) = log(%)

where | D] is the total number of documents. Then, the term frequency — inverse document

frequency of w;, TFIDF(w;,d) is given by [Salton, 1989; Korfhage, 1997]
TF(w;,d)-IDF(w;)
The vector representation d of a document d is given by
d'= [TFIDF(wy,d) TFIDF(wy,d) -~ TFIDF(wy),d)|

A TFIDF document classifier is constructed as follows: Let C be a collection of document

classes of interest. A prototype vector ¢ is generated for each class ¢ € C as follows:

135

e=Yd
d€c
A document n to be classified is assigned to the class whose prototype is the closest to it

(as measured by some suitable distance function). The cosine function is a commonly used

distance measure. Thus, the classification of n is given by

arg max cos(7i, €)

n-c
= argmax ———57
cec ||l [l)
A simple version of the document classification task is to classify documents into two

categories: interesting or uninteresting. This is accomplished by training a document classifier

(i.e., constructing the class prototypes) using a set of pre-classified documents.

8.3.3 Implementation Details

The TFIDF classifier is incorporated into mobile agents on the Voyager mobile agent plat-
form. First, a mobile agent (Agentl) is generated for searching and retrieving a set of doc-
uments from a remote site that matches with the query given by the user. The query is used
to retrieve documents that match the query. The agent is shipped to the remote site, and the
agent retrieves matching documents and sends them to the local site. Then the agent dies.
The user then classifies the retrieved documents as interesting or not interesting. This pro-
vides a dataset for training the document classification and retrieval agent using the approach
outlined above. Then, a TFIDF based document classification and retrieval agent is designed
using the training data and the resulting agent (Agent2) is sent to a remote site to retrieve
relevant documents. Relevant documents are determined by the classifier at the remote site

and returned to the local site. Then the agent dies. Figure 8.4 depicts these agents.

8.3.4 Evaluation

The paper abstracts dataset (also shown in Table 6.1) was used in the experiments: 404

paper abstracts published between 1995 and 1997 were chosen from IEEE Expert magazine,

136

REMOTE SITE1

LOCAL SITE

Agentl

REMOTE SITE 2

Figure 8.4 Mobile agents for document retrieval.

137

Journal of Artificial Intelligence Research and Neural Computation. Each abstract is repre-
sented as a feature vector as explained in section 8.3.2. A query was given to retrieve paper
abstracts that is related to some topics of interest. The query vector is compared with each
document vector to select 100 paper abstracts that match with the query. The selected paper
abstracts were classified by two different users either interesting or not interesting to obtain
two training sets (Abstractl and Abstract2 in Table 6.1). There are 790 features and two
classes in the datasets.

Instead of downloading all documents from the distributed databases, the agents worked on
the remote databases, retrieved only a subset of relevant documents and sent them to the local
site thereby minimizing the duration of the expensive network connection. In our experiments,
the amount of data transferred in the mobile agents (the classifier and the relevant information)
was much less than that in a conventional system (the entire data). The savings of network
connection in mobile agents will be even greater for very large data while the mobile agents

are lightweight.

8.4 Summary and Discussion

Translating recent advances in our ability to gather, store, and analyze a wide variety of
data on multiple, geographically distributed, heterogeneous data and knowledge sources into
significant breakthrough in distributed problem-solving and decision-making in various appli-
cations requires tools such as machine learning, multi agent systems, and mobile agents. Since
some machine learning algorithms and related work are discussed in previous chapters, multi-
agent systems and mobile agents are studied in this chapter. The former involves coordination
and negotiation among agents to fulfill certain tasks, and the latter make agents move around
the network from host to host and work on the available data and return the results to starting
place instead of flooding the network with data. We implemented and evaluated a multi-agent
system and mobile agents for information retrieval.

The CNP is used in the multi-agent system. CNP provides an attractive framework for

negotiation and coordination among self-interested rational agents. Within this framework,

138

each agent can announce tasks, make bids, evaluate bids made by other agents to complete
the tasks, and offer contracts. Hence, it offers a possible mechanism for coordination among
multiple autonomous agents in multi-agent systems. OQur implementation of the CNP, because
of its modular design, lends itself to being adapted for use in a broad range of applications
of distributed knowledge networks [Honavar et al., 1998]. The feasibility of this approach to
coordination among multiple autonomous agents was demonstrated on an application involving
information retrieval from distributed data sources.

Intelligent mobile agents offer an attractive paradigm for the design of modular, flexible,
robust, scalable, and adaptive information systems for a variety of applications, including
customized information retrieval. Machine learning appears to be the most practical approach
to designing customizable software agents. We have presented the design of mobile agents
for customized document classification and retrieval using the commercially available Voyager
mobile agent infrastructure. The experiments reported here demonstrate the effectiveness
of machine learning as a viable and practical approach to the design of such agents. The
performance of the agents in terms of classification accuracy on novel documents not used
during training is quite good, and can be improved further using automated feature subset
selection. Mobile agents offer a significant performance advantage over conventional remote
procedure calls when we deal with very large remote data collections only a small fraction of
which is of interest to the user.

Some interesting and promising directions for further research are outlined below:

e There are still many issues to be explored in multi-agent systems. For instance, the scala-
bility of our approach in large multi-agent systems is of interest. Also, considering hybrid
coordination mechanisms that use CNP in combination with a hierarchical organization

of multi-agent systems is of interest.

e The CNP uses very simple languages to communicate between agents. The design of
adequately expressive languages for representing the needs and capabilities of agents

across different classes of applications is of interest.

139

Multi-agent systems with the CNP can be used to solve other tasks. For instance, it can
be applied to distributed manufacturing system where each agent has lists of parts to be

needed or to be supplied. Agents can negotiate to maximize their profits and products.

