
Feature Selection and Classifier Ensembles:
A Study on Hyperspectral Remote Sensing Data

Kenmerk Selectie en Classificatie Ensembles:
Een Studie op Hyperspectrale

Afstandswaarnemingsdata

Proefschrift voorgelegd tot het behalen van de graad van

Doctor in de Wetenschappen

aan de Universitaire Instelling Antwerpen te verdedigen

door

SHIXIN YU

Promotoren:
Prof. dr. Paul Scheunders,
Prof. dr. Dirk Van Dyck. Antwerpen, 2003

Feature Selection and Classifier Ensembles:

A Study on Hyperspectral Remote Sensing Data

by

ShiXin Yu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Antwerp
Antwerp, 2003

c© ShiXin Yu 2003
All Rights Reserved.

— To my beloved parents

SHOUMEI CAO and SHANHONG YU

ii

ACKNOWLEDGEMENTS

Someone says that completing the requirements for a doctoral degree is just like

running a marathon. Now at the time when I’m sprinting towards the final goal of

this long race, I would like to acknowledge the following people who, in one way or

another, influenced or supported me along the course.

First of all, I thank my dissertation advisor Prof. dr. Paul Scheunders for his

enthusiastic supervision, continuous encouragement, great patience and effort for

polishing my English writings. Thanks also go to him for giving me the complete

time and freedom to develop and define my own research direction. While this

has proven to be somewhat tough at first — it appeared that I just lost my way,

wandering about where to go at the very beginning of my research, I have come to

appreciate his wisdom and the way he trains the student to begin with the research.

I have benefited very much from his guidance. In addition, I wish to extend my

appreciation to Prof. dr. Dirk Van Dyck, director of the VisionLab and also my

dissertation co-advisor, for providing me with a large and quiet office where I enjoyed

my time to stay.

I am indebted to the members of the doctoral committee for carefully reading the

manuscript of this dissertation.

I am very grateful to Hilde, the physics department secretary, for the kind help.

Thanks are also due to the members of the VisionLab. In particular, I thank

Werner for translating the summary of this dissertation into dutch.

iii

However, I could not finish without dedicating this dissertation to the two most

important people in my life: my mother and my father. Nothing could ever eclipse

the true love, the unconditional dedication, and the consistent support they have

shown me during both the highs and lows over the last thirty or so years. I could

never have achieved my dreams without you both. Thank you! Last but not least,

I thank my sisters for their invaluable support and continual encouragement from

thousands of miles away, especially for taking care of our parents during all these

years while it should have been my duty.

Antwerp, Jan. 2003

ShiXin Yu

iv

SUMMARY

Feature Selection and Classifier Ensembles:

A Study on Hyperspectral Remote Sensing Data

by

ShiXin Yu

Pattern recognition is the research area that studies the operation and design of

systems that recognize patterns in data [38].

In this dissertation, two important aspects of pattern recognition: the classifier

ensemble problem, and the feature selection problem, are studied on hyperspectral

remote sensing data. Rapid advances in sensor technology have made it recently

possible to collect hyperspectral remote sensing data which spans typically from 200

to 400 spectral bands. Such high dimensionality, on one hand, provides us with

more potential discrimination power for classification tasks. On the other hand,

the classification performance improves up to a limited point as additional features

are added, and then deteriorates due to the limited number of training samples.

This shows the importance of feature reduction as a critical pre-processing step.

Feature reduction includes feature selection and feature extraction. In part due to

v

the difficulty in interpreting the transformed features through feature extraction,

feature selection is emphasized instead.

Another problem with classification of high dimensionality is that, the discrimina-

tion between classes becomes much more difficult, due to the fact that, the number

of training samples is unlikely to catch up with the increase of dimensionality. There-

fore another important topic for data analysis in hyperspectral remote sensing is the

improvement of the classification performance. In this dissertation, this is achieved

by studying the idea of fusing existing classification schemes to further improve clas-

sification performance. Because of the so many attractive advantages of the nearest

neighbor classifier, its corresponding ensembles are focused on in this dissertation.

The roadmap of this dissertation is the following. First we study classifier ensem-

ble methods. We then initiate the idea of using ensembled learning as a means to

evaluate the merit of feature subsets during the selection stage for feature selection.

Following this roadmap, two general overviews are first given on classifier ensembles

(Chapter II) and feature selection (Chapter V) respectively and a categorization

scheme is given for each.

In the frame of classifier ensembles, a comprehensive empirical study of nearest

neighbor classsifier ensembles is carried out while taking into account the scheme of

bias plus variance decomposition of the error rate (Chapter IV and Chapter VII).

With the goal of both improving classification performance and decreasing storage

requirements simultaneously, a method called CNN-ECOC, which utilizes the Con-

densed Nearest Neighbors (CNN) algorithm in conjunction with the technique of

Error Correcting Output Codes (ECOC) is presented (Section 4.3.5). Another vari-

ant called kNN-ECOC-RS, which takes advantage of randomly selected subspaces in

conjunction with the ECOC method to further improve the performance of nearest

vi

neighbors is then suggested as a by-product (Section 4.3.4).

In the frame of feature selection, we undertake the first study that hybridizes

genetic algorithms with the ensembled learning scheme. The performance gains of

using ensembled learning is then demonstrated through experiments (Chapter VII).

In the mean time, a categorization scheme on the existing genetic feature selection

methods is conducted (Chapter VI).

In conclusion, the contributions of this dissertation are summarized as follows.

• A categorization scheme on classifier ensemble methods.

• A categorization scheme on feature selection methods.

• A taxonomy of classification methods using the k Nearest Neighbor learning

algorithm.

• A categorization scheme on genetic feature selectors.

• The CNN-ECOC methods, which takes advantage of the Condensed Nearest

Neighbor (CNN) algorithm in conjunction with the technique of Error Correct-

ing Output Codes (ECOC). This can be seen as the first major contribution of

this dissertation.

• The kNN-ECOC-RS method, which takes advantage of randomly selected sub-

spaces from the whole feature space, in conjunction with the ECOC technique.

This method is suggested as a by-product.

• We initiate and advocate the idea of using ensembled learning in conjunction

with genetic algorithms to perform feature selection. This can be seen as the

second major contribution of this dissertation.

• A performance comparison between various k nearest neigbor ensembles, which

takes into account the paradigm of bias plus variance decomposition of the error

vii

rate. The classification algorithm, which has a small error rate and ideally at

the same time also has a small bias and a small variance, is usually favored as

a better choice.

• A performance comparison between the genetic search and the sequential float-

ing forward search, which takes into account the number of subset evaluations,

provides a pragmatic view of time complexity of these two search methods on

hyperspectral data.

viii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

SUMMARY . v

NOTATION . xi

CHAPTER

I. Introduction . 1

1.1 Background of Hyperspectral Remote Sensing 1
1.2 Statement of the Problem . 3
1.3 Organization of the Dissertation . 8

II. Classifier Ensembles: An Overview . 11

2.1 Introduction . 11
2.2 The Hypothesis: Why Classifier Ensembles Work 12
2.3 Categorization Scheme of Classifier Ensembles 14

2.3.1 Voting Classifier Ensembles . 15
2.3.2 Classifier Ensembles Manipulating Training Samples 17
2.3.3 Classifier Ensembles with Different Input Feature Subsets 20
2.3.4 Heterogeneous Classifier Ensembles 21
2.3.5 Homogeneous Classifier Ensembles 23
2.3.6 Recursive Partition Classifier Ensembles 23

2.4 Summary . 24

III. Nearest Neighbor Learning Algorithm Revisited 25

3.1 Introduction . 25
3.2 Nearest Neighbor Classifier . 26
3.3 Fuzzy Nearest Neighbor Classifier . 27

IV. Ensemble Methods for Nearest Neighbor Learning Algorithm 30

4.1 Introduction . 30
4.2 Error Correcting Output Codes (ECOC) . 31
4.3 Ensemble Methods for Nearest Neighbor Classifiers 32

4.3.1 Nearest Neighbor Classification from Multiple Feature Subsets (MFS) 34
4.3.2 Voting over Multiple Condensed Nearest Neighbors (CNN) 34
4.3.3 Nearest Neighbor Classifiers with Small Prototype Sets: Skalak’s

NN Architecture . 35

ix

4.3.4 Nearest Neighbor Classifier with Error Correcting Output Codes
and Feature Selection: kNN-ECOC-FS 39

4.3.5 Condensed Nearest Neighbors (CNN) with Error Correcting Out-
put Codes: CNN-ECOC . 40

4.4 Bias plus Variance Decomposition of the Error Rate 41

V. Feature Selection Methods: An Overview . 44

5.1 Introduction . 44
5.2 Relevance to the Concept: Weak and Strong Relevance 45
5.3 General Characteristics of Feature Selection Methods 46
5.4 Categorization Scheme of Feature Selection Methods 48

5.4.1 Filter Selection Model . 50
5.4.2 Wrapper Selection Model . 51
5.4.3 Embedded Selection Model . 56

VI. Genetic Feature Selectors . 57

6.1 Introduction . 57
6.2 Genetic Algorithms . 58
6.3 Categorization Scheme of Genetic Feature Selectors 60

6.3.1 Aggregation Selection with Parameter Variation 61
6.3.2 Pareto-based Selection . 63

VII. Experiments and Discussion . 65

7.1 Introduction . 65
7.2 Experiments of Nearest Neighbor Classifier Ensembles 66

7.2.1 Experiment One . 66
7.2.2 Experiment Two . 72
7.2.3 Experiment Three . 78

7.3 Summary and Remarks on Nearest Neighbor Classifier Ensembles 83
7.4 Experiments of Genetic Feature Selector . 84

7.4.1 Experiment One . 84
7.4.2 Experiment Two . 85

7.5 Summary and Remarks on Genetic Feature Selector 89

VIII. Conclusion and Further Work . 92

8.1 Conclusion . 92
8.2 Further work . 94

NEDERLANDSE SAMENVATTING . 95

LIST OF PUBLICATIONS . 97

BIBLIOGRAPHY . 98

x

NOTATION

————————————————————————————————————

The notation used in the dissertation follows the general conventions of mathematics

and statistics.

e Natural constant (like π), e ≈ 2.718

[x1, x2, · · · , xn]T Transposed n-dimensional vector

argmax
i

fi Returns the largest value of fi among all index i

d(z,x) Distance between two multi-dimensional vectors z and x

The notation for classification schemes considered in the dissertation is as follows:

A training dataset T with m labeled examples xi in Space X coming from yi of

predefined S classes in Space Y, i.e.:

T = {(xi, yi), i = 1, 2, . . . ,m}

Samples xi ∈ X, Labels yi ∈ Y = {1, 2, . . . , S}

A classifier is a hypothesis H that predicts the corresponding y values, given new

x values. All the classifiers are denoted as h1, h2, · · · . In contrast, a target function

F is the true corresponding relationship between X and Y: xi −→ yi.

xi

CHAPTER I

Introduction

1.1 Background of Hyperspectral Remote Sensing

Earth observation by remote sensing has provided human being a global view of

the Earth. Remote sensing is a versatile tool for exploring Earth and it involves

the use of instruments or sensors to ”capture” the spectral and spatial relations of

objects and materials observable at a distance - typically from above them. An aerial

photograph is a common example of a remotely sensed (by camera and film) product.

There are numerous real world applications - these are typical: 1)monitoring forest

tree species; 2) determining the status of a growing crop; 3) defining urban patterns;

4) delineating the extent of flooding; 5) recognizing rock types; 6) pinpointing areas

of deforestation [37] [194].

Rapid advances in sensor technology have made it recently possible to collect re-

mote sensing data from multispectral data which typically ranges around 20 ∼ 30

bands, to today’s hyperspectral data, the spectral bands of which can span from

220 bands with 20-meter spatial resolution and 10 bits of dynamic range, e.g. the

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [10], to 300 bands in a

range between 400 and 2500 nm and at a spatial ground resolution of 2 to 5 meter,

e.g. the Airborne Prism EXperiment (APEX) [236]. The TRWIS III imaging spec-

1

1.1. Background of Hyperspectral Remote Sensing 2

trometer of the TRW Inc. [36] can produce as many as 384-spectral-band imagery

with spatial resolutions spanning from less than 1 meter to more than 11 meters, and

with spectral coverage from 380 to 2450 nm. Its spectral resolution is 5.25 nm in the

visible/near infrared (380-1000 nm) and 6.25 nm in the short wave infrared (1000-

2450 nm). The number of spectral bands tends to continue to increase with the rapid

development of sensor technology. The sensor currently being developed can span

to more than 400 spectral bands [183]. A hyperspectral image can be viewed as an

image cube with as the third dimension the spectral domain represented by hundreds

of narrow, contiguous spectral bands corresponding to the spectral reflectance. The

plot of contiguous spectral reflectances can be compared with laboratory produced

ones to identify, for example, some ores in the target area. The rapid development

of hyperspectral sensor technology greatly extends the scope of traditional remote

sensing, it not only provides the scientists in environmental and geoscience research

communities much more power to explore the earth than ever but also provides many

challenges for data analysis tasks.1 Furthermore, the volume of hyperspectral data

produced is staggering. The fast growing size of the hyperspectral database also

requests the compression2 research on it [196] [230] [258] [263] [158] [198] [233] [40]

[220] [104] [283] [287]. In particular the compression algorithm should take advantage

of the spectral nature of hyperspectral data.

Figure 1.1 shows an AVIRIS hyperspectral image, which contains 220 bands of

145 × 145 pixels, that is downloadable from [3], along with a groundtruth image,

containing 16 classes as shown on Figure 1.2. This dataset is used to do experimental

comparison in this dissertation. Each pixel x on this image is represented by a 220

1 One obstacle for the research on hyperspectral remote sensing is due to the lack of data [184], despite the rapid
advances in sensor technology and the importunate demands for the hyperspectral data, the general hyperspectral
imagery markets are not yet ready to commercially support the industry for at least the next several years, due to a
number of factors, e.g. distinct requirements from different market segments [187].

2Neural network is among the techniques used for compression [106].

1.2. Statement of the Problem 3

Figure 1.1: An example of a 220-band hyperspectral image (in simulated color infrared form).

dimensional vector, i.e.

(1.1) x = [x1, x2, ..., x220]
T

The classification task here becomes to recognize new unknown objects given

the predefined classes (ground truth or training classes). There are three views of

the hyperspectral data: the image space, the spectral space and the feature space.

Figure 1.1 is actually an image space. Figure 1.3 is an illustration of spectral space

of three classes while Figure 1.4 shows its corresponding 2-dimensional feature space.

1.2 Statement of the Problem

Pattern recognition [259]3 [97] [238] is a vibrant research area. The term ”pattern

recognition” is meant in a broad sense, and generally speaking, it encompasses three
3Many researchers from the pattern recognition community speak highly of this book, and agree that ”thus

researchers from all walks of pattern recognition should get something out of this book”, in part due to that it
provides a better balance between theoretical and practical treatment of pattern recognition. For a long list of
reseach monographs which could be useful for the understanding of pattern recognition, the reader is referred to the
TUDelft pattern recognition group’s page at [30]. Or for up-to-date books, simply input the key words of ”pattern
recognition” into the book search of large online book stores, such as amazon.com, bn.com, buy.com, etc, to find all
the available up-to-date reference books on the topics relating to pattern recognition.

1.2. Statement of the Problem 4

14

14
11

153
3

2

10

15

2
3

6

5

3

12

4

9

11

13

3

10

5

11

2

6
6

6

2

10

1216

12

2 11

57

1

5

2

11

14

10

8

Figure 1.2:
Groundtruth image containing 16 predefined classes; 1: Alfalfa; 2: Corn-notill; 3: Corn-
min; 4: Corn; 5: Grass/pasture; 6: Grass/trees; 7: Grass/pasture-mowed; 8: Hay-
windrowed; 9: Oats; 10: Soy-notill; 11: Soy-min till; 12: Soy-clean; 13: Wheat; 14:
Woods; 15: Bldg-grass-trees- drives; 16: Stone-steel towers.

Figure 1.3: Spectral Space Figure 1.4: Feature Space

1.2. Statement of the Problem 5

major categories: supervised learning, unsupervised learning, and semi-supervised

learning (or partially supervised [154]). Supervised learning is a kind of machine

learning where the learning algorithm is provided with a set of inputs for the al-

gorithm along with the corresponding correct outputs, and learning involves the

algorithm comparing its current actual output with the correct or target outputs,

so that it knows what its error is, and modify things accordingly. In contrast to su-

pervised learning, unsupervised learning signifies a mode of machine learning where

the system is not told the ”right answer” — for example, it is not trained on pairs

consisting of an input and the desired output. Instead the system is given the input

patterns and is left to find interesting patterns, regularities, or clusterings among

them [14] [27]. Semi-supervised learning can be thought to be a kind of supervised

system where the unlabeled samples are incorporated somehow.

Figure 1.5 shows a typical supervised classification process for hyperspectral data

analysis.

Typically, the classification performance improves up to a limited point as ad-

ditional features are added, and then deteriorates. This is referred as the Hughes

phenomenon4 (or the peaking phenomenon)[139] as shown in Figure 1.6. The vertical

axis is the mean recognition accuracy averaged from all possible classifiers. It is plot-

ted as a function of measurement complexity on the horizontal axis. The more bands

the hyperspectral data has, the greater the measurement complexity. The parameter

m is the number of training samples. The Hughes phenomenon can be explained

as follows. Let’s consider a finite and fixed number of training samples. The ac-

curacy of statistics estimation decreases as the dimensionality increases, leading to

4In my opinion, the term curse of dimensionality [56] [116] [114] is used to describe the difficult problems in
general in the high dimensional multivariate analysis, e.g. Jacoby [146] uses the curse of dimensionality to describe
the difficulty in visualization problem for high dimensional data analysis, therefore, I follow other researchers [4],
and use hughes phenomenon to describe the difficulity in the high-dimensional data classification problem in this
dissertation.

1.2. Statement of the Problem 6

the deterioration of classification accuracy (Figure 1.7(b)). Although increasing the

number of the spectral bands can potentially provides more class separability, this

positive effect is diluted by poor statistical parameter estimation (Figure 1.7(a)).

Consequently, the performance of the classifier with a fixed sample size may degrade

with an increase in the number of features as illustrated in Figure 1.7(c). Although it

seems logical to infer that a large number of features would give much more discrim-

inating power, a high-dimensional space is, in fact, mostly empty [132] with modest

number of samples, hence, the importance of feature reduction.

Feature reduction includes feature extraction and feature selection. Feature ex-

traction refers to the process of finding a mapping that reduces the dimensionality

of the patterns while feature selection refers to picking up a number of features to

make up an at least suboptimal feature subset. In part due to the difficulty in inter-

preting the mapped features by feature extraction, the feature selection problem is

emphasized instead as a critical preprocessing step.

Another problem arises for the classification task for high dimensionality, that

is, the discrimination between classes becomes much more difficult. As mentioned

above, this is due to the fact that, the assumption that enough training samples are

available to accurately estimate the class statistics, is likely to fail for hyperspec-

tral data because gathering enough training samples in practice is either difficult or

expensive. Therefore how to improve classification performance remains one impor-

tant task for data analysis in hyperspectral remote sensing. This is achieved in this

dissertation by studying the idea of merely fusing the existing classification schemes

rather than to develop new and sophisticated classification techniques.

1.2. Statement of the Problem 7

Hyperspectral
Input Data

Feature
Reduction

Classifier
 Design

Classification Classification
 Evaluation

Labeled Samples

(Training,Testing)

Figure 1.5: A typical supervised classification procedure for hyperspectral data analysis.

Figure 1.6: The Hughes phenomenon [139].

1.3. Organization of the Dissertation 8

(a) High dimensionality potentially pro-
vides better class separability.

(b) The accuracy of statistics estimation
decreases as dimensionality increases.

(c) The peaking phenomenon results from
the combination of the two opposite effects
as shown in (a) and (b).

Figure 1.7: The conceptual explanation of the Hughes phenomenon as shown in Figure 1.6.

1.3 Organization of the Dissertation

In the previous two sections, the background and motivation of the research con-

ducted in this dissertation are explained. We present the remaining of the dissertation

following the diagram of ”past, present, and future”. In ”past”, we generalize the

primary frameworks of the research on both classifier ensembles and feature selection,

which have been laid down by numerous researchers in this field; In ”present”, we

present our studies on classifier ensembles (the nearest neighbor classifier ensembles)

and feature selection (the genetic feature selectors); In ”future”, we propose some

possible immediate further work.

The past, present and future diagram of the dissertation is illustrated in Figure 1.8.

