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SUMMARY

Feature Selection and Classifier Ensembles:

A Study on Hyperspectral Remote Sensing Data

by

ShiXin Yu

Pattern recognition is the research area that studies the operation and design of
systems that recognize patterns in data [38].

In this dissertation, two important aspects of pattern recognition: the classifier
ensemble problem, and the feature selection problem, are studied on hyperspectral
remote sensing data. Rapid advances in sensor technology have made it recently
possible to collect hyperspectral remote sensing data which spans typically from 200
to 400 spectral bands. Such high dimensionality, on one hand, provides us with
more potential discrimination power for classification tasks. On the other hand,
the classification performance improves up to a limited point as additional features
are added, and then deteriorates due to the limited number of training samples.
This shows the importance of feature reduction as a critical pre-processing step.

Feature reduction includes feature selection and feature extraction. In part due to



the difficulty in interpreting the transformed features through feature extraction,
feature selection is emphasized instead.

Another problem with classification of high dimensionality is that, the discrimina-
tion between classes becomes much more difficult, due to the fact that, the number
of training samples is unlikely to catch up with the increase of dimensionality. There-
fore another important topic for data analysis in hyperspectral remote sensing is the
improvement of the classification performance. In this dissertation, this is achieved
by studying the idea of fusing existing classification schemes to further improve clas-
sification performance. Because of the so many attractive advantages of the nearest
neighbor classifier, its corresponding ensembles are focused on in this dissertation.

The roadmap of this dissertation is the following. First we study classifier ensem-
ble methods. We then initiate the idea of using ensembled learning as a means to
evaluate the merit of feature subsets during the selection stage for feature selection.
Following this roadmap, two general overviews are first given on classifier ensembles
(Chapter II) and feature selection (Chapter V) respectively and a categorization
scheme is given for each.

In the frame of classifier ensembles, a comprehensive empirical study of nearest
neighbor classsifier ensembles is carried out while taking into account the scheme of
bias plus variance decomposition of the error rate (Chapter IV and Chapter VII).
With the goal of both improving classification performance and decreasing storage
requirements simultaneously, a method called CNN-ECOC, which utilizes the Con-
densed Nearest Neighbors (CNN) algorithm in conjunction with the technique of
Error Correcting Output Codes (ECOC) is presented (Section 4.3.5). Another vari-
ant called kNN-ECOC-RS, which takes advantage of randomly selected subspaces in

conjunction with the ECOC method to further improve the performance of nearest
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neighbors is then suggested as a by-product (Section 4.3.4).

In the frame of feature selection, we undertake the first study that hybridizes
genetic algorithms with the ensembled learning scheme. The performance gains of
using ensembled learning is then demonstrated through experiments (Chapter VII).
In the mean time, a categorization scheme on the existing genetic feature selection
methods is conducted (Chapter VI).

In conclusion, the contributions of this dissertation are summarized as follows.

e A categorization scheme on classifier ensemble methods.
e A categorization scheme on feature selection methods.

e A taxonomy of classification methods using the k£ Nearest Neighbor learning
algorithm.

e A categorization scheme on genetic feature selectors.

e The CNN-ECOC methods, which takes advantage of the Condensed Nearest
Neighbor (CNN) algorithm in conjunction with the technique of Error Correct-
ing Output Codes (ECOC). This can be seen as the first major contribution of

this dissertation.

e The K NN-ECOC-RS method, which takes advantage of randomly selected sub-
spaces from the whole feature space, in conjunction with the ECOC technique.
This method is suggested as a by-product.

e We initiate and advocate the idea of using ensembled learning in conjunction
with genetic algorithms to perform feature selection. This can be seen as the
second major contribution of this dissertation.

e A performance comparison between various k nearest neighor ensembles, which

takes into account the paradigm of bias plus variance decomposition of the error
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rate. The classification algorithm, which has a small error rate and ideally at
the same time also has a small bias and a small variance, is usually favored as

a better choice.

A performance comparison between the genetic search and the sequential float-
ing forward search, which takes into account the number of subset evaluations,
provides a pragmatic view of time complexity of these two search methods on

hyperspectral data.
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NOTATION

The notation used in the dissertation follows the general conventions of mathematics

and statistics.

e Natural constant (like 7), e ~ 2.718

(21, 29, 2T Transposed n-dimensional vector

argmax fi Returns the largest value of f; among all index
d(z,x) Distance between two multi-dimensional vectors z and x

The notation for classification schemes considered in the dissertation is as follows:

A training dataset T with m labeled examples x; in Space X coming from y; of
predefined S classes in Space Y, i.e.:

T={(xi,y),i=1,2,...,m}

Samples x; € X, Labels y; € Y ={1,2,..., S}

A classifier is a hypothesis H that predicts the corresponding y values, given new
x values. All the classifiers are denoted as hq, hs, - --. In contrast, a target function

F'is the true corresponding relationship between X and Y: x; — v;.

xi



CHAPTER I

Introduction

1.1 Background of Hyperspectral Remote Sensing

Earth observation by remote sensing has provided human being a global view of
the Earth. Remote sensing is a versatile tool for exploring Earth and it involves
the use of instruments or sensors to ”capture” the spectral and spatial relations of
objects and materials observable at a distance - typically from above them. An aerial
photograph is a common example of a remotely sensed (by camera and film) product.
There are numerous real world applications - these are typical: 1)monitoring forest
tree species; 2) determining the status of a growing crop; 3) defining urban patterns;
4) delineating the extent of flooding; 5) recognizing rock types; 6) pinpointing areas
of deforestation [37] [194].

Rapid advances in sensor technology have made it recently possible to collect re-
mote sensing data from multispectral data which typically ranges around 20 ~ 30
bands, to today’s hyperspectral data, the spectral bands of which can span from
220 bands with 20-meter spatial resolution and 10 bits of dynamic range, e.g. the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [10], to 300 bands in a
range between 400 and 2500 nm and at a spatial ground resolution of 2 to 5 meter,

e.g. the Airborne Prism EXperiment (APEX) [236]. The TRWIS III imaging spec-
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trometer of the TRW Inc. [36] can produce as many as 384-spectral-band imagery
with spatial resolutions spanning from less than 1 meter to more than 11 meters, and
with spectral coverage from 380 to 2450 nm. Its spectral resolution is 5.25 nm in the
visible/near infrared (380-1000 nm) and 6.25 nm in the short wave infrared (1000-
2450 nm). The number of spectral bands tends to continue to increase with the rapid
development of sensor technology. The sensor currently being developed can span
to more than 400 spectral bands [183]. A hyperspectral image can be viewed as an
image cube with as the third dimension the spectral domain represented by hundreds
of narrow, contiguous spectral bands corresponding to the spectral reflectance. The
plot of contiguous spectral reflectances can be compared with laboratory produced
ones to identify, for example, some ores in the target area. The rapid development
of hyperspectral sensor technology greatly extends the scope of traditional remote
sensing, it not only provides the scientists in environmental and geoscience research
communities much more power to explore the earth than ever but also provides many
challenges for data analysis tasks.! Furthermore, the volume of hyperspectral data
produced is staggering. The fast growing size of the hyperspectral database also
requests the compression® research on it [196] [230] [258] [263] [158] [198] [233] [40]
[220] [104] [283] [287]. In particular the compression algorithm should take advantage
of the spectral nature of hyperspectral data.

Figure 1.1 shows an AVIRIS hyperspectral image, which contains 220 bands of
145 x 145 pixels, that is downloadable from [3], along with a groundtruth image,
containing 16 classes as shown on Figure 1.2. This dataset is used to do experimental

comparison in this dissertation. Each pixel x on this image is represented by a 220

1 One obstacle for the research on hyperspectral remote sensing is due to the lack of data [184], despite the rapid
advances in sensor technology and the importunate demands for the hyperspectral data, the general hyperspectral
imagery markets are not yet ready to commercially support the industry for at least the next several years, due to a
number of factors, e.g. distinct requirements from different market segments [187].

2Neural network is among the techniques used for compression [106].
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Figure 1.1: An example of a 220-band hyperspectral image (in simulated color infrared form).

dimensional vector, i.e.

(11) X = [xl,fﬂg,...,.’lfggo]T

The classification task here becomes to recognize new unknown objects given
the predefined classes (ground truth or training classes). There are three views of
the hyperspectral data: the image space, the spectral space and the feature space.
Figure 1.1 is actually an image space. Figure 1.3 is an illustration of spectral space

of three classes while Figure 1.4 shows its corresponding 2-dimensional feature space.

1.2 Statement of the Problem

Pattern recognition [259]% [97] [238] is a vibrant research area. The term “pattern

recognition” is meant in a broad sense, and generally speaking, it encompasses three

3Many researchers from the pattern recognition community speak highly of this book, and agree that ”thus
researchers from all walks of pattern recognition should get something out of this book”, in part due to that it
provides a better balance between theoretical and practical treatment of pattern recognition. For a long list of
reseach monographs which could be useful for the understanding of pattern recognition, the reader is referred to the
TUDelft pattern recognition group’s page at [30]. Or for up-to-date books, simply input the key words of ”pattern
recognition” into the book search of large online book stores, such as amazon.com, bn.com, buy.com, etc, to find all
the available up-to-date reference books on the topics relating to pattern recognition.
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Fi 1.2:
1B Groundtruth image containing 16 predefined classes; 1: Alfalfa; 2: Corn-notill; 3: Corn-

min; 4: Corn; 5: Grass/pasture; 6: Grass/trees; 7: Grass/pasture-mowed; 8: Hay-
windrowed; 9: Oats; 10: Soy-notill; 11: Soy-min till; 12: Soy-clean; 13: Wheat; 14:
Woods; 15: Bldg-grass-trees- drives; 16: Stone-steel towers.

___ VYegetation ® Vegetation

——- Soil
- - - Water

® Soil

Response at A,

Reflectance

® ‘water

Response at A,

Figure 1.3: Spectral Space Figure 1.4: Feature Space
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major categories: supervised learning, unsupervised learning, and semi-supervised
learning (or partially supervised [154]). Supervised learning is a kind of machine
learning where the learning algorithm is provided with a set of inputs for the al-
gorithm along with the corresponding correct outputs, and learning involves the
algorithm comparing its current actual output with the correct or target outputs,
so that it knows what its error is, and modify things accordingly. In contrast to su-
pervised learning, unsupervised learning signifies a mode of machine learning where
the system is not told the "right answer” — for example, it is not trained on pairs
consisting of an input and the desired output. Instead the system is given the input
patterns and is left to find interesting patterns, regularities, or clusterings among
them [14] [27]. Semi-supervised learning can be thought to be a kind of supervised
system where the unlabeled samples are incorporated somehow.

Figure 1.5 shows a typical supervised classification process for hyperspectral data
analysis.

Typically, the classification performance improves up to a limited point as ad-
ditional features are added, and then deteriorates. This is referred as the Hughes
phenomenon” (or the peaking phenomenon)[139] as shown in Figure 1.6. The vertical
axis is the mean recognition accuracy averaged from all possible classifiers. It is plot-
ted as a function of measurement complexity on the horizontal axis. The more bands
the hyperspectral data has, the greater the measurement complexity. The parameter
m is the number of training samples. The Hughes phenomenon can be explained
as follows. Let’s consider a finite and fixed number of training samples. The ac-

curacy of statistics estimation decreases as the dimensionality increases, leading to

4In my opinion, the term curse of dimensionality [56] [116] [114] is used to describe the difficult problems in
general in the high dimensional multivariate analysis, e.g. Jacoby [146] uses the curse of dimensionality to describe
the difficulty in visualization problem for high dimensional data analysis, therefore, I follow other researchers [4],
and use hughes phenomenon to describe the difficulity in the high-dimensional data classification problem in this
dissertation.
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the deterioration of classification accuracy (Figure 1.7(b)). Although increasing the
number of the spectral bands can potentially provides more class separability, this
positive effect is diluted by poor statistical parameter estimation (Figure 1.7(a)).
Consequently, the performance of the classifier with a fixed sample size may degrade
with an increase in the number of features as illustrated in Figure 1.7(c). Although it
seems logical to infer that a large number of features would give much more discrim-
inating power, a high-dimensional space is, in fact, mostly empty [132] with modest
number of samples, hence, the importance of feature reduction.

Feature reduction includes feature extraction and feature selection. Feature ex-
traction refers to the process of finding a mapping that reduces the dimensionality
of the patterns while feature selection refers to picking up a number of features to
make up an at least suboptimal feature subset. In part due to the difficulty in inter-
preting the mapped features by feature extraction, the feature selection problem is
emphasized instead as a critical preprocessing step.

Another problem arises for the classification task for high dimensionality, that
is, the discrimination between classes becomes much more difficult. As mentioned
above, this is due to the fact that, the assumption that enough training samples are
available to accurately estimate the class statistics, is likely to fail for hyperspec-
tral data because gathering enough training samples in practice is either difficult or
expensive. Therefore how to improve classification performance remains one impor-
tant task for data analysis in hyperspectral remote sensing. This is achieved in this
dissertation by studying the idea of merely fusing the existing classification schemes

rather than to develop new and sophisticated classification techniques.
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Figure 1.7: The conceptual explanation of the Hughes phenomenon as shown in Figure 1.6.

1.3 Organization of the Dissertation

In the previous two sections, the background and motivation of the research con-
ducted in this dissertation are explained. We present the remaining of the dissertation
following the diagram of "past, present, and future”. In "past”, we generalize the
primary frameworks of the research on both classifier ensembles and feature selection,
which have been laid down by numerous researchers in this field; In ”present”, we
present our studies on classifier ensembles (the nearest neighbor classifier ensembles)
and feature selection (the genetic feature selectors); In ”future”, we propose some
possible immediate further work.