The CNP can be extended to consider subconiracts. Each agent can try to find the best

deal through subcontracts.

Systematic experiments with distributed data sources, under a variety of network condi-
tions and data source characteristics (e.g., percentage of relevant documents) would be

helpful in evaluating the scalability of this approach to real-world applications.

Systematic studies to explore the relative performance advantages and disadvantages of
alternative designs and implementations of such systems (including the mix of mobile

and static agents) is of interest.

The design of customizable information retrieval agents for a broad range of semi-
structured and unstructured data sources (e.g., genome data, image data, etc.) is also of

interest.

140

9 CONCLUSION

We have explored several related research problems in the design of systems of intelligent
learning agents for information retrieval and data-driven knowledge discovery. These problems
are of significant interest since they offer sophisticated tools for locating, classifying, selectively
retrieving, and extracting knowledge from a wide variety of heterogeneous, distributed infor-
mation sources accessible through the Internet. The major contributions of this dissertation

include:

¢ Multi-category variants of perceptron learning algorithms for non-separable
classification tasks
Three different perceptron learning algorithms (the pocket algorithm with ratchet modi-
fication, the thermal perceptron and the barycentric correction procedure) were extended
for multi-category classification. The performances of the algorithms (in both winner-
take-all and independent training) were compared with carefully chosen artificial and

real-world datasets in order to explore the inductive bias of each algorithm.

¢ Multi-cagetory extension of constructive neural network learning algorithms
Many of the constructive neural network learning algorithms proposed in the literature
are restricted in the number of output classes that they can classify, and the feature
types that they can handle. We have extended these algorithms to solve problems with
multi-category, real-valued patterns. Our extension guarantees 100% classification ac-
curacy on finite, non-contradictory datasets. The effectiveness of these algorithms were

demonstrated on a variety of real-world data [Parekh, 1998].

141

¢ Design of an efficient inter-pattern distance-based constructive neural net-
work learning algorithm
A new, provably convergent constructive neural network learning algorithm, DistAl, was
designed and implemented. DistAl does not require time-consuming, iterative weight up-
date procedures. It makes use of inter-pattern distance which can be computed by one
pass through of the dataset. Therefore, it generates a network for a given task signif-
icantly faster. In addition, DistAl can handle multi-category classification tasks with a
variety of features (e.g., binary, real-valued, nominal, etc.). Our experimental results on
various artificial as well as real-world datasets demonstrate the high speed learning of
DistAl, and present comparable classification accuracy to other sophisticated algorithms
that rely on iterative weight updates. Because of its relatively high speed, DistAl is a

good candidate for largescale data mining and knowledge discovery.

¢ Feature subset selection with DistAl using a genetic algorithm
As DistAl is a variant of instance-based learning, the performance of the algorithm de-
pends heavily on the values of data features. Classifying an appropriate set of features
can thus improve the classification accuracy over the entire set of features. Each feature
might entail a certain measurement cost. Therefore, feature subset selection decreases
the overall cost of measurement of features. In our experiments, a genetic algorithm is
used for DistAl to find an appropriate feature subset for better performance. Experimen-
tal results demonstrate that feature subset selection improves the classification accuracy

of DistAl and decreases the number of features and measurement costs.

¢ Knowledge-based theory refinement using DistAl
The availability of (often incomplete or inaccurate) domain specific knowledge about the
concept being learned can potentially enhance the performance of the inductive learning
system. Constructive neural networks offer a natural framework for knowledge-based
theory refinement by incorporating the domain knowledge into the initial network ar-
chitecture and then refining it using a learning algorithm. We used DistAl for theory

refinement and compared its performance with other systems on several interesting ap-

142

plications with domain knowledge. The experiments revealed comparable performance

to other approaches despite the simplicity and high speed of DistAl.

¢ Multi-agent systems for information retrieval and knowledge discovery
Multi-agents systems provide an attractive approach to knowledge discovery from dis-
tributed data and knowledge sources. Mobile agents are particularly attractive since
they can move in the network, work at the remote sites, and transmit the results only
instead of wasting the network connection to ship the raw data across the network. We
designed a system of mobile information retrieval agents using the contract net proto-
col as a framework for negotiations among agents. The effectiveness of our system was

verified in the information retrieval and knowledge discovery task.

All of the research problems considered in this dissertation address important elements in
designing a modular and scalable system for information retrieval and knowledge discovery from
the abundant distributed, heterogeneous data and knowledge sources. Several future research
problems are outlined in previous chapters. Some of the key future research directions include:
alternative architectures for intelligent agents; techniques for interoperability in heterogeneous
data and knowledge sources (e.g., multidatabase systems [Sheth & Larson, 1990], mediator
based systems [Wiederhold, 1997]); alternative approaches for multi-agent coordination and
control; efficient algorithms for incremental knowledge discovery from knowledge or dynamic

data collections.

143

BIBLIOGRAPHY

Aha, D. (1991). Incremental Constructive Induction: An Instance-based Approach. Pages
117-121 of: Proceedings of the Fighth International Workshop on Machine Learning. San

Mateo, CA: Morgan Kaufmann.

Aha, D., Kibler, D., & Albert, M. (1991). Instance-Based Learning Algorithms. Machine

Learning, 6, 37-66.

Almuallim, H., & Dietterich, T. (1994). Learning Boolean Concepts in the Presence of Many

Irrelevant Features. Artificial Intelligence, 69(1-2), 279-305.

Andersen, H., & Tsoi, A. (1993). A Constructive Algorithm for the Training of a Multilayer

Perceptron Based on the Genetic Algorithm. Complex Systems, 7, 249-268.