1.3. Organization of the Dissertation 9

PAST

 Chapter II: Overview on Classifier Ensembles

 Chapter III: Nearest Neighbor Learning Algorithm

 Chapter V: Overview on Feature Selection

PRESENT

 Chapter IV: Nearest Neigbor Classifier Ensembles

 Chapter VI: Genetic Feature Selectors

 Chapter VII: Experiments and Discussion

FUTURE Chapter VIII:Conclusion and Further Work

Figure 1.8: The Past, Present and Future diagram of the dissertation.

In Chapter II, an overview on classifier ensembles is given based on a categoriza-

tion scheme. The nearest neighbor learning algorithm is revisited in Chapter III.

Various methods for combining nearest neighbor learning algorithms are described

in Chapter IV. The scheme of bias plus variance decomposition of error rate is then

explained. With the goal of both further improving the classification performance

and decreasing the storage requirements at the same time, a hybrid method which

utilizes the Error Correcting Output Codes (ECOC) and the Condensed Nearest

Neighbors (CNN) is then presented. Another variant which takes advantages of the

randomly selected features in conjunction with ECOC is also suggested. In Chap-

ter V, methods for feature selection are reviewed and described in a categorization

scheme. A genetic feature selector which hybridizes genetic algorithms with the en-

sembled learning scheme is initiated in Chapter VI. In the mean time, a categoriza-

1.3. Organization of the Dissertation 10

tion scheme is done on the existing genetic feature selection methods. Experimental

results of both nearest neighbor ensembles and genetic feature selector on a typical

hyperspectral remote sensing data set and the corresponding discussion are given in

Chapter VII. Finally, conclusion of this dissertation and possible future work are

given in Chapter VIII.

CHAPTER II

Classifier Ensembles: An Overview

2.1 Introduction

It is the seminal work of Hansen and Salamon [126] at the very beginning of the

90’s which recognized that the unstable nature of certain neural networks was helpful

for ensembles that opened the door for the theoretical study on classifier ensembles.

Since then, classifier ensembles have been under extensive theoretical as well as em-

pirical studies. Classifier ensembles1 2 are one of the frontiers of pattern recognition

[149], and they fall into, by and large, the paradigm of supervised learning.3 In

the literature, the design methodology for supervised learning was addressed [201],

various supervised learning algorithms were reviewed in a categorization scheme [82]

and their performance was systematically investigated [188].

On the other hand, the research on classical pattern recognition models, including

feature selection and classifier ensembles, was challenged by the recent development

of a novel approach called Support Vector Machines (SVMs) [270] [25]. The argument

was that with the advanced design methodology of the SVMs, questions such as if

1Online classifier ensembles bibliography can be found in [7].
2In practice, it may sometimes be not feasible to collect all the data into one single flat file, due to reasons such

as storage cost, bandwidth, or security, privacy, proprietary nature of the data [122]. Hence the ability to deal with
these data in a distributed manner draws increasing attention. Indeed, the research on distributed classification [160]
(as well as distributed clustering [159]) and the corresponding distributed ensemble methods pertains to another
emerging, yet active direction. However, the distributed scheme is not discussed in this dissertation.

3There are semi-supervised learning ensembles that construct classification ensembles based on both labeled and
unlabeled data, e.g. ASSEMEBL [58], an adaptive semi-supervised ensemble.

11

2.2. The Hypothesis: Why Classifier Ensembles Work 12

fusing multiple classifiers would become redundant or out of date were raised among

researchers in the field. Kittler’s lecture [164] assured us the rationale for continued

need and interests in the research of classifier ensembles. Indeed, the recent years

have seen a rapid progress on this research topic [231] [182] [279] [167] [210] [54] [126]

[174] [91] [211]: not only do the SVMs not make the traditional pattern recognition

model out of date, but also are the SVMs benefiting from the research on classifier

ensembles [102].

2.2 The Hypothesis: Why Classifier Ensembles Work

The main discovery in the topic of combining classifiers is that the ensemble

architecture can gain better accuracy than the individual component alone. The use

of ensembles in machine learning is rather new, but the idea that aggregating the

opinions of a committee of experts can obtain better accuracy is not new. Let’s cite

what the Condorcet Jury Theorem states:

”If each voter has a probability p of being correct and the probability of a majority

of voters being correct is M , then p > 0.5 implies M > p. In the limit, M approaches

1, for all p > 0.5, as the number of voters approaches infinity.”

Marquis Condorcet in 1784 proposed this theorem [88]. A more recent reference

is due to Nitzan and Paroush [208].

The hypothesis, that the classifier ensemble is much accurate than any of its

individual component classifiers if and only if the component classifiers are accurate

and diverse, was first introduced by Hansen and Salamon [126]. They proved that

if each of the individual classifiers is independent, and their error rates are all less

than 50%, the error rate of the ensemble classifier will decrease with the number of

individual classifiers. Two key factors are crucial: accurate classifiers and diversity

2.2. The Hypothesis: Why Classifier Ensembles Work 13

Figure 2.1: A simulation by Dietterich [98]

of the classifiers. An accurate classifier is defined as having a classification accuracy

better than a random guess. Diverse classifiers make different predictions on new

data points, i.e. they have different error rates.

A simulation made by Dietterich [98] is shown in Figure 2.1. Dietterich stated

that if the error rates of all classifiers are equal and their values are less than 50%,

furthermore, the error rates are assumed to be not correlated, then the probability

that the majority vote is wrong is calculated as the area under the binomial distri-

bution where more than half of the classifiers are wrong. In Figure 2.1, Dietterich

simulated a classifier ensemble with 21 individual classifiers, each having an error

rate of 30%. The area under the curve for 11 or more is 0.026. This is much less

than the error rate given by the individual classifier (30%).

The relationship between the error rate of the classifier ensemble and the error

2.3. Categorization Scheme of Classifier Ensembles 14

rates of the individual classifiers was shown by Tumer and Ghosh [264] [265] [266] as

follows:

(2.1) E(ensemble) =
1 + ρ(N − 1)

N
E(individual) + E(Bayes)

where N is the number of classifiers, ρ is the correlation among the classifier

errors, E(Bayes) is the error rate obtained using the Bayes rule assuming that all

the conditional probabilities are known. E(ensemble) and E(individual) represent

the error rate of a classifier ensemble and the error rate of an individual component

classifier respectively. ρ = 0 means the error of the whole ensemble decreases pro-

portionally to the number of the component classifiers while ρ = 1 means the error

of the ensemble architecture equals to the error of a single component classifier.

2.3 Categorization Scheme of Classifier Ensembles

Although the history of research on classifier ensembles is only about one decade,

this area is becoming very active recently. In the literature, there exists very little

effort to categorize the classifier ensembles. Generally speaking, the classifier en-

sembles can be divided into parallel ensembles and sequential ensembles [22]. The

categorization scheme can also be done according to the combining strategies, e.g.

the diversity of the classifier ensemble. Dietterich [99] describes the ensemble meth-

ods from the point of view of machine learning. Jain, Duin and Mao [149] list a

number of popular ensemble methods in their review paper on statistical pattern

recognition. Sharkey [244] points out that a limiting factor in reseach on combin-

ing classifiers is due to a lack of awareness of the full range of available modular

structures. One reason for this is that there is as yet little agreement on a means

of describing and classifying types of multiple classifier systems in the literature. He

2.3. Categorization Scheme of Classifier Ensembles 15

then presents a categorization scheme for types of multiple neural network systems

based on four subdivisions:

(i) Involving competitive or cooperative combination mechanisms;

(ii) Combining either ensemble, modular, or hybrid components;

(iii) Relying on either bottom-up or top-down combination methods;

(iiii) When bottom up using either static or fixed combination methods.

In this chapter, we aspire to a general and comprehensive categorization scheme.

We describe the classifier ensembles within the following 6 categories:

Section 2.3.1, Voting classifier ensembles;

Section 2.3.2, Classifier ensembles manipulating training samples;

Section 2.3.3, Classifier ensembles with different input feature subsets;

Section 2.3.4, Heterogeneous classifier ensembles;

Section 2.3.5, Homogeneous classifier ensembles;

Section 2.3.6, Recursive partition classifier ensembles.

2.3.1 Voting Classifier Ensembles

There are three primary categories in the voting ensemble scheme.

• Simple Voting:

Simple voting, also called majority voting and select all majority (SAM) [53],

considers each component classifier as an equally weighted vote. The classifier

that has the largest amount of votes is chosen as the final classification scheme

[53].

• Weighted Voting:

2.3. Categorization Scheme of Classifier Ensembles 16

In weighted voting schemes, each vote receives a weight, which is usually propor-

tional to the estimated generalization performance of the corresponding compo-

nent classifier. Weighted voting schemes usually give better performance than

simple voting [53].

• Weighted Majority:

The weighted Majority algorithm [191] is actually a generalization of the HALV-

ING [189] algorithm. It is similar to weighted voting, the main difference is how

the weights are generated. It makes predictions by taking a weighted vote among

a pool of classification algorithms and learns by altering the weight associated

with each prediction algorithm. This algorithm starts with assigning a weight

of 1 to each classification algorithm, then considers the training samples. If a

classification algorithm misclassifies a new training sample, its weight is then

decreased by multiplying it by some number β, where 0 ≤ β < 1.

The number of mistakes made by the weighted majority algorithm can be

bounded in terms of the number of mistakes made by the best classification

algorithm in the voting pool. Suppose G is any set of n component classifica-

tion algorithms and let r be the minimum number of mistakes made by any

algorithm in G for the training set T . Littlestone and Warmuth [190] have

generalized and showed that for any 0 ≤ β < 1, the bound for the number of

mistakes is given by:

(2.2)
rlog2

1
β

+ log2n

log2
2

1+β

2.3. Categorization Scheme of Classifier Ensembles 17

If β = 1
2
, we obtain the following bound:

(2.3) 2.4(r + log2n)

2.3.2 Classifier Ensembles Manipulating Training Samples

The methods that fall into this category have the following characteristic: the

learning algorithm is run several times, each time with a different partition of the

training samples. It works well for unstable learning algorithms. By ”unstable” we

mean the learning algorithms whose output predictions have changes in response to

a small change in the training samples.

Among all these methods, Boosting and Bagging are the two most successful and

representative methods developed to date for classifier ensembles. Many researchers

have compared boosting and bagging with other methods and demonstrated their

superiority [53] [223] [100].

• Bagging:

Bagging is due to Breiman [65]. This method is run several times on training

samples, i.e. on each run, it produces a replication of the original training

samples by sampling with replacement with the same size as the original training

size. Some training samples appear in the produced samples while others may

not. Such a training set is called a bootstrap replicate of the original training

set, and this technique is called Bootstrap Aggregating, from which the name

of Bagging stems. For a training set with m examples, the probability of an

example being reproduced is given by:

(2.4) 1− (1− 1

m
)m

2.3. Categorization Scheme of Classifier Ensembles 18

Input:

L: a learning algorithm
N: an integer

For i = 1 to N

T̄ = bootstrap sample from training set T

hi = L(T̄)
End For

Output:

hf (x) = argmax
y∈Y

N∑
i

hi(x) = y

Table 2.1: The Bagging Algorithm.

where for a large enough m, i.e. mathematically speaking, when m −→ ∞,

this approximates to 1 − 1
e
. This value is about 63.2%. So each bootstrap

reproduces, on the average, 63.2% of the original training samples. All the

individual classifiers are then used to classify each example in the test set,

usually a vote scheme is taken.

The pseudocode for the bagging algorithm is shown in Table 2.1.

But how many bootstrap replicates are sufficient? Breiman states that: ”more

replicates are required with an increasing number of classes [66].” He also notes

that ”bagging is almost a dream procedure for parallel computing.” In a simu-

lation experiment varying the number of bootstraps, it was verified that 10 is

usually sufficient.

• Boosting:

Boosting was first proposed by Schapire [237]. It was proven that any weak

learning algorithm may be boosted to a strong one based on a theoretical model

known as the weak learning model (PAC) [269]. This PAC learning model

(Probably Approximately Correct) assumes that there exist weak learning al-

gorithms which can do slightly better than random guessing regardless of the

2.3. Categorization Scheme of Classifier Ensembles 19

underlying probability distribution used when generating the examples.

The most well known boosting idea, AdaBoost, was introduced by Freund and

Schapire [115]. The term AdaBoost stems from Adaptive Boosting. It solved

many of the practical difficulties of the earlier boosting algorithms. Just like

bagging, AdaBoost also manipulates the training examples to generate diverse

hypotheses. The pseudocode for AdaBoost is illustrated in Table 2.2. It main-

tains a probability distribution pn(x) over the training samples. In each iteration

n, it draws a training set of size m by sampling with replacement according to

the probability distribution pn(x). The learning algorithm is then applied to

produce a classifier hn. The error rate en of this classifier on the training sam-

ples is computed and used to adjust the probability distribution on the training

samples. AdaBoost was developed originally for two-class problems, but many

methods have been developed for handling multi-class problems.

Kuncheva and Whitaker [181] described three variants of AdaBoost, i.e. Aggres-

sive boosting, Conservative boosting and Inverse boosting. Since the first paper

on boosting by Schapire, boosting alone has been an active research direction,

for the up-to-date research trends on boosting, consult the website given in [16].

• Cross-Validated Committees:

Cross-Validated Committees construct the training sets by leaving out disjoint

subsets of the training data [98] [130]. For example, the training set can be

randomly divided into 10 disjoint subsets. Then 10 overlapping sets can be

constructed by dropping out a different one of these 10 subsets. The same

procedure is employed to construct training sets for 10-fold cross validation.

That is why this method is called cross validated committees [212].

2.3. Categorization Scheme of Classifier Ensembles 20

Input:

L: a learning algorithm
N : an integer

[1] Initialize for all i : w1(i) = 1
m Initial weights

[2] For n = 1 to N do

[3] For all i : pn(i) = wn(i)/(
∑

i wn(i)) Normalize the weights

[4] hn = L(pn)

[5] en =
∑

i pn(i)δ[hn(xi) 6= yi] Calculate the error for hn

[6] if en > 1/2 then

[7] N = n− 1

[8] goto 12

[9] βn = en/(1− en)

[10] For all i : wn+1(i) = wn(i)β1−δ[hn(xi) 6=yi]
n Calculate new weights

[11] End for

[12] Output:

hf (x) = argmax
y∈Y

N∑
n=1

(log 1
βn

)δ[hn(x) = y]

Table 2.2: The AdaBoost Algorithm. The value of δ[Q] equals to 1, if Q is true, and 0 otherwise.

2.3.3 Classifier Ensembles with Different Input Feature Subsets

This is a general method where different feature subsets are taken and passed on

to different classifiers. For example, Cherkauer [81] trained a neural network classifier

ensemble which consists of 32 component neural networks to identify volcanoes on

Venus. These neural networks are trained on 8 different subsets of the 119 available

input features and 4 different network sizes. The input feature subsets were selected

manually to group features that were based on different image processing opera-

tions. By doing this, they were able to match the performance of human experts in

identifying volcanoes.

Combining classifiers with different features was also studied by Chen, Wang

and Chi [79] with emphasis on text-independent speaker identification. They did

a systematic investigation and classified into three frameworks, i.e. linear opinion

pools, winner-take-all, and evidential reasoning. In the framework of linear opinion

2.3. Categorization Scheme of Classifier Ensembles 21

pools, the combination schemes make the final decision through the use of a linear

combination of the predictions of the multiple classifiers. In the framework of winner-

take-all, it chooses the best classifier which can be viewed as a winner. In the

framework of evidential reasoning, for an input pattern, the output of each individual

classifier is regarded as an evidence or an event and the combination scheme makes

the final decision based on a method of evidential reasoning. Evidential reasoning is

a methodology based on the Dempster-Shafer calculus of evidence [242].

2.3.4 Heterogeneous Classifier Ensembles

Stacked generalization and meta learning are two representative methods which

fall into the category of heterogeneous classifier ensembles where different types of

classifiers make up an ensemble architecture. A comparison study on combining

heterogeneous sets of classifiers was done by Bahler and Navarro [51]

• Stacked Generalization:

The general framework of stacked generalization was addressed by Wolpert [278].

It is a scheme for minimizing the generalization error rate of one or two gen-

eralizers. Stacked generalization is a layered architecture, where the classifiers

at the lever-0 (bottom) layer receive the original data as input and each of the

classifiers outputs a prediction. Successive layers receive the predictions of its

immediate preceding layer as the input. The output is passed to the next layer.

Most works deal with two-layer architectures [251] [262] [67]. For a two-layer

(level-0 and level-1) architecture, it works as follows:

(1) Train each of the level-0 classifiers using the following leave-one-out cross-

validation. For each example in the training set, leave-one-out and train on the

2.3. Categorization Scheme of Classifier Ensembles 22

remaining samples. After training, classify the left-out examples. Form a vector

from the predictions of all level-0 classifiers and the actual class of that example.

(2) Train the level-1 classifier using the collection of vectors generated in the

previous step as the training set. The number of examples in the level-1 data

is equal to the number of examples in the training set.

(3) In step one, classifiers are generated using a leave-one-out method. To fully

explore the training set, all level-0 classifiers are re-trained using the entire

training set. The generated models are then used to classify the examples in

the test set.

Of course, stacked generalization is not constrained to two-layers, it can be

generalized to multi-layer architectures.

• Meta Learning:

The survey paper on meta learning by Vilata and Drissi [274] shows the term

meta learning has been ascribed different meanings by different research groups.

Two methods based on meta learning were introduced by Chan and Stolfo [78],

i.e. arbiter and combiner. Both schemes are to meta-learn a set of meta-

classifiers whose training data are based on predictions of a set of base classifiers.

An arbiter is learned by some learning algorithm to arbitrate among predictions

generated by different base classifiers. The aim of the combiner strategy is to

coalesce the predictions from the base classifiers by learning the relationship

between these predictions and the correct prediction.

2.3. Categorization Scheme of Classifier Ensembles 23

2.3.5 Homogeneous Classifier Ensembles

While research continues on the general classifier ensemble algorithms, efforts have

been made by researchers to combine only one specific classifier in a classifier ensem-

ble. Zheng [288] studied naive bayesian classifier ensembles. Various neural network

ensembles were addressed and investigated systematically in [243]. We present a

comprehensive study on nearest neighbor classifier ensembles in chapter IV where all

the ensembles contain only one type of classifier: the nearest neighbor classifier.

2.3.6 Recursive Partition Classifier Ensembles

Recursive Partitioning algorithms for classifier ensembles use a divide-and-conquer

strategy to partition a space into regions that contain instances of only one class.

Utgoff and Brodley provide scheme examples for recursive partition ensemble algo-

rithms [268] [70]. Utgoff’s work on perception tree algorithms combines a univariate

decision tree with linear threshold units. It first determines if a subspace is linearly

separable by using a heuristic measure. If the subspaces are linearly separable, then

a linear threshold unit is applied. If not, the space is divided using an informa-

tion theoretic measure. Brodley’s model class selection system creates a recursive,

tree-structured hybrid classifier which combines decision trees, linear discriminant

functions and instance-based classifiers.

In my opinion, the recursive partition method for classifier ensembles is getting less

attention recently from the classifier ensemble community, but the idea of recursive

partition itself has found a lot of real world applications (e.g. [84]).

For the online bibliography reference on research about recursive partition (but

not limited to classifier ensembles), see [32].

2.4. Summary 24

2.4 Summary

In this chapter, we described the methods for classifier ensembles in a categoriza-

tion scheme. Three basic criteria are usually used to evaluate a classifier ensemble

[251], i.e. accuracy, efficiency and diversity, among which the accuracy is on the top

priority of consideration. However, we argue that the tradeoff between the error rate

and the bias-variance should be also taken into account in practical applications.

That is, when considering a specific classifier, an often adopted strategy is to choose

the classification algorithm which has a small error rate, and ideally, at the same

time it also has both small bias and small variance. For example, if a classification

algorithm has a low error rate, but it has a high bias and a high variance, then

one should be cautious in this case, since high bias means this algorithm has a high

systematic error, and high variance indicates this algorithm has poor generalization.

For details about the scheme of bias plus variance decomposition of error rate, see

chapter IV. In Chapter VII, we conduct the experiments on various nearest neighbor

ensembles while taking into account this bias plus variance decomposition scheme.

CHAPTER III

Nearest Neighbor Learning Algorithm Revisited

3.1 Introduction

The nearest neighbor learning paradigm has been the central subject of many

theoretical and experimental studies for over half a century. It is one of the oldest and

simplest methods for performing non-parametric classification, where the class label

of an input pattern is assigned based on the class labels represented by the k closest

neighbors of the training set. Despite its simplicity, it has many advantages, e.g. it

does not require any knowledge about statistical properties of the data beforehand

[105], it may give competitive performance compared to many other methods.