The past, present and future diagram of the dissertation is illustrated in Figure 1.8.
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— Chapter II: Overview on Classifier Ensembles
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PAST » Chapter Ill: Nearest Neighbor Learning Algorithm

—— Chapter V: Overview on Feature Selection

— Chapter IV: Nearest Neigbor Classifier Ensembles

PRESENT——————— Chapter VI: Genetic Feature Selectors

——— Chapter VII: Experiments and Discussion
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\ 4

» Chapter VIII:Conclusion and Further Work

Figure 1.8: The Past, Present and Future diagram of the dissertation.

In Chapter II, an overview on classifier ensembles is given based on a categoriza-
tion scheme. The nearest neighbor learning algorithm is revisited in Chapter III.
Various methods for combining nearest neighbor learning algorithms are described
in Chapter IV. The scheme of bias plus variance decomposition of error rate is then
explained. With the goal of both further improving the classification performance
and decreasing the storage requirements at the same time, a hybrid method which
utilizes the Error Correcting Output Codes (ECOC) and the Condensed Nearest
Neighbors (CNN) is then presented. Another variant which takes advantages of the
randomly selected features in conjunction with ECOC is also suggested. In Chap-
ter V, methods for feature selection are reviewed and described in a categorization
scheme. A genetic feature selector which hybridizes genetic algorithms with the en-

sembled learning scheme is initiated in Chapter VI. In the mean time, a categoriza-
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tion scheme is done on the existing genetic feature selection methods. Experimental
results of both nearest neighbor ensembles and genetic feature selector on a typical
hyperspectral remote sensing data set and the corresponding discussion are given in
Chapter VII. Finally, conclusion of this dissertation and possible future work are

given in Chapter VIII.



CHAPTER II

Classifier Ensembles: An Overview

2.1 Introduction

It is the seminal work of Hansen and Salamon [126] at the very beginning of the
90’s which recognized that the unstable nature of certain neural networks was helpful
for ensembles that opened the door for the theoretical study on classifier ensembles.
Since then, classifier ensembles have been under extensive theoretical as well as em-
pirical studies. Classifier ensembles! ? are one of the frontiers of pattern recognition
[149], and they fall into, by and large, the paradigm of supervised learning.® In
the literature, the design methodology for supervised learning was addressed [201],
various supervised learning algorithms were reviewed in a categorization scheme [82]
and their performance was systematically investigated [188].

On the other hand, the research on classical pattern recognition models, including
feature selection and classifier ensembles, was challenged by the recent development
of a novel approach called Support Vector Machines (SVMs) [270] [25]. The argument

was that with the advanced design methodology of the SVMs, questions such as if

LOnline classifier ensembles bibliography can be found in [7].

2In practice, it may sometimes be not feasible to collect all the data into one single flat file, due to reasons such
as storage cost, bandwidth, or security, privacy, proprietary nature of the data [122]. Hence the ability to deal with
these data in a distributed manner draws increasing attention. Indeed, the research on distributed classification [160]
(as well as distributed clustering [159]) and the corresponding distributed ensemble methods pertains to another
emerging, yet active direction. However, the distributed scheme is not discussed in this dissertation.

3There are semi-supervised learning ensembles that construct classification ensembles based on both labeled and
unlabeled data, e.g. ASSEMEBL [58], an adaptive semi-supervised ensemble.

11



2.2. The Hypothesis: Why Classifier Ensembles Work 12

fusing multiple classifiers would become redundant or out of date were raised among
researchers in the field. Kittler’s lecture [164] assured us the rationale for continued
need and interests in the research of classifier ensembles. Indeed, the recent years
have seen a rapid progress on this research topic [231] [182] [279] [167] [210] [54] [126]
[174] [91] [211]: not only do the SVMs not make the traditional pattern recognition
model out of date, but also are the SVMs benefiting from the research on classifier

ensembles [102].

2.2 The Hypothesis: Why Classifier Ensembles Work

The main discovery in the topic of combining classifiers is that the ensemble
architecture can gain better accuracy than the individual component alone. The use
of ensembles in machine learning is rather new, but the idea that aggregating the
opinions of a committee of experts can obtain better accuracy is not new. Let’s cite
what the Condorcet Jury Theorem states:

”If each voter has a probability p of being correct and the probability of a majority
of voters being correct is M, then p > 0.5 implies M > p. In the limit, M approaches
1, for all p > 0.5, as the number of voters approaches infinity.”

Marquis Condorcet in 1784 proposed this theorem [88]. A more recent reference
is due to Nitzan and Paroush [208].

The hypothesis, that the classifier ensemble is much accurate than any of its
individual component classifiers if and only if the component classifiers are accurate
and diverse, was first introduced by Hansen and Salamon [126]. They proved that
if each of the individual classifiers is independent, and their error rates are all less
than 50%, the error rate of the ensemble classifier will decrease with the number of

individual classifiers. Two key factors are crucial: accurate classifiers and diversity
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Figure 2.1: A simulation by Dietterich [98]

of the classifiers. An accurate classifier is defined as having a classification accuracy
better than a random guess. Diverse classifiers make different predictions on new
data points, i.e. they have different error rates.

A simulation made by Dietterich [98] is shown in Figure 2.1. Dietterich stated
that if the error rates of all classifiers are equal and their values are less than 50%,
furthermore, the error rates are assumed to be not correlated, then the probability
that the majority vote is wrong is calculated as the area under the binomial distri-
bution where more than half of the classifiers are wrong. In Figure 2.1, Dietterich
simulated a classifier ensemble with 21 individual classifiers, each having an error
rate of 30%. The area under the curve for 11 or more is 0.026. This is much less
than the error rate given by the individual classifier (30%).

The relationship between the error rate of the classifier ensemble and the error
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rates of the individual classifiers was shown by Tumer and Ghosh [264] [265] [266] as

follows:

1+ p(N—-1)

2.1 E ble) =
(2.1) (ensemble) N

E(individual) + E(Bayes)

where N is the number of classifiers, p is the correlation among the classifier
errors, E(Bayes) is the error rate obtained using the Bayes rule assuming that all
the conditional probabilities are known. E(ensemble) and E(individual) represent
the error rate of a classifier ensemble and the error rate of an individual component
classifier respectively. p = 0 means the error of the whole ensemble decreases pro-
portionally to the number of the component classifiers while p = 1 means the error

of the ensemble architecture equals to the error of a single component classifier.

2.3 Categorization Scheme of Classifier Ensembles

Although the history of research on classifier ensembles is only about one decade,
this area is becoming very active recently. In the literature, there exists very little
effort to categorize the classifier ensembles. Generally speaking, the classifier en-
sembles can be divided into parallel ensembles and sequential ensembles [22]. The
categorization scheme can also be done according to the combining strategies, e.g.
the diversity of the classifier ensemble. Dietterich [99] describes the ensemble meth-
ods from the point of view of machine learning. Jain, Duin and Mao [149] list a
number of popular ensemble methods in their review paper on statistical pattern
recognition. Sharkey [244] points out that a limiting factor in reseach on combin-
ing classifiers is due to a lack of awareness of the full range of available modular
structures. One reason for this is that there is as yet little agreement on a means

of describing and classifying types of multiple classifier systems in the literature. He
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then presents a categorization scheme for types of multiple neural network systems
based on four subdivisions:

(i) Involving competitive or cooperative combination mechanisms;

(ii) Combining either ensemble, modular, or hybrid components;

(iii) Relying on either bottom-up or top-down combination methods;

(iiii) When bottom up using either static or fixed combination methods.

In this chapter, we aspire to a general and comprehensive categorization scheme.
We describe the classifier ensembles within the following 6 categories:

Section 2.3.1, Voting classifier ensembles;

Section 2.3.2; Classifier ensembles manipulating training samples;

Section 2.3.3, Classifier ensembles with different input feature subsets;

Section 2.3.4, Heterogeneous classifier ensembles;

Section 2.3.5, Homogeneous classifier ensembles;

Section 2.3.6, Recursive partition classifier ensembles.

2.3.1 Voting Classifier Ensembles

There are three primary categories in the voting ensemble scheme.

e Simple Voting:

Simple voting, also called majority voting and select all majority (SAM) [53],
considers each component classifier as an equally weighted vote. The classifier

that has the largest amount of votes is chosen as the final classification scheme

[53].

e Weighted Voting:
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In weighted voting schemes, each vote receives a weight, which is usually propor-
tional to the estimated generalization performance of the corresponding compo-
nent classifier. Weighted voting schemes usually give better performance than

simple voting [53].

e Weighted Majority:

The weighted Majority algorithm [191] is actually a generalization of the HALV-
ING [189] algorithm. It is similar to weighted voting, the main difference is how
the weights are generated. It makes predictions by taking a weighted vote among
a pool of classification algorithms and learns by altering the weight associated
with each prediction algorithm. This algorithm starts with assigning a weight
of 1 to each classification algorithm, then considers the training samples. If a
classification algorithm misclassifies a new training sample, its weight is then

decreased by multiplying it by some number (3, where 0 < § < 1.

The number of mistakes made by the weighted majority algorithm can be
bounded in terms of the number of mistakes made by the best classification
algorithm in the voting pool. Suppose G is any set of n component classifica-
tion algorithms and let r be the minimum number of mistakes made by any
algorithm in G for the training set 7. Littlestone and Warmuth [190] have
generalized and showed that for any 0 < g < 1, the bound for the number of

mistakes is given by:

rloggé + logan

(2.2)
loggﬁ
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If g = %, we obtain the following bound:

(2.3) 2.4(r 4 logan)

2.3.2 Classifier Ensembles Manipulating Training Samples

The methods that fall into this category have the following characteristic: the
learning algorithm is run several times, each time with a different partition of the
training samples. It works well for unstable learning algorithms. By ”unstable” we
mean the learning algorithms whose output predictions have changes in response to
a small change in the training samples.

Among all these methods, Boosting and Bagging are the two most successful and
representative methods developed to date for classifier ensembles. Many researchers
have compared boosting and bagging with other methods and demonstrated their
superiority [53] [223] [100].

e Bagging:

Bagging is due to Breiman [65]. This method is run several times on training
samples, i.e. on each run, it produces a replication of the original training
samples by sampling with replacement with the same size as the original training
size. Some training samples appear in the produced samples while others may
not. Such a training set is called a bootstrap replicate of the original training
set, and this technique is called Bootstrap Aggregating, from which the name
of Bagging stems. For a training set with m examples, the probability of an

example being reproduced is given by:

(2.4) 1—(1——)"
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Input:

L: a learning algorithm
N: an integer

Fori=1to N
T = bootstrap sample from training set T’
h; = L(T)
End For
Output:

N
hy(x) = argmax ) h;i(x) =y
yeEY 7

Table 2.1: The Bagging Algorithm.
where for a large enough m, i.e. mathematically speaking, when m — o0,

this approximates to 1 — This value is about 63.2%. So each bootstrap

o |=

reproduces, on the average, 63.2% of the original training samples. All the
individual classifiers are then used to classify each example in the test set,

usually a vote scheme is taken.

The pseudocode for the bagging algorithm is shown in Table 2.1.

But how many bootstrap replicates are sufficient? Breiman states that: ”more
replicates are required with an increasing number of classes [66].” He also notes
that ”"bagging is almost a dream procedure for parallel computing.” In a simu-
lation experiment varying the number of bootstraps, it was verified that 10 is

usually sufficient.

e Boosting:

Boosting was first proposed by Schapire [237]. It was proven that any weak
learning algorithm may be boosted to a strong one based on a theoretical model
known as the weak learning model (PAC) [269]. This PAC learning model
(Probably Approximately Correct) assumes that there exist weak learning al-

gorithms which can do slightly better than random guessing regardless of the
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underlying probability distribution used when generating the examples.

The most well known boosting idea, AdaBoost, was introduced by Freund and
Schapire [115]. The term AdaBoost stems from Adaptive Boosting. It solved
many of the practical difficulties of the earlier boosting algorithms. Just like
bagging, AdaBoost also manipulates the training examples to generate diverse
hypotheses. The pseudocode for AdaBoost is illustrated in Table 2.2. It main-
tains a probability distribution p,(x) over the training samples. In each iteration
n, it draws a training set of size m by sampling with replacement according to
the probability distribution p,(x). The learning algorithm is then applied to
produce a classifier h,,. The error rate e, of this classifier on the training sam-
ples is computed and used to adjust the probability distribution on the training
samples. AdaBoost was developed originally for two-class problems, but many

methods have been developed for handling multi-class problems.

Kuncheva and Whitaker [181] described three variants of AdaBoost, i.e. Aggres-
sive boosting, Conservative boosting and Inverse boosting. Since the first paper
on boosting by Schapire, boosting alone has been an active research direction,

for the up-to-date research trends on boosting, consult the website given in [16].

e Cross-Validated Committees:

Cross-Validated Committees construct the training sets by leaving out disjoint
subsets of the training data [98] [130]. For example, the training set can be
randomly divided into 10 disjoint subsets. Then 10 overlapping sets can be
constructed by dropping out a different one of these 10 subsets. The same
procedure is employed to construct training sets for 10-fold cross validation.

That is why this method is called cross validated committees [212].
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Input:
L: a learning algorithm
N: an integer
[1] Initialize for all 4 : wy (i) = Initial weights
[2] For n =1 to N do
3] Forall i:p,(i) = wn(2)/ (>, wn(i)) Normalize the weights
[4] o = L(pn)
5] en =2, Pn(1)0[hn(x;) # yi Calculate the error for h,
6] ife,>1/2 then
[7] N=n-1
8] goto 12
[9] Brn = en/(1—ey)
[10]  For all i : wyq1(i) = wn(i)ﬁé%[h"(r")#yi] Calculate new weights
[11] End for
[12] Output:
hy () = angma 3 (log )5l (x) = ]

yeY n=1

Table 2.2: The AdaBoost Algorithm. The value of §[Q] equals to 1, if @ is true, and 0 otherwise.
2.3.3 Classifier Ensembles with Different Input Feature Subsets

This is a general method where different feature subsets are taken and passed on
to different classifiers. For example, Cherkauer [81] trained a neural network classifier
ensemble which consists of 32 component neural networks to identify volcanoes on
Venus. These neural networks are trained on 8 different subsets of the 119 available
input features and 4 different network sizes. The input feature subsets were selected
manually to group features that were based on different image processing opera-
tions. By doing this, they were able to match the performance of human experts in
identifying volcanoes.