Andersen, T., & Martinez, T. (1996). The Effect of Decision Surface Fitness on Dynamic
Multi-layer Perceptron Networks (DMP1). Pages 177-181 of: Proceedings of the World

Congress on Neural Nelworks.

Anlauf, J., & Biehl, M. (1990). Properties of an Adaptive Perceptron Algorithm. Pages
153-156 of: Parallel Processing in Neural Systems and Computers. Amsterdam, The

Netherlands: Elsevier Science Pub. Co.

Ash, T. (1989). Dynamic Node Creation in Backpropagation Networks. Tech. rept. C-015.

Institute for Cognitive Science, University of California, San Diego.

Balabanovic, M., & Shoham, Y. (1997). Fab: Content-Based, Collaborative Recommendation.

Communications of the ACM, 40(3).

144

Balakrishnan, K., & Honavar, V. (1995). Properties of Genetic Representations of Neural
Architectures. Pages 807-813 of: Proceedings of the World Congress on Neural Nelworks
(WCNN-95), vol. 1.

Balakrishnan, K., & Honavar, V. (1996a). On Sensor Evolution in Robotics. Pages 455-460
of: Proceedings of the 1996 Genetic Programming Conference. MIT Press, Cambridge,
MA.

Balakrishnan, K., & Honavar, V. (1996b). Some Experiments in the Evolutionary Synthesis
of Robotic Neurocontrollers. Pages 1035-1040 of: Proceedings of the World Congress on

Neural Networks (WCNN-96).

Banzaf, W., Nordin, P., Keller, R., & Francone, F. (1997). Genetic Programming - An Intro-

duction. San Mateo, CA: Morgan Kaufmann.
Batchelor, B. (1978). Pattern Recognition: Ideas in Practice. New York: Plenum Press.

Baum, E., & Lang, K. (1991). Constructing Hidden Units using Examples and Queries. Pages
904-910 of: Lippmann, R., Moody, J., & Touretzky, D. (eds), Advances in Neural Infor-

mation Processing Systems, vol. 3. San Mateo, CA: Morgan Kaufmann.

Bose, N., & Garga, A. (1993). Neural Network Design Using Voronoi Diagrams. IEEE Trans-

actions on Neural Networks, 4(5), T78-787.

Brill, F., Brown, D., & Martin, W. (1992). Fast Genetic Selection of Features for Neural

Network Classifiers. IEEE Transactions on Neural Networks, 3(2), 324-328.

Broomhead, D., & Lowe, D. (1988). Multivariable Functional Interpolation and Adaptive

Networks. Complex Systems, 2, 321-355.

Burgess, N. (1994). A Constructive Algorithm That Converges for Real-Valued Input Patterns.

International Journal of Neural Systems, 5(1), 59-66.

Campbell, C., & Vicente, C. (1995). The Target Switch Algorithm: A Constructive Learning

Procedure for Feed-Forward Neural Networks. Neural Computation, 7, 1245-1264.

145

Carpenter, G., & Grossberg, S. (1991). Pattern Recognition by Self-Organizing Neural Net-

works. Cambridge, MA: MIT Press.

Caruana, R. (1993). Multitask Learning: A Knowledge-Based Source of Inductive Bias. Pages
41-48 of: Proceedings of the Tenth International Conference on Machine Learning. San

Mateo, CA: Morgan Kaufmann.

Caruana, R., & Freitag, D. (1994). Greedy Attribute Selection. Pages 28-36 of: Proceedings
of the Fleventh International Conference on Machine Learning. San Mateo, CA: Morgan

Kaufmann.

Chen, C-H., Parekh, R., Yang, J., Balakrishnan, K., & Honavar, V. (1995). Analysis of Decision
Boundaries generated by Constructive Neural Network Learning Algorithms. Pages 628—

635 of: Proceedings of WCNN-95, July 17-21, Washinglton D.C., vol. 1.
Church, A. (1941). The Calculi of Lambda Conversion. Annals of Mathematics Studies, 6.
Clark, P., & Niblett, R. (1989). The CN2 Induction Algorithm. Machine Learning, 3, 261-284.

Cormen, T., Leiserson, C., & Rivest, R. (1990). Introduction to Algorithms. Cambridge, MA:
MIT Press.

Cost, S., & Salzberg, S. (1993). A Weighted Nearest Neighbor Algorithm for Learning with

Symbolic Features. Machine Learning, 10(1), 57-78.

Cover, T., & Hart, P. (1967). Nearest Neighbor Pattern Classification. IEEFE Transactions on

Information Theory, 13, 21-27.

Craven, M. (1996). Eztracting Comprehensible Models from Trained Neural Networks. Ph.D.

thesis, Department of Computer Science, University of Wisconsin, Madison, WI.

Dasarathy, B. (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification Techiniques.

Los Alamitos, CA: IEEE Computer Society Press.

Dash, M., & Liu, H. (1997). Feature Selection for Classification. Intelligent Data Analysis,

1(3).

146

Dayhoff, J. (1990). Neural Network Architectures: An Introduction. New York: Van Nostrand
Reinhold.

Deffuant, G. (1995). An Algorithm for Building Regularized Piecewise Linear Discrimination

Surfaces: The Perceptron Membrane. Neural Computation, 7, 380-398.

Devijver, P. (1982). Pattern Recognition: A Statistical Approach. Englewood Cliffs, NJ:

Prentice Hall.

Diday, E. (1974). Recent Progress in Distance and Similarity Measures in Pattern Recognition.
Pages 534-539 of: Proceedings of the Second International Joint Conference on Patlern

Recognition.

Doak, J. (1992). An Evaluation of Feature Selection Methods and Their Application to Com-
puter Security. Tech. rept. CSE-92-18. Department of Computer Science, University of

California, Davis, CA.