The basic concept underlying the nearest neighbor classifier was first introduced

by Fix and Hodges [110]. In 1967, Cover and Hart [90] formally defined the nearest

neighbor rule and applied it to the pattern recognition problem. Since then, the

nearest neighbor algorithm has been under extensive study [92] [94] [280] [250] [60].

An easy and effective way to calculate the classification error rate is by the ”leave-

one-out” method. Hereby, each time the complete training set, but one, is used, and

the left out training sample is used for testing. By doing this for each training sample

separately, the classification error rate can be evaluated.

25

3.2. Nearest Neighbor Classifier 26

z ?

1
0
0

0
1
0

0
0
1

class A class B class C

0
1
0

0
0
1

2 1
1
0
0

4

7

0.57
0.29
0.14

k = 7 neighbors
S = 3 classes

assign z to class A

u(*|z)

Figure 3.1:
A geometric illustration of the crisp kNN classification rule. The label vector represents
the absence (by a 0) or presence (by a 1) of a label.

3.2 Nearest Neighbor Classifier

Suppose z is an unlabeled vector, xi is the ith labeled vector, k is the number

of nearest neighbors to find in the neighborhood of z, and there exists some dis-

tance measure between z and xi in Rp. The geometric illustration of the crisp kNN

classification rule is give in Figure 3.1.

There are four algorithmic parameters associated with the kNN rule: (1) the value

of k; (2) the choice of distance measure; (3) the distance weighting measure (weighted

or nonweighted); (4) the method of counting votes.

Many distance metrics have been proposed in the literature, for example, the Chi-

square metric [277], the Manhalanobis metric [108], the Cosine Similarity metric1

[234], the Quadratic metric [117], the Modified Value Difference metric [89], of which

1The Cosine S imilarity CSxy is the cosine of the angle α between two L-dimensional vectors x and y, i.e.

CSxy = cos α =

L∑
i=1

xiyi√
L∑

i=1
x2

i

L∑
j=1

y2
j

The more similar the two objects are, the closer the value of cos α approaches to 1, hence the angle between them
becomes close to 0. On the other hand, the Spectral Angle Mapper (SAM) [175] is a somewhat popular classifier
using laboratory spectra to determine the similarity between two spectra by calculating the ”spectral angle” between
them. This algorithm, implemented also in the ENVI software package [33], actually shares the same idea as the
Cosine Similarity metric, though it has the name of SAM in the remote sensing community: it’s in fact similar to
the nearest neighbor rule (1-NN) with the cosine similarity metric as the distance measure. So probably it’s better
to make a tunable parameter k in the SAM algorithm, so that one can make a choice at one’s own needs.

3.3. Fuzzy Nearest Neighbor Classifier 27

the Euclidean distance is the most commonly used. How to select the distance

metrics was studied by Barker [52]. Although the Euclidean distance assumes that

the variables are uncorrelated [108], this might be not justified for hyperspectral data,

still we use it in the dissertation, since it is the most commonly used. There are many

variants of kNN, 51 milestone articles on the kNN rule and its variants were given in

[92]. In the machine learning community, kNN is often called instance-based learning

[44] or memory-based learning [254] where responses are computed by interpolating

from a table of stored patterns.2

One of the drawbacks of nonparametric methods is that they require a large

amount of computation time. In the case of k nearest neighbor classification, this

is due to the fact that it must compute every time the distance of an input pattern

with all training sample patterns in order to find the k nearest neighbors.3 Many

methods have been proposed to reduce the computation time in the literature [119]

[224] [77].

3.3 Fuzzy Nearest Neighbor Classifier

One of the difficulties for kNN is that each of the labeled samples is given equal

importance in deciding the class memberships of the patterns to be classified, re-

gardless of their ”typicalness”. On the other hand, a problem arises for classification

in high dimensionality, that is, the discrimination between classes becomes much

2The terms of instance-based and memory-based learning are just the synonymous names of lazy learning [42].
Lazy learning subsumes a family of algorithms that store the complete set of given examples and delay all further
calcalations, until requests for classifying yet unseen instances are received. Other synonymous names of lazy learning
include exemplar-based, cased -based and experience-based. As opposed to such ”lazy” learners, the ”eager” learners,
such as artificial neural networks, are algorithms where training examples are complied into a model at training time
but not available at runtime.

3In the field of computational geometry, this is referred as nearest neighbor search [143] (or similarity search
[235]), i.e. given a database of points in a multidimensional space, construct a data structure which, given any
query point, finds the database point(s) closest to it. In practice, when dimensionality becomes much higher and
higher, computing exact nearest neighbor is a very difficult task. Few algorithms seem to be significantly better than a
brute-force computation of all distances. In this case, the approximate nearest neighbor is sought instead of the exact
nearest neighbor, but with a trade-off between accuracy and time complexity. The nearest neighbor search problem
is a key issue in computational geometry, and has been of great importance in many areas of computer science,
including pattern recognition, databases ([133]), vector compression, computational statistics and data mining [142].

3.3. Fuzzy Nearest Neighbor Classifier 28

more difficult. This is due to the fact that, the number of training samples needed

to catch up with the increasing dimensionality grows overwhelmingly. In pattern

recognition, crisp classification is often replaced by fuzzy classification [59]. In these

techniques, the decision to classify a data point is delayed as long as possible by the

use of memberships. Membership values are assigned to the point as a function of

the point’s distance from its k nearest neighbors and those neighbors’ memberships

in the possible classes. These techniques have proven to outperform the crisp clas-

sification techniques, especially when clusters tend to overlap. The theory of fuzzy

sets has been introduced into the k nearest neighbor classification. The fuzzy kNN

rule was given in [157]. A fuzzy kNN classifier was designed by Keller et al. [161],

where class memberships are assigned to the sample, as a function of the sample’s

distance from its k nearest neighboring training samples. The fuzzy kNN procedure

is described below:

1. Store training data T with their S partitions.

2. Choose k = number of neighbors to find.

3. Choose d: Rp ×Rp → R+ any distance metric on Rp.

4. For any vector z /∈ T , using T = {xi}, compute and rank-order the distances

d(z,xi) as {d1 ≤ d2 ≤ · · · ≤ dk ≤ dk+1 ≤ . . . }.

Calculate

(3.1) ui(z) =

∑k
j=1 uij

(
1

d(z,xj)
2

w−1

)
∑k

j=1

(
1

d(z,xj)
2

w−1

)
where ui(z) is the assigned membership of the vector z, uij is the membership in

the ith class of the jth vector of the labeled sample set, and w is a scaling parameter

3.3. Fuzzy Nearest Neighbor Classifier 29

between 1 and 2. If Euclidean distance is used, then d(z,xj) = ||z − xj|| The

memberships of the training samples uij can be defined in several ways. The ’crispest’

way is to give them complete membership in their own class and nonmembership

in all other classes. A more ’fuzzy’ alternative is to assign the training samples’

memberships based on the distance from their class mean. After calculating the

memberships for the test sample, it is assigned to the class with highest membership.

In our experiments we have found that the second approach leads to the best results.

CHAPTER IV

Ensemble Methods for Nearest Neighbor Learning
Algorithm

4.1 Introduction1

Integration of the predictions of a number of classifiers has been shown to be

an effective way to achieve more accurate classification than any of the component

classifiers,2 and promising results have been given in many real world applications,

e.g. handwritten character recognition [281] [135] [120], protein structure prediction

[286], calculation of fat content of ground meat [260]. There are many general algo-

rithms for combining classifiers such as Bagging [65] and Boosting [16]. This area

is one of the four most important directions in machine learning research [98], and

has many different names [180], e.g. classifier fusion, classifier ensembles, censensus

aggregation.

In contrast to the huge amount of research in this active area [231] [182] [279]

[167] [210] [54] [126] [174] [211], little work has been done on combining the specific

classifier: the k nearest neighbor classifier (kNN) [105] [90]. Since its introduction,

the kNN rule has been well studied and improved [118], but the ensemble methods

for kNN classifiers are limited in the literature [251] [47] [55] [228].

1This chapter, together with part of Chapter VII, is the generalized work of [285].
2The problem of combining preference arises in many applications, such as combining the results of different

search engines [145].

30

4.2. Error Correcting Output Codes (ECOC) 31

The purpose of this chapter is two-fold: (i) a comprehensive description of the

nearest neighbor classifier ensembles is performed (with the experimental study on

hyperspectral remote sensing data in Chapter VII). (ii) a method of CNN-ECOC

which combines Condensed Nearest Neighbors (CNN) in conjunction with Error

Correcting Output Codes (ECOC) is proposed in Section 4.3.5. Another variant

method, kNN-ECOC-RS, which utilizes the Randomly Selected features with Error

Correcting Output Codes is suggested as a by-product in Section 4.3.4.

This chapter is organized as follows: In the next section, the technique of Error

Correcting Output Codes (ECOC) is briefly explained. In section 4.3, different kinds

of nearest neighbor classifier ensemble methods are recapitulated and the extended

methods are then presented. A taxonomy of classification methods using the k-NN

algorithm is also given. In section 4.4, the scheme of bias plus variance analysis of

the error rate is explained.

4.2 Error Correcting Output Codes (ECOC)

Error Correcting Output Codes (ECOC) are one kind of distributed output rep-

resentations, and were first proposed for multi-class classification tasks by Dietterich

and Bakiri in their seminal work of [101], where classifiers are combined for multi-

class problems by decomposing into multiple two-class distribution classifiers. Each

class is assigned a binary code word and each component classifier is assigned the

task of learning one-bit position of that code word. The resulting predictions of the

component classifiers then form a vector, representing the separation of the classes

into two disjoint subsets. A Hamming distance measure is used to compute the

closest codebook vector to the vector of predictions.

Table 4.1 shows an example of typically pre-defined ECOC codes for a 5-class

4.3. Ensemble Methods for Nearest Neighbor Classifiers 32

Code Word
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Corn/min 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Grass/pasture 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
Grass/trees 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
Soy-clean 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
Wheat 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Table 4.1: An example of typical 15-bit ECOC codes for a 5-class problem.

problem. Suppose we have a 5-class classification problem, and the description of

the 5 classes is given in Table 7.1 of Chapter VII. To classify a new object, the 15-

bits are evaluated to obtain a 15-bit binary string, say, 111010011101001. Then the

Hamming distance (which counts the number of bits that differ with each other) of

this string to each of the pre-defined 5 codewords is calculated. The nearest codeword

is 111111111111111, and this corresponds to class Corn/min. Hence, the new object

is assigned to the Corn/min class.

4.3 Ensemble Methods for Nearest Neighbor Classifiers

In this section, we describe several existing methods [251] [47] [55] [43] for com-

bining nearest neighbor classifiers, and present several extended methods. All the

ensemble methods belong to the category of homogeneous classifier ensembles as

described in Section 2.3.5, which contain only the nearest neighbor classifiers as

component classifiers.

A taxonomy of classification methods presented in this chapter using the k-NN

algorithm is illustrated in Figure 4.1. We first divide the methods using k-NN algo-

rithm into ensembles where k-NN is used as component classifier and non-ensembles

where only a single k-NN (or its variant) is used. We then divided the k-NN en-

sembles into three different categories: Voting ensembles; Ensembles with different

input feature subsets; Ensembles manipulating training samples. Voting over mul-

tiple condensed NN (section 4.3.2) belongs to the voting ensembles. The ensembles

4.3. Ensemble Methods for Nearest Neighbor Classifiers 33

K
-N

N
 E

ns
em

bl
es

K
-N

N
 N

on
-E

ns
em

bl
es

M
et

ho
ds

 U
si

ng
 K

-N
N

(
K
-
N
N
,
F
u
z
z
y

K
-
N
N
,
C
o
n
d
e
n
s
e
d

K
-
N
N
,
E
d
i
t
e
d

K
-
N
N
)

V
ot

in
g

E
ns

em
bl

es
V

ot
in

g
ov

er
 M

ul
tip

le
 C

on
de

ns
ed

 N
N

E
ns

em
bl

es
 w

ith
 D

iff
er

en
t

 In
pu

t F
ea

tu
re

 S
ub

se
ts

 N

N
 c

la
ss

ifi
ca

tio
n

F
ro

m

 M
ul

tip
le

 F
ea

tu
re

 S
ub

se
t

N
N

 w
ith

 S
m

al
l p

ro
to

ty
pe

 S
et

s

E
ns

em
bl

es
 M

an
ip

ul
at

in
g

T
ra

in
in

g
S

am
pl

es

K
N

N
-E

C
O

C
-F

S

K

N
N

-E
C

O
C

-R
S

C
N

N
-E

C
O

C
S

ka
la

k’
s

N
N

 A
rc

hi
te

ct
ur

e

S
ec

tio
n

4.
3.

1
 S

ec
tio

n
4.

3.
4

 S
ec

tio
n

4.
3.

2

S
ec

tio
n

4.
3.

3
S

ec
tio

n
4.

3.
5

Figure 4.1: A taxonomy of classification methods using k-NN algorithm.

4.3. Ensemble Methods for Nearest Neighbor Classifiers 34

with different input feature subsets consist of three methods: the NN classification

from multiple feature subsets (section 4.3.1), kNN-ECOC-F eature Selection method:

kNN-ECOC-FS, and kNN-ECOC-Randomly Selected feature method: kNN-ECOC-

RS (section 4.3.4). Skalak’s NN Architecture (section 4.3.3) and Condensed Nearest

Neighbors (CNN) with Error Correcting Output Codes: CNN-ECOC (Section 4.3.5)

are two methods which belong to the ensembles manipulating training samples.

4.3.1 Nearest Neighbor Classification from Multiple Feature Subsets (MFS)

Bay [55] proposed an algorithm: Nearest neighbor classification from multiple fea-

ture subsets (MFS). It uses a simple voting scheme, and just takes the output which

has the highest accuracy among the output of a number of component NN classifiers.

Each of the component NN classifiers has the same number of features, and all the

feature subsets are chosen by sampling from the original feature space. Two sam-

pling methods, i.e. sampling with replacement and sampling without replacement,

are used.

4.3.2 Voting over Multiple Condensed Nearest Neighbors (CNN)

When the number of the training patterns is too large, the need to store the

whole patterns requires a large memory. Hart’s [127] condensing algorithm solved

this problem by storing only a subset of the full training set. This algorithm works

as follows. First it starts with two subsets: the Grabbag subset and the Store subset.

The Store subset is empty while the Grabbag subset contains the whole training set.

Then the Store subset is initialized with a sample taken randomly from Grabbag.

On each iteration, randomly take one sample from Grabbag, if it can not be correctly

classified by the current samples in Store, then place it in subset Store, otherwise

throw it back in subset Grabbage. The procedure is often referred to as condensing.

4.3. Ensemble Methods for Nearest Neighbor Classifiers 35

This method is actually a local search3 in that the resulting subset Store depends

on the order of the samples stored. If one shuffles the training samples, one may

get different results. One may want to stop this procedure after several iterations

in order to speed up the process, for example, when the stored patterns in the last

iteration are less than, say 10%, of the training set. The final patterns stored in

the Store subset are the condensed patterns, which can be used as training patterns.

The classification rule used in this procedure is 1-NN, if the k-NN rule is used (i.e.

k > 2), then the computational cost is becoming higher.

Alpaydin [47] proposed to train multiple condensed nearest neighbor subsets [127]

and take a vote over them. Two voting schemes are used: simple voting where voters

have equal weights and weighted voting where weights depend on the classifiers’

confidence in their predictions. A simple method [47] is used to calculate the weights:

taking the two most nearest neighbors of x, say, z1 is the closest pattern, and z2 is

the second closest one, we have weight α:

α =

 1 : if class label h(z1) = h(z2)

d(x,z2)−d(x,z1)
d(x,z2)

: otherwise

where d is the distance measure.

Besides, another way is the union method, which combines the multiple CNN’s

by applying NN to the union of subsets obtained by multiple CNN’s.

4.3.3 Nearest Neighbor Classifiers with Small Prototype Sets: Skalak’s NN Archi-
tecture

We follow Skalak’s [251] discussion on composite nearest neighbor classifiers. Of

the many architectures for classifier combinations till now, there are 3 primary archi-

tectures for combining classification algorithms: 1. Stacked Generalization (Figure

3This local search strategy is also used by both IB2 [44] and Grow and Learn (GAL) learning scheme [46].

4.3. Ensemble Methods for Nearest Neighbor Classifiers 36

Instance
 x

Prediction
M([h1(x),...,hn(x)])

(ID3,K-nn,Vote)
combining
clasifier
 M

Train:Class of Instance

h1(x) h2(x)

component
predictions

h3(x)

h(x)

Nearest Neighbor
Component Classifiers

hi(x)

Figure 4.2: Stacked nearest neighbor classifier architecture.

Vote

h1 h2 h3

Figure 4.3:
Boosting architecture. Classifier h1 is taken as given, while h2 and h3 are additional
component classifiers.

4.2); 2. Boosting (Figure 4.3); 3. Recursive Partitioning (Figure 4.4).

Wolpert [278] was probably the first to discuss the idea of Stacked Generalization

in its full generality. Stacked Generalization assumes that a set of n level-0 (compo-

nent) learning algorithms, a level-1 learning (combining) algorithm, and a training

set of classified instances have been given. It is a recursive layered structure for com-

bining classifiers, where at each layer the classifiers are used to combine the output

of the classifiers just under that layer. Boosting is due to Schapire [237]. The goal of

boosting is to increase the accuracy of a given algorithm on a given distribution of

training instances. It successively creates complementary component classifiers by

filtering the training set. Recursive Partitioning algorithms use a divide-and-conquer

strategy to partition a space into regions that contain instances of only one class.

4.3. Ensemble Methods for Nearest Neighbor Classifiers 37

h0

h1 h2
h3

h4 h5

h6 h7 h8

Figure 4.4:
An example of a recursive partitioning architecture. Each of the component classifiers,
from h0 to h8, applies only to a particular region of the instance space.

Figure 4.5 is one of the composite architectures which were studied by Skalak

[251]. It’s a two-layer architecture, consisting of level-0 and level-1 classifiers. The

level-0 classifiers consist of two classifiers: a base classifier (say h0), i.e. a full near-

est neighbor classifier, which uses all instances as prototypes, and a complementary

classifier (say h1), which is a minimal nearest neighbor classifier, storing only one

prototype per class. The complementary nearest neighbor classifier h1 is obtained

through the following procedure:

(1) Randomly sample n sets of S instances (with replacement) from the training set

T, where S is the number of classes exposed in T, one instance is drawn from each

class.

(2) Use each set as a prototype set to construct a nearest neighbor classifier.

(3) Classify all instances in T using each of these n classifiers.

(4) Choose the classifier with highest classification accuracy on T as the complemen-

tary classifier h1.

For the level-1 combining algorithm, the decision tree algorithm ID3 [221] is used.

For each original training instance x ∈ T with class Si, a level-1 training instance is

4.3. Ensemble Methods for Nearest Neighbor Classifiers 38

ID3

 h0 h1

level-1 classifier

level-0 classifier

Base Classifier Complementary Classifier

(Instance-based,all instances

 stored as prototypes)

(Instance-based,one prototype
 stored as per class)

Figure 4.5: A composite architecture.

created: (h0(x), h1(x), Si). So, for example, let x be a level-0 instance, if h0 predicts

class A when applied to instance x, while h1 predicts class B when applied to instance

x, then the level-1 feature representation for x becomes (A, B). The entire level-1

representation for x also includes the class of x (say A), i.e. the level-1 representation

is actually (A, B, A). The set of these three-tuples of class samples is the training

set used to train the level-1 learning algorithm ID3.

ID3 is a greedy algorithm that grows the tree top-down, at each node selecting the

attribute that best classifies the local training examples. This procedure continues

until the tree perfectly classifies the training examples, or until all attributes have

been used. Although ID3 is no longer considered as a state-of-the-art decision tree,

we use it as the level-1 combining algorithm. All the level-1 features are symbolic,

the implementation of ID3 uses the same feature selection metric as described by

decision tree C4.5 [222], a descendant of ID3.

In Dietterich and Bakiri’s work [101], they showed that ECOC can improve de-

cision trees and neural networks. We are motivated by this, and hypothesize that

using ECOC in combination with the structure shown in Figure 4.5 can probably

further improve the classification gains. The experimental results on this will be

explained in Section 7.2.2 of Chapter VII.