Combining classifiers with different features was also studied by Chen, Wang
and Chi [79] with emphasis on text-independent speaker identification. They did
a systematic investigation and classified into three frameworks, i.e. linear opinion

pools, winner-take-all, and evidential reasoning. In the framework of linear opinion
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pools, the combination schemes make the final decision through the use of a linear
combination of the predictions of the multiple classifiers. In the framework of winner-
take-all, it chooses the best classifier which can be viewed as a winner. In the
framework of evidential reasoning, for an input pattern, the output of each individual
classifier is regarded as an evidence or an event and the combination scheme makes
the final decision based on a method of evidential reasoning. Evidential reasoning is

a methodology based on the Dempster-Shafer calculus of evidence [242].

2.3.4 Heterogeneous Classifier Ensembles

Stacked generalization and meta learning are two representative methods which
fall into the category of heterogeneous classifier ensembles where different types of
classifiers make up an ensemble architecture. A comparison study on combining

heterogeneous sets of classifiers was done by Bahler and Navarro [51]

e Stacked Generalization:

The general framework of stacked generalization was addressed by Wolpert [278].
It is a scheme for minimizing the generalization error rate of one or two gen-
eralizers. Stacked generalization is a layered architecture, where the classifiers
at the lever-0 (bottom) layer receive the original data as input and each of the
classifiers outputs a prediction. Successive layers receive the predictions of its

immediate preceding layer as the input. The output is passed to the next layer.

Most works deal with two-layer architectures [251] [262] [67]. For a two-layer

(level-0 and level-1) architecture, it works as follows:

(1) Train each of the level-0 classifiers using the following leave-one-out cross-

validation. For each example in the training set, leave-one-out and train on the
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remaining samples. After training, classify the left-out examples. Form a vector

from the predictions of all level-0 classifiers and the actual class of that example.

(2) Train the level-1 classifier using the collection of vectors generated in the
previous step as the training set. The number of examples in the level-1 data

is equal to the number of examples in the training set.

(3) In step one, classifiers are generated using a leave-one-out method. To fully
explore the training set, all level-O classifiers are re-trained using the entire
training set. The generated models are then used to classify the examples in

the test set.

Of course, stacked generalization is not constrained to two-layers, it can be

generalized to multi-layer architectures.

e Meta Learning:

The survey paper on meta learning by Vilata and Drissi [274] shows the term
meta learning has been ascribed different meanings by different research groups.
Two methods based on meta learning were introduced by Chan and Stolfo [78],
i.e. arbiter and combiner. Both schemes are to meta-learn a set of meta-
classifiers whose training data are based on predictions of a set of base classifiers.
An arbiter is learned by some learning algorithm to arbitrate among predictions
generated by different base classifiers. The aim of the combiner strategy is to
coalesce the predictions from the base classifiers by learning the relationship

between these predictions and the correct prediction.
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2.3.5 Homogeneous Classifier Ensembles

While research continues on the general classifier ensemble algorithms, efforts have
been made by researchers to combine only one specific classifier in a classifier ensem-
ble. Zheng [288] studied naive bayesian classifier ensembles. Various neural network
ensembles were addressed and investigated systematically in [243]. We present a
comprehensive study on nearest neighbor classifier ensembles in chapter IV where all

the ensembles contain only one type of classifier: the nearest neighbor classifier.

2.3.6 Recursive Partition Classifier Ensembles

Recursive Partitioning algorithms for classifier ensembles use a divide-and-conquer
strategy to partition a space into regions that contain instances of only one class.
Utgoftf and Brodley provide scheme examples for recursive partition ensemble algo-
rithms [268] [70]. Utgoff’s work on perception tree algorithms combines a univariate
decision tree with linear threshold units. It first determines if a subspace is linearly
separable by using a heuristic measure. If the subspaces are linearly separable, then
a linear threshold unit is applied. If not, the space is divided using an informa-
tion theoretic measure. Brodley’s model class selection system creates a recursive,
tree-structured hybrid classifier which combines decision trees, linear discriminant
functions and instance-based classifiers.

In my opinion, the recursive partition method for classifier ensembles is getting less
attention recently from the classifier ensemble community, but the idea of recursive
partition itself has found a lot of real world applications (e.g. [84]).

For the online bibliography reference on research about recursive partition (but

not limited to classifier ensembles), see [32].
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2.4 Summary

In this chapter, we described the methods for classifier ensembles in a categoriza-
tion scheme. Three basic criteria are usually used to evaluate a classifier ensemble
[251], i.e. accuracy, efficiency and diversity, among which the accuracy is on the top
priority of consideration. However, we argue that the tradeoff between the error rate
and the bias-variance should be also taken into account in practical applications.
That is, when considering a specific classifier, an often adopted strategy is to choose
the classification algorithm which has a small error rate, and ideally, at the same
time it also has both small bias and small variance. For example, if a classification
algorithm has a low error rate, but it has a high bias and a high variance, then
one should be cautious in this case, since high bias means this algorithm has a high
systematic error, and high variance indicates this algorithm has poor generalization.
For details about the scheme of bias plus variance decomposition of error rate, see
chapter IV. In Chapter VII, we conduct the experiments on various nearest neighbor

ensembles while taking into account this bias plus variance decomposition scheme.



CHAPTER III

Nearest Neighbor Learning Algorithm Revisited

3.1 Introduction

The nearest neighbor learning paradigm has been the central subject of many
theoretical and experimental studies for over half a century. It is one of the oldest and
simplest methods for performing non-parametric classification, where the class label
of an input pattern is assigned based on the class labels represented by the & closest
neighbors of the training set. Despite its simplicity, it has many advantages, e.g. it
does not require any knowledge about statistical properties of the data beforehand
[105], it may give competitive performance compared to many other methods.

The basic concept underlying the nearest neighbor classifier was first introduced
by Fix and Hodges [110]. In 1967, Cover and Hart [90] formally defined the nearest
neighbor rule and applied it to the pattern recognition problem. Since then, the
nearest neighbor algorithm has been under extensive study [92] [94] [280] [250] [60].

An easy and effective way to calculate the classification error rate is by the ”leave-
one-out” method. Hereby, each time the complete training set, but one, is used, and
the left out training sample is used for testing. By doing this for each training sample

separately, the classification error rate can be evaluated.

25
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Fi 3.1:
1B A geometric illustration of the crisp kNN classification rule. The label vector represents
the absence (by a 0) or presence (by a 1) of a label.

3.2 Nearest Neighbor Classifier

Suppose z is an unlabeled vector, x; is the ith labeled vector, k is the number
of nearest neighbors to find in the neighborhood of z, and there exists some dis-
tance measure between z and x; in RP. The geometric illustration of the crisp kNN
classification rule is give in Figure 3.1.

There are four algorithmic parameters associated with the kNN rule: (1) the value
of k; (2) the choice of distance measure; (3) the distance weighting measure (weighted
or nonweighted); (4) the method of counting votes.

Many distance metrics have been proposed in the literature, for example, the Chi-
square metric [277], the Manhalanobis metric [108], the Cosine Similarity metric’

[234], the Quadratic metric [117], the Modified Value Difference metric [89], of which

IThe Cosine Similarity C'Sxy is the cosine of the angle o between two L-dimensional vectors x and y, i.e

2. TiYi
¢ PO Z Y3
The more similar the two objects are, the closer the value of cos a approaches to 1, hence the angle between them
becomes close to 0. On the other hand, the Spectral Angle Mapper (SAM) [175] is a somewhat popular classifier
using laboratory spectra to determine the similarity between two spectra by calculating the ”spectral angle” between
them. This algorithm, implemented also in the ENVI software package [33], actually shares the same idea as the
Cosine Similarity metric, though it has the name of SAM in the remote sensing community: it’s in fact similar to

the nearest neighbor rule (1-NN) with the cosine similarity metric as the distance measure. So probably it’s better
to make a tunable parameter k in the SAM algorithm, so that one can make a choice at one’s own needs.

th

CSxy =cosa =
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the Euclidean distance is the most commonly used. How to select the distance
metrics was studied by Barker [52]. Although the Euclidean distance assumes that
the variables are uncorrelated [108], this might be not justified for hyperspectral data,
still we use it in the dissertation, since it is the most commonly used. There are many
variants of kNN, 51 milestone articles on the kNN rule and its variants were given in
[92]. In the machine learning community, kNN is often called instance-based learning
[44] or memory-based learning [254] where responses are computed by interpolating
from a table of stored patterns.?

One of the drawbacks of nonparametric methods is that they require a large
amount of computation time. In the case of k nearest neighbor classification, this
is due to the fact that it must compute every time the distance of an input pattern
with all training sample patterns in order to find the & nearest neighbors.® Many

methods have been proposed to reduce the computation time in the literature [119]

[224] [77].

3.3 Fuzzy Nearest Neighbor Classifier

One of the difficulties for kNN is that each of the labeled samples is given equal
importance in deciding the class memberships of the patterns to be classified, re-
gardless of their "typicalness”. On the other hand, a problem arises for classification

in high dimensionality, that is, the discrimination between classes becomes much

2The terms of instance-based and memory-based learning are just the synonymous names of lazy learning [42].
Lazy learning subsumes a family of algorithms that store the complete set of given examples and delay all further
calcalations, until requests for classifying yet unseen instances are received. Other synonymous names of lazy learning
include exemplar-based, cased -based and experience-based. As opposed to such ”lazy” learners, the ”eager” learners,
such as artificial neural networks, are algorithms where training examples are complied into a model at training time
but not available at runtime.

3In the field of computational geometry, this is referred as nearest neighbor search [143] (or similarity search
[235]), i.e. given a database of points in a multidimensional space, construct a data structure which, given any
query point, finds the database point(s) closest to it. In practice, when dimensionality becomes much higher and
higher, computing ezact nearest neighbor is a very difficult task. Few algorithms seem to be significantly better than a
brute-force computation of all distances. In this case, the approximate nearest neighbor is sought instead of the ezact
nearest neighbor, but with a trade-off between accuracy and time complexity. The nearest neighbor search problem
is a key issue in computational geometry, and has been of great importance in many areas of computer science,
including pattern recognition, databases ([133]), vector compression, computational statistics and data mining [142].
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more difficult. This is due to the fact that, the number of training samples needed
to catch up with the increasing dimensionality grows overwhelmingly. In pattern
recognition, crisp classification is often replaced by fuzzy classification [59]. In these
techniques, the decision to classify a data point is delayed as long as possible by the
use of memberships. Membership values are assigned to the point as a function of
the point’s distance from its k£ nearest neighbors and those neighbors’ memberships
in the possible classes. These techniques have proven to outperform the crisp clas-
sification techniques, especially when clusters tend to overlap. The theory of fuzzy
sets has been introduced into the k£ nearest neighbor classification. The fuzzy NN
rule was given in [157]. A fuzzy kNN classifier was designed by Keller et al. [161],
where class memberships are assigned to the sample, as a function of the sample’s
distance from its k£ nearest neighboring training samples. The fuzzy kNN procedure

is described below:
1. Store training data T with their S partitions.
2. Choose k = number of neighbors to find.
3. Choose d: RP x RP — R any distance metric on RP.

4. For any vector z ¢ T, using T = {x;}, compute and rank-order the distances
d(Z,Xi) as {dl Sdg S Sdk Sdk+1 S }

Calculate

k 1
ST B
251 <d<z,xj>w21)
k 1
i ()

where u;(z) is the assigned membership of the vector z, u;; is the membership in

(3.1) ui(z) =

the ith class of the jth vector of the labeled sample set, and w is a scaling parameter
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between 1 and 2. If Euclidean distance is used, then d(z,x;) = ||z — x;|| The
memberships of the training samples u;; can be defined in several ways. The ’crispest’
way is to give them complete membership in their own class and nonmembership
in all other classes. A more 'fuzzy’ alternative is to assign the training samples’
memberships based on the distance from their class mean. After calculating the
memberships for the test sample, it is assigned to the class with highest membership.

In our experiments we have found that the second approach leads to the best results.



CHAPTER IV

Ensemble Methods for Nearest Neighbor Learning
Algorithm

4.1 Introduction'

Integration of the predictions of a number of classifiers has been shown to be
an effective way to achieve more accurate classification than any of the component
classifiers,? and promising results have been given in many real world applications,
e.g. handwritten character recognition [281] [135] [120], protein structure prediction
[286], calculation of fat content of ground meat [260]. There are many general algo-
rithms for combining classifiers such as Bagging [65] and Boosting [16]. This area
is one of the four most important directions in machine learning research [98], and
has many different names [180], e.g. classifier fusion, classifier ensembles, censensus
aggregation.

In contrast to the huge amount of research in this active area [231] [182] [279]
[167] [210] [54] [126] [174] [211], little work has been done on combining the specific
classifier: the k nearest neighbor classifier (kNN) [105] [90]. Since its introduction,
the kNN rule has been well studied and improved [118], but the ensemble methods

for KNN classifiers are limited in the literature [251] [47] [55] [228].

IThis chapter, together with part of Chapter VTI, is the generalized work of [285].
2The problem of combining preference arises in many applications, such as combining the results of different
search engines [145].

30
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The purpose of this chapter is two-fold: (i) a comprehensive description of the
nearest neighbor classifier ensembles is performed (with the experimental study on
hyperspectral remote sensing data in Chapter VII). (ii) a method of CNN-ECOC
which combines Condensed Nearest Neighbors (CNN) in conjunction with Error
Correcting Output Codes (ECOC) is proposed in Section 4.3.5. Another variant
method, kNN-ECOC-RS, which utilizes the Randomly Selected features with Error
Correcting Output Codes is suggested as a by-product in Section 4.3.4.