Domingos, P. (1995). Rule Induction and Instance-Based Learning: A Unified Approach. Pages
1226-1232 of: Proceedings of the Inlernational Joint Conference on Arlificial Intelligence

(ILJCAI-95).
Duda, R., & Hart, P. (1973). Pattern Classification and Scene Analysis. New York: Wiley.

Fahlman, S. (1988). Faster-learning Variations on Backpropagation: an Empirical Study.
Pages 38-51 of: Touretzky, D., Hinton, G., & Sejnowsky, T. (eds), Proceedings of the 1988

Connectionist Models Summer School. San Mateo, CA: Morgan-Kauffman.

Fahlman, S., & Lebiere, C. (1990). The Cascade Correlation Learning Algorithm. Pages
524-532 of: Touretzky, D. (ed), Neural Information Systems 2. San Mateo, CA: Morgan-

Kauffman.

Finin, T., Labrou, Y., & Mayfield, J. (1997). KQML As an Agent Communication Language.

In: Bradshaw, J. (ed), Software Agents. Cambridge, MA: MIT Press.

147

Fletcher, J., & Obradovi¢, Z. (1993). Combining Prior Symbolic Knowledge and Constructive

Neural Netwo rk Learning. Connection Science, 5(3,4), 365-375.

Fogel, D. (1995). Ewvolutionary Computation: Toward a New Philosophy of Machine Intelli-

gence. Piscataway, NJ: IEEE Press.

FOKUS, GMD, IBM, & et al. (1997). Mobile Agent System Interoperability Facilities Specifi-

cation. OMG TC Document orbos/97-10-05.

Foroutan, 1., & Sklansky, J. (1987). Feature Selection for Automatic Classification of non-

Gaussian Data. IFEFE Transaclions on Systems, Man and Cybernetics, 17, 187-198.

Frean, M. (1990). The Upstart Algorithm: A Method for Constructing and Training Feedfor-

ward Neural Networks. Neural Computation, 2, 198-209.
Frean, M. (1992). A Thermal Perceptron Learning Rule. Neural Computation, 4, 946-957.

Fu, L. M. (1993). Knowledge Based Connectionism for Revising Domain Theories. IFEE

Transactions on Systems, Man, and Cybernetics, 23(1), 173-182.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recogniltion. New York: Academic

Press.

Gallant, S. (1990). Perceptron Based Learning Algorithms. IEEE Transactions on Neural

Networks, 1(2), 179-191.
Gallant, S. (1993). Neural Network Learning and Expert Systems. Cambridge, MA: MIT Press.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization Theory and Neural Networks

Architectures. Neural Computation, 7, 219-269.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

New York: Addison-Wesley.

Golea, M., & Marchand, M. (1990). A Growth Algorithm for Neural Network Decision Trees.

Furophysics Letters, 12(3), 205-210.

148

Gray, R., Kotz, D., Nog, S., Rus, D., & Cybenko, G. (1996). Mobile Agents for Mobile

Computing. Tech. rept. PCS-TR96-285. Dartmouth College, Hanover, NH.

Guo, Z. (1992). Nuclear Power Plant Fault Diagnostics and Thermal Performance Studies
Using Neural Networks and Genetic Algorithms. Ph.D. thesis, University of Tennessee,

Knoxville, TN.

Guo, Z., & Uhrig, R. (1992). Using Genetic Algorithms to Select Inputs for Neural Networks.

Pages 223-234 of: Proceedings of COGANN-92.

Hanson, S., & Pratt, L. (1991). Comparing Biases for Minimal Network Construction with
Back-propagation. Pages 177-185 of: Lippmann, R., Moody, J., & Touretzky, D. (eds),

Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann.
Hassoun, M. (1995). Fundamentals of Artificial Neural Networks. Boston, MA: MIT Press.
Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: Macmillan.
Hebb, D. (1949). The Organization of Behavior. New York: John Wiley.

Hirose, Y., Yamashita, K., & Hijiya, S. (1991). Back-Propagation Algorithm Which Varies the

Number of Hidden Units. Neural Networks, 4, 61-66.

Hofstadter, D. (1979). Godel, Fscher, Bach : an Eternal Golden Braid. New York: Basic

Books.
Holland, J. (1992). Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press.

Honavar, V. (1990). Generative Learning Structures and Processes for Generalized Connec-

tionist Networks. Ph.D. thesis, University of Wisconsin, Madison.

Honavar, V. (1994). Toward Learning Systems That Integrate Multiple Strategies and Repre-
sentations. Pages 615-644 of: Honavar, V., & Uhr, L. (eds), Artificial Intelligence and

Neural Networks: Steps Toward Principled Inlegration. New York: Academic Press.

149

Honavar, V. (1999). Intelligent Agents. In: Williams, J., & Sochats, K. (eds), Fncyclopedia

of Information Technology. New York: Marcel Dekker. To appear.

Honavar, V., & Uhr, L. (1990). Coordination and Control Structures and Processes: Pos-
sibilities for Connectionist Networks. Journal of Fzperimental and Theoretical Artificial

Intelligence, 2, 277-302.

Honavar, V., & Uhr, L. (1993). Generative Learning Structures for Generalized Connectionist

Networks. Information Sciences, 70(1-2), 75-108.

Honavar, V., Miller, L., & Wong, J. (1998). Distributed Knowledge Networks. Pages 87-90

of: Proceedings of IFEF Information Technology Conference.

Honavar, V., Parekh, R., & Yang, J. (1999a). Machine Learning: Principles and Applications.
In: Webster, J. (ed), Encyclopedia of Electrical and Flectronics Engineering. New York:

Wiley. In press.