4.3. Ensemble Methods for Nearest Neighbor Classifiers 39

4.3.4 Nearest Neighbor Classifier with Error Correcting Output Codes and Feature
Selection: kNN-ECOC-FS

While neither Bagging nor (directly) combining the Error Correcting Output

Codes (ECOC) with kNN improves the classification performance, Aha and Bankert

[43] proposed to further combine ECOC with feature selection for each output bit and

their empirical study on the cloud data showed performance gains. The procedures

are as follows:

(1) Create the codewords for the specific problem. In this step, first the confusion

matrix is obtained using the IB1 classifier [44] on the training set. Next, create the

output bits by building a set of partitions, one per output bit, repeat until the set

of partitions distinguishes each pair of classes according to at least the requested

Hamming distance.

(2) Then kNN-ECOC computes the set of features to use when predicting bit

values for each output bit (i.e. featue selection for each bit).

(3) For each test sample, kNN-ECOC predicts a value for each output bit and

compares the predicted output string with each codeword, yielding the most simi-

lar codeword’s class as its prediction for the test sample’s class. The classification

accuracy is then calculated.

Another probably interesting technique is the following. The kNN-ECOC idea

combined with a feature selection method improves the classification gains, where

feature selection was used for each bit. This is a considerable computational cost. But

by combining with a randomly chosen feature subset for each bit instead of feature

selection could act in the same way as feature selection: distances are computed

differently for each bit, but this procedure will save considerable computational time.

We call this variant as kNN-ECOC-RS in this dissertation. While with a random

4.3. Ensemble Methods for Nearest Neighbor Classifiers 40

sampling of the original feature space, one can naturally only by chance get the

classification performance improved. By using ECOC in conjunction with a random

sampling, errors occurring by chance in each bit of the ECOC codes can be smoothly

alleviated, as a consequence, the entire performance can be improved.

4.3.5 Condensed Nearest Neighbors (CNN) with Error Correcting Output Codes:
CNN-ECOC

The ”nonlocal” learning algorithms (i.e. those that induce compact classifiers),

e.g. the decision tree C4.5 and the neural networks trained by backpropagation,

benefit from the use of ECOC, but the local ones (i.e. those that generate pre-

dictions based on information near the query samples such as the nearest neighbor

algorithm), do not [171]. The reason is that, when using only local information, the

bias errors in different output bits will be correlated, which will prevent the ECOC

from reducing bias errors. Aha and Bankert [43] solved this problem by combining

ECOC with a feature selection technique. On the other hand, the method of vot-

ing on Multiple Condensed Nearest Neighbors (CNN) generates different CNN’s by

shuffling the training samples on each run. Therefore this leads us to propose to

combine the ECOC with Multiple CNN’s: it relies on running CNN for each output

bit, so that similarity can be computed on different resulting CNN’s for each bit.

This will, in fact, cause different stored samples to be retrieved for different output

bits, and their predictions should be not correlated with each other. This follows the

same strategy as the seminal work by Aha and Bankert [43]: while still depending

on using local information during classification predictions, it uses different, yet local

information for each output bit.

We have found that rather than trying to create a well-designed codeword in step

(1) of Section 4.3.4, it would be much more convenient to use the large sets of code-

4.4. Bias plus Variance Decomposition of the Error Rate 41

words for ECOC already designed by Dietterich’s group, which can be downloaded

from [1]. In our experiments in Chapter VII, we used their pre-designed codes.

4.4 Bias plus Variance Decomposition of the Error Rate

It is unfair to evaluate the classification performance by the error rate alone,

without considering the bias and variance effects of the classification algorithm. For

example, if a classification algorithm has an acceptable classification performance,

but also has a high variance, one should be cautious about it, since the high vari-

ance suggests that this algorithm has a poor generalization. The bias plus variance

decomposition [121] is a powerful tool for explaining how changes to a potential al-

gorithm can affect the resulting error rates. Researchers have proposed a number of

decomposition methods in the literature [66] [150] [169] [171] [261]. The basic idea

behind this theoretical framework is that a classification algorithm has two kinds of

errors: (i) a systematic error, which is due to the representation languages used by

the learning algorithm itself. (ii) an error resulting from random variation and noise

in the training set and from any random behavior of the learning algorithm, i.e. this

error depends on the generated model from the training set.

We follow Kohavi and Wolpert’s definitions for bias and variance, because their

decomposition method avoids potentially negative variance [169].

Given values of hypothesis H and target function F , the associated zero-one loss

function for a test sample is a mapping from ` : Y × Y −→ 0, 1. i.e. `(yF , yH) = 0,

if yF = yH , and 1 , otherwise. The cost, C is a random variable defined as the loss

over the random variable YF and YH . The expected cost, or error rate, is expressed

4.4. Bias plus Variance Decomposition of the Error Rate 42

as:

(4.1) E(C) = 1−
∑
y∈Y

P (YH = YF = y)

The above equation can be rewritten as:

E(C) =
∑
y∈Y

−P (YH = YF = y) +
∑
y∈Y

P (YH = y)P (YF = y)+

∑
y∈Y

[−P (YH = y)P (YF = y) +
1

2
P (YF = y)2 +

1

2
P (YH = y)2] +

1

2
− 1

2

∑
y∈Y

P (YH = y)2 +
1

2
− 1

2

∑
y∈Y

P (YF = y)2

(4.2)

By rearranging the terms, we have

E(C) =
∑
y∈Y

[P (YH = y)P (YF = y)]− P (YF = YH = y) +

1

2

∑
y∈Y

[P (YF = y)− P (YH = y)]2 +

1

2
[1−

∑
y∈Y

P (YH = y)2] +

1

2
[1−

∑
y∈Y

P (YF = y)2]

(4.3)

We assume that YF and YH are conditionally independent, then P (YH = YF = y)

is actually P (YH = y)P (YF = y), so the first term in the above equation is zero.

When estimating the expected cost for a fixed target and averaging over the

4.4. Bias plus Variance Decomposition of the Error Rate 43

training set T with size m, it is often written as:

∑
x

P (x)E(C|f, m, x) for x ∈ T

So

(4.4) E(C) =
∑

x

P (x)((σx)
2 + bias2

x + variancex)

where

(4.5) σ2
x =

1

2
(1−

∑
y∈Y

P (YF = y|x)2)

(4.6) bias2
x =

1

2

∑
y∈Y

(P (YF = y|x)− P (YH = y|x)2

(4.7) variancex =
1

2
(1−

∑
y∈Y

P (YH = y|x)2)

The “bias2” is the difference between the learning algorithm’s average prediction

and the target. It refers to the systematic error of the learning algorithm. The

“variance” instead tells us ”how much the learning algorithm’s prediction bounces

around for different training sets of the given size” [169]. It results from random

variation and noise in the training set and from any random behavior of the learning

algorithm. The σ2
x is the intrinsic noise of the learning algorithm. In Chapter VII

we take into account the bias plus variance decomposition of the error rate to study

the performance of various nearest neighbor classifier ensembles.

CHAPTER V

Feature Selection Methods: An Overview

5.1 Introduction

Feature selection1or attribute selection2 has been a traditional research topic dat-

ing back to at least as early as the 70’s (e.g. [203]). It is a broad subject that spans

to research disciplines such as statistics ([207] [63] [200]), pattern recognition ([148]

[255] [165]), data mining3 ([80]), machine learning ([125]), neural networks ([241]),

fractals ([72]), rough sets theory ([95]), mathematical programming ([64] [141]) and

many others.

The advantages of feature selection are that it reduces the dimensionality of the

feature space and removes the redundant, irrelevant or noisy data. The immediate

effects for data analysis tasks are speeding up the running time of the learning algo-

rithms, improving the data quality, increasing the accuracy of the resulting model.

So what is feature selection? Suppose X is the original feature space with a

cardinality of q, and X̄ is the selected feature space with a cardinality of q̄, X̄ ⊆ X,

J(X̄) is the selection criterion for selected feature space X̄. Without loss of generality,

we assume that a higher value of J indicates a better feature space. The goal is to

1Online feature subset selection bibliography can be found in [6] [8].
2Throughout this dissertation, we use feature selection, attribute selection, and variable selection without any

distinction.
3Refer to the book [193] for feature selection for knowledge discovery and data mining, consult its appendix A for

easy reference of the machine learning (ML), data mining and knowledge discovery (KD) resources or see online [31].

44

5.2. Relevance to the Concept: Weak and Strong Relevance 45

maximize J(). Formally, the problem of feature selection is to find a sub-space

X̄ ⊆ X such that

(5.1) J(X̄) = max
Z⊆X,|Z|=q̄

J(Z)

If an exhaustive approach is performed, then we need to consider all
(

q
q̄

)
pos-

sible combinations. The number of combinations grows exponentially, making the

exhaustive search unfeasible for larger values of q. Even for moderate values of q,

performing the exhaustive search is impractical. Finding the best feature subset is

usually intractable [168], and many problems related to feature selection have been

shown to be NP-hard [62]. There are three kinds of feature selection strategies: (i)

The number of features, say q̄ is already given, and the task of the search algorithms

is to decide which q̄ features constitute a (sub)optimal feature subset. (ii) The second

strategy is to search the smallest feature dimensionality for which the discrimina-

tion performance exceeds a specified value. (iii) The third search strategy selects a

(sub)optimal feature subset which has a trade-off between the class discriminabil-

ity (e.g. classification error rate) and the subset size (e.g. the number of selected

features).

5.2 Relevance to the Concept: Weak and Strong Relevance

Determining which of the features are relevant to the learning task is a central issue

in machine learning, as the inclusion of irrelevant or redundant features can reduce

the performance of different learning algorithms. In order to determine which of the

features are relevant or not, we need to first know the concepts of weak relevance and

strong relevance. There are a number of different definitions in the machine learning

literature for what it means for features to be ”relevant”. John, Kohavi and Pfleger

5.3. General Characteristics of Feature Selection Methods 46

[156] [155] define two notations of relevance [124]:

Strong Relevance: An attribute xi is strongly relevant if its removal yields a

deterioration of the performance of the Bayes Optimum Classifier.

Weak Relevance: An attribute xi is weakly relevant if not strongly relevant and

there exists a subset of variables V such that the performance on V ∪ {xi} is better

than the performance on V .

Therefore features that are neither strongly relevant nor weakly relevant are ir-

relevant. Irrelevant features should be left out.

5.3 General Characteristics of Feature Selection Methods

Feature selection aims to search the relevant features in the feature space. Re-

searchers have studied various aspects of feature selection. From the point of view of

heuristic search, Blum and Langley [61] argue that the following four issues, which

affect the nature of the search, can characterize any feature selection method.

1. The starting point in the feature space.

Depending on which point to start with, the search direction will vary. Search

from no features and successively add others is called forward selection. In con-

trast, search from all features and successively remove features is called back-

ward selection. A third method could be to combine forward and backward

search.

2. The organization of the search procedure.

Obviously, if the number of features is too large, the exhaustive search of all

the feature subspace is prohibitive, as there are 2N possible combinations for N

features. For example, heuristic search is more realistic than exhaustive search,

but it doesn’t guarantee finding the optimal solutions.

5.3. General Characteristics of Feature Selection Methods 47

3. The evaluation strategy.

How feature subsets are evaluated is an important problem. As for classifica-

tion, the ideal feature subset should have the best separation of the data. Data

separation is usually computed by an inter-class distance measure [166]. An-

other most frequently used discriminating measure is the Wilk lambda [276], it

is defined as follows:

(5.2) λ =
|W |

|W + B̄|

where W is the intra-class matrix dispersion corresponding to the selected vari-

able set, B̄ is the corresponding inter-class matrix, |W | is the determinant of

matrix W . W and B̄ are computed respectively:

(5.3) W =

g∑
j=1

Nj∑
l=1

(xl − µj)t(xl − µj)

(5.4) B̄ =

g∑
j=1

Nj(µ− µj)
t(µ− µj)

where g the number of classes, Nj the number of samples in class j, µj the

mean of class j and µ the global mean. The smaller the value of λ, the better

discriminating power it indicates.

In this dissertation, classification accuracy is used for the evaluation of the fea-

ture subset. Classification accuracy is defined as the percentage of test examples

correctly classified by some algorithm. Many induction algorithms incorporate

a criterion based on information theory, others directly measure accuracy on

the training set.

5.4. Categorization Scheme of Feature Selection Methods 48

4. The criterion for stopping the search.

During the process of evaluation, we might want to stop the search, when ob-

serving that there is no improvements of the classification accuracy.

5.4 Categorization Scheme of Feature Selection Methods

There is plenty of effort to compare and evaluate different feature selection meth-

ods [203] [178], but there are very few attempts to categorize the feature selection

methods in the literature. Siedlecki and Sklansky [245] discussed the evolution of

feature selection methods and grouped the methods into past, present and future

categories. Their main focus was the branch and bound method and its variants.

Dash and Liu [93] divided 32 existing feature selection methods into different groups

based on the major two characteristics of feature selection: generation procedure

(complete, heuristic, random) and evaluation function (distance, information, con-

sistency, classification error rate). A taxonomy of feature selection algorithms into

broad categories was given by Jain and Zongker [147], where the methods were first

divided into those based on statistical pattern recognition (SPR) classification tech-

niques, and those using artificial neural networks. The SPR category was then further

divided into sub-categories. The categorization can also be simply done according

to the monotonicity of the selection evaluation criteria, that is, monotonic versus

non-monotonic. Another categorization could be according to the time complexity

of the feature selection algorithm, e.g. the time complexity of floating search meth-

ods [217] is O(2n),4 while that of the sequential backward and sequential forward

4Let’s take a somewhat pragmatic viewpoint of the time complexity for (both forward and backward) floating
search methods through an example. Suppose the number of selected features q̄ is much less than the original feature
space with q features, say, q = 10 ∗ q̄. Then the time complexity for forward floating search is [240]:

Oforward = 9.5 ∗ q̄2 + 0.5 ∗ q̄,
while that for backward floating search is:
Obackward = 49.5 ∗ q̄2 + 4.5 ∗ q̄ + 1.
One can see clearly in this case the time complexity for backward floating search is more than five times as that for

forward floating search, this indicates that the forward version of floating search is preferred when both the forward
and backward floating search methods are applicable.

5.4. Categorization Scheme of Feature Selection Methods 49

selection methods is Θ(n2), where Θ denotes a tight estimate of complexity, while O

denotes an estimate of complexity for which only an upper bound is known. More-

over, the feature selection methods can be categorized into two general groups [177],

that is, the classifier-specific selection methods where the goodness is evaluated by a

given criterion (e.g. the error rate of a certain classifier, this is useful for cases where

we know which classification will be performed after selection) and the classifier-

independent selection methods where the goodness is evaluated by the methods’ own

criterion (e.g. measures based on the approximation of class-conditional probability

density functions, this is useful for cases where we don’t know which classification will

be used). Other categorization schemes include simply dividing the feature selection

methods into: optimal (e.g. exhaustive search) vs. non-optimal (suboptimal), from

the point of view of the optimality of the resulting subset; backward elimination vs.

forward selection, from the point of view of starting point in the feature search space;

and many others.

On the other hand, feature selection can be generally regarded as an optimization

problem. For a general optimization problem, one may use the NEOS optimization

tree category [13], that divides optimization techniques into discrete optimization

and continuous optimization, both of which are then further divided into other sub-

categories. For more references on optimization, the reader is referred to Optimiza-

tion Online [29].

We describe three typical model approaches in the following,5 i.e. the Filter

Selection Model, the Wrapper Selection Model, and the Embedded Selection Model.

5 It seems to me that there is also a need to categorize the availale selection methods into two major groups,
i.e. those promising ones for large dataset (e.g. the genetic feature selectors which are discussed in Chapter VI and
floating search methods [217] [253]) that are very effective for large scale databases, especially nowdays at a time
when information grows at an amazing speed, and those less-promising ones that have weak power to deal with the
high dimensional data due to reasons such as the costly computation complexity problem, therefore they are mainly
targeted for the use with small or medium scale databases.

5.4. Categorization Scheme of Feature Selection Methods 50

5.4.1 Filter Selection Model

The filter selection model is the earliest approach to feature selection. It utilizes an

independent search criterion to find the appropriate feature subset before a machine

learning algorithm is performed, thus it was termed as filter method by John, Kohavi

and Pfleger [156]: it filters out irrelevant attributes before induction occurs, that is,

the search is done independently of an induction algorithm. The procedure of the

filter model is shown in Figure 5.1. The advantage of the filter model is that it does

not need to re-run the algorithm for every induction algorithm when choosing to

run on a reduced feature dataset, as a consequence, the filter approach is generally

computational efficient, and it is practical for data sets with very high dimensionality.

There are a number of different representative filter algorithms in the literature.

FOCUS, an algorithm designed by Almuallim and Dietterich [45] originally for the

boolean domain, searches the feature space by looking at each feature in isolation,

then turn to pairs of features, triples, and so on, and stops until it finds the minimal

combination of features. The minimal feature subset divides the training data into

pure classes, i.e. no instances have more than one class. The original training

samples which are characterized by the resulting feature subset, are then passed to

the decision tree induction algorithm ID3 [221].

Another representative work of the filter approach is the RELIEF algorithm due to

Kira and Rendell [163]. The RELIEF algorithm follows the general and simple filter

scheme, that is, it first evaluates the individual feature according to the evaluation

criterion, and thereafter, the best n features are selected. However it uses a more

complex evaluation function. The training samples, characterized by the selected

features, are then passed to ID3. Two extensions were made to this algorithm by

Kononenko [172], where more general data types can be treated. Although both

5.4. Categorization Scheme of Feature Selection Methods 51

FOCUS and RELIEF use the decision tree induction algorithm after feature selection,

they are naturally not confined to decision tree algorithms, i.e. other induction

algorithms can be used instead.

Table 5.1 shows a list of filter approaches to feature selection in the literature.

Since the filter approach does not take into account the learning bias introduced

by the final induction algorithm, it may not be able to select the most suitable subset

for the final induction algorithm. For this reason, the wrapper model was proposed.

5.4.2 Wrapper Selection Model

The strategy of the wrapper model is to use an induction algorithm to estimate the

merit of the searched feature subset on the training data and using the estimated

accuracy of the resulting classifier as its metric . The wrapper approaches often

have better results than the filter approaches because they are tuned to the specific

interaction between an induction algorithm and its training data. In Chapter VI, we

discuss a typical wrapper selection approach called genetic feature selectors, which

use genetic algorithms as the search engine (and one of them uses the ensembled

nearest neighbor classifiers as the induction algorithm). In this way, feature selection

takes into account the biases from the final learning algorithm. The use of wrapper

approaches was supported by the study of Aha and Banket [41], Doak [103] and John

et al. [156].

The wrapper selection procedure is illustrated in Figure 5.2.

The disadvantage of the wrapper model is that it is less tractable because of

the prohibitive cost of running the classification algorithm many times when the

dimensionality is considerably high.

Table 5.2 shows different wrapper approaches to feature selection in the literature.

5.4. Categorization Scheme of Feature Selection Methods 52

training set with all features

search algorithm candidate feature subset

training set with candidate
 feature subset

 measure the discrimination power
 of the feature subset on training set

feature selection procedure

finally selected feature subset

 test set with
selected feature subset

 training set with
selected feature subset

induction
algorithm

 final model

final performance estimation
 on test set

Figure 5.1: Filter selection procedure.

5.4. Categorization Scheme of Feature Selection Methods 53

A
u
th

or
(S

y
st

em
)

St
ar

ti
ng

P
oi

nt
Se

ar
ch

C
on

tr
ol

E
va

lu
at

io
n

C
ri

te
ri

on
L
ea

rn
in

g
A

lg
or

it
hm

A
ha

an
d

B
an

ke
rt

[4
1]

N
on

e
B

ea
m

va
ri

an
ts

of
fo

rw
ar

d
C

al
in

sk
i-
H

ar
ab

sz
IB

1
an

d
ba

ck
w

ar
d

se
le

ct
io

n
se

pa
ra

bi
lit

y
in

de
xa

A
lm

ua
lli

m
an

d
D

ie
tt

er
ic

h:
F
O

C
U

S
[4

5]
N

on
e

B
re

ad
th

-F
ir

st
C

on
si

st
en

cy
b

ID
3

C
ar

di
e

[7
5]

N
on

e
G

re
ed

y
C

on
si

st
en

cy
N

ea
re

st
N

ei
gh

bo
r

K
ir

a
an

d
R

en
de

ll:
R

E
L
IE

F
[1

63
]

—
O

rd
er

in
g

T
hr

es
ho

ld
ID

3
Si

ng
h

an
d

P
ro

va
n

[2
49

]
N

on
e

G
re

ed
y

N
o

In
fo

rm
at

io
n

G
ai

n
B

ay
es

ia
n

N
et

w
or

k
K

ol
le

r
an

d
Sa

ha
m

i
[1

70
]

A
ll

G
re

ed
y

T
hr

es
ho

ld
T
re

e/
B

ay
es

L
iu

an
d

Se
ti

on
o:

LV
F

[1
92

]
R

an
do

m
L
as

V
eg

as
c

C
on

si
st

en
cy

ID
3

K
ub

at
et

al
[1

76
]

N
on

e
G

re
ed

y
C

on
si

st
en

cy
N

ai
ve

B
ay

es
Sc

hl
im

m
er

[2
39

]
N

on
e

Sy
st

em
at

ic
d

C
on

si
st

en
cy

N
on

e

T
ab

le
5.