This chapter is organized as follows: In the next section, the technique of Error
Correcting Output Codes (ECOC) is briefly explained. In section 4.3, different kinds
of nearest neighbor classifier ensemble methods are recapitulated and the extended
methods are then presented. A taxonomy of classification methods using the k-NN
algorithm is also given. In section 4.4, the scheme of bias plus variance analysis of

the error rate is explained.

4.2 Error Correcting Output Codes (ECOC)

Error Correcting Output Codes (ECOC) are one kind of distributed output rep-
resentations, and were first proposed for multi-class classification tasks by Dietterich
and Bakiri in their seminal work of [101], where classifiers are combined for multi-
class problems by decomposing into multiple two-class distribution classifiers. Each
class is assigned a binary code word and each component classifier is assigned the
task of learning one-bit position of that code word. The resulting predictions of the
component classifiers then form a vector, representing the separation of the classes
into two disjoint subsets. A Hamming distance measure is used to compute the
closest codebook vector to the vector of predictions.

Table 4.1 shows an example of typically pre-defined ECOC codes for a 5-class
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Code Word
Class 112|814 |66 7|89 |10 |11 |12 ] 13| 14 | 15
Corn/min 1111|111 |1]|1] 1 1 1 1 1 1
Grass/pasture | 0 | 0 | 0| 0| 0| 0|0 |0|1| 1 1 1 1 1 1
Grass/trees oyolo|o|1|1|1]|1|0] 0|01 0]| 1] 1|1
Soy-clean o|o|(1 10|01 |1|0] 0 1 1 0 0 1
Wheat oO|1(0|1|0|1]0|1]|0] 1 0 | 1 0 | 1 0

Table 4.1: An example of typical 15-bit ECOC codes for a 5-class problem.

problem. Suppose we have a 5-class classification problem, and the description of
the 5 classes is given in Table 7.1 of Chapter VII. To classify a new object, the 15-
bits are evaluated to obtain a 15-bit binary string, say, 111010011101001. Then the
Hamming distance (which counts the number of bits that differ with each other) of
this string to each of the pre-defined 5 codewords is calculated. The nearest codeword
is 111111111111111, and this corresponds to class Corn/min. Hence, the new object

is assigned to the Corn/min class.

4.3 Ensemble Methods for Nearest Neighbor Classifiers

In this section, we describe several existing methods [251] [47] [55] [43] for com-
bining nearest neighbor classifiers, and present several extended methods. All the
ensemble methods belong to the category of homogeneous classifier ensembles as
described in Section 2.3.5, which contain only the nearest neighbor classifiers as
component classifiers.

A taxonomy of classification methods presented in this chapter using the k-NN
algorithm is illustrated in Figure 4.1. We first divide the methods using k-NN algo-
rithm into ensembles where £-NN is used as component classifier and non-ensembles
where only a single k-NN (or its variant) is used. We then divided the k-NN en-
sembles into three different categories: Voting ensembles; Ensembles with different
input feature subsets; Ensembles manipulating training samples. Voting over mul-

tiple condensed NN (section 4.3.2) belongs to the voting ensembles. The ensembles
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Figure 4.1: A taxonomy of classification methods using k-NN algorithm.
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with different input feature subsets consist of three methods: the NN classification
from multiple feature subsets (section 4.3.1), kNN-ECOC- Feature Selection method:
ENN-ECOC-FS, and kNN-ECOC-Randomly Selected feature method: ANN-ECOC-
RS (section 4.3.4). Skalak’s NN Architecture (section 4.3.3) and Condensed Nearest
Neighbors (CNN) with Error Correcting Output Codes: CNN-ECOC (Section 4.3.5)

are two methods which belong to the ensembles manipulating training samples.

4.3.1 Nearest Neighbor Classification from Multiple Feature Subsets (MFS)

Bay [55] proposed an algorithm: Nearest neighbor classification from multiple fea-
ture subsets (MFS). It uses a simple voting scheme, and just takes the output which
has the highest accuracy among the output of a number of component NN classifiers.
Each of the component NN classifiers has the same number of features, and all the
feature subsets are chosen by sampling from the original feature space. Two sam-
pling methods, i.e. sampling with replacement and sampling without replacement,

are used.

4.3.2 Voting over Multiple Condensed Nearest Neighbors (CNN)

When the number of the training patterns is too large, the need to store the
whole patterns requires a large memory. Hart’s [127] condensing algorithm solved
this problem by storing only a subset of the full training set. This algorithm works
as follows. First it starts with two subsets: the Grabbag subset and the Store subset.
The Store subset is empty while the Grabbag subset contains the whole training set.
Then the Store subset is initialized with a sample taken randomly from Grabbag.
On each iteration, randomly take one sample from Grabbag, if it can not be correctly
classified by the current samples in Store, then place it in subset Store, otherwise

throw it back in subset Grabbage. The procedure is often referred to as condensing.
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This method is actually a local search® in that the resulting subset Store depends
on the order of the samples stored. If one shuffles the training samples, one may
get different results. One may want to stop this procedure after several iterations
in order to speed up the process, for example, when the stored patterns in the last
iteration are less than, say 10%, of the training set. The final patterns stored in
the Store subset are the condensed patterns, which can be used as training patterns.
The classification rule used in this procedure is 1-NN; if the k-NN rule is used (i.e.
k > 2), then the computational cost is becoming higher.

Alpaydin [47] proposed to train multiple condensed nearest neighbor subsets [127]
and take a vote over them. Two voting schemes are used: simple voting where voters
have equal weights and weighted voting where weights depend on the classifiers’
confidence in their predictions. A simple method [47] is used to calculate the weights:
taking the two most nearest neighbors of x, say, z; is the closest pattern, and z is

the second closest one, we have weight «a:

1 . if class label h(z;) = h(z2)

d(x,2z2)—d(x,21)

dxz2) otherwise

where d is the distance measure.
Besides, another way is the union method, which combines the multiple CNN’s

by applying NN to the union of subsets obtained by multiple CNN’s.

4.3.3 Nearest Neighbor Classifiers with Small Prototype Sets: Skalak’s NN Archi-
tecture

We follow Skalak’s [251] discussion on composite nearest neighbor classifiers. Of
the many architectures for classifier combinations till now, there are 3 primary archi-

tectures for combining classification algorithms: 1. Stacked Generalization (Figure

3This local search strategy is also used by both IB2 [44] and Grow and Learn (GAL) learning scheme [46].
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Figure 4.2: Stacked nearest neighbor classifier architecture.
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Fi 4.3:
e Boosting architecture. Classifier hl is taken as given, while h2 and h3 are additional

component classifiers.

4.2); 2. Boosting (Figure 4.3); 3. Recursive Partitioning (Figure 4.4).

Wolpert [278] was probably the first to discuss the idea of Stacked Generalization
in its full generality. Stacked Generalization assumes that a set of n level-0 (compo-
nent) learning algorithms, a level-1 learning (combining) algorithm, and a training
set of classified instances have been given. It is a recursive layered structure for com-
bining classifiers, where at each layer the classifiers are used to combine the output
of the classifiers just under that layer. Boosting is due to Schapire [237]. The goal of
boosting is to increase the accuracy of a given algorithm on a given distribution of
training instances. It successively creates complementary component classifiers by
filtering the training set. Recursive Partitioning algorithms use a divide-and-conquer

strategy to partition a space into regions that contain instances of only one class.
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Figure 4.4:
& An example of a recursive partitioning architecture. Each of the component classifiers,

from hO to h8&, applies only to a particular region of the instance space.

Figure 4.5 is one of the composite architectures which were studied by Skalak
[251]. It’s a two-layer architecture, consisting of level-0 and level-1 classifiers. The
level-0 classifiers consist of two classifiers: a base classifier (say hg), i.e. a full near-
est neighbor classifier, which uses all instances as prototypes, and a complementary
classifier (say h), which is a minimal nearest neighbor classifier, storing only one
prototype per class. The complementary nearest neighbor classifier h; is obtained
through the following procedure:
(1) Randomly sample n sets of S instances (with replacement) from the training set
T, where S is the number of classes exposed in T, one instance is drawn from each
class.
(2) Use each set as a prototype set to construct a nearest neighbor classifier.
(3) Classify all instances in 7" using each of these n classifiers.
(4) Choose the classifier with highest classification accuracy on 7" as the complemen-
tary classifier h;.

For the level-1 combining algorithm, the decision tree algorithm ID3 [221] is used.

For each original training instance x € T" with class S;, a level-1 training instance is



4.3. Ensemble Methods for Nearest Neighbor Classifiers 38
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Figure 4.5: A composite architecture.

created: (ho(x), h1(x),S;). So, for example, let x be a level-0 instance, if hy predicts
class A when applied to instance x, while h; predicts class B when applied to instance
x, then the level-1 feature representation for x becomes (A, B). The entire level-1
representation for x also includes the class of x (say A), i.e. the level-1 representation
is actually (A, B, A). The set of these three-tuples of class samples is the training
set used to train the level-1 learning algorithm ID3.

ID3 is a greedy algorithm that grows the tree top-down, at each node selecting the
attribute that best classifies the local training examples. This procedure continues
until the tree perfectly classifies the training examples, or until all attributes have
been used. Although ID3 is no longer considered as a state-of-the-art decision tree,
we use it as the level-1 combining algorithm. All the level-1 features are symbolic,
the implementation of ID3 uses the same feature selection metric as described by
decision tree C4.5 [222], a descendant of ID3.

In Dietterich and Bakiri’s work [101], they showed that ECOC can improve de-
cision trees and neural networks. We are motivated by this, and hypothesize that
using ECOC in combination with the structure shown in Figure 4.5 can probably
further improve the classification gains. The experimental results on this will be

explained in Section 7.2.2 of Chapter VII.
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4.3.4 Nearest Neighbor Classifier with Error Correcting Output Codes and Feature
Selection: KNN-ECOC-FS

While neither Bagging nor (directly) combining the Error Correcting Output
Codes (ECOC) with kNN improves the classification performance, Aha and Bankert
[43] proposed to further combine ECOC with feature selection for each output bit and
their empirical study on the cloud data showed performance gains. The procedures
are as follows:

(1) Create the codewords for the specific problem. In this step, first the confusion
matrix is obtained using the IB1 classifier [44] on the training set. Next, create the
output bits by building a set of partitions, one per output bit, repeat until the set
of partitions distinguishes each pair of classes according to at least the requested
Hamming distance.

(2) Then ANN-ECOC computes the set of features to use when predicting bit
values for each output bit (i.e. featue selection for each bit).

(3) For each test sample, kNN-ECOC predicts a value for each output bit and
compares the predicted output string with each codeword, yielding the most simi-
lar codeword’s class as its prediction for the test sample’s class. The classification
accuracy is then calculated.

Another probably interesting technique is the following. The ENN-ECOC idea
combined with a feature selection method improves the classification gains, where
feature selection was used for each bit. This is a considerable computational cost. But
by combining with a randomly chosen feature subset for each bit instead of feature
selection could act in the same way as feature selection: distances are computed
differently for each bit, but this procedure will save considerable computational time.

We call this variant as kNN-ECOC-RS in this dissertation. While with a random
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sampling of the original feature space, one can naturally only by chance get the
classification performance improved. By using ECOC in conjunction with a random
sampling, errors occurring by chance in each bit of the ECOC codes can be smoothly

alleviated, as a consequence, the entire performance can be improved.

4.3.5 Condensed Nearest Neighbors (CNN) with Error Correcting Output Codes:
CNN-ECOC

The "nonlocal” learning algorithms (i.e. those that induce compact classifiers),
e.g. the decision tree C4.5 and the neural networks trained by backpropagation,
benefit from the use of ECOC, but the local ones (i.e. those that generate pre-
dictions based on information near the query samples such as the nearest neighbor
algorithm), do not [171]. The reason is that, when using only local information, the
bias errors in different output bits will be correlated, which will prevent the ECOC
from reducing bias errors. Aha and Bankert [43] solved this problem by combining
ECOC with a feature selection technique. On the other hand, the method of vot-
ing on Multiple Condensed Nearest Neighbors (CNN) generates different CNN’s by
shuffling the training samples on each run. Therefore this leads us to propose to
combine the ECOC with Multiple CNN’s: it relies on running CNN for each output
bit, so that similarity can be computed on different resulting CNN’s for each bit.
This will, in fact, cause different stored samples to be retrieved for different output
bits, and their predictions should be not correlated with each other. This follows the
same strategy as the seminal work by Aha and Bankert [43]: while still depending
on using local information during classification predictions, it uses different, yet local
information for each output bit.

We have found that rather than trying to create a well-designed codeword in step

(1) of Section 4.3.4, it would be much more convenient to use the large sets of code-
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words for ECOC already designed by Dietterich’s group, which can be downloaded

from [1]. In our experiments in Chapter VII, we used their pre-designed codes.

4.4 Bias plus Variance Decomposition of the Error Rate

It is unfair to evaluate the classification performance by the error rate alone,
without considering the bias and variance effects of the classification algorithm. For
example, if a classification algorithm has an acceptable classification performance,
but also has a high variance, one should be cautious about it, since the high vari-
ance suggests that this algorithm has a poor generalization. The bias plus variance
decomposition [121] is a powerful tool for explaining how changes to a potential al-
gorithm can affect the resulting error rates. Researchers have proposed a number of
decomposition methods in the literature [66] [150] [169] [171] [261]. The basic idea
behind this theoretical framework is that a classification algorithm has two kinds of
errors: (i) a systematic error, which is due to the representation languages used by
the learning algorithm itself. (ii) an error resulting from random variation and noise
in the training set and from any random behavior of the learning algorithm, i.e. this
error depends on the generated model from the training set.

We follow Kohavi and Wolpert’s definitions for bias and variance, because their
decomposition method avoids potentially negative variance [169].