Honavar, V., Yang, J., & Parekh, R. (1999b). Structural Learning. In: Webster, J. (ed),

Encyclopedia of Electrical and Electronics Fngineering. New York: Wiley. In press.
Hrycej, T. (1992). Modular Learning in Neural Networks. New York: Wiley.

Joachims, T., Freitag, D., & Mitchell, T. (1997). WebWatcher: A Tour Guide for the World
Wide Web. Pages 770-777 of: Proceedings of Internalional Joint Conference on Artificial

Intelligence.

John, G., Kohavi, R., & Pfleger, K. (1994). Irrelevant Features and the Subset Selection
Problem. Pages 121-129 of: Proceedings of the Eleventh International Conference on

Machine Learning. San Mateo, CA: Morgan Kaufmann.

Keeney, R., & Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences and Value

Tradeoffs. New York: Wiley.

Kiniry, J., & Zimmerman, D. (1997). A Hands-on Look at Java Mobile Agents. IEEFE Internet

Computing, 1(4), 21-30.

150

Kira, K., & Rendell, L. (1992). A Practical Approach to Feature Selection. Pages 249-256
of: Proceedings of the Ninth International Conference on Machine Learning. San Mateo,

CA: Morgan Kaufmann.

Kitano, H. (1990). Designing Neural Networks Using Genetic Algorithms with Graph Gener-

ation System. Complex Systems, 4, 461-476.

Kohavi, R. (1994). Feature Subset Selection as Search with Probabilistic Estimates. In: AAA[

Fall Symposium on Relevance.

Kohavi, R., & Frasca, B. (1994). Useful Feature Subsets and Rough Set Reducts. In: Third

International Workshop on Rough Sets and Soft Compuling.

Koller, D., & Sahami, M. (1996). Toward Optimal Feature Selection. Pages 284-292 of:
Proceedings of the Thirteenth International Conference on Machine Learning. San Mateo,

CA: Morgan Kaufmann.

Koller, D., & Sahami, M. (1997). Hierarchically Classifying Documents Using Very Few Words.

Pages 170-178 of: Proceedings of International Conference on Machine Learning.
Kolodner, J. (1993). Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann.

Kononenko, I. (1994). Estimating Attributes: Analysis and Extension of RELIEF. Pages

171-182 of: Proceedings of European Conference on Mahcine Learning.
Korfhage, R. (1997). Information Storage and Retrieval. New York: Wiley.

Kothari, R., & Agyepong, K. (1996). On Lateral Connections in Feed-forward Neural Networks.

Pages 13-18 of: Proceedings of Internalional Conference on Neural Nelworks.

Kotz, D., Gray, R., Nog, S., Rus, D., Chawla, S., & Cybenko, G. (1997). AGENT TCL:

Targeting the Needs of Mobile Computers. IEEFE Internet Computing, 1(4), 58-67.

Koza, J. (1992). Genetic Programming: On the Programming of Compulers by Means of

Natural Selection. Cambridge, MA: MIT Press.

151

Krauth, W., & Mézard, M. (1987). Learning Algorithms with Optimal Stability in Neural

Networks. J. Phys. A: Math. Gen., 20, L.745-L752.
Kung, S. Y. (1993). Digital Neural Networks. Englewood Cliffs, NJ: Prentice-Hall.

Langley, P. (1994). Selection of Relevant Features in Machine Learning. Pages 1-5 of: Pro-

ceedings of the AAAI Fall Symposium on Relevance. Boston, MA: AAAT Press.
Langley, P. (1995). Elements of Machine Learning. San Mateo, CA: Morgan Kaufmann.

Le Cun, Y., Denker, J., & Solla, S. (1990). Optimal Brain Damage. Pages 598-605 of: Lipp-
mann, R., Moody, J., & Touretzky, D. (eds), Advances in Neural Information Processing

Systems. San Mateo, CA: Morgan Kaufmann.

Liu, H., & Setiono, R. (1996a). Feature Selection and Classification - A Probabilistic Wrapper
Approach. Pages 419-424 of: Proceedings of the Ninth International Conference on

Industrial and Engineering Applications of AI and ES.

Liu, H., & Setiono, R. (1996b). A Probabilistic Approach to Feature Selection - A Filter
Solution. Pages 319-327 of: Proceedings of the Thirteenth Inlernalional Conference on

Machine Learning. San Mateo, CA: Morgan Kaufmann.

Lowe, D. (1995). Similarity Metric Learning for a Variable-Kernel Classifier. Neural Compu-

tation, 7, 72-85.

Maes, P. (1997). Agents that Reduce Work and Information Overload. In: Bradshaw, J. (ed),

Software Agents. Cambridge, MA: MIT Press.

Marchand, M., Golea, M., & Rujan, P. (1990). A Convergence Theorem for Sequential Learning

in Two-Layer Perceptrons. Furophysics Letters, 11(6), 487-492.

McCulloch, W., & Pitts, W. (1943). A Logical Calculus of Ideas Immanent in Nervous Activity.

Bulletin of Mathematical Biophysics, 5, 115-133.

Mehrotra, K., Mohan, C., & Ranka, S. (1997). Elements of Artificial Neural Networks. Cam-

bridge, Massachusetts: MIT Press.

152

Mézard, M., & Nadal, J. (1989). Learning Feed-forward Networks: The Tiling Algorithm. .J.

Phys. A: Math. Gen., 22, 2191-2203.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Third

edn. New York: Springer-Verlag.

Michalski, R., Mozetic, 1., Hong, J., & Lavrac, H. (1986). The Multi-purpose Incremental
Learning System AQ15 and Its Testing Application to Three Medical Domains. Pages

1041-1045 of: Proceedings of the Fifth National Conference on Al. Morgan Kaufmann.