1:
Su

m
m

ar
y

of
di

ffe
re

nt
fil

te
r

ap
pr

oa
ch

es
to

fe
at

ur
e

se
le

ct
io

n.
a
S
ee

re
fe

re
n
ce

[7
3
].

b
A

s
d
es

cr
ib

ed
in

S
ec

ti
o
n

5
.4

.1
,
th

e
F
O

C
U

S
a
lg

o
ri

th
m

se
a
rc

h
es

ea
ch

fe
a
tu

re
in

is
o
la

ti
o
n
,
th

en
tu

rn
to

p
a
ir

s
o
f
fe

a
tu

re
s,

tr
ip

le
s,

a
n
d

so
o
n
,
u
n
ti

l
it

fi
n
d
s

th
e

m
in

im
a
l
su

b
se

t
w

h
ic

h
d
iv

id
es

th
e

tr
a
in

in
g

d
a
ta

in
to

p
u
re

cl
a
ss

es
,
in

th
is

co
n
te

x
t,

w
e

sa
y

th
a
t,

th
e

F
O

C
U

S
a
lg

o
ri

th
m

fi
n
d
s

a
m

in
im

a
l
su

b
se

t
w

h
ic

h
is

co
n
si
st

en
t

w
it

h
th

e
tr

a
in

in
g

d
a
ta

.
c
L
a
s

V
eg

a
s

a
lg

o
ri

th
m

u
se

s
ra

n
d
o
m

n
es

s
to

g
u
id

e
se

a
rc

h
,
i.
e.

a
ra

n
d
o
m

su
b
se

t
is

g
en

er
a
te

d
d
u
ri

n
g

ea
ch

ro
u
n
d

o
f
se

a
rc

h
.

d
S
y
st

em
a
ti

c
se

a
rc

h
is

u
se

d
to

a
v
o
id

re
v
is

it
in

g
se

a
rc

h
st

a
te

s.

5.4. Categorization Scheme of Feature Selection Methods 54

training set with all features

search algorithm candidate feature subset

training set with candidate
 feature subset

performance estimation on training
 set as evaluation function

feature selection procedure

finally selected feature subset

 test set with
selected feature subset

 training set with
selected feature subset

induction
algorithm

 final model

final performance estimation
 on test set

 induction
 algorithm

Figure 5.2: Wrapper selection procedure.

5.4. Categorization Scheme of Feature Selection Methods 55

A
u
th

or
(S

y
st

em
)

St
ar

ti
ng

P
oi

nt
Se

ar
ch

C
on

tr
ol

E
va

lu
at

io
n

C
ri

te
ri

on
L
ea

rn
in

g
A

lg
or

it
hm

A
ha

an
d

B
an

ke
rt

[4
1]

R
an

do
m

B
ea

m
va

ri
an

ts
of

fo
rw

ar
d

L
ea

ve
-o

ne
-o

ut
IB

1
an

d
ba

ck
w

ar
d

se
le

ct
io

n
cr

os
s

va
lid

at
io

n
M

oo
re

an
d

L
ee

[2
04

]
C

om
pa

ri
so

n
G

re
ed

y
N

o
be

tt
er

1-
N

N
Sk

al
ak

[2
51

]
R

an
do

m
M

ut
at

io
na

k-
fo

ld
C

ro
ss

V
al

id
at

io
n

1-
N

N
L
an

gl
ey

an
d

Sa
ge

[1
86

]
A

ll
G

re
ed

y
k-

fo
ld

C
ro

ss
V

al
id

at
io

n
1-

N
N

L
an

gl
ey

an
d

Sa
ge

[1
85

]
N

on
e

G
re

ed
y

A
cc

ur
ac

y
on

tr
ai

ni
ng

se
t

N
ai

ve
B

ay
es

Si
ng

h
an

d
P

ro
va

n
[2

48
]

N
on

e
G

re
ed

y
3

In
fo

rm
at

io
n

th
eo

re
ti

c
m

ea
su

re
s

B
ay

es
ia

n
N

et
w

or
k

T
ab

le
5.

2:
Su

m
m

ar
y

of
di

ffe
re

nt
w

ra
pp

er
ap

pr
oa

ch
es

to
fe

at
ur

e
se

le
ct

io
n.

a
A

b
in

a
ry

v
ec

to
r

is
u
se

d
to

re
p
re

se
n
t

th
e

fe
a
tu

re
su

b
se

t,
o
n

ea
ch

se
a
rc

h
st

ep
,
m

u
ta

te
o
n
e

el
em

en
t,

o
r

b
it
,
ch

o
se

n
a
t

a
ra

n
d
o
m

p
o
in

t
o
f
th

e
b
in

a
ry

v
ec

to
r,

a
n
d

th
en

ev
a
lu

a
te

th
e

n
ew

v
ec

to
r.

5.4. Categorization Scheme of Feature Selection Methods 56

5.4.3 Embedded Selection Model

In contrast to the wrapper approach, which treats feature selection as a wrapper

around the induction process, the embedded approach embeds the selection within

the basic induction algorithm. Examples of this model are the decision tree algo-

rithms ID3 and C4.56 7 by Quinlan [221] [222] and CART 8 by Breiman [68]. These

decision tree algorithms use recursive partitioning methods for induction, and carry

out a greedy search through the space of decision trees. At each stage they use an

evaluation function to select the attribute that has the best ability to discriminate

among the classes. They partition the training data based on this attribute and

repeat the process on each subset, extending the tree downwards until no further

discrimination is possible.

Besides these three approaches, another model called weighted model was also

introduced [214] [213], where feature weighting is considered.

6The fuzzy set theory has been introduced into decision trees by many researchers [151] [140] [267] [153].
7Quinlan has developed advanced version called C5.0/see5 [34].
8An algorithm called RECPAM [83], is a generalization of the well-know CART algorithm. The difference between

ID3 and CART is that while ID3 aims at knowledge comprehensibility and is based on symbolic domains, CART is
naturally designed to deal with continuous domains but lacks the same level of comprehensibility.

CHAPTER VI

Genetic Feature Selectors

6.1 Introduction1

In this section we will introduce some background of evolutionary algorithms and

meanwhile situate the genetic algorithms within the frame of evolutionary algorithms.

Evolutionary algorithms (EAs) [48] [11] [5] are a broad class of different randomized

search heuristics, which currently include Evolution Strategies (ESs) [49], Evolution-

ary Programming (EP) [111], Genetic Programming (GP) [21] [173] and Genetic

Algorithms (GAs) [123]. They all stem from modeling the natural evolution pro-

cesses. Although based on the same evolutionary principles, each of them employs

its own particular chromosomal representation, set of genetic operators and selection

and replacement scheme. Evolutionary computation2 3 4 [50] has found countless

real world applications, e.g. it has been also applied to the field of hyperspectral

image analysis and remote sensing [225] [128] [71]. On the other hand, evolutionary

algorithms were already proposed for optimization in the 60’s [69] and the research

on this continues [24].

Genetic algorithms are a successful soft-computing technique for solving optimiza-
1This chapter, together with part of Chapter VII, is the generalized work of [284].
2We don’t make any distinction between evolutionary algorithms and evolutionary computation here.
3For more reference on evolutionary computation, refer to the page of the International Society for Genetic and

Evolutonary Computation (ISGEC), and check the menu of Books by ISGEC members [23].
4Cooperative coevolutionary computation [216] [215] is yet another type of evolutionary computation, which

promises many advantages over traditional evolutionary algorithms in terms of the corresponding adaptability and
potential open-endedness.

57

6.2. Genetic Algorithms 58

tion problems, and were already applied to the problem of feature selection [246] [179]

[144] [282]. GAs were found to be very efficient to do so [147]. In this chapter we will

discuss the problem of using the genetic algorithms as the search engine to perform

feature selection for high dimensionality with limited training data.

The outline of this chapter is as follows: in the following two sections, we first

describe the basic concepts of the standard genetic algorithms, we then address

the categorization scheme on the existing feature selection methods using genetic

algorithms, one of which is a feature selector using genetic algorithms in conjunction

with an ensembled learning scheme.

6.2 Genetic Algorithms

Genetic Algorithms (GAs)5, invented by Holland [136] in the 70’s, are general

purpose search algorithms that utilize the principles inspired by natural population

genetics to evolve solutions to problems.

Although different variants of genetic algorithms vary in many aspects, they share

a prototypical procedure as shown in Figure 6.1. GAs are an iterative optimization

process where a set of operators, such as crossover and mutation, are applied. First

a solution is represented by a finite sequence of 0’s and 1’s, called a chromosome.

The chromosomes are allowed to ’crossover’, e.g. for two parental chromosomes, the

simple way is to choose randomly some point (called crossover point) and everything

before this point copies from the first parent and then everything after this crossover

point copies from the second parent. In this way, two parental chromosomes exchange

their parts at the crossover point to create two new child chromosomes. Chromosomes

are also allowed to ’mutate’, i.e. a small change (e.g. flipping of a bit) can be made

5See [15] for online genetic algorithm archive. Jarmot T. Alander of Finland has compiled a series of indexed bib-
liography of Genetic Algorithms and their applications in many areas. The series of bibliography can be downloaded
from [2].

6.2. Genetic Algorithms 59

Define a genetic representation
 for the problem

 Randomly create an initial
 population P(0)

Compute individual fitness f(i)
 for current population P(t)

Choose parents for reproduction
based on individual fitness f(i)

 Crossover

 Mutation
 P(t+1)

 Stop when
criterion met

Figure 6.1: Outline of the standard GAs.

to a chromosome. The optimization process is carried out in ’generations’, where

each time a population of new chromosomes is generated. Since the population size

is finite, only the ’best’ chromosomes are allowed to survive. A ’fitness’ function is

defined that allows to calculate a fitness score for each of the chromosomes.

Due to the inherent parallel nature of genetic aglrithms, many parallel versions

of genetic algorithms have been proposed in the literature [74]. The theory of fuzzy

set has also been introduced into genetic algorithms [275] [131]. For a throughout

study of various aspects of genetic algorithms, the reader is referred to the following

standard introductory material [123] [137] [199] [202].

6.3. Categorization Scheme of Genetic Feature Selectors 60

6.3 Categorization Scheme of Genetic Feature Selectors

Genetic feature selectors are a series of feature selection methods which use genetic

algorithms to guide the selection procedure. Basically speaking, the genetic feature

selectors fall into the category of the wrapper model as described in Section 5.4.2 of

Chapter V. GAs may, in general, hybridize with any classification scheme, therefore

they can also be categorized into two groups, that is, those that combine with a

single learning scheme (i.e. non-ensembled learning scheme) and those that combine

with an ensembled learning scheme, e.g. in [284], where an ensemble of nearest

neighbor learning algorithms is proposed to evaluate the merit of the features selected

during the selection process. In Chapter VII, we will do some experiments where the

ensembled learning scheme is used, and demonstrate its superiority over the single

learning scheme for genetic feature selection.

Genetic search is a type of search which has the following properties: it is (i) a

stochastic search, (ii) a multi-point search, (iii) a direct search, (iiii) a parallel search.

Due to these reasons, genetic algorithms have been applied to the problem of feature

selection. The genetic feature seletion was originally inspired by the seminal work

by Siedlecki and Sklansky [246]. They designed a genetic feature selection algorithm

that was found to be very efficient for high (> 20) dimensionalities [147]. Later work

by Kelly and Davis [162], and by Punch et al. [218] expanded this approach to use

GAs for feature extraction. Raymer et al. [227] [226] then further extended the

genetic feature selection through the simultaneous optimization of feature weights

and selection of key features by including a masking vector on the GA chromosome.

For our work, we followed the procedure of Siedlecki and Sklansky’s seminal work

[246] and mainly initiated the idea of using the ensembled learning scheme as a means

6.3. Categorization Scheme of Genetic Feature Selectors 61

to evaluate the intermediate subsets during the selection stage [284].

Unlike classical optimization procedures the genetic feature selector does not op-

timize a single solution, but, instead, it modifies a population of solutions at the

same time. This guarantees at least a suboptimal optimization.

For the problem of feature selection, a chromosome has length d, the total number

of features. A ’1’ stands for a selected feature, whereas a ’0’ stands for a rejected

feature. There are two ways to optimize such a binary string. One way is to minimize

the classification error rate. This however will not necessarily minimize the number

of selected features. Better is to optimize both the classification performance and

the number of selected features simultaneously.

We will categorize the genetic feature selection methods in the following based

on how the fitness function is chosen. Optimization problems by evolutionary algo-

rithms can be broadly divided into single-objective optimization and multi-objective

optimization. In real world, the direct use of single-objective optimization, where

the objective funtion and fitness function are identical, is very rare. Rather optimiz-

ing several objectives simultaneously is very common. Based on the way the fitness

assignment and selection are performed, the existing feature selection methods by

genetic algorithms can be classified into the following two categories [289]: Aggrega-

tion Selection with Parameter Variation (Section 6.3.1) and Pareto-based Selection

(Section 6.3.2).

6.3.1 Aggregation Selection with Parameter Variation

In this category, different objectives are combined, or aggregated into one scalar

fitness function. The weighted sum approach is very popular in this category, which

adds different objective functions using different weighting coefficients into one com-

posite fitness function [86]. In practice, defining a suitable trade-off between different

6.3. Categorization Scheme of Genetic Feature Selectors 62

objectives needs the knowledge of the domain concerned, and is, as a consequence, in

general a non-trivial task. One of the advantages of this approach is that it is first of

all the simplest and most efficient, because no further interaction with the decision

maker is needed [86]. Besides, the optimization is done in multiple directions, in that

all members of the population are evaluated by a different objective function [289].

Siedlecki and Sklansky’s idea [246] is to define a threshold error rate t, and to find

the binary string with the lowest number of selected features that leads to an error

rate e , lower than t. A fitness function is defined as follows:

(6.1) f(ai) = J(aj)− (< J(ai) > −η∆J(ai))

where < . > and ∆ are the mean and standard deviation over the population, η

is a small positive constant which assures that minf(ai) > 0, i.e. even the least fit

chromosome is given a chance to reproduce. The score J(a) of a string a is given by:

(6.2) J(a) = l(a) + p(e(a))

with l(a) is the ’length’ (= number of ’1’s) of string a, and p(e) is a penalty

function6 for the obtained error rate e. If e is below the threshold error rate t, p(e)

is negative, and if e grows larger than t, p(e) grows rapidly:

(6.3) p(e) =
exp (e−t)

ξ
− 1

exp (1)− 1

with ξ a small scaling parameter (about 1%).

6Penalty function has been the approach to constrained optimization problems in the literature for decades.
The penalty methods for constrained genetic optimization were already addressed [247] [87]. Smith and Coit [252]
categorize the penalty functions into three groups, i.e. static penalty functions, dynamic penalty functions and
adaptive penalty functions. Runarsson and Yao [232] show that applying different penalty function methods in
evolutionary optimization is equivalent to using different selection schemes.

6.3. Categorization Scheme of Genetic Feature Selectors 63

Yang and Honavar’s [282] genetic feature selector combines a neural network clas-

sifier with a standard genetic algorithm. They defined a fitness function which com-

bines two different criteria — the classification accuracy by the neural network and

the cost on the classification:

(6.4) fitness(Ω) = accuracy(Ω)− cost(Ω)

accuracy(Ω) + 1
+ costmax

where Ω is the feature subset, fitness(Ω) is the fitness on Ω. accuracy(Ω) is the

classification accuracy by the neural network classifier on the subset Ω, which can be

estimated by calculating the percentage of patterns in a test set. cost(Ω) is the cost

of classification, which has a number of different measures, e.g. cost of measuring

the value of a specific feature needed for classification, the risk involved, etc. costmax

is the upper bound on the costs of candidate solutions.

Ishibuchi and Nakashima’s work [144] is very similar to that of Kuncheva and

Jain’s [179], both of them actually optimize three competing objectives simultane-

ously: minimize the training set, minimize the classification error rate, and minimize

the number of selected features.

6.3.2 Pareto-based Selection

While the method of aggregation selection with parameter variation is commonly

used, it has several disadvantages. First of all, the difficulty with artificially designed

composite fitness funtions is that, one should at least be aware of the behavior of

every objective function beforehand. Secondly, The trade-off between model accuracy

and complexity is difficult to explore. Thirdly, the use of penalities and weights has

proven to be problematic. That is, the final GA solution is usually very sensitive to

small changes in the penalty function coefficients and weighting factors [229]. For

6.3. Categorization Scheme of Genetic Feature Selectors 64

this, the Pareto-based selection approach was proposed.

A solution is said to be dominant if its performance is superior over another with

respect to all criteria. A solution is said to be Pareto optimal [112] if it cannot be

dominated by any other solution. Under this category, we are only aware of the

work by Emmanouilidis et al. [107], a multi-objective genetic feature selector, which

uses multiobjective genetic algorithms aiming at producing Pareto optimal feature

subsets. Their main idea is to use a variant of the Niched Pareto Genetic Algorithm

(NPGA) [138] to do feature selection.

In essence, genetic feature selection falls into the scope of multi-objective opti-

mization as it must optimize several objectives (e.g. minize the error rate and minize

the number of selected features) simultaneously. Multi-objective optimization is an

active yet rich research area. Different methods for multi-objective optimization by

evolutionary algorithms are studied and compared [290] [257] [219]. For a literature

study, we refer the reader to the following remarkable surveys [256] [113] [112] [85]

[86] [272] [273]. For an excellent self-contained introduction on the topic of multi-

objective optimization, we recommend the dissertation by Van Veldhuizen [271]. For

more comprehensive references on multi-objective optimization using evolutionary

algorithm, see the unique online EMOO (Evolutionary Multi-Objective Optimiza-

tion) repository of information in [26], which could also serve as a gateway for those

who are interested in this area.

CHAPTER VII

Experiments and Discussion

7.1 Introduction

The dataset used for the empirical study is an AVIRIS (Airborne Visible/Infrared

Imaging Spectrometer) dataset which was shown in Figure 1.1 in Section 1.1 of

Chapter I.

In this chapter, experiments are carried out with nearest neighbor classifier en-

sembles and genetic feature selection respectively. Due to our lack of accessing hy-

perspectral data, we conduct all the experiments on the freely available dataset as

described above, but validate some of the experiments in the following two ways: We

conduct the experiments on (i) the first N bands of the data; and (ii) the last N

bands of the data; where N can take values of 20, 40, 60, ..., 220. Of course, another

alternative to validate the data could be randomly shuffling the spectral bands and

then take the first N bands, and then randomly shuffling the spectral bands again

and take the first N bands again, and so on, but this leads to the question of how

to design an optimal experiment given a very limited hyperspectral dataset, which

is beyond the scope of this dissertation, though it might be interesting.

65

7.2. Experiments of Nearest Neighbor Classifier Ensembles 66

Class Name Corn-min Grass/pasture Grass/trees Soy-clean Wheat
No. of Samples 144 198 184 140 126

Table 7.1: Description of the 5 classes in the AVIRIS data set.

7.2 Experiments of Nearest Neighbor Classifier Ensembles

All experiments were carried out on a five-class problem as described in Table 7.1,

and were implemented in Java1 with the use of the machine learning package — Weka

[19] from the University of Waikato, and the open source library — Colt [12] from

CERN. The random number generator used here is the implementation of Mersenne

Twister algorithm after Matsumoto and Nishimura [197], one of the strongest uniform

pseudo-random number generators known so far, and at the same time it is quick.

For more reference on pseudo-random number generators, the reader is referred to

[28].

We conducted three experiments, all experiments were done using a training set

and a test set. We used Aha and Bankert’s [43] setting scheme on training set

and test set, that is, each time randomly splitting the original data set into 70%

training set and 30% testing set. The calculation of bias (Equation 4.6) and variance

(Equation 4.7) in all the three experiments is base on Section 4.4. The experiment

was run ten times, the average result was then obtained.

7.2.1 Experiment One

In the first experiment, the methods which utilize the dynamic nature of the Con-

densed Nearest Neighbor (CNN) learning algorithm are compared. In particular, we

study the performance of the proposed CNN-ECOC method. The methods are CNN,

voting CNN (both simple and weighted), Union CNN, CNN-ECOC and NN. NN is

1For the Integrated Development Environment (IDE) for Java, I used the free package — the Community Edition
of then Forte For Java, now called Sun ONE Studio from Sun MicroSystems [35]. Another better alternative is to
use the free package of Eclipse [20].