Given values of hypothesis H and target function F', the associated zero-one loss
function for a test sample is a mapping from ¢: Y xY — 0,1. i.e. {(yp,yg) =0,
if y» = yy, and 1 | otherwise. The cost, C is a random variable defined as the loss

over the random variable Yz and Yy. The expected cost, or error rate, is expressed
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as:

(4.1) E(C)=1-) P(Yy=Yr=y)

yey

The above equation can be rewritten as:

E(C)=> —P(Yg=Yr=y)+Y P(Yg=y)PYr=1y)+

yey yey

(4.2)

By rearranging the terms, we have

%[1 — ) P(Yr=y)’

(4.3)

We assume that Yz and Yy are conditionally independent, then P(Yy = Yp = y)

is actually P(Yy = y)P(Yr = y), so the first term in the above equation is zero.

When estimating the expected cost for a fixed target and averaging over the
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training set T' with size m, it is often written as:

ZP E(C|f,m,x) for xeT

So
(4.4) Z P(x ? + bias? + variance,)
where
1
2 _ 2
(4.5 7= 2= Y P(Ye = yla))
yey
(4.6) bias? = Z Vi =ylz) — P(Yr = ylz)®
yEY
. 1 2
(4.7) Variance, = 5(1 — ;P(YH = yl|r))

The “bias®” is the difference between the learning algorithm’s average prediction
and the target. It refers to the systematic error of the learning algorithm. The
“variance” instead tells us "how much the learning algorithm’s prediction bounces
around for different training sets of the given size” [169]. It results from random
variation and noise in the training set and from any random behavior of the learning

algorithm. The o2

is the intrinsic noise of the learning algorithm. In Chapter VII
we take into account the bias plus variance decomposition of the error rate to study

the performance of various nearest neighbor classifier ensembles.



CHAPTER V

Feature Selection Methods: An Overview

5.1 Introduction

Feature selection'or attribute selection? has been a traditional research topic dat-
ing back to at least as early as the 70’s (e.g. [203]). It is a broad subject that spans
to research disciplines such as statistics ([207] [63] [200]), pattern recognition ([148]
255] [165]), data mining® ([80]), machine learning ([125]), neural networks ([241]),
fractals ([72]), rough sets theory ([95]), mathematical programming ([64] [141]) and
many others.

The advantages of feature selection are that it reduces the dimensionality of the
feature space and removes the redundant, irrelevant or noisy data. The immediate
effects for data analysis tasks are speeding up the running time of the learning algo-
rithms, improving the data quality, increasing the accuracy of the resulting model.

So what is feature selection? Suppose X is the original feature space with a
cardinality of ¢, and X is the selected feature space with a cardinality of g, X C X,
J(X) is the selection criterion for selected feature space X. Without loss of generality,

we assume that a higher value of J indicates a better feature space. The goal is to

1Online feature subset selection bibliography can be found in [6] [8].

2Throughout this dissertation, we use feature selection, attribute selection, and variable selection without any
distinction.

3Refer to the book [193] for feature selection for knowledge discovery and data mining, consult its appendix A for
easy reference of the machine learning (ML), data mining and knowledge discovery (KD) resources or see online [31].

44
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maximize J(). Formally, the problem of feature selection is to find a sub-space

X C X such that

(5.1) J(X)= max J(Z)

ZCX,|Z|=q

If an exhaustive approach is performed, then we need to consider all (Z,) pos-
sible combinations. The number of combinations grows exponentially, making the
exhaustive search unfeasible for larger values of q. Even for moderate values of ¢,
performing the exhaustive search is impractical. Finding the best feature subset is
usually intractable [168], and many problems related to feature selection have been
shown to be NP-hard [62]. There are three kinds of feature selection strategies: (i)
The number of features, say q is already given, and the task of the search algorithms
is to decide which ¢ features constitute a (sub)optimal feature subset. (ii) The second
strategy is to search the smallest feature dimensionality for which the discrimina-
tion performance exceeds a specified value. (iii) The third search strategy selects a
(sub)optimal feature subset which has a trade-off between the class discriminabil-

ity (e.g. classification error rate) and the subset size ( e.g. the number of selected

features).

5.2 Relevance to the Concept: Weak and Strong Relevance

Determining which of the features are relevant to the learning task is a central issue
in machine learning, as the inclusion of irrelevant or redundant features can reduce
the performance of different learning algorithms. In order to determine which of the
features are relevant or not, we need to first know the concepts of weak relevance and
strong relevance. There are a number of different definitions in the machine learning

literature for what it means for features to be "relevant”. John, Kohavi and Pfleger
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[156] [155] define two notations of relevance [124]:

Strong Relevance: An attribute z; is strongly relevant if its removal yields a
deterioration of the performance of the Bayes Optimum Classifier.

Weak Relevance: An attribute x; is weakly relevant if not strongly relevant and
there exists a subset of variables V' such that the performance on V U {x;} is better
than the performance on V.

Therefore features that are neither strongly relevant nor weakly relevant are ir-

relevant. Irrelevant features should be left out.

5.3 General Characteristics of Feature Selection Methods

Feature selection aims to search the relevant features in the feature space. Re-
searchers have studied various aspects of feature selection. From the point of view of
heuristic search, Blum and Langley [61] argue that the following four issues, which

affect the nature of the search, can characterize any feature selection method.

1. The starting point in the feature space.

Depending on which point to start with, the search direction will vary. Search
from no features and successively add others is called forward selection. In con-
trast, search from all features and successively remove features is called back-
ward selection. A third method could be to combine forward and backward

search.

2. The organization of the search procedure.

Obviously, if the number of features is too large, the exhaustive search of all
the feature subspace is prohibitive, as there are 2V possible combinations for N
features. For example, heuristic search is more realistic than exhaustive search,

but it doesn’t guarantee finding the optimal solutions.
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3. The evaluation strategy.

How feature subsets are evaluated is an important problem. As for classifica-
tion, the ideal feature subset should have the best separation of the data. Data
separation is usually computed by an inter-class distance measure [166]. An-
other most frequently used discriminating measure is the Wilk lambda [276], it

is defined as follows:

w

(5.2) Ao VT
W + B|

where W is the intra-class matrix dispersion corresponding to the selected vari-

able set, B is the corresponding inter-class matrix, || is the determinant of

matrix W. W and B are computed respectively:

(5.3) W:Zix—p V(2! — 1)
(5.4) B= ZNj(u—uj)t(u—uj)

where g the number of classes, N; the number of samples in class j, p; the
mean of class j and p the global mean. The smaller the value of A, the better

discriminating power it indicates.

In this dissertation, classification accuracy is used for the evaluation of the fea-
ture subset. Classification accuracy is defined as the percentage of test examples
correctly classified by some algorithm. Many induction algorithms incorporate
a criterion based on information theory, others directly measure accuracy on

the training set.
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4. The criterion for stopping the search.

During the process of evaluation, we might want to stop the search, when ob-

serving that there is no improvements of the classification accuracy.

5.4 Categorization Scheme of Feature Selection Methods

There is plenty of effort to compare and evaluate different feature selection meth-
ods [203] [178], but there are very few attempts to categorize the feature selection
methods in the literature. Siedlecki and Sklansky [245] discussed the evolution of
feature selection methods and grouped the methods into past, present and future
categories. Their main focus was the branch and bound method and its variants.
Dash and Liu [93] divided 32 existing feature selection methods into different groups
based on the major two characteristics of feature selection: generation procedure
(complete, heuristic, random) and evaluation function (distance, information, con-
sistency, classification error rate). A taxonomy of feature selection algorithms into
broad categories was given by Jain and Zongker [147], where the methods were first
divided into those based on statistical pattern recognition (SPR) classification tech-
niques, and those using artificial neural networks. The SPR category was then further
divided into sub-categories. The categorization can also be simply done according
to the monotonicity of the selection evaluation criteria, that is, monotonic versus
non-monotonic. Another categorization could be according to the time complexity
of the feature selection algorithm, e.g. the time complexity of floating search meth-

ods [217] is O(2"),* while that of the sequential backward and sequential forward

4Let’s take a somewhat pragmatic viewpoint of the time complexity for (both forward and backward) floating
search methods through an example. Suppose the number of selected features g is much less than the original feature
space with g features, say, ¢ = 10 x . Then the time complexity for forward floating search is [240]:

Oforward = 9.5 % 62 +0.5%q,

while that for backward floating search is:

Obackward = 49.5 % G2 +4.5% G+ 1.

One can see clearly in this case the time complexity for backward floating search is more than five times as that for
forward floating search, this indicates that the forward version of floating search is preferred when both the forward
and backward floating search methods are applicable.



5.4. Categorization Scheme of Feature Selection Methods 49

selection methods is ©(n?), where © denotes a tight estimate of complexity, while O
denotes an estimate of complexity for which only an upper bound is known. More-
over, the feature selection methods can be categorized into two general groups [177],
that is, the classifier-specific selection methods where the goodness is evaluated by a
given criterion (e.g. the error rate of a certain classifier, this is useful for cases where
we know which classification will be performed after selection) and the classifier-
independent selection methods where the goodness is evaluated by the methods’ own
criterion (e.g. measures based on the approximation of class-conditional probability
density functions, this is useful for cases where we don’t know which classification will
be used). Other categorization schemes include simply dividing the feature selection
methods into: optimal (e.g. exhaustive search) vs. non-optimal (suboptimal), from
the point of view of the optimality of the resulting subset; backward elimination vs.
forward selection, from the point of view of starting point in the feature search space;
and many others.

On the other hand, feature selection can be generally regarded as an optimization
problem. For a general optimization problem, one may use the NEOS optimization
tree category [13], that divides optimization techniques into discrete optimization
and continuous optimization, both of which are then further divided into other sub-
categories. For more references on optimization, the reader is referred to Optimiza-
tion Online [29].

We describe three typical model approaches in the following,” i.e. the Filter

Selection Model, the Wrapper Selection Model, and the Embedded Selection Model.

5 It seems to me that there is also a need to categorize the availale selection methods into two major groups,
i.e. those promising ones for large dataset (e.g. the genetic feature selectors which are discussed in Chapter VI and
floating search methods [217] [253]) that are very effective for large scale databases, especially nowdays at a time
when information grows at an amazing speed, and those less-promising ones that have weak power to deal with the
high dimensional data due to reasons such as the costly computation complexity problem, therefore they are mainly
targeted for the use with small or medium scale databases.
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5.4.1 Filter Selection Model

The filter selection model is the earliest approach to feature selection. It utilizes an
independent search criterion to find the appropriate feature subset before a machine
learning algorithm is performed, thus it was termed as filter method by John, Kohavi
and Pfleger [156]: it filters out irrelevant attributes before induction occurs, that is,
the search is done independently of an induction algorithm. The procedure of the
filter model is shown in Figure 5.1. The advantage of the filter model is that it does
not need to re-run the algorithm for every induction algorithm when choosing to
run on a reduced feature dataset, as a consequence, the filter approach is generally
computational efficient, and it is practical for data sets with very high dimensionality.

There are a number of different representative filter algorithms in the literature.
FOCUS, an algorithm designed by Almuallim and Dietterich [45] originally for the
boolean domain, searches the feature space by looking at each feature in isolation,
then turn to pairs of features, triples, and so on, and stops until it finds the minimal
combination of features. The minimal feature subset divides the training data into
pure classes, i.e. no instances have more than one class. The original training
samples which are characterized by the resulting feature subset, are then passed to
the decision tree induction algorithm ID3 [221].

Another representative work of the filter approach is the RELIEF algorithm due to
Kira and Rendell [163]. The RELIEF algorithm follows the general and simple filter
scheme, that is, it first evaluates the individual feature according to the evaluation
criterion, and thereafter, the best n features are selected. However it uses a more
complex evaluation function. The training samples, characterized by the selected
features, are then passed to ID3. Two extensions were made to this algorithm by

Kononenko [172], where more general data types can be treated. Although both
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FOCUS and RELIEF use the decision tree induction algorithm after feature selection,
they are naturally not confined to decision tree algorithms, i.e. other induction
algorithms can be used instead.
Table 5.1 shows a list of filter approaches to feature selection in the literature.
Since the filter approach does not take into account the learning bias introduced
by the final induction algorithm, it may not be able to select the most suitable subset

for the final induction algorithm. For this reason, the wrapper model was proposed.

5.4.2 Wrapper Selection Model

The strategy of the wrapper model is to use an induction algorithm to estimate the
merit of the searched feature subset on the training data and using the estimated
accuracy of the resulting classifier as its metric . The wrapper approaches often
have better results than the filter approaches because they are tuned to the specific
interaction between an induction algorithm and its training data. In Chapter VI, we
discuss a typical wrapper selection approach called genetic feature selectors, which
use genetic algorithms as the search engine (and one of them uses the ensembled
nearest neighbor classifiers as the induction algorithm). In this way, feature selection
takes into account the biases from the final learning algorithm. The use of wrapper
approaches was supported by the study of Aha and Banket [41], Doak [103] and John
et al. [156].

The wrapper selection procedure is illustrated in Figure 5.2.

The disadvantage of the wrapper model is that it is less tractable because of
the prohibitive cost of running the classification algorithm many times when the
dimensionality is considerably high.

Table 5.2 shows different wrapper approaches to feature selection in the literature.
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Figure 5.2: Wrapper selection procedure.
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5.4.3 Embedded Selection Model

In contrast to the wrapper approach, which treats feature selection as a wrapper
around the induction process, the embedded approach embeds the selection within
the basic induction algorithm. Examples of this model are the decision tree algo-
rithms ID3 and C4.5° 7 by Quinlan [221] [222] and CART ® by Breiman [68]. These
decision tree algorithms use recursive partitioning methods for induction, and carry
out a greedy search through the space of decision trees. At each stage they use an
evaluation function to select the attribute that has the best ability to discriminate
among the classes. They partition the training data based on this attribute and
repeat the process on each subset, extending the tree downwards until no further
discrimination is possible.

Besides these three approaches, another model called weighted model was also

introduced [214] [213], where feature weighting is considered.