Mikler, A., Honavar, V., & Wong, J. (1996). Analysis of Utility-Theoretic Heuristics for
Intelligent Adaptive Network Routing. Pages 96-101 of: Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96), vol. 1. Boston, MA: AAAI

Press.

Minsky, M., & Papert, S. (1969). Perceptrons: An Introduction to Computalional Geomelry.
Cambridge, MA: MIT Press.

Mitchell, M. (1996). An Introduction to Genetic algorithms. Cambridge, MA: MIT Press.
Mitchell, T. (1997). Machine Learning. New York: McGraw Hill.

Mladenic, D. (1996). Personal WebWatcher: Design and Implementation. Tech. rept. J. Stefan

Institute, Ljubljana, Slovenia.

Modrzejewski, M. (1993). Feature Selection Using Rough Sets Theory. Pages 213-226 of:

Proceedings of the European Conference on Machine Learning. New York: Springer.

Motwani, R., & Raghavan, P. (1996). Randomized Algorithms. ACM Computing Surveys,
28(1), 33-37.

Mozer, M., & Smolensky, P. (1989). Skeletonization: A Technique for Trimming the Fat from
a Network via Relevance Assessment. Pages 107116 of: Advances in Neural Information

Processing Systems.

153

Mucciardi, A., & Gose, E. (1971). A Comparison of Seven Techniques for Choosing Subsets of

Pattern Recognition. IFEF Transactions on Computers, 20, 1023-1031.

Murphy, P., & Aha, D. (1994). Repository of Machine Learning Databases. Department of

Information and Computer Science, University of California, Irvine, CA.

Nadal, J. (1989). Study of a Growth Algorithm for a Feedforward Network. International

Journal of Neural Systems, 1(1), 55-59.

Narendra, P., & Fukunaga, K. (1977). A Branch and Bound Algorithm for Feature Subset

Selection. IFEFE Transactions on Compulers, 26, 917-922.

Nilsson, N. (1965). The Mathematical Foundations of Learning Machines. New York: McGraw-
Hill.

Nosofsky, R. (1986). Attention, Similarity, and the Identification-Categorization Relationship.

Journal of Experimental Psychology: General, 115, 39-57.

Opitz, D. W., & Shavlik, J. W. (1995). Dynamically Adding Symbolically Meaningful Nodes

to Knowledge-Based Neural Networks. Knowledge-Based Systems, 8(6), 301-311.

Opitz, D. W., & Shavlik, J. W. (1997). Connectionist Theory Refinement: Genetically Search-
ing the Space of Network Topologies. Journal of Artificial Intelligence Research, 6, 177—
209.

Ourston, D., & Mooney, R. J. (1994). Theory Refinement: Combining Analytical and Empirical

Methods. Artificial Intelligence, 66, 273-310.

Parekh, R. (1998). Constructive learning: Inducing grammars and neural networks. Ph.D.

thesis, lowa State University, Ames, TA.

Parekh, R., & Honavar, V. (1998). Constructive Theory Refinement in Knowledge Based
Neural Networks. Pages 2318-2323 of: Proceedings of the International Joint Conference

on Neural Networks.

154

Parekh, R., Yang, J., & Honavar, V. (1997a). Constructive Neural Network Learning Algo-
rithms for Multi-Category Real-Valued Paltern Classification. Tech. rept. ISU-CS-TR97-

06. Department of Computer Science, lowa State University.

Parekh, R., Yang, J., & Honavar, V. (1997b). MUpstart - A Constructive Neural Network
Learning Algorithm for Multi-Category Pattern Classification. Pages 1924-1929 of: Pro-

ceedings of the IEFE/INNS International Conference on Neural Networks (ICNN-97).

Parekh, R., Yang, J., & Honavar, V. (1997c). Pruning Strategies for Constructive Neural
Network Learning Algorithms. Pages 1960-1965 of: Proceedings of the IEEE/INNS

International Conference on Neural Networks (ICNN-97).

Parker, D. (1985). Learning Logic. Tech. rept. Technical Report TR-47. Center for Computa-

tional Research in Economics and Management Science, MIT, Cambridge, MA.

Pawlak, Z. (1991). Rough Sets, Theoretlical Aspects of Reasoning about Data. NY: Kluwer

Academic.
Porter, M. (1980). An Algorithm for Suffix Stripping. Program, 14(3), 130-137.

Post, E. (1943). Formal Reductions of the General Combinatorial Decision Problem. Amer.

J. Math., 65, 197-215.

Poulard, H. (1995). Barycentric Correction Procedure: A Fast Method of Learning Threshold
Units. Pages 710-713 of: Proceedings of WCNN-95, July 17-21, Washington D.C., vol.

1.

Powell, M. (1987). Radial Basis Functions for Multivariable Interpolation: A Review. Pages
143-167 of: Mason, J., & Cox, M. (eds), Algorithms for Approzimation. Oxford: Claren-

don Press.

Punch, W., Goodman, E., Pei, M., Chia-Shun, L., Hovland, P., & Enbody, R. (1993). Further
Research on Feature Selection and Classification Using Genetic Algorithms. Pages 557

564 of: Proceedings of the International Conference on Genetic Algorithms. NY: Springer.

155

Quinlan, R. (1986). Induction of Decision Trees. Machine Learning, 1, 81-106.

Quinlan, R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kauf-

Imann.

Raffin, B., & Gordon, M. (1995). Learning and Generalization with Minimerror, A

Temperature-Dependent Learning Algorithm. Newral Computation, 7, 1206-1224.

Reed, R. (1993). Pruning Algorithms — A Survey. IEEE Transactions on Neural Networks,
4(5), 740-747.