7.2. Experiments of Nearest Neighbor Classifier Ensembles 67

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0 5 10 15 20 25 30 35 40 45 50

Figure 7.1: Error rate as a function of the number of voters for 220-spectral-band data.

used as the base for comparison. See Section 4.3.2 for details about Voting CNN,

Union CNN, and Section 4.3.5 for the CNN-ECOC method. As already pointed out

in Chapter IV, the CNN is very well suited for classification tasks that demand a

reasonably small memory footprint, but meanwhile tolerate some acceptable perfor-

mance deterioration.

The error rate, bias and variance are plotted respectively in function of spectral

bands, starting from 20 bands to the full 220 bands: i.e. the first/last 20 bands, the

first/last 40 bands, ..., the full 220 bands. Figures 7.3 — 7.8 show respectively the

comparison of error rate, bias and variance between nearest neighbor classifier (NN),

condensed nearest neighbor (CNN), simple voting of CNN, weighted voting of CNN,

union voting, and CNN-ECOC. The voting method, which performs better with the

increase of the number of voters (see Figure 7.1), doesn’t show higher performance

gains when the number of voters is too small. The number of stored patterns of this

method increases with the number of voters, and it is almost a linear relation as

shown in Figure 7.2. In our experiment, we set the number of voters to 7.

From the plots 7.3 — 7.8, one can obtain the following conclusions:

7.2. Experiments of Nearest Neighbor Classifier Ensembles 68

50

60

70

80

90

100

110

120

0 5 10 15 20 25 30 35 40 45 50

Figure 7.2:
The number of stored patterns as a function of the number of voters for 220-spectral-
band data.

• While weighted voting CNN is regarded to perform better than simple voting

CNN, one can observe that the method of weighted voting CNN doesn’t show

advantages over the method of simple voting CNN: their performances coincide

completely on our dataset. This maybe due largely to the setup of the weighting

coefficients: only the first two nearest neighbors are taken into account.

• Although some author [47] reported that the performance of the union CNN,

which also has less computational cost, is promising on some datasets, this

conclusion did not appear on our dataset. One can also see that the performance

of union CNN at some points is becoming worse than CNN alone, while the

voting CNN outperforms CNN alone over all spectral bands. Since the subset

of union CNN is obtained by applying NN to the union of subsets chosen by

multiple CNN’s, the resulting union CNN has a considerable number of training

samples. Our results highlight that it is the voting process, not the number of

training samples, that contributes to the performance gains.

• We can also see that the proposed method of CNN-ECOC achieves a system-

7.2. Experiments of Nearest Neighbor Classifier Ensembles 69

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200

E
rr

o
r

R
a

te

Spectral Bands

NN
CNN

Union CNN
Simple Voting CNN

Weighted Voting CNN
ECOC-CNN

Figure 7.3:
Comparison of error rate between NN, CNN, Union CNN, Simple Voting CNN,
Weighted Voting CNN, CNN-ECOC codes. Results are shown respectively for the
first 20 bands, the first 40 bands, ..., the full 220 bands.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 100 150 200

E
rr

o
r

R
a

te

Spectral Bands

NN
CNN

Union CNN
Simple Voting CNN

Weighted Voting CNN
ECOC-CNN

Figure 7.4:
Comparison of error rate between NN, CNN, Union CNN, Simple Voting CNN,
Weighted Voting CNN, CNN-ECOC codes. Results are shown respectively for the
last 20 bands, the last 40 bands, ..., the full 220 bands.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 70

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

50 100 150 200

B
ia

s

Spectral Bands

NN
CNN

Union CNN
Simple Voting CNN

Weighted Voting CNN
ECOC-CNN

Figure 7.5:
Comparison of bias between NN, CNN, Union CNN, Simple Voting CNN, Weighted
Voting CNN, CNN-ECOC codes. Results are shown respectively for the first 20 bands,
the first 40 bands, ..., the full 220 bands.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

50 100 150 200

B
ia

s

Spectral Bands

NN
CNN

Union CNN
Simple Voting CNN

Weighted Voting CNN
ECOC-CNN

Figure 7.6:
Comparison of bias between NN, CNN, Union CNN, Simple Voting CNN, Weighted
Voting CNN, CNN-ECOC codes. Results are shown respectively for the last 20 bands,
the last 40 bands, ..., the full 220 bands.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 71

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

50 100 150 200

V
a

ri
a

n
ce

Spectral Bands

NN
CNN

Union CNN
Simple Voting CNN

Weighted Voting CNN
ECOC-CNN

Figure 7.7:
Comparison of variance between NN, CNN, Union CNN, Simple Voting CNN, Weighted
Voting CNN, CNN-ECOC codes. Results are shown respectively for the first 20 bands,
the first 40 bands, ..., the full 220 bands.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

50 100 150 200

V
a

ri
a

n
ce

Spectral Bands

NN
CNN

Union CNN
Simple Voting CNN

Weighted Voting CNN
ECOC-CNN

Figure 7.8:
Comparison of variance between NN, CNN, Union CNN, Simple Voting CNN, Weighted
Voting CNN, CNN-ECOC codes. Results are shown respectively for the last 20 bands,
the last 40 bands, ..., the full 220 bands.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 72

atic classification performance improvement over CNN, and this improvement

is comparable with that of NN (Figure 7.3) or even better than NN (Figure 7.4)

while keeping a lower memory demand for the training set than NN. ECOC

decreases both bias and variance (of the classifier it combines with) [171], this

claim can be verified from Figure 7.5, Figure 7.6, Figure 7.7 and Figure 7.8. In

particular, the CNN-ECOC has a smaller variance than CNN. This shows that

while the classification performance of CNN depends largerly on the specific

dataset involved (i.e. in part due to the nature of the local search that the CNN

uses), the tendency that, the classification performance of CNN-ECOC varies

from dataset to dataset, is mitigated by the use of ECOC technique. That is,

by decomposing the multi-class problem into mutiple two-class problems, the

ECOC technique is able to diminish the errors occurred in a series of distributed

bits of the ECOC codes. This results in a better generalization of the proposed

CNN-ECOC method.

7.2.2 Experiment Two

The purpose of the second experiment is to show the advantage of using selected

sub-spaces from the whole feature space in conjunction with ECOC to improve clas-

sification performance. There are two ways to choose a sub-space from the origi-

nal feature space: (1) the feature sub-space is selected by using a feature selection

method: kNN-ECOC-FS (Section 4.3.4); (2) the feature sub-space is randomly taken:

kNN-ECOC-RS (Section 4.3.4) and Multiple Feature Subsets (MFS, including both

MFS-WITH-REPLACEMENT and MFS-NO-REPLACEMENT, Section 4.3.1). The

nearest neighbor classifier (NN) is again used here as the base for comparison. The

comparison of error rate, bias and variance is shown in Figures 7.9 — 7.14 as a func-

tion of the number of spectral bands. In the following, two main observations from

7.2. Experiments of Nearest Neighbor Classifier Ensembles 73

the figures are explained.

• The effectiveness of Multiple Feature Subsets (MFS) is shown on these exper-

imental results. There are two parameters to be set for the MFS algorithm:

i.e. the size of the feature subset and the number of classifiers to combine. In

our experiment, we used Bay’s [55] setting value on the subset size: the subset

size was set on the basis of cross-validation accuracy estimates, and then ten

evenly spaced intervals over the size of the original feature set were evaluated.

While Bay sets the number of classifiers to 100 we choose this parameter to 10

in order to save computation time. From the plot, one can observe that there

is not much difference between the MFS with replacement and MFS without

replacement in terms of error rate, bias and variance on our dataset.

• For the method we presented: the kNN-ECOC-RS (RS means Randomly Selected

features), there are many ways to fix the number of features to be selected for

every bit of ECOC code. In our experiments, we choose this parameter as half of

all features. The performance of kNN-ECOC-FS (FS means F eature Selection)

method by Aha and Bankert [43] depends largely on the feature selection method

embedded. In this experiment we choose a wrapper feature selection method

(Section 5.4.2). It is a simple Sequential Forward Selection method (SFS) [96],

and we use the NN classifier as the induction algorithm with the SFS. The SFS

algorithm selects successive features with respect to the current set of features.

In Figure 7.9 the error rate of kNN-ECOC-FS becomes larger than kNN-ECOC-

RS. In the mean time, the kNN-ECOC-FS has both a high bias (especially in

Figure 7.11) and a high variance (especially in Figure 7.13). High bias indi-

cates that kNN-ECOC-FS (mainly due to the adoption of SFS as the feature

7.2. Experiments of Nearest Neighbor Classifier Ensembles 74

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

50 100 150 200

E
rr

o
r

R
a

te

Spectral Bands

NN
MFS-NO-REPLACEMENT

MFS-WITH-REPLACEMENT
KNN-ECOC-FS
KNN-ECOC-RS

Figure 7.9:
Comparison of error rate between NN, MFS-NO-REPLACEMENT, MFS-WITH-
REPLACEMENT, kNN-ECOC-FS, kNN-ECOC-RS. Results are shown respectively for
the first 20 bands, the first 40 bands, ..., the full 220 bands. k=1.

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200

E
rr

o
r

R
a

te

Spectral Bands

NN
MFS-NO-REPLACEMENT

MFS-WITH-REPLACEMENT
KNN-ECOC-FS
KNN-ECOC-RS

Figure 7.10:
Comparison of error rate between NN, MFS-NO-REPLACEMENT, MFS-WITH-
REPLACEMENT, kNN-ECOC-FS, kNN-ECOC-RS. Results are shown respectively
for the last 20 bands, the last 40 bands, ..., the full 220 bands. k=1.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 75

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

50 100 150 200

B
ia

s

Spectral Bands

NN
MFS-NO-REPLACEMENT

MFS-WITH-REPLACEMENT
KNN-ECOC-FS
KNN-ECOC-RS

Figure 7.11:
Comparison of bias between NN, MFS-NO-REPLACEMENT, MFS-WITH-
REPLACEMENT, kNN-ECOC-FS, kNN-ECOC-RS. Results are shown respectively
for the first 20 bands, the first 40 bands, ..., the full 220 bands. k=1.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

50 100 150 200

B
ia

s

Spectral Bands

NN
MFS-NO-REPLACEMENT

MFS-WITH-REPLACEMENT
KNN-ECOC-FS
KNN-ECOC-RS

Figure 7.12:
Comparison of bias between NN, MFS-NO-REPLACEMENT, MFS-WITH-
REPLACEMENT, kNN-ECOC-FS, kNN-ECOC-RS. Results are shown respectively
for the last 20 bands, the last 40 bands, ..., the full 220 bands. k=1.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 76

0.04

0.05

0.06

0.07

0.08

0.09

0.1

50 100 150 200

V
a

ri
a

n
ce

Spectral Bands

NN
MFS-NO-REPLACEMENT

MFS-WITH-REPLACEMENT
KNN-ECOC-FS
KNN-ECOC-RS

Figure 7.13:
Comparison of variance between NN, MFS-NO-REPLACEMENT, MFS-WITH-
REPLACEMENT, kNN-ECOC-FS, kNN-ECOC-RS. Results are shown respectively
for the first 20 bands, the first 40 bands, ..., 220 bands. k=1.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

50 100 150 200

V
a

ri
a

n
ce

Spectral Bands

NN
MFS-NO-REPLACEMENT

MFS-WITH-REPLACEMENT
KNN-ECOC-FS
KNN-ECOC-RS

Figure 7.14:
Comparison of variance between NN, MFS-NO-REPLACEMENT, MFS-WITH-
REPLACEMENT, kNN-ECOC-FS, kNN-ECOC-RS. Results are shown respectively
for the last 20 bands, the last 40 bands, ..., 220 bands. k=1.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 77

selection method to be combined with) has a high systematic error, while high

variance suggests it has a poor generalization. This is because once a feature is

included by SFS in the feature set, it has no mechanism for delecting it from

the feature set, even at a later stage when more features have added and this

feature becomes superfluous. In other words, the feature sets are nested. For

example, two best features chosen by SFS are not necessarily the best two.

One remedy for the SFS is to adopt a mechanism that can delete the feature

when later finding it to be irrelevant or redundant. For example, by adopting

the corresponding floating version of the Sequential Forward Search — SFFS

[217], the kNN-ECOC-FS method will certainly perform very well, but a corre-

sponding computational cost is also expected (the computational cost of SFFS

is pretty high, for this, see Section 7.4.2). The poor generalization of kNN-

ECOC-FS (with SFS) causes its performance to be uncertain, i.e. the actual

performance of kNN-ECOC-FS (with SFS) depends on the individual dataset

concerned. This can be seen from Figure 7.9 — it can even be challenged by

simply adopting random sampling from the original feature space. Of course,

the most important contribution to this phenomenon is due to the power of

ECOC technique. While by a simple random sampling of the orignal feature

space, one can only by chance get the classification performance improved. By

using ECOC in conjunction with a random sampling, errors occurring by chance

in a series of distributed bits of the ECOC codes (for details about ECOC, see

Section 4.2) are smoothly alleviated, and consequently, the entire performance

is improved.

The computational cost also increases with the the number of nearest neighbors,

for this we chose k=1 in this experiment for the sake of computational efficiency.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 78

7.2.3 Experiment Three

Other methods, mainly Skalak’s composite NN architecture (Section 4.3.3), are

evaluated in the third experiment. The experiment compares 1) the k nearest

neighbor classifier (kNN), 2) the fuzzy k nearest neighbor classifier (fuzzy kNN),

3) Skalak’s composite NN architecture, 4) Skalak’s composite NN architecture with

ECOC, 5) a decision tree C4.5, and 6) Naive-Bayes (NB) [76]. The error rate, bias

and variance are plotted in Figures 7.15 — 7.20 in function of the number of spectral

bands, starting from 20 bands to the full 220 spectral bands: i.e. the first/last 20

bands, the first/last 40 bands, the first/last 60 bands, ..., the full 220 bands.

The k nearest neighbor classifier is used here as the base for comparison, and

the parameter k was chosen to 5 using cross-validation. The justification for also

comparing with C4.5 is based on the fact that the level-1 combination algorithm in

Figure 4.5 of Chapter IV is ID3, and the C4.5 is a further extension of ID3.

Major conclusions concerning this experiment are summarized as follows:

• The Naive-Bayes classifier performs poorly on our dataset. The rationale for

choosing to include Naive-Bayes as well is that some researchers [168] noted

that the accuracy of the very simple NB classifier is superior over that of C4.5

in some real world datasets. We would like to take advantage of this experiment

to verify if this observation also holds for our dataset. Unfortunately one can

conclude from the plots that their observation didn’t show in our dataset.

• One can see that the classification performance of fuzzy kNN very slightly out-

performs its counter-part — the crisp kNN, in the very low spectral bands, but

their classification performances coincide when the dimensionality increases.

Both bias and variance of fuzzy kNN are a little smaller than those of the crisp

7.2. Experiments of Nearest Neighbor Classifier Ensembles 79

kNN.

• From the figures, it is also concluded that Skalak’s composite NN architecture

gives the best prediction rate. In particular, its low bias indicates that this

architecture has a small systematic error and its low variance suggests it has

a better generalization, henceforth, the tendency that its classification perfor-

mance depends largely on the individual dataset concerned is averted. While

we have hypothesized that further using ECOC technique probably improves

the classification performance of Skalak’s composite NN architecture (See last

paragraph of Section 4.3.3), this does not show in the plots. In fact, Skalak’s

composite NN architecture with and without ECOC completely coincide. This

confirms Dietterich’s [39] arguments that if the representation for the feature

input to the decision tree(C4.5/ID3) is ambiguous, then (C4.5/ID3) will have

difficulty in finding a good decision tree, and ECOC will not be able to overcome

this problem.

The purpose of Skalak’s composite architecture is to improve the performance

of the base classifier, in this example, a kNN rule was used in this architecture

as the base classifier. Therefore one may hypothesize that if we instead use the

fuzzy version of the kNN rule as the base classifier, then its performance could

be improved, indeed this hypothesis has already been confirmed [284]. One may

further question that if and how this architecture would improve an ensembled

learning (instead of a non-ensembled single learning like kNN). This could be

an interesting open topic.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 80

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

50 100 150 200

E
rr

o
r

R
a

te

Spectral Bands

NB
C4.5

KNN
FUZZY KNN

SKALAK-KNN
SKALAK-KNN-ECOC

Figure 7.15:
Comparison of error rate between Naive Bayes (NB), a decision tree C4.5, kNN, Fuzzy
kNN, Skalak’s kNN, Skalak’s kNN with ECOC codes. Results are shown respectively
for the first 20 bands, the first 40 bands, ..., the full 220 bands. k=5.

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200

E
rr

o
r

R
a

te

Spectral Bands

NB
C4.5

KNN
FUZZY KNN

SKALAK-KNN
SKALAK-KNN-ECOC

Figure 7.16:
Comparison of error rate between Naive Bayes (NB), a decision tree C4.5, kNN, Fuzzy
kNN, Skalak’s kNN, Skalak’s kNN with ECOC codes. Results are shown respectively
for the last 20 bands, the last 40 bands, ..., the full 220 bands. k=5.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 81

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

50 100 150 200

B
ia

s

Spectral Bands

NB
C4.5

KNN
FUZZY KNN

SKALAK-KNN
SKALAK-KNN-ECOC

Figure 7.17:
Comparison of bias between Naive Bayes (NB), a decision tree C4.5, kNN, Fuzzy kNN,
Skalak’s kNN, Skalak’s kNN with ECOC codes. Results are shown respectively for the
first 20 bands, the first 40 bands, ..., the full 220 bands. k=5.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

50 100 150 200

B
ia

s

Spectral Bands

NB
C4.5

KNN
FUZZY KNN

SKALAK-KNN
SKALAK-KNN-ECOC

Figure 7.18:
Comparison of bias between Naive Bayes (NB), a decision tree C4.5, kNN, Fuzzy kNN,
Skalak’s kNN, Skalak’s kNN with ECOC codes. Results are shown respectively for the
last 20 bands, the last 40 bands, ..., the full 220 bands. k=5.

7.2. Experiments of Nearest Neighbor Classifier Ensembles 82

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

50 100 150 200

V
a

ri
a

n
ce

Spectral Bands

NB
C4.5

KNN
FUZZY KNN

SKALAK-KNN
SKALAK-KNN-ECOC

Figure 7.19:
Comparison of variance between Naive Bayes (NB), a decision tree C4.5, kNN, Fuzzy
kNN, Skalak’s kNN, Skalak’s kNN with ECOC codes. Results are shown respectively
for the first 20 bands, the first 40 bands, ..., the full 220 bands. k=5.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

50 100 150 200

B
ia

s

Spectral Bands

NB
C4.5

KNN
FUZZY KNN

SKALAK-KNN
SKALAK-KNN-ECOC

Figure 7.20:
Comparison of variance between Naive Bayes (NB), a decision tree C4.5, kNN, Fuzzy
kNN, Skalak’s kNN, Skalak’s kNN with ECOC codes. Results are shown respectively
for the last 20 bands, the last 40 bands, ..., the full 220 bands. k=5.

7.3. Summary and Remarks on Nearest Neighbor Classifier Ensembles 83

7.3 Summary and Remarks on Nearest Neighbor Classifier Ensembles

In the above section together with Chapter IV, the ensemble methods for nearest

neighbor classifiers are reviewed and studied on hyperspectral remote sensing data.

Rather than presenting a more complicated classifier or classification architecture, a

general study was given.

For an example of complicated classifiers, the fuzzy idea plus the condensed idea

may give rise to a so-called ”condensed fuzzy nearest neighbor classifier”. For a more

complicated classification architecture: in the first layer of Fig 4.5, the condensed

fuzzy nearest neighbor classifier could be applied to either the base classifier or the

complementary classifier, thus producing different kinds of combinations.

As for the voting on CNN, rather than by voting on the condensed nearest neigh-

bor classifiers only, the Multiple Feature Subsets (MFS) [55] idea can be further

applied to all the condensed component nearest neighbor classifiers. This could be

a dynamic voting over multiple condensed nearest neighbors: both the feature sub-

set number and the feature subset itself become dynamic. An advanced sampling

technique, e.g. the weighted random sampling [209] [195], could be instead applied

to the MFS method to improve the performance. Besides the simple voting and

the weighted voting as used in several ensemble methods, the weighted majority

described in Section 2.3.1 of Chapter II could also be applied. In order to further

decrease the number of design patterns, the Edit algorithm [96] [129] could be used

before condensing the design patterns , but probably at the expense of performance

deterioration.