6The fuzzy set theory has been introduced into decision trees by many researchers [151] [140] [267] [153].

7Quinlan has developed advanced version called C5.0/see5 [34].

8 An algorithm called RECPAM [83], is a generalization of the well-know CART algorithm. The difference between
ID3 and CART is that while ID3 aims at knowledge comprehensibility and is based on symbolic domains, CART is
naturally designed to deal with continuous domains but lacks the same level of comprehensibility.



CHAPTER VI

Genetic Feature Selectors

6.1 Introduction’

In this section we will introduce some background of evolutionary algorithms and
meanwhile situate the genetic algorithms within the frame of evolutionary algorithms.
Evolutionary algorithms (EAs) [48] [11] [5] are a broad class of different randomized
search heuristics, which currently include Evolution Strategies (ESs) [49], Evolution-
ary Programming (EP) [111], Genetic Programming (GP) [21] [173] and Genetic
Algorithms (GAs) [123]. They all stem from modeling the natural evolution pro-
cesses. Although based on the same evolutionary principles, each of them employs
its own particular chromosomal representation, set of genetic operators and selection
and replacement scheme. Evolutionary computation® * 4 [50] has found countless
real world applications, e.g. it has been also applied to the field of hyperspectral
image analysis and remote sensing [225] [128] [71]. On the other hand, evolutionary
algorithms were already proposed for optimization in the 60’s [69] and the research
on this continues [24].

Genetic algorithms are a successful soft-computing technique for solving optimiza-

IThis chapter, together with part of Chapter VTI, is the generalized work of [284].

2We don’t make any distinction between evolutionary algorithms and evolutionary computation here.

3For more reference on evolutionary computation, refer to the page of the International Society for Genetic and
Evolutonary Computation (ISGEC), and check the menu of Books by ISGEC members [23].

4Cooperative coevolutionary computation [216] [215] is yet another type of evolutionary computation, which
promises many advantages over traditional evolutionary algorithms in terms of the corresponding adaptability and
potential open-endedness.

o7
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tion problems, and were already applied to the problem of feature selection [246] [179]
[144] [282]. GAs were found to be very efficient to do so [147]. In this chapter we will
discuss the problem of using the genetic algorithms as the search engine to perform
feature selection for high dimensionality with limited training data.

The outline of this chapter is as follows: in the following two sections, we first
describe the basic concepts of the standard genetic algorithms, we then address
the categorization scheme on the existing feature selection methods using genetic
algorithms, one of which is a feature selector using genetic algorithms in conjunction

with an ensembled learning scheme.

6.2 Genetic Algorithms

Genetic Algorithms (GAs)®, invented by Holland [136] in the 70’s, are general
purpose search algorithms that utilize the principles inspired by natural population
genetics to evolve solutions to problems.

Although different variants of genetic algorithms vary in many aspects, they share
a prototypical procedure as shown in Figure 6.1. GAs are an iterative optimization
process where a set of operators, such as crossover and mutation, are applied. First
a solution is represented by a finite sequence of 0’s and 1’s, called a chromosome.
The chromosomes are allowed to ’'crossover’, e.g. for two parental chromosomes, the
simple way is to choose randomly some point (called crossover point) and everything
before this point copies from the first parent and then everything after this crossover
point copies from the second parent. In this way, two parental chromosomes exchange
their parts at the crossover point to create two new child chromosomes. Chromosomes

are also allowed to 'mutate’; i.e. a small change (e.g. flipping of a bit) can be made

5See [15] for online genetic algorithm archive. Jarmot T. Alander of Finland has compiled a series of indexed bib-
liography of Genetic Algorithms and their applications in many areas. The series of bibliography can be downloaded
from [2].
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Figure 6.1: Outline of the standard GAs.

to a chromosome. The optimization process is carried out in 'generations’, where
each time a population of new chromosomes is generated. Since the population size
is finite, only the 'best’ chromosomes are allowed to survive. A ’fitness’ function is
defined that allows to calculate a fitness score for each of the chromosomes.

Due to the inherent parallel nature of genetic aglrithms, many parallel versions
of genetic algorithms have been proposed in the literature [74]. The theory of fuzzy
set has also been introduced into genetic algorithms [275] [131]. For a throughout
study of various aspects of genetic algorithms, the reader is referred to the following

standard introductory material [123] [137] [199] [202].
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6.3 Categorization Scheme of Genetic Feature Selectors

Genetic feature selectors are a series of feature selection methods which use genetic
algorithms to guide the selection procedure. Basically speaking, the genetic feature
selectors fall into the category of the wrapper model as described in Section 5.4.2 of
Chapter V. GAs may, in general, hybridize with any classification scheme, therefore
they can also be categorized into two groups, that is, those that combine with a
single learning scheme (i.e. non-ensembled learning scheme) and those that combine
with an ensembled learning scheme, e.g. in [284], where an ensemble of nearest
neighbor learning algorithms is proposed to evaluate the merit of the features selected
during the selection process. In Chapter VII, we will do some experiments where the
ensembled learning scheme is used, and demonstrate its superiority over the single
learning scheme for genetic feature selection.

Genetic search is a type of search which has the following properties: it is (i) a
stochastic search, (ii) a multi-point search, (iii) a direct search, (iiii) a parallel search.
Due to these reasons, genetic algorithms have been applied to the problem of feature
selection. The genetic feature seletion was originally inspired by the seminal work
by Siedlecki and Sklansky [246]. They designed a genetic feature selection algorithm
that was found to be very efficient for high (> 20) dimensionalities [147]. Later work
by Kelly and Davis [162], and by Punch et al. [218] expanded this approach to use
GAs for feature extraction. Raymer et al. [227] [226] then further extended the
genetic feature selection through the simultaneous optimization of feature weights
and selection of key features by including a masking vector on the GA chromosome.
For our work, we followed the procedure of Siedlecki and Sklansky’s seminal work

[246] and mainly initiated the idea of using the ensembled learning scheme as a means
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to evaluate the intermediate subsets during the selection stage [284].

Unlike classical optimization procedures the genetic feature selector does not op-
timize a single solution, but, instead, it modifies a population of solutions at the
same time. This guarantees at least a suboptimal optimization.

For the problem of feature selection, a chromosome has length d, the total number
of features. A ’1’ stands for a selected feature, whereas a ’0’ stands for a rejected
feature. There are two ways to optimize such a binary string. One way is to minimize
the classification error rate. This however will not necessarily minimize the number
of selected features. Better is to optimize both the classification performance and
the number of selected features simultaneously.

We will categorize the genetic feature selection methods in the following based
on how the fitness function is chosen. Optimization problems by evolutionary algo-
rithms can be broadly divided into single-objective optimization and multi-objective
optimization. In real world, the direct use of single-objective optimization, where
the objective funtion and fitness function are identical, is very rare. Rather optimiz-
ing several objectives simultaneously is very common. Based on the way the fitness
assignment and selection are performed, the existing feature selection methods by
genetic algorithms can be classified into the following two categories [289]: Aggrega-
tion Selection with Parameter Variation (Section 6.3.1) and Pareto-based Selection

(Section 6.3.2).

6.3.1 Aggregation Selection with Parameter Variation

In this category, different objectives are combined, or aggregated into one scalar
fitness function. The weighted sum approach is very popular in this category, which
adds different objective functions using different weighting coefficients into one com-

posite fitness function [86]. In practice, defining a suitable trade-off between different
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objectives needs the knowledge of the domain concerned, and is, as a consequence, in
general a non-trivial task. One of the advantages of this approach is that it is first of
all the simplest and most efficient, because no further interaction with the decision
maker is needed [86]. Besides, the optimization is done in multiple directions, in that
all members of the population are evaluated by a different objective function [289].
Siedlecki and Sklansky’s idea [246] is to define a threshold error rate ¢, and to find
the binary string with the lowest number of selected features that leads to an error

rate e , lower than ¢. A fitness function is defined as follows:

(6.1) flai) = J(a;) = (< J(ai) > —nAJ(a;))

where < . > and A are the mean and standard deviation over the population, n
is a small positive constant which assures that minf(a;) > 0, i.e. even the least fit

chromosome is given a chance to reproduce. The score J(a) of a string a is given by:

(6.2) J(a) = 1(a) + p(e(a))

with I(a) is the ’length’ (= number of '1’s) of string a, and p(e) is a penalty
function® for the obtained error rate e. If e is below the threshold error rate t, p(e)
is negative, and if e grows larger than ¢, p(e) grows rapidly:

exp (e=t) g

(63) p(@) - exp (i) -1

with £ a small scaling parameter (about 1%).

6Penalty function has been the approach to constrained optimization problems in the literature for decades.
The penalty methods for constrained genetic optimization were already addressed [247] [87]. Smith and Coit [252]
categorize the penalty functions into three groups, i.e. static penalty functions, dynamic penalty functions and
adaptive penalty functions. Runarsson and Yao [232] show that applying different penalty function methods in
evolutionary optimization is equivalent to using different selection schemes.
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Yang and Honavar’s [282] genetic feature selector combines a neural network clas-
sifier with a standard genetic algorithm. They defined a fitness function which com-
bines two different criteria — the classification accuracy by the neural network and

the cost on the classification:

cost(Q))

4 ' ) = -
(6.4) fitness(2) = accuracy(2) accuracy(2) + 1

+ cost e

where € is the feature subset, fitness(2) is the fitness on €. accuracy(£?) is the
classification accuracy by the neural network classifier on the subset €2, which can be
estimated by calculating the percentage of patterns in a test set. cost(£2) is the cost
of classification, which has a number of different measures, e.g. cost of measuring
the value of a specific feature needed for classification, the risk involved, etc. cost,,q.
is the upper bound on the costs of candidate solutions.

Ishibuchi and Nakashima’s work [144] is very similar to that of Kuncheva and
Jain’s [179], both of them actually optimize three competing objectives simultane-
ously: minimize the training set, minimize the classification error rate, and minimize

the number of selected features.

6.3.2 Pareto-based Selection

While the method of aggregation selection with parameter variation is commonly
used, it has several disadvantages. First of all, the difficulty with artificially designed
composite fitness funtions is that, one should at least be aware of the behavior of
every objective function beforehand. Secondly, The trade-off between model accuracy
and complexity is difficult to explore. Thirdly, the use of penalities and weights has
proven to be problematic. That is, the final GA solution is usually very sensitive to

small changes in the penalty function coefficients and weighting factors [229]. For
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this, the Pareto-based selection approach was proposed.

A solution is said to be dominant if its performance is superior over another with
respect to all criteria. A solution is said to be Pareto optimal [112] if it cannot be
dominated by any other solution. Under this category, we are only aware of the
work by Emmanouilidis et al. [107], a multi-objective genetic feature selector, which
uses multiobjective genetic algorithms aiming at producing Pareto optimal feature
subsets. Their main idea is to use a variant of the Niched Pareto Genetic Algorithm
(NPGA) [138] to do feature selection.

In essence, genetic feature selection falls into the scope of multi-objective opti-
mization as it must optimize several objectives (e.g. minize the error rate and minize
the number of selected features) simultaneously. Multi-objective optimization is an
active yet rich research area. Different methods for multi-objective optimization by
evolutionary algorithms are studied and compared [290] [257] [219]. For a literature
study, we refer the reader to the following remarkable surveys [256] [113] [112] [85]
[86] [272] [273]. For an excellent self-contained introduction on the topic of multi-
objective optimization, we recommend the dissertation by Van Veldhuizen [271]. For
more comprehensive references on multi-objective optimization using evolutionary
algorithm, see the unique online EMOO (Evolutionary Multi-Objective Optimiza-
tion) repository of information in [26], which could also serve as a gateway for those

who are interested in this area.



CHAPTER VII

Experiments and Discussion

7.1 Introduction

The dataset used for the empirical study is an AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) dataset which was shown in Figure 1.1 in Section 1.1 of
Chapter I.

In this chapter, experiments are carried out with nearest neighbor classifier en-
sembles and genetic feature selection respectively. Due to our lack of accessing hy-
perspectral data, we conduct all the experiments on the freely available dataset as
described above, but validate some of the experiments in the following two ways: We
conduct the experiments on (i) the first N bands of the data; and (ii) the last N
bands of the data; where N can take values of 20, 40, 60, ..., 220. Of course, another
alternative to validate the data could be randomly shuffling the spectral bands and
then take the first N bands, and then randomly shuffling the spectral bands again
and take the first N bands again, and so on, but this leads to the question of how
to design an optimal experiment given a very limited hyperspectral dataset, which

is beyond the scope of this dissertation, though it might be interesting.

65
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Class Name Corn-min | Grass/pasture | Grass/trees | Soy-clean | Wheat
No. of Samples 144 198 184 140 126

Table 7.1: Description of the 5 classes in the AVIRIS data set.

7.2 Experiments of Nearest Neighbor Classifier Ensembles

All experiments were carried out on a five-class problem as described in Table 7.1,
and were implemented in Java' with the use of the machine learning package — Weka
[19] from the University of Waikato, and the open source library — Colt [12] from
CERN. The random number generator used here is the implementation of Mersenne
Twister algorithm after Matsumoto and Nishimura [197], one of the strongest uniform
pseudo-random number generators known so far, and at the same time it is quick.
For more reference on pseudo-random number generators, the reader is referred to
[28].

We conducted three experiments, all experiments were done using a training set
and a test set. We used Aha and Bankert’s [43] setting scheme on training set
and test set, that is, each time randomly splitting the original data set into 70%
training set and 30% testing set. The calculation of bias (Equation 4.6) and variance
(Equation 4.7) in all the three experiments is base on Section 4.4. The experiment

was run ten times, the average result was then obtained.