Richards, B., & Mooney, R. (1995). Automated Refinement of First-Order Horn-Clause Do-

main Theories. Machine Learning, 19, 95-131.

Richeldi, M., & Lanzi, P. (1996). Performing Effective Feature Selection by Investigating the
Deep Structure of the Data. Pages 379-383 of: Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining. Boston, MA: AAAT Press.

Ripley, B. (1996). Pattern Recognition and Neural Networks. New York: Cambridge University

Press.
Rissanen, J. (1978). Modelling by Shortest Data Description. Automatica, 14, 465-471.

Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain. Psychological Review, 65, 386-408.

Rosenschein, J., & Zlotkin, G. (1994). Rules of Encounter: Designing Conventions for Auto-

mated Negotiation Among Computers. Cambridge, MA: MIT Press.

Roy, A., Govil, S., & Miranda, R. (1995). An Algorithm to Generate Radial Basis Function

(RBF)-Like Nets for Classification Problems. Neural Networks, 8(2), 179-201.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning Internal Representations by Error
Propagation. In: Parallel Distributed Processing: Explorations into the Microstructure of

Cognition, vol. 1 (Foundations). Cambridge, Massachusetts: MIT Press.

156

Russell, S., & Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Englewood Cliffs,
NJ: Prentice Hall.

Saffery, J., & Thornton, C. (1991). Using Stereographic Projection as a Preprocessing Tech-
nique for Upstart. Pages 441-446 of: Proceedings of the International Joint Conference

on Neural Neltworks. Piscataway, NJ: IEEE Press.
Salton, G. (1982). Introduction to Modern Information Retrieval. New York: McGraw-Hill.

Salton, G. (1989). Automatic Text Processing: the Transformation, Analysis, and Retrieval of

Information by Computer. Reading, Massachusetts: Addison-Wesley.

Salton, G., & McGill, M. (1983). Introduction to Modern Information Retrieval. New York:
McGraw Hill.

Sandholm, T. (1993). An Implementation of the Contract Net Protocol Based on Marginal Cost
Calculations. Pages 295-308 of: 12th International Workshop on Distributed Artificial

Intelligence.

Sandholm, T. (1997). Necessary and Sufficient Contract Types for Optimal Task Allocation.

In: Fourteenth International Joint Conference on Artificial Intelligence (1JCAI-97).

Sandholm, T. (1998). Contract Types for Satisficing Task Allocation: I Theoretical Results.

In: AAAT 1998 Spring Symposium on Salisficing Models.

Schlimmer, J. (1993). Efficiently Inducing Determinations: A Complete and Systematic Search
Algorithm that Uses Optmal Pruning. Pages 284-290 of: Proceedings of the Tenth Inter-

national Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann.

Shavlik, J. W. (1994). A Framework for Combining Symbolic and Neural Learning. Pages
561-580 of: Honavar, V., & Uhr, L. (eds), Artificial Intelligence and Neural Networks:

Steps Toward Principled Integration. New York: Academic Press.

157

Sheinvald, J., Dom, B., & Niblack, W. (1990). A Modelling Approach to Feature Selection.
Pages 535-539 of: Proceedings of the Tenth International Conference on Pattern Recogni-

tion.

Sheth, A., & Larson, J. (1990). Federated Databases: Architectures and Issues. ACM Com-

puting Surveys, 22(3), 183-236.

Shynk, J. J. (1990). Performance Surfaces of a Single-layer Pereptron. IEEE Transactions on

Neural Networks, 1, 268-274.

Siedlecki, W., & Sklansky, J. (1988). On Automatic Feature Selection. International Journal

of Pattern Recognition, 2, 197-220.

Siedlecki, W., & Sklansky, J. (1989). A Note on Genetic Algorithms for Large-scale Feature

Selection. IFEFE Transactions on Compulers, 10, 335-347.

Siu, K-Y., Roychowdhury, V., & Kailath, T. (1995). Discrete Neural Computation - A Theo-

retical Foundation. Englewood Cliffs, NJ: Prentice-Hall.

Skalak, D. (1994). Prototype and Feature Selection by Sampling and Random Mutation Hill-
climbing Algorithms. Pages 293-301 of: Proceedings of the Eleventh International Con-

ference on Machine Learning. San Mateo, CA: Morgan Kaufmann.

Smith, R. (1980). The Contract Net Protocol: High-Level Communication and Control in a

Distributed Problem Solver. IFEE Transactions on Computers, C-29(12), 1104-1113.

Stanfill, C., & Waltz, D. (1986). Toward Memory-Based Reasoning. Communications of the

ACM, 29(12), 12131228,

Thrun, S. (1995). Lifelong Learning: A Case Study. Tech. rept. CMU-CS-95-208. Carnegie

Mellon University, Pittsburgh, PA.

Towell, G., & Shavlik, J. (1993). Extracting Rules from Knowledge-Based Neural Networks.

Machine Learning, 13, 71-101.

158

Towell, G., & Shavlik, J. (1994). Knowledge-based Artificial Neural Networks. Artificial

Intelligence, 70(1-2), 119-165.

Towell, G., Shavlik, J., & Noordwier, M. (1990). Refinement of Approximate Domain Theories
by Knowledge-Based Neural Networks. Pages 861-866 of: Proceedings of the Fighth

National Conference on Artificial Intelligence.

Turing, A. (1936). On Computable Numbers with an Application to the Entscheidungsproblem.

Proc. London Math. Soc., 2(42), 230-265.

Turney, P. (1994). Theoretical Analyses of Cross-Validation Error and Voting in Instance-Based

Learning. Journal of Ezperimental and Theoretical Artificial Intelligence, 6, 331-360.
Tversky, A. (1977). Features of Similiarity. Psychological Review, 84, 327-352.