All of these pointed modifications can be a series of further research. For most of

the nearest neighbor ensembles, there exist various kinds of combinations between

7.4. Experiments of Genetic Feature Selector 84

their individual component classifiers, of which combination is the best one is not

studied in this dissertation. For such a study, the Orthogonal Experimental Design

(OED) method [205] [134] based on orthogonal arrays (OAs) and factor analysis was

suggested to find how several simultaneously changing factors affect the classification

performance of the entire classification architecture.

7.4 Experiments of Genetic Feature Selector

Due to the problem of long running times using Java code, the implementation of

feature selection for the hyperspectral data was turned to C++2 with the use of the

Genetic Algorithms library — GAlib [9] from MIT. The random shuffle implementa-

tion was borrowed from the repository of free, peer-reviewed C++ libraries — Boost

[17]. The genetic feature selection tested in the following two experiments belongs

to the type of Aggregation Selection with Parameter Variation (Section 6.3.1), the

scheme of which is based on the seminal work by Siedlecki and Sklansky [246].

7.4.1 Experiment One

In the first experiment, the genetic feature selection technique is evaluated. For

this, the minimal number of obtained features is plotted in function of the number of

generations. The parameters t and ξ (see Section 6.3.1 for detail) are set so that the

classification error is about 10 %. In figure 7.21, experimental results are displayed

for a 3-class problem (classes 2, 3 and 8), with around 100 data points for each

class. Several experiments starting with different numbers of bands are conducted.

On the plot, the numbers of bands are 50, 100, 150 and 220 respectively, i.e. the

first 50 bands, 100 bands, 150 bands of the dataset and the full 220-band data. The

population size was 100. The crossover rate usually assumes high values, close or
2For the Integrated Development Environment (IDE) for C++, I used the freepackage — the Open Edition of

Kylix from Borland [18]. Kylix is a versatile C++ development tool with the powerful Borland Component Library
for Cross-platform (CLX).

7.4. Experiments of Genetic Feature Selector 85

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

220
150
100
50

Figure 7.21:
Number of obtained features versus number of generations for the genetic feature
selection on 50, 100, 150 and 220 bands respectively.

equal to one, while the mutation rate is typically small [246]. The crossover rate is

high to allow to produce an offspring that is more optimal than its parents. A 100 %

crossover rate however would disrupt any good solution. In our experiment, crossover

and mutation rates were set to 90 % and 1 % respectively. For classification, the

fuzzy 5NN algorithm was applied. From the plot, one can observe that the number

of obtained features decreases with the number of generations. The classification

errors were about constant over all the curves (about 10%). In the beginning the

reduction is very fast, but after about 50 generations convergence becomes slow.

7.4.2 Experiment Two

There are somewhat controversial reports on the performance comparison between

the genetic selection method and the floating search method in the literature. The

work of Ferri et al. [109] points out that GA and Sequential Floating Forward

Search (SFFS) are comparable for moderate size, but that the performance of GA’s

7.4. Experiments of Genetic Feature Selector 86

deteriorates as the dimensionality increases. Jain and Zongker [147] report that

the GA approach seems to have a tendency towards premature convergence. In

contrast to these reports, the recent work by Kudo and Sklansky [178] suggests that

SFFS is suitable for problems with small or medium dimensionality. For very high

dimensionality, they tend to favor the use of the GA approach.

The purpose of our experiment is two-fold: (i) To undertake the first study that

uses an ensembled learning scheme as the induction algorithm during the selec-

tion process with genetic algorithms and demonstrate its superiority over its non-

ensembled learning counterpart for genetic feature selection. (ii) To have a pragmatic

view of both genetic search and sequential floating forward search on hyperspectral

remote sensing data.

Due to the costly time complexity of the backward version of sequential floating

search (for this, see e.g. footnote 4 in Chapter V), we choose instead the forward

version of sequential floating search to compare with.

When using genetic algorithms, the first difficult task is how to set up the param-

eters for GAs. Unfortunately, there is no unified guidance for this. For the sake of

simplicity in this experiment, based on our experience, we set the population size as

100, the generation size 50, the crossover probability 0.9, the mutation probability

0.01. The comparison scheme is done as follows. First we run the genetic search

and get the number of selected features. We then set the sequential floating forward

search to get the same number of selected features as from the genetic search. The

comparison was done on error rate and the number of evaluations used respectively.

In order to demonstrate the superiority of the ensembled learning algorithm, we

hybridized the feature selection algorithms (both genetic search and sequential float-

ing forward search) with an ensembled learning — the CNN-ECOC and its corre-

7.4. Experiments of Genetic Feature Selector 87

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200

S
e

le
ct

e
d

 B
a

n
d

s

Spectral Bands

GA+CNN
GA+CNN-ECOC

Figure 7.22:
Number of obtained spectral bands by running GA with CNN and GA with CNN-
ECOC respectively. Results are shown respectively for the first 20 bands, the first 40
bands, ..., the full 220 bands.

sponding non-ensembled counterpart — the CNN algorithm respectively.

Figure 7.22 shows the numbers of selected features by a run of GA with CNN

and GA with CNN-ECOC respectively. One observation from this figure is that,

the number of obtained features by GA with CNN-ECOC is, generally speaking,

smaller than that by GA with CNN. This suggests one potential advantage of using

an ensembled learning: the smaller the number of selected features is, the more

simplified model it may result in.

The classification performance by the different search methods are plotted re-

spectively as a function of the numbers of spectral bands in Figure 7.23. One can

observe a systematic classification performance improvement (up to around 5%) by

the use of CNN-ECOC over CNN in conjunction with genetic algorithms. For low

spectral bands, the difference of their classification performance is small, but when

7.4. Experiments of Genetic Feature Selector 88

the dimensionality exceeds 140, the difference tends to grow. This demonstrates

the superiority of ensembled learning over non-ensembled learning for the use with

genetic algorithms. Therefore we suggest that when using a specific classifier with

genetic algorithms to do pre-processing, one should extend the choice of classifiers by

taking into account the use of the corresponding ensembled counterpart classification

algorithms.

At a first glance, one may see that the classification performance of (SFFS+CNN-

ECOC) slightly dominates that of (SFFS+CNN) over all spectral bands, but the

difference between them is not significant (the difference is less than 2%).

The difference of the classification performance between genetic search and SFFS

is up to 10 % between spectral bands of 80 — 140, but using CNN-ECOC with GAs

reduces this difference. For example, when the dimensionality tends to be higher

than 140, the difference becomes smaller (less than 5%). Another remedy to this

is to use an optimal parameter settings of GA, which was not addressed in this

dissertation.

In Figure 7.24, we didn’t compare directly the execution time used to complete

the search task by both genetic search and sequential floating search, but instead

we compared the number of intermediate subset evaluations, since execution time

usually varies from one implementation to another. For example, the GAlib [9] we

used is a highly optimized library, few people can write the implementation code of

the sequential floating search in that optimized manner. The use of GAlib with a

higher number of subset evaluations could still need less running time than a not-

highly-optimized (or even a poorly optimized) implementation of sequential floating

search with a smaller number of subset evaluations, so directly comparing the exe-

cution time alone is not fair. The number of intermediate subset evaluations reflects

7.5. Summary and Remarks on Genetic Feature Selector 89

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

50 100 150 200

C
la

ss
ifi

ca
tio

n
 P

e
rf

o
rm

a
n

ce

Spectral Bands

GA+CNN
GA+CNN-ECOC

SFFS+CNN
SFFS+CNN-ECOC

Figure 7.23:
Classification performance of GA with CNN, GA with CNN-ECOC, SFS with CNN
and SFS with CNN-ECOC. Results are shown respectively for the first 20 bands, the
first 40 bands, ..., the full 220 bands.

the time complexity: the larger the number of evaluations is, the higher the time

complexity of the search algorithm.

From Figure 7.24, one can see that the number of evaluations of the genetic

search grows very slowly with the dimensionality, but that of the sequential floating

search grows very quickly with the dimensionality. The time complexity of float-

ing search could be 3 to 5 times than that of genetic search in this case (with the

current parameter settings of GAs). When the dimensionality exceeds 180, the num-

ber of evaluations by (SFFS+CNN-ECOC) is becoming much larger than that by

(SFFS+CNN).

7.5 Summary and Remarks on Genetic Feature Selector

In the above section together with chapter VI, the use of the ensembled learning

with genetic algorithms to perform feature selection is initiated and applied to high

7.5. Summary and Remarks on Genetic Feature Selector 90

0

5000

10000

15000

20000

25000

30000

50 100 150 200

N
u

m
b

e
r

o
f
E

va
lu

a
tio

n
s

Spectral Bands

GA+CNN
GA+CNN-ECOC

SFFS+CNN
SFFS+CNN-ECOC

Figure 7.24:
Comparison of number of evaluations between GA with CNN, GA with CNN-ECOC,
SFS with CNN and SFS with CNN-ECOC. Results are shown respectively for the first
20 bands, the first 40 bands, ..., the full 220 bands.

dimensional remote sensing data. We demonstrated that its use not only reduces the

number of selected features, but also improves the classification performance. By

comparing genetic feature selection and sequential floating forward selection, we can

conclude that the sequential floating forward feature selection is suited for small and

medium sized databases, but for larger databases, one should definitely take into

account the use of GAs in terms of both classification performance and (especially)

running time.

Due to the inherent parallel nature of genetic algorithms, there are many parallel

genetic algorithms ready for us to use [74] while there is no parallel version of floating

search at this time. Although we didn’t do experiments on parallel GAs, we believe

they can further improve the computation efficiency, especially when dimensionality

increases. In terms of time complexity, the floating search method is then no longer

7.5. Summary and Remarks on Genetic Feature Selector 91

a rival to genetic search. But for low dimensionality, the merit of floating search

is straightforward: it only needs a small number of subset evaluations to finish the

search. From this point of view, our experimental results support the claim in the

work by Kudo and Sklansky [178]: the GA approach is well suited for time-critical

tasks.

In order to rival the parallel GA approach to some extent, the floating forward

search method needs at least to have a parallel version, especially in the case of

high dimensional data. Another practical advantage of genetic search over floating

forward search is that it is very robust in the sense that its parameters are easily

tunable, in order to meet one’s computational needs.

CHAPTER VIII

Conclusion and Further Work

8.1 Conclusion

In this dissertation, two important aspects of pattern recognition are studied on

hyperspectral remote sensing data: classifier ensemble problems, in particular nearest

neighbor classifier ensembles, and feature selection problems, in particular genetic

feature selectors.

The fact that the research on feature selection dates back to the 70’s, not only

demonstrates that this topic is a traditional and fundamental problem, but also sug-

gests it still remains, despite more than three decades’ research efforts by numerous

researchers, a very challenging task. Therefore the idea of feature selection is very

old, but its application to hyperspectral remote sensing data — ”band selection”,

is rather new, mainly due to the recent advances in sensor technology. The adop-

tion of feature selection to hyperspectral data was in the hope that it alleviates the

so-called Hughes phenomenon [139], that is, the classification performance of hyper-

spectral data improves up to a limited point as additional features are added, and

then deteriorates.

As already pointed out in Chapter II, the idea that aggregating the opinions of

a committee of experts to improve accuracy is not new, rather it has many real

92

8.1. Conclusion 93

world applications which might reflect direct connections to our daily life. But the

idea of applying aggregation to classification algorithms is rather new. While most

of the current research on classifier ensembles focuses on the general principles and

methodologies, in this dissertation the specific nearest neighbor classifier ensembles

were focused on.

In summary, the roadmap of the research conducted in this dissertation is the

following:

First we studied the classifier ensembles in general. We then presented a method

called CNN-ECOC, as our first main contribution, which takes advantage of the dy-

namic nature of the Condensed Nearest Neighbors (CNN) algorithm in conjunction

with the technique of Error Correcting Output Codes (ECOC). The ECOC tech-

nique is a distributed scheme which decomposes a multi-class classification problem

into a series of distributed two-class problems. By adopting the ECOC with CNN,

we demonstrated that this method further improves the classification performance

and at the same time decreases the storage requirements. Another variant called

kNN-ECOC-RS, which takes advantage of the dynamic nature of randomly selected

features in conjunction with the ECOC was suggested as a by-product.

As our second main contribution, we initiated and advocated the idea of using en-

sembled learning in conjunction with genetic algorithms to perform feature selection.

As an example of this, we demonstrated the superiority of the proposed ensembled

learning (CNN-ECOC) with genetic algorithms over its non-ensembled counterpart

(CNN).

8.2. Further work 94

8.2 Further work

1. Part of this thesis work deals with the feature selection problem for hyperspec-

tral remote sensing data, but the idea of band selection was under criticism from

leading scientist in the remote sensing community, arguing that ”to pick up a

subset of bands and completely ignore the rest may ignore useful diagnostic”.

Therefore further research is needed to investigate e.g. if feature extraction

would be more useful than feature selection for hyperspectral data.

2. Another evolutionary feature selector, a multi-layer neural network feature se-

lector, which uses the scheme of EDA (Estimation of Distribution Algorithm)

[206] as the search engine in conjuntion with a multi-layer neural network [57]

(used as the models for representing the probability distribution of a set of

candidate solutions), is suggested as another topic of research.

3. The use of a population (even without using crossover) can by itself be advanta-

geous for function optimization, as has been investigated theoretically [152]. A

theoretical study on the use of a population alone which uses neither crossover

nor mutation, may be considered as an interesting subject.

NEDERLANDSE SAMENVATTING

This is dutch summary. It is being translated and will appear on the final print-out

version.

95

LIST OF PUBLICATIONS

• Shixin Yu, Steve De Backer, Paul Scheunders Genetic Feature Selection Com-

bined with Fuzzy kNN for Hyperspectral Satellite Imagery. Proc. of IEEE In-

ternational Geoscience and Remote Sensing Symposium (IGARSS 2000), 24-28,

July, 2000, Honolulu, Hawaii, U.S.A. Vol. 2, pp. 702 -704.

• Shixin Yu, Steve De Backer, Paul Scheunders. Genetic Feature Selection Com-

bined with Composite Fuzzy Nearest Neighbor Classifiers for High-dimensional

Remote Sensing Data. Proc. of IEEE Internternal Conference on Systems, Man

and Cybernetics, 8-11, October 2000, Nashville, TN, USA, pp. 1912-1916.

• Shixin Yu, Paul Scheunders. A Fuzzy Markov Chain Approach to Feature

Selection for High-Dimensional Remote Sensing Data, Proc. of IEEE Interna-

tional Geoscience and Remote Sensing Symposium, 9-13, July, 2001, Sydney,

Australia. Vol. 7, pp. 3306-3308.

• Shixin Yu, Paul Scheunders. Feature Selection for High-Dimensional Remote

Sensing Data by Maximum Entropy based Optimization, Proc. of IEEE Inter-

national Geoscience and Remote Sensing Symposium, 9-13, July, 2001, Sydney,

Australia. Vol. 7, pp. 3303-3305.

• Shixin Yu, Steven De Backer, Paul Scheunders. Genetic Feature Selection

Combined wth Composite Fuzzy Nearest Neighbor Classifiers for Hyperspectral

96

8.2. Further work 97

Satellite Imagery. Pattern Recognition Letters, 23, 183-190, 2002.

• Shixin Yu, Paul Scheunders. On Combining Nearest Neighbor Classifiers: An

Empirical Study on Hyperspectral Remote Sensing Data. submitted to Pattern

Recognition Letters, 2002.

BIBLIOGRAPHY

98

BIBLIOGRAPHY 99

BIBLIOGRAPHY

[1] ftp://ftp.cs.orst.edu/put/tgd/programs/ecoc-codes.tar.gz. 41

[2] ftp://ftp.uwasa.fi/cs/report94-1/. 58

[3] http://dynamo.ecn.purdue.edu/ ˜biehl/multispec/documentation.html. 2

[4] http://dynamo.ecn.purdue.edu/˜landgreb/publications.html. 5

[5] http://evonet.dcs.napier.ac.uk/. EvoNet - the European Network of Excellence in Evolution-
ary Computing. 57

[6] http://home.ptd.net/˜olcay/feature-selection.html. Online Bibliography on Feature Selec-
tion. 44

[7] http://iris.usc.edu/Vision-Notes/bibliography/contents.html. Annotated Computer Vision
Bibliography, check 14.1.4.2 Multiple Classifiers, Combining Classifiers, Combinations. 11

[8] http://iris.usc.edu/Vision-Notes/bibliography/contents.html. Annotated Computer Vision
Bibliography, check 14.1.3 Feature Selection in Pattern Recognition or Clustering. 44

[9] http://lancet.mit.edu/ga/. GAlib - the Genetic Algorithm library. 84, 88

[10] http://makalu.jpl.nasa.gov/aviris.html. Main Homepage of AVIRIS at JPL of NASA. 1

[11] http://surf.de.uu.net/encore/www/. The Hitch-Hiker’s Guide to Evolutionary Computation.
57

[12] http://tilde-hoschek.home.cern.ch/˜hoschek/colt/index.htm. COLT: A Java Package for
High Performance Computing. 66

[13] http://www-fp.mcs.anl.gov/otc/guide/optweb/index.html. 49

[14] http://www.aaai.org. AAAI - American Association for Artificial Intelligence. 5

[15] http://www.aic.nrl.navy.mil/galist/. The Genetic Algorithm Archive. 58

[16] http://www.boosting.org. Online Resources on Boosting Research. 19, 30

[17] http://www.boost.org. Boost - the repository of free, peer-reviewed C++ libraries. 84

[18] http://www.borland.com/kylix/. 84

[19] http://www.cs.waikato.ac.nz/˜ml/weka/. WEKA: A Java Machine Learning Package. 66

[20] http://www.eclipse.org. 66

[21] http://www.genetic-programming.org/. Genetic Programming Online. 57

[22] http://www.inf.fu-berlin.de/˜behnke/papers/nn98/node8.html. 14

BIBLIOGRAPHY 100

[23] http://www.isgec.org. The International Society for Genetic and Evolutionary Computation
(ISGEC). 57

[24] http://www.jeo.org. Evolutionary Optimization - An International Journal on the Internet.
57

[25] http://www.kernel-machines.org. Primary Resources on the Kernel Machines Related Re-
search. 11

[26] http://www.lania.mx/˜ccoello/EMOO/. Repository on Evolutionary Mul-
tiobjective Optimization, mirror sites also at: www.jeo.org/emo/ and
http://delta.cs.cinvestav.mx/˜ccoello/EMOO/. 64

[27] http://www.mlnet.org. MLnet - The Machine Learning Network Online Information Service.
5

[28] http://www.ncsa.uiuc.edu/Apps/CMP/RNG/www-rng.html. Random Numbers on the Web.
66

[29] http://www.optimization-online.org/. Optimization Online - an eprint site for the optimiza-
tion community. 49

[30] http://www.ph.tn.tudelft.nl/PRInfo/books.html. A list of research monographs on pattern
recognition. 3

[31] http://www.public.asu.edu/˜huanliu/fsbook/appendixa.html. 44

[32] http://www.recursive-partitioning.com. Online Bibliography on Recursive Partitioning. 23

[33] http://www.rsinc.com/envi. ENVI - the Environment for Visualizing Images, remote sensing
software of Research Systems Inc. 26

[34] http://www.rulequest.com/see5-info.html. 56

[35] http://wwws.sun.com/software/sundev/jde/. 66

[36] http://www.trw.com. 2

[37] http://www.vtt.fi/tte/research/tte1/tte14/virtual/. Remote Sensng WWW Virtual Library.
1

[38] Pattern recognition group at Delft University of Technology. v

[39] Personal communication, 2001. 79

[40] G. Abousleman, M. Marcellin, and B. Hunt. Hyperspectral image compression using entropy-
constrained predictive trellis coded quantization. IEEE-IP, 6(4):566–573, Apr. 1997. 2

[41] D. Aha and R. Banket. A comparative evaluation of sequential feature selection algorithms.
In Proc. of the 5th International Workshop on Artificial Intelligence and statistics, pages 1–7,
Menlo Park, CA, 1994. AAAI. 51, 53, 55

[42] David W. Aha. Lazy Learning. Kluwer Academic Publishers, Dordrecht, Jun. 1997. 27

[43] D.W. Aha and R.L. Bankert. Cloud classification using error-correcting output codes. Tech-
nical Report AIC-96-024, NCARAI, 1996. 32, 39, 40, 66, 73

[44] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Machine Learn-
ing, 6:37–66, 1991. 27, 35, 39

BIBLIOGRAPHY 101

[45] H. Almuallim and Dietterich. T.G. Learning with many irrelevant features. In Proc. of the
9th National Conference on Artificial Intelligence, pages 547–552, San Jose, CA, 1991. AAAI
Press. 50, 53