7.2.1 Experiment One

In the first experiment, the methods which utilize the dynamic nature of the Con-
densed Nearest Neighbor (CNN) learning algorithm are compared. In particular, we
study the performance of the proposed CNN-ECOC method. The methods are CNN,

voting CNN (both simple and weighted), Union CNN, CNN-ECOC and NN. NN is

LFor the Integrated Development Environment (IDE) for Java, I used the free package — the Community Edition
of then Forte For Java, now called Sun ONE Studio from Sun MicroSystems [35]. Another better alternative is to
use the free package of Eclipse [20].
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Figure 7.1: Error rate as a function of the number of voters for 220-spectral-band data.

used as the base for comparison. See Section 4.3.2 for details about Voting CNN,
Union CNN, and Section 4.3.5 for the CNN-ECOC method. As already pointed out
in Chapter IV, the CNN is very well suited for classification tasks that demand a
reasonably small memory footprint, but meanwhile tolerate some acceptable perfor-
mance deterioration.

The error rate, bias and variance are plotted respectively in function of spectral
bands, starting from 20 bands to the full 220 bands: i.e. the first/last 20 bands, the
first /last 40 bands, ..., the full 220 bands. Figures 7.3 — 7.8 show respectively the
comparison of error rate, bias and variance between nearest neighbor classifier (NN),
condensed nearest neighbor (CNN), simple voting of CNN, weighted voting of CNN,
union voting, and CNN-ECOC. The voting method, which performs better with the
increase of the number of voters (see Figure 7.1), doesn’t show higher performance
gains when the number of voters is too small. The number of stored patterns of this
method increases with the number of voters, and it is almost a linear relation as
shown in Figure 7.2. In our experiment, we set the number of voters to 7.

From the plots 7.3 — 7.8, one can obtain the following conclusions:
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Figure 7.2:
& The number of stored patterns as a function of the number of voters for 220-spectral-

band data.

e While weighted voting CNN is regarded to perform better than simple voting
CNN, one can observe that the method of weighted voting CNN doesn’t show
advantages over the method of simple voting CNN: their performances coincide
completely on our dataset. This maybe due largely to the setup of the weighting

coefficients: only the first two nearest neighbors are taken into account.

e Although some author [47] reported that the performance of the union CNN,
which also has less computational cost, is promising on some datasets, this
conclusion did not appear on our dataset. One can also see that the performance
of union CNN at some points is becoming worse than CNN alone, while the
voting CNN outperforms CNN alone over all spectral bands. Since the subset
of union CNN is obtained by applying NN to the union of subsets chosen by
multiple CNN’s, the resulting union CNN has a considerable number of training
samples. Our results highlight that it is the voting process, not the number of

training samples, that contributes to the performance gains.

e We can also see that the proposed method of CNN-ECOC achieves a system-



7.2. Experiments of Nearest Neighbor Classifier Ensembles

69

0.35 T T T T
NN —+—
CNN ---%---
Union CNN  ---%---

03 ¥ Simple Voting CNN e
~ T Weighted Voting CNN L
' ECOC-CNN---&---

025 | R

I
o]
@
S
w
50 100 150 200
Spectral Bands
Figure 7.3: . . . .
Comparison of error rate between NN, CNN, Union CNN, Simple Voting CNN,
Weighted Voting CNN, CNN-ECOC codes. Results are shown respectively for the
first 20 bands, the first 40 bands, ..., the full 220 bands.
0.5 T T T T
NN —+—
CNN -
045 x 2 Union CNN ---%--- |
/ Simple Voting CNN B
. / N Weighted Voting CNN o
04 L / \ X ECOC-CNN- & -
0.35
0.3
2
& 025
S
Y02
0.15
0.1
0.05
G- —--=
0 1 1 1 1 -
50 100 150 200
Spectral Bands
Figure 7.4:

Weighted Voting CNN, CNN-ECOC codes.
last 20 bands, the last 40 bands, ..

Comparison of error rate between NN, CNN, Union CNN, Simple Voting CNN,

Results are shown respectively for the

., the full 220 bands.



7.2. Experiments of Nearest Neighbor Classifier Ensembles

70

0.16 T T T T
NN —+—
CNN -
Union CNN = ---%---
014 % Simple Voting CNN B
' i Weighted Voting CNN L
i\ ECOC-CNN- o -
0.12
0.1
%]
3]
g
0.08
0.06
0.04
002 1 1 1 1
50 100 150 200
Spectral Bands
Figure 7.5: . . . . . .
Comparison of bias between NN, CNN, Union CNN, Simple Voting CNN, Weighted
Voting CNN, CNN-ECOC codes. Results are shown respectively for the first 20 bands,
the first 40 bands, ..., the full 220 bands.
0.22 | : T T T
i NN —+—
A CNN ------
0.2 Union CNN  ------ |
i AN Simple Voting CNN =
AN Weighted Voting CNN o
g o ECOC-CNN- o -
0.18 %
0.16
0.14
2]
©
g
0.12
0.1
0.08
0.06
0.04
Spectral Bands
Figure 7.6:

Comparison of bias between NN, CNN, Union CNN, Simple Voting CNN, Weighted
Voting CNN, CNN-ECOC codes. Results are shown respectively for the last 20 bands,

the last 40 bands, ..., the full 220 bands.



7.2. Experiments of Nearest Neighbor Classifier Ensembles

71

Variance

Figure 7.7:

Variance

Figure 7.8:

0.18 T . ; .
NN —+—
CNN ---x---
Union CNN = ---%---
0.16 X Simple Voting CNN el
’ [\ Weighted Voting CNN -
ECOC-CNN- o -
0.14 |\ i
0.12
0.1
0.08 %\
0.06
0.04

50 100
Spectral Bands

Comparison of variance between NN, CNN, Union CNN, Simple Voting CNN, Weighted
Voting CNN, CNN-ECOC codes. Results are shown respectively for the first 20 bands,

the first 40 bands, ..., the full 220 bands.

0.22 T T T T
NN —+—
CNN ---x---
02 b Union CNN  ------ |
: « Simple Voting CNN =
N TN Weighted Voting CNN -
3 o ECOC-CNN---o- -
0.18
0.16
0.14
0.12
0.1
0.08
0.06
004 1 1 1 1

50 100
Spectral Bands

Comparison of variance between NN, CNN, Union CNN, Simple Voting CNN, Weighted
Voting CNN, CNN-ECOC codes. Results are shown respectively for the last 20 bands,

the last 40 bands, ..., the full 220 bands.



7.2. Experiments of Nearest Neighbor Classifier Ensembles 72

atic classification performance improvement over CNN, and this improvement
is comparable with that of NN (Figure 7.3) or even better than NN (Figure 7.4)
while keeping a lower memory demand for the training set than NN. ECOC
decreases both bias and variance (of the classifier it combines with) [171], this
claim can be verified from Figure 7.5, Figure 7.6, Figure 7.7 and Figure 7.8. In
particular, the CNN-ECOC has a smaller variance than CNN. This shows that
while the classification performance of CNN depends largerly on the specific
dataset involved (i.e. in part due to the nature of the local search that the CNN
uses), the tendency that, the classification performance of CNN-ECOC varies
from dataset to dataset, is mitigated by the use of ECOC technique. That is,
by decomposing the multi-class problem into mutiple two-class problems, the
ECOC technique is able to diminish the errors occurred in a series of distributed
bits of the ECOC codes. This results in a better generalization of the proposed

CNN-ECOC method.

7.2.2 Experiment Two

The purpose of the second experiment is to show the advantage of using selected
sub-spaces from the whole feature space in conjunction with ECOC to improve clas-
sification performance. There are two ways to choose a sub-space from the origi-
nal feature space: (1) the feature sub-space is selected by using a feature selection
method: kANN-ECOC-FS (Section 4.3.4); (2) the feature sub-space is randomly taken:
ENN-ECOC-RS (Section 4.3.4) and Multiple Feature Subsets (MFS, including both
MFS-WITH-REPLACEMENT and MFS-NO-REPLACEMENT, Section 4.3.1). The
nearest neighbor classifier (NN) is again used here as the base for comparison. The
comparison of error rate, bias and variance is shown in Figures 7.9 — 7.14 as a func-

tion of the number of spectral bands. In the following, two main observations from
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the figures are explained.

e The effectiveness of Multiple Feature Subsets (MFS) is shown on these exper-
imental results. There are two parameters to be set for the MFS algorithm:
i.e. the size of the feature subset and the number of classifiers to combine. In
our experiment, we used Bay’s [55] setting value on the subset size: the subset
size was set on the basis of cross-validation accuracy estimates, and then ten
evenly spaced intervals over the size of the original feature set were evaluated.
While Bay sets the number of classifiers to 100 we choose this parameter to 10
in order to save computation time. From the plot, one can observe that there
is not much difference between the MFS with replacement and MFS without

replacement in terms of error rate, bias and variance on our dataset.

e For the method we presented: the kNN-ECOC-RS (RS means Randomly Selected
features), there are many ways to fix the number of features to be selected for
every bit of ECOC code. In our experiments, we choose this parameter as half of
all features. The performance of ANN-ECOC-FS (FS means Feature Selection)
method by Aha and Bankert [43] depends largely on the feature selection method
embedded. In this experiment we choose a wrapper feature selection method
(Section 5.4.2). It is a simple Sequential Forward Selection method (SFS) [96],
and we use the NN classifier as the induction algorithm with the SFS. The SF'S

algorithm selects successive features with respect to the current set of features.

In Figure 7.9 the error rate of kENN-ECOC-FS becomes larger than kENN-ECOC-
RS. In the mean time, the kNN-ECOC-FS has both a high bias (especially in
Figure 7.11) and a high variance (especially in Figure 7.13). High bias indi-

cates that kANN-ECOC-FS (mainly due to the adoption of SFS as the feature
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selection method to be combined with) has a high systematic error, while high
variance suggests it has a poor generalization. This is because once a feature is
included by SFS in the feature set, it has no mechanism for delecting it from
the feature set, even at a later stage when more features have added and this
feature becomes superfluous. In other words, the feature sets are nested. For
example, two best features chosen by SFS are not necessarily the best two.
One remedy for the SFS is to adopt a mechanism that can delete the feature
when later finding it to be irrelevant or redundant. For example, by adopting
the corresponding floating version of the Sequential Forward Search — SFFS
[217], the KNN-ECOC-FS method will certainly perform very well, but a corre-
sponding computational cost is also expected (the computational cost of SFFS
is pretty high, for this, see Section 7.4.2). The poor generalization of ENN-
ECOC-FS (with SFS) causes its performance to be uncertain, i.e. the actual
performance of kANN-ECOC-FS (with SFS) depends on the individual dataset
concerned. This can be seen from Figure 7.9 — it can even be challenged by
simply adopting random sampling from the original feature space. Of course,
the most important contribution to this phenomenon is due to the power of
ECOC technique. While by a simple random sampling of the orignal feature
space, one can only by chance get the classification performance improved. By
using ECOC in conjunction with a random sampling, errors occurring by chance
in a series of distributed bits of the ECOC codes (for details about ECOC, see
Section 4.2) are smoothly alleviated, and consequently, the entire performance

is improved.

The computational cost also increases with the the number of nearest neighbors,

for this we chose k=1 in this experiment for the sake of computational efficiency.
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7.2.3 Experiment Three

Other methods, mainly Skalak’s composite NN architecture (Section 4.3.3), are
evaluated in the third experiment. The experiment compares 1) the k nearest
neighbor classifier (kNN), 2) the fuzzy k nearest neighbor classifier (fuzzy kNN),
3) Skalak’s composite NN architecture, 4) Skalak’s composite NN architecture with
ECOC, 5) a decision tree C4.5, and 6) Naive-Bayes (NB) [76]. The error rate, bias
and variance are plotted in Figures 7.15 — 7.20 in function of the number of spectral
bands, starting from 20 bands to the full 220 spectral bands: i.e. the first/last 20
bands, the first/last 40 bands, the first/last 60 bands, ..., the full 220 bands.

The k nearest neighbor classifier is used here as the base for comparison, and
the parameter k was chosen to 5 using cross-validation. The justification for also
comparing with C4.5 is based on the fact that the level-1 combination algorithm in
Figure 4.5 of Chapter IV is ID3, and the C4.5 is a further extension of 1D3.

Major conclusions concerning this experiment are summarized as follows:

e The Naive-Bayes classifier performs poorly on our dataset. The rationale for
choosing to include Naive-Bayes as well is that some researchers [168] noted
that the accuracy of the very simple NB classifier is superior over that of C4.5
in some real world datasets. We would like to take advantage of this experiment
to verify if this observation also holds for our dataset. Unfortunately one can

conclude from the plots that their observation didn’t show in our dataset.

e One can see that the classification performance of fuzzy kNN very slightly out-
performs its counter-part — the crisp kNN, in the very low spectral bands, but
their classification performances coincide when the dimensionality increases.

Both bias and variance of fuzzy kNN are a little smaller than those of the crisp
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ENN.

e From the figures, it is also concluded that Skalak’s composite NN architecture
gives the best prediction rate. In particular, its low bias indicates that this
architecture has a small systematic error and its low variance suggests it has
a better generalization, henceforth, the tendency that its classification perfor-
mance depends largely on the individual dataset concerned is averted. While
we have hypothesized that further using ECOC technique probably improves
the classification performance of Skalak’s composite NN architecture (See last
paragraph of Section 4.3.3), this does not show in the plots. In fact, Skalak’s
composite NN architecture with and without ECOC completely coincide. This
confirms Dietterich’s [39] arguments that if the representation for the feature
input to the decision tree(C4.5/ID3) is ambiguous, then (C4.5/ID3) will have
difficulty in finding a good decision tree, and ECOC will not be able to overcome

this problem.

The purpose of Skalak’s composite architecture is to improve the performance
of the base classifier, in this example, a kNN rule was used in this architecture
as the base classifier. Therefore one may hypothesize that if we instead use the
fuzzy version of the kNN rule as the base classifier, then its performance could
be improved, indeed this hypothesis has already been confirmed [284]. One may
further question that if and how this architecture would improve an ensembled
learning (instead of a non-ensembled single learning like ANN). This could be

an interesting open topic.
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7.3 Summary and Remarks on Nearest Neighbor Classifier Ensembles

In the above section together with Chapter IV, the ensemble methods for nearest
neighbor classifiers are reviewed and studied on hyperspectral remote sensing data.
Rather than presenting a more complicated classifier or classification architecture, a
general study was given.