Uhr, L. (1984). Algorithm-Structured Computer Arrays and Networks: Architectures and Pro-

cesses for Images, Percepts, Models, Information. New York: Academic Press.

Uhr, L., & Honavar, V. (1994). Introduction. In: Honavar, V., & Uhr, L. (eds), Artificial
Intelligence and Neural Nelworks: Steps Toward Principled Integration. Academic Press:

New York.

Vafaie, H., & De Jong, K. (1993). Robust Feature Selection Algorithms. Pages 356-363 of:

Proceedings of the IEEE International Conference on Tools with Arlificial Intelligence.
Valiant, L. (1984). A Theory of the Learnable. Communications of the ACM, 27, 1134-1142.

Weigend, A., Rumelhart, D., & Huberman, B. (1991). Generalization by Weight-Elimination
with Application to Forecasting. Pages 875—-882 of: Lippmann, R., Moody, J., & Touret-
zky, D. (eds), Advances in Neural Information Processing Systems. San Mateo, CA:

Morgan Kaufmann.

Weiss, S., & Kapouleas, 1. (1989). An Empirical Comparison of Pattern Recognition, Neural
Nets, and Machine Learning Classification Methods. Pages 781-787 of: Proceedings of

the Fleventh International Joint Conference on Artificial Intelligence.

159

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in Behavioral

Sciences. Ph.D. thesis, Harvard University, Cambridge, MA.

Wettschereck, D., Aha, D., & Mohri, T. (1995). A Review and Empirical Fvaluation of Feature
Weighting Methods for a Class of Lazy Learning Algorithms. Tech. rept. AIC95-012.
Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence,

Washington, D.C.

White, J. (1997). Mobile Agents. In: Bradshaw, J. (ed), Software Agents. Cambridge, MA:

MIT Press.

Widrow, B., & Hoff, M. (1960). Adaptive Switching Circuits. Institute of Radio Engineers,

Western FElectronic Show and Convention, Convention Record, part 4, 96-104.

Wiederhold, G. (1997). The Conceptual Basis for Mediation Services. [FFE Expert, 12(5),

38-46.

Wilson, D., & Martinez, T. (1997). Improved Heterogeneous Distance Functions. Journal of

Artificial Intelligence Research, 6, 1-34.

Wong, J., Honavar, V., Miller, L., & Naganathan, V. (1999). Design and Implementation
of Mobile Agent Infrastructure Based on Mobile Agent Interoperability Facilities (MAF).

Submitted for publication.

Yang, J., & Honavar, V. (1991). Experiments with the Cascade-Correlation Algorithm. Pages

369-380 of: Proceedings of the 4th UNB Al Symposium.

Yang, J., & Honavar, V. (1996). A Simple Randomized Quantization Algorithm for Neural
Network Pattern Classifiers. Pages 223-228 of: Proceedings of the World Congress on

Neural Networks.

Yang, J., & Honavar, V. (1997). Feature Subset Selection Using a Genetic Algorithm. Pages

380-385 of: Proceedings of the Genetic Programming Conference (GP-97).

160

Yang, J., & Honavar, V. (1998a). Feature Subset Selection Using a Genetic Algorithm. [FEF
Intelligent Systems (Sepcial Issue on Feature Transformation and Subset Selection), 13,

44-49.

Yang, J., & Honavar, V. (1998b). Feature Subset Selection Using a Genetic Algorithm. In:
Feature Exlraction, Construction and Selection - A Data Mining Perspective. NY: Kluwer

Academic.

Yang, J., Parekh, R., & Honavar, V. (1996). MTiling - A Constructive Neural Network Learning
Algorithm for Multi-Category Pattern Classification. Pages 182187 of: Proceedings of

the World Congress on Neural Networks.

Yang, J., Havaldar, R., Honavar, V., Miller, L., & Wong, J. (1998a). Coordination of Dis-
tributed Knowledge Networks Using Contract Net Protocol. Pages 71-74 of: Proceedings

of the IEFE Information Technology Conference.

Yang, J., Parekh, R., & Honavar, V. (1998b). DistAl: An Inter-pattern Distance-based Con-
structive Learning Algorithm. Pages 2208-2213 of: Proceedings of the International Joint

Conference on Neural Nelworks.

Yang, J., Honavar, V., Miller, L., & Wong, J. (1998c). Intelligent Mobile Agents for Information
Retrieval and Knowledge Discovery from Distributed Data and Knowledge Sources. Pages

99-102 of: Proceedings of the IEFE Information Technology Conference.

Yang, J., Pai, P., Honavar, V., & Miller, L. (1998d). Mobile Intelligent Agents for Document
Classification and Retrieval: A Machine Learning Approach. Pages 707-712 of: Proceed-
ings of the 14th Furopean Meeling on Cybernetlics and Systems Research: Symposium on

Agent Theory to Agent Implementation.

Yang, J., Parekh, R., & Honavar, V. (1999a). DistAl: An Inter-pattern Distance-based Con-

structive Learning Algorithm. Intelligent Dala Analysis. To appear.

161

Yang, J., Parekh, R., & Honavar, V. (1999b). Theory Refinement Using a New Constructive
Neural Network Learning Algorithm. In: Proceedings of the International Joint Confer-

ence on Neural Networks. To appear.

Zalzala, A., & Morris, A. (1996). Neural Networks for Robotic Control: Theory and Applica-

tions. New York: Ellis Horwood.

Zhou, G., McCalley, J., & Honavar, V. (1997). Power System Security Margin Prediction Using
Radial Basis Function Networks. In: Proceedings of the 29th Annual North American

Power Symposium.