[46] E. Alpaydin. Neural Models of Incremental Supervised and Unsupervised Learning. PhD
thesis, Department d’Informatique, Ecole Polutechnique Fédérale de Lausanne, Lausanne,
Switzerland, 1990. No. 869. 35

[47] E. Alpaydin. Voting over multiple condensed nearest neighbors. Artificial Intelligence Review,
11(1-5):115–132, 1997. 30, 32, 35, 68

[48] T. Back. Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1996.
57

[49] T. Back, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution strategies. In R.K. Belew
and L.B. Booker, editors, Proc. of the 4th International Conference on Genetic Algorithms,
pages 2–9. San Mateo, CA: Morgan Kaufmann, 1991. 57

[50] Thomas Back, editor. Handbook of Evolutionary Computation. IOP Publishing Ltd. and
Oxford University Press, 1997. 57

[51] Dennis Bahler and Laura Navarro. Combining heterogeneous sets of classifiers: Theoretical
and experimental comparison of methods, 2000. 21

[52] Allen L. Barker. Selection of Distance Metrics and Feature Subsets for k-Nearest Neighbor
Classifiers. PhD thesis, Dept. Computer Science, University of Virginia, May, 1997. 27

[53] E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bag-
ging, boosting and variants. Machine Learning, 24(3):173–202, 1999. 15, 16, 17

[54] W. Baxt. Improving the accuracy of an artificial neural network using multiple differently
trained networks. Neural Computation, 4:772–780, 1992. 12, 30

[55] S.D. Bay. Nearest neighbor classification from multiple feature subsets. Intelligent Data
Analysis, 3(3):191–209, 1999. 30, 32, 34, 73, 83

[56] R.E. Bellman. Adaptive Control Processes. Princeton University Press, 1961. 5

[57] Samy Bengio and Yoshua Bengio. Taking on the curse of dimensionality in joint distributions
using neural networks. IEEE Trans. Neural Networks, 11(3), May 2000. 94

[58] K. P. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in en-
semble methods. 2002. To be published in the Proc. of KDD’02, avaliable at
http://www.rpi.edu/˜demira/assemble.ps.gz. 11

[59] J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press,
New York, 1981. 28

[60] James C. Bezdek. Fuzzy Logic and Neural Network Handbook, chapter 2. McGraw-Hill Com-
panies, Inc., 1996. 25

[61] A.L. Blum and P. Langley. Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97:245–271, 1997. 46

[62] A.L. Blum and R.L. Rivest. Training a 3-node neural network is NP-complete. Neural
Networks, 5:117–127, 1992. 45

[63] D. Boyce, A. Farhi, and R Weischedel. Optimal Subset Selection. Springer-Verlag, Berlin,
Germany, 1974. 44

BIBLIOGRAPHY 102

[64] P. S. Bradley, U. M. Fayyad, and O. L. Mangasarian. Mathematical programming for data
mining: formulations and challenges. INFORMS Journal on Computing, 11(3):217–238, 1999.
44

[65] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996. 17, 30

[66] L. Breiman. Bias, variance and arching classifiers. Technical Report 460, Statistics Depart-
ment, University of California, Berkeley, 1996. 18, 41

[67] L. Breiman. Stacked regressions. Machine Learning, 24:49–64, 1996. 21

[68] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.
Belmont, CA: Wadswoth, 1984. 56

[69] H.J. Bremermann, J. Rogson, and S. Salaff. Global properties of evolution processes. In H.H.
Pattee, editor, Natural Automata and Useful Simulations, pages 3–42. 1966. 57

[70] C.E. Brodley. Dynamic automatic model selection. Technical Report 92-30, Department of
Computer Science, University of Massachusetts, Amherst, MA, 1992. 23

[71] S.P. Brumby, Theiler, S. Perkins, N.R. Harvey, and J.J. Szymanski. Genetic programming
approach to extracting features from remotely sensed imagery. In Proc. of FUSION-2001,
2001. 57

[72] Traina Jr. Caetano, Traina Agma, Leejay Wu, and Christos Faloutsos. Fast feature selection
using fractal dimension. In XV Brazilian Symposium on Databases (SBBD), 2000. 44

[73] T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications in
Statistics, 3:1–27, 1974. 53

[74] Erick Cantu-Paz. Efficient and Accurate Parallel Genetic Algorithms. Volume 1 of Genetic
Algorithms and Evolutionary Computation. Kluwer Academic Publishers, 2001. 59, 90

[75] C. Cardie. Using decision trees to improve case-based learning. In Proc. of the 10th Inter-
national Conference on Machine Learning, pages 25–32, Amherst, MA, 1993. Morgan Kauf-
mann. 53

[76] B. Cestnik. Estimating probabilities: a crucial task in machine learning. In Proc. of the
European Conference on Artificial Intelligence, pages 147–149, Stockholm, Sweden, 1990. 78

[77] Sung-Hyuk Cha and Sargur N. Srihari. A fast nearest neighbor search algorithm by filtration.
Pattern Recognition, 35(2):515–525, Feb. 2002. 27

[78] Philip K. Chan and Salvatore J. Stolfo. A comparative evaluation of voting and meta learning
on partitioned data. In Proc. of 12th International Conference on Machine Learning, pages
90–98, 1995. 22

[79] Ke Chen, Lan Wang, and Huisheng Chi. Methods of combining multiple classifiers with differ-
ent features and their applications to text-independent speaker identification. International
Journal of Pattern Recognition and Artificial Intelligence, 11(3):417–445, 1997. 20

[80] M. Chen, J. Han, and P. Yu. Data mining: an overview from database perspective. IEEE
Trans. Knowledge and Data Engineering, 8(6):866–883, 1996. 44

[81] K. Cherkauer. Human expert-level performance on a scientific image analysis task by a system
using combined artificial neural networks. In P. Chan, editor, Working Notes of the AAAI
Workshop on Integrating Multiple Learned Models,, pages 15–21. 1996. 20

BIBLIOGRAPHY 103

[82] Woogon Chung and Evangelia Micheli-Tzanakou. Classifiers: An overview. In E. Micheli-
Tzanakou, editor, Supervised and Unsupervised Pattern Recognition: Feature Extraction and
Computational Intelligence, Industrial Electronics Series, pages 3–60. CRC Press Inc., Boca
Raton, FL, 2000. 11

[83] A. Ciampi. Constructing predictions trees from data: the recpam approach. In Computational
Aspects of Model Choice, pages 52–105. Physica-Verlag, Hedelberg, 1992. 56

[84] A. Ciampi, C.-H. Chang, S. Hogg, and S. McKinney. Recursive partition: a versatile method
for exploratory data analysis in biostatistics. In I.B. MacNeil and G.J. Umphrey, editors,
Biostatistics, pages 23–50. Reidel, Dordrecht, 1987. 23

[85] Carlos A. Coello Coello. A comprehensive survey of evolutionary-based multiobjective opti-
mization techniques. Knowledge and Information Systems, 1(3):129–156, 1999. 64

[86] Carlos A. Coello Coello. An updated survey of GA-based multiobjective optimization tech-
niques. ACM Computing Surveys, 32(2):109–143, 2000. 61, 62, 64

[87] David W. Coit, Alice E. Smith, and David M. Tate. Adaptive penalty methods for ge-
netic optimization of constrained combinatorial problems. INFORMS Journal on Computing,
8(2):173–182, 1996. 62

[88] Marquis J.A. Condorcet. Sur les elections par scrutiny. Histoire de l’Academie Royale des
Sciences, pages 31–34, 1784. 12

[89] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning, 10:57–78, 1993. 26

[90] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Trans. Information
Theory, IT-13:21–27, 1967. 25, 30

[91] Joao Manuel Portela da Gama. Combining Classification Algorithms. PhD thesis, Universi-
dade do Porto, 1999. 12

[92] B.V. Dasarathy. Nearest Neighbor(NN) Norms: NN Pattern Classification Techniques. IEEE
Computer Society Press, Lost Alamitos, CA, 1990. 25, 27

[93] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis - An
International Journal, 1(3), 1997. 48

[94] T. Denoeux. A k nearest neighbor classification rule based on Dempster-Shafer theory. IEEE
Trans. Systems, Man and Cybernetics, 25(5):804–813, 1995. 25

[95] J. Deogun, S. Choubey, V. Raghavan, and H. Sever. Feature selection and effective classifiers.
Journal of ASIS, 49(5):423–434, 1998. 44

[96] P.A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-Hall Inc.,
London, 1982. 73, 83

[97] Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition.
Applications of Mathematics. Springer-Verlag, 1996. 3

[98] T.G. Dietterich. Machine learning research: four current directions. AI Magazine, 1997.
Available at: http://www.aaai.org/AITopics/html/machine.html. 13, 19, 30

[99] T.G. Dietterich. Ensemble methods in machine learning. In Proc. of MCS’2000, Lecture
Notes in Computer Science, pages 1–15. New York: Springer Verlag, 2000. 14

[100] T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of
decision trees: Bagging, boosting and randomization. Machine Learning, 2000. 17

BIBLIOGRAPHY 104

[101] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995. 31, 38

[102] S. Dimitrios and Andreas Stafylopatis Frossyniotis. A multi-SVM classification system. In
Proc. of the 2nd International Workshop on Multiple Classifier Systems, MCS 2001, Cam-
bridge, UK. 12

[103] J. Doak. An evaluation of feature selection methods and their application to computer se-
curity. Technical Report CSE-92-18, Department of Computer Science and Engineering,
University of Carlifornia, 1992. 51

[104] Pier Luigi Dragotti, Giovanni Poggi, and Arturo R.P. Ragozini. Compression of multispectral
images by three-dimensional SPIHT algorithm. IEEE Trans. Geoscience and Remote Sensing,
38(1), Jan. 2000. 2

[105] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. New York: Wiley,
1973. 25, 30

[106] M. Egmont-Petersen, D. de Ridder, and H. Handels. Image processing with neural networks:
A review. Pattern Recognition, 2002. To appear. 2

[107] Christos Emmanouilidis, Andrew Hunter, John Macintyre, and Chris Cox. Selecting features
in neurofuzzy modelling by multiobjective genetic algorithms. In Proc. of ICANN99, the 9th
International Conference on Artificial Neural Networks, volume 2, pages 749–754, Edinburgh,
UK, Sep. 1999. 64

[108] B. Everitt. Cluster Analysis. New York: Halsted Press, 1974. 26, 27

[109] F.J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative study of techniques for large-scale
feature selection. In E.S. Gelsema and L.N. Kanal, editors, Pattern Recognition in Practice,
volume IV, pages 403–413. Elsevier Science B.V., 1994. 85

[110] E. Fix and J. Hodges Jr. Discriminatory analysis - nonparametric discrimination: Consistency
properties. Technical Report 4, USAF School of Aviation Medicine, 1951. Project 21-49-004
Report. 25

[111] D.B. Fogel. System Identification Through Simulated Evolution: A Machine Learning Ap-
proach to Modelling. Needham, MA: Ginn Press, 1991. 57

[112] Carlos M. Fonseca and Peter J. Fleming. Multiobjective optimization and multiple constraint
handling with evolutionary algorithms – Part I: A unified formulation. IEEE Trans. Systems,
Man, and Cybernetics, Part A: Systems and Humans, 28(1):26–37, 1998. 64

[113] C.M. Fonseca and P.J. Fleming. An overview of evolutionary algorithms in multiobjective
optimization. Evolutionary Computation, 3(1):1–16, 1995. 64

[114] J. Fox. Applied Regression Analysis. Sage Publications, Inc., 1997. 5

[115] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Proc.
of the 13th International Conference on Machine Learning, pages 148–156, 1996. 19

[116] J.H. Friedman. Exploratory projection pursuit. Journal of the American Statistical Associa-
tion, 82:249–266, 1987. 5

[117] J. Fukunaga and R Beauregard. An optimal global nearest neighbor metric. IEEE Trans.
Pattern Analysis and Machine Intelligence, 6(3):314–318, 1984. 26

[118] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, San Diego,
California, 1990. 30

BIBLIOGRAPHY 105

[119] K. Fukunaga and P.M. Narendra. A branch and bound algorithm for computing k nearest
neighbors. IEEE Trans. Computers, C-24:750–753, 1975. 27

[120] P.D. Gader, M.A. Mohamed, and J.M. Keller. Fusion of handwritten word classifiers. Pattern
Recognition Letters, 17:577–584, 1996. 30

[121] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4:1–48, 1992. 41

[122] Joydeep Ghosh. Multiclassifier systems: Back to the future. In Fabio Roli and Joser Kittler,
editors, Proc. of 3rd International Workshop on Multiple Classifier Systems (MCS2002), vol-
ume 2364 of Lecture Notes in Computer Science, pages 1–15, Cagliari, Italy, Jun.24-26 2002.
Springer. 11

[123] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading, MA, 1989. 57, 59

[124] I. Guyon. Welcome and introduction to the problem of feature/variable selection. In NIPS
2001 Workshop on Feature/Variable Selection, 2001. 46

[125] Mark A. Hall. Correlation-Based Feature Selection for Machine Learning. PhD thesis, De-
partment of Computer Science, University of Waikato, Hamilton, New Zealand, Apr. 1999.
44

[126] L. Hansen and P. Salamon. Neural network ensembles. IEEE Trans. Pattern Analysis and
Machine Intelligence, 12:993–1001, 1990. 11, 12, 30

[127] P.E. Hart. The condensed nearest neighbor rule. IEEE Trans. Information Theory, 14:515–
516, 1968. 34, 35

[128] N.R. Harvey, S.P. Brumby, R.B. Porter S.J. Perkins, J. Theiler, A.C. Young, J.J. Szymanski,
and J.J. Bloch. Parallel evolution of image processsing tools for multispectral imagery. In
Proc. of Imaging Spectrometry IV, volume SPIE-4132, pages 72–80. Intl. Soc. for Opt. Eng.,
2000. 57

[129] Kazuo Hattori and Masahito Takahashi. A new edited k nearest neighbor rule in the pattern
recognition problem. Pattern Recognition, 33(3):521–528, Mar. 2000. 83

[130] D. Heath, S. Kasif, and S. Salzbery. Committees of Decision Trees. 1996. 19

[131] F. Herrera and M. Lozano. Fuzzy genetic algorithms: Issues and models. Technical report,
Depertment of Computer Science and Artificial Intelligence, University of Granada, 18071,
Granada, Spain, 1998. 59

[132] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation.
Addison-Wesley, Redwood City, CA, 1991. 6

[133] Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim. What is the nearest neighbor
in high dimensional spaces? In Proc. of 26th International Conference on Very Large Data
Bases (VLDB), Cairo, 2000. Downloadable from the site - http://www.acm.org/sigmod/.
This is the comprehensive site of the Special Interest Group on Management of Data (SIG-
MOD) of ACM. 27

[134] S.Y. Ho, C.C. Liu, and S. Liu. Design of an optimal nearest neighbor classifier using an
intelligent genetic algorithm. Pattern Recognition Letters, 2002. 84

[135] T.K. Ho, J.J. Hull, and S.N. Srihar. Decision combination in multiple classifier systems.
IEEE Trans. Pattern Analysis and Machine Intelligence, 16:66–75, 1994. 30

BIBLIOGRAPHY 106

[136] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, 1975. 58

[137] J.H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intellgence. MIT Press, Cambridge, MA, 1992.
2nd Edition. 59

[138] J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched pareto genetic algorithm for multiobjec-
tive optimization. In Proc. of the 1st IEEE Conference on Evolutionary Computation, pages
82–87, 1994. 64

[139] G.F. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Infor-
mation Theory, IT-14(1):55–63, 1968. 5, 7, 92

[140] H. Ichihashi and et al. Neuro-fuzzy ID3. Fuzzy Sets and Systems, 81:157–167, 1996. 56

[141] Manabu Ichino and Jack Sklansky. Optimum feature selection by zero-one integer program-
ming. IEEE Trans. Systems, Man, and Cybernetics, SMC-14(5), 1984. 44

[142] Piotr Indyk. High-dimensional Computational Geometry. PhD thesis, Dept. Computer Sci-
ence, Stanford University, 2000. 27

[143] Piotr Indyk. Approximate nearest neighbor algorithms for frechet distance via product met-
rics. In Proc. of Symposium on Computational Geometry, 2002. 27

[144] H. Ishibuchi and T. Nakashima. Multi-objective pattern and feature selection by a genetic
algorithm. In Proc. of Genetic and Evolutionary Computation Conference, pages 1069–1076,
Las Vegas, Nevada, U.S.A., July 8-12, 2000. 58, 63

[145] Raj Dharmarajan Iyer Jr. An efficient boosting algorithm for combining preferences. Tech-
nical Report MIT-LCS-TR-811, M.I.T., 1999. 30

[146] William G. Jacoby. Statistical Graphics for Visualizing Multivariate Data. Sage Publications
Inc., 1998. 5

[147] A. Jain and D. Zongker. Feature selection: Evaluation, application, and small sample perfor-
mance. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(2):153–158, 1997. 48,
58, 60, 86

[148] A.K. Jain and Chandrasekaran R. Dimensionality and sample size consideration in pattern
recognition practice. In P.R. Krishaniah and L.N. Kanal, editors, Handbook of Statistics,
volume II, pages 835–855. North-Holland, Amsterdam, The Netherlands, 1982. 44

[149] Anil K. Jain, Robert P.W. Duin, and Jianchang Mao. Statistical pattern recognition: A
review. IEEE Trans. Pattern Analysis and Machine Intelligence, 22:4–37, 2000. 11, 14

[150] G. James and T. Hastie. Generalizations of the bias/variance decomposition for prediction
error. htttp://stat.stanford.edu/ ˜gareth. 41

[151] Cezary Z. Janikow. Fuzzy decision trees: Issues and methods. IEEE Trans. Systems, Man,
and Cybernetics, 28(1):1–14, 1998. 56

[152] Thomas Jansen. On the utility of populations. Technical Report CI-102/00, Department of
Computer Science, University of Dortmund, 11 2000. 94

[153] B. Jeng and et al. FILM: a fuzzy inductive learning method for automated knowledge acqui-
sition. Decision Support Systems, 21:61–73, 1997. 56

[154] Byeungwoo Jeon and David Landgrebe. Partially supervised classification using weighted
unsupervised clustering. IEEE Trans. Geoscience and Remote Sensing, 37(2):1073–1079,
March 1999. 5

BIBLIOGRAPHY 107

[155] George H. John. Enhancements to the Data Mining Process. PhD thesis, Department of
Computer Science, Stanford University, Mar. 1997. 46

[156] G.H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem.
In Proceedings of the Eleventh International Conference on Machine learning, pages 121–129,
New Brunswick, NJ, 1994. Morgan Kaufmann. 46, 50, 51

[157] A. Jozwik. A learning scheme for a fuzzy k-nn rule. Pattern Recognition Letters, 1:287–289,
July 1983. 28

[158] Arto Kaarna and Jussi Parkkinen. Wavelet compression of multispectral images. In Proc. of
IASTED International Conference Computer Graphics and Imaging (CGIM’98), 1998. 2

[159] H. Kargupta, W. Huang, Krishnamoorthy, and E. Johnson. Distributed clustering using col-
lective principal component analysis. Knowledge and Information Systems Journal, 3(4):422–
448, 2000. 11

[160] Yi ke Guo and Janjao Sutiwaraphun. Distributed classification with knowledge probing: A
new framework for distributed data mining. In Hillol Kargupta and Philip Chan, editors,
Advances in Distributed and Parallel Knowledge Discovery. MIT/AAAI Press, Sep. 2000. 11

[161] J.M. Keller, R. Gray, and JR. J.A. Givens. A fuzzy k-nearest neighbor algorithm. IEEE
Trans. Systems, Man and Cybernetics, 15(4):580–585, 1981. 28

[162] J.D. Kelly and L. Davis. Hybridizing the genetic algorithm and the k nearest neighbors
classification algorithm. In Proc. of the 4th International Conference on Genetic Algorithms
and their Applications (ICGA’91), pages 377–383, 1991. 60

[163] K. Kira and L. Rendell. A practical approach to feature selection. In Proc. of 9th Interna-
tional Conference on Machine Learning, pages 249–256, Aberdeen, Scotland, 1992. Morgan
Kaufmann. 50, 53

[164] J. Kittler. A framework for classifier fusion: Is it still needed? Pierre Devijver Award Lecture
2000. Available at: http://www.ph.tn.tudelft.nl/Organisation/TC1/pda/pda.html. 12

[165] J. Kittler. Feature set search algorithm. In C.H. Chen, editor, Pattern Recognition and Signal
Processing, pages 41–60. Sithof