For an example of complicated classifiers, the fuzzy idea plus the condensed idea
may give rise to a so-called ”condensed fuzzy nearest neighbor classifier”. For a more
complicated classification architecture: in the first layer of Fig 4.5, the condensed
fuzzy nearest neighbor classifier could be applied to either the base classifier or the
complementary classifier, thus producing different kinds of combinations.

As for the voting on CNN| rather than by voting on the condensed nearest neigh-
bor classifiers only, the Multiple Feature Subsets (MFS) [55] idea can be further
applied to all the condensed component nearest neighbor classifiers. This could be
a dynamic voting over multiple condensed nearest neighbors: both the feature sub-
set number and the feature subset itself become dynamic. An advanced sampling
technique, e.g. the weighted random sampling [209] [195], could be instead applied
to the MFS method to improve the performance. Besides the simple voting and
the weighted voting as used in several ensemble methods, the weighted majority
described in Section 2.3.1 of Chapter II could also be applied. In order to further
decrease the number of design patterns, the Edit algorithm [96] [129] could be used
before condensing the design patterns , but probably at the expense of performance
deterioration.

All of these pointed modifications can be a series of further research. For most of

the nearest neighbor ensembles, there exist various kinds of combinations between
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their individual component classifiers, of which combination is the best one is not
studied in this dissertation. For such a study, the Orthogonal Experimental Design
(OED) method [205] [134] based on orthogonal arrays (OAs) and factor analysis was
suggested to find how several simultaneously changing factors affect the classification

performance of the entire classification architecture.

7.4 Experiments of Genetic Feature Selector

Due to the problem of long running times using Java code, the implementation of
feature selection for the hyperspectral data was turned to C+-+2 with the use of the
Genetic Algorithms library — GAlib [9] from MIT. The random shuffle implementa-
tion was borrowed from the repository of free, peer-reviewed C++ libraries — Boost
[17]. The genetic feature selection tested in the following two experiments belongs
to the type of Aggregation Selection with Parameter Variation (Section 6.3.1), the

scheme of which is based on the seminal work by Siedlecki and Sklansky [246].

7.4.1 Experiment One

In the first experiment, the genetic feature selection technique is evaluated. For
this, the minimal number of obtained features is plotted in function of the number of
generations. The parameters ¢t and £ (see Section 6.3.1 for detail) are set so that the
classification error is about 10 %. In figure 7.21, experimental results are displayed
for a 3-class problem (classes 2, 3 and 8), with around 100 data points for each
class. Several experiments starting with different numbers of bands are conducted.
On the plot, the numbers of bands are 50, 100, 150 and 220 respectively, i.e. the
first 50 bands, 100 bands, 150 bands of the dataset and the full 220-band data. The

population size was 100. The crossover rate usually assumes high values, close or

2For the Integrated Development Environment (IDE) for C++, I used the freepackage — the Open Edition of
Kyliz from Borland [18]. Kylix is a versatile C++ development tool with the powerful Borland Component Library
for Cross-platform (CLX).
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Figure 7.21:
& Number of obtained features versus number of generations for the genetic feature

selection on 50, 100, 150 and 220 bands respectively.

equal to one, while the mutation rate is typically small [246]. The crossover rate is
high to allow to produce an offspring that is more optimal than its parents. A 100 %
crossover rate however would disrupt any good solution. In our experiment, crossover
and mutation rates were set to 90 % and 1 % respectively. For classification, the
fuzzy SNN algorithm was applied. From the plot, one can observe that the number
of obtained features decreases with the number of generations. The classification
errors were about constant over all the curves (about 10%). In the beginning the

reduction is very fast, but after about 50 generations convergence becomes slow.

7.4.2 Experiment Two

There are somewhat controversial reports on the performance comparison between
the genetic selection method and the floating search method in the literature. The
work of Ferri et al. [109] points out that GA and Sequential Floating Forward

Search (SFFS) are comparable for moderate size, but that the performance of GA’s



7.4. Experiments of Genetic Feature Selector 86

deteriorates as the dimensionality increases. Jain and Zongker [147] report that
the GA approach seems to have a tendency towards premature convergence. In
contrast to these reports, the recent work by Kudo and Sklansky [178] suggests that
SFFS is suitable for problems with small or medium dimensionality. For very high
dimensionality, they tend to favor the use of the GA approach.

The purpose of our experiment is two-fold: (i) To undertake the first study that
uses an ensembled learning scheme as the induction algorithm during the selec-
tion process with genetic algorithms and demonstrate its superiority over its non-
ensembled learning counterpart for genetic feature selection. (ii) To have a pragmatic
view of both genetic search and sequential floating forward search on hyperspectral
remote sensing data.

Due to the costly time complexity of the backward version of sequential floating
search (for this, see e.g. footnote 4 in Chapter V), we choose instead the forward
version of sequential floating search to compare with.

When using genetic algorithms, the first difficult task is how to set up the param-
eters for GAs. Unfortunately, there is no unified guidance for this. For the sake of
simplicity in this experiment, based on our experience, we set the population size as
100, the generation size 50, the crossover probability 0.9, the mutation probability
0.01. The comparison scheme is done as follows. First we run the genetic search
and get the number of selected features. We then set the sequential floating forward
search to get the same number of selected features as from the genetic search. The
comparison was done on error rate and the number of evaluations used respectively.

In order to demonstrate the superiority of the ensembled learning algorithm, we
hybridized the feature selection algorithms (both genetic search and sequential float-

ing forward search) with an ensembled learning — the CNN-ECOC and its corre-
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Number of obtained spectral bands by running GA with CNN and GA with CNN-
ECOC respectively. Results are shown respectively for the first 20 bands, the first 40
bands, ..., the full 220 bands.

sponding non-ensembled counterpart — the CNN algorithm respectively.

Figure 7.22 shows the numbers of selected features by a run of GA with CNN
and GA with CNN-ECOC respectively. One observation from this figure is that,
the number of obtained features by GA with CNN-ECOC is, generally speaking,
smaller than that by GA with CNN. This suggests one potential advantage of using
an ensembled learning: the smaller the number of selected features is, the more
simplified model it may result in.

The classification performance by the different search methods are plotted re-
spectively as a function of the numbers of spectral bands in Figure 7.23. One can
observe a systematic classification performance improvement (up to around 5%) by
the use of CNN-ECOC over CNN in conjunction with genetic algorithms. For low

spectral bands, the difference of their classification performance is small, but when
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the dimensionality exceeds 140, the difference tends to grow. This demonstrates
the superiority of ensembled learning over non-ensembled learning for the use with
genetic algorithms. Therefore we suggest that when using a specific classifier with
genetic algorithms to do pre-processing, one should extend the choice of classifiers by
taking into account the use of the corresponding ensembled counterpart classification
algorithms.

At a first glance, one may see that the classification performance of (SFFS+CNN-
ECOC) slightly dominates that of (SFFS+CNN) over all spectral bands, but the
difference between them is not significant (the difference is less than 2%).

The difference of the classification performance between genetic search and SFFS
is up to 10 % between spectral bands of 80 — 140, but using CNN-ECOC with GAs
reduces this difference. For example, when the dimensionality tends to be higher
than 140, the difference becomes smaller (less than 5%). Another remedy to this
is to use an optimal parameter settings of GA, which was not addressed in this
dissertation.

In Figure 7.24, we didn’t compare directly the execution time used to complete
the search task by both genetic search and sequential floating search, but instead
we compared the number of intermediate subset evaluations, since execution time
usually varies from one implementation to another. For example, the GAlib [9] we
used is a highly optimized library, few people can write the implementation code of
the sequential floating search in that optimized manner. The use of GAlib with a
higher number of subset evaluations could still need less running time than a not-
highly-optimized (or even a poorly optimized) implementation of sequential floating
search with a smaller number of subset evaluations, so directly comparing the exe-

cution time alone is not fair. The number of intermediate subset evaluations reflects



7.5. Summary and Remarks on Genetic Feature Selector 89

GA+CNII\I—»—

GA+CNN-ECOC--%---
0.98 | SFFES+CNN---%--- |
' . H SFFS+CNN-ECOC—a--
LA SO o
¥ N g ’ B
094 - o =
) o o
é A X -~
e 092 | - B— T T i
5 B 3 - ¢
L
> 09
il
IS
L
% 0.88
1%}
©
O
0.86
0.84
082 * L - s s

50 100 150 200
Spectral Bands

Fi .23:
igure 7.23 Classification performance of GA with CNN, GA with CNN-ECOC, SFS with CNN

and SFS with CNN-ECOC. Results are shown respectively for the first 20 bands, the
first 40 bands, ..., the full 220 bands.

the time complexity: the larger the number of evaluations is, the higher the time
complexity of the search algorithm.

From Figure 7.24, one can see that the number of evaluations of the genetic
search grows very slowly with the dimensionality, but that of the sequential floating
search grows very quickly with the dimensionality. The time complexity of float-
ing search could be 3 to 5 times than that of genetic search in this case (with the
current parameter settings of GAs). When the dimensionality exceeds 180, the num-
ber of evaluations by (SFFS+CNN-ECOC) is becoming much larger than that by

(SFFS+CNN).

7.5 Summary and Remarks on Genetic Feature Selector

In the above section together with chapter VI, the use of the ensembled learning

with genetic algorithms to perform feature selection is initiated and applied to high
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dimensional remote sensing data. We demonstrated that its use not only reduces the
number of selected features, but also improves the classification performance. By
comparing genetic feature selection and sequential floating forward selection, we can
conclude that the sequential floating forward feature selection is suited for small and
medium sized databases, but for larger databases, one should definitely take into
account the use of GAs in terms of both classification performance and (especially)
running time.

Due to the inherent parallel nature of genetic algorithms, there are many parallel
genetic algorithms ready for us to use [74] while there is no parallel version of floating
search at this time. Although we didn’t do experiments on parallel GAs, we believe
they can further improve the computation efficiency, especially when dimensionality

increases. In terms of time complexity, the floating search method is then no longer
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a rival to genetic search. But for low dimensionality, the merit of floating search
is straightforward: it only needs a small number of subset evaluations to finish the
search. From this point of view, our experimental results support the claim in the
work by Kudo and Sklansky [178]: the GA approach is well suited for time-critical
tasks.

In order to rival the parallel GA approach to some extent, the floating forward
search method needs at least to have a parallel version, especially in the case of
high dimensional data. Another practical advantage of genetic search over floating
forward search is that it is very robust in the sense that its parameters are easily

tunable, in order to meet one’s computational needs.



CHAPTER VIII

Conclusion and Further Work

8.1 Conclusion

In this dissertation, two important aspects of pattern recognition are studied on
hyperspectral remote sensing data: classifier ensemble problems, in particular nearest
neighbor classifier ensembles, and feature selection problems, in particular genetic
feature selectors.

The fact that the research on feature selection dates back to the 70’s, not only
demonstrates that this topic is a traditional and fundamental problem, but also sug-
gests it still remains, despite more than three decades’ research efforts by numerous
researchers, a very challenging task. Therefore the idea of feature selection is very
old, but its application to hyperspectral remote sensing data — ”band selection”,
is rather new, mainly due to the recent advances in sensor technology. The adop-
tion of feature selection to hyperspectral data was in the hope that it alleviates the
so-called Hughes phenomenon [139], that is, the classification performance of hyper-
spectral data improves up to a limited point as additional features are added, and
then deteriorates.

As already pointed out in Chapter II, the idea that aggregating the opinions of

a committee of experts to improve accuracy is not new, rather it has many real
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world applications which might reflect direct connections to our daily life. But the
idea of applying aggregation to classification algorithms is rather new. While most
of the current research on classifier ensembles focuses on the general principles and
methodologies, in this dissertation the specific nearest neighbor classifier ensembles
were focused on.

In summary, the roadmap of the research conducted in this dissertation is the
following:

First we studied the classifier ensembles in general. We then presented a method
called CNN-ECOC, as our first main contribution, which takes advantage of the dy-
namic nature of the Condensed Nearest Neighbors (CNN) algorithm in conjunction
with the technique of Error Correcting Output Codes (ECOC). The ECOC tech-
nique is a distributed scheme which decomposes a multi-class classification problem
into a series of distributed two-class problems. By adopting the ECOC with CNN,
we demonstrated that this method further improves the classification performance
and at the same time decreases the storage requirements. Another variant called
ENN-ECOC-RS, which takes advantage of the dynamic nature of randomly selected
features in conjunction with the ECOC was suggested as a by-product.

As our second main contribution, we initiated and advocated the idea of using en-
sembled learning in conjunction with genetic algorithms to perform feature selection.
As an example of this, we demonstrated the superiority of the proposed ensembled
learning (CNN-ECOC) with genetic algorithms over its non-ensembled counterpart

(CNN).
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8.2 Further work

1. Part of this thesis work deals with the feature selection problem for hyperspec-
tral remote sensing data, but the idea of band selection was under criticism from
leading scientist in the remote sensing community, arguing that "to pick up a
subset of bands and completely ignore the rest may ignore useful diagnostic”.
Therefore further research is needed to investigate e.g. if feature extraction

would be more useful than feature selection for hyperspectral data.

2. Another evolutionary feature selector, a multi-layer neural network feature se-
lector, which uses the scheme of EDA (Estimation of Distribution Algorithm)
[206] as the search engine in conjuntion with a multi-layer neural network [57]
(used as the models for representing the probability distribution of a set of

candidate solutions), is suggested as another topic of research.

3. The use of a population (even without using crossover) can by itself be advanta-
geous for function optimization, as has been investigated theoretically [152]. A
theoretical study on the use of a population alone which uses neither crossover

nor mutation, may be considered as an interesting subject.
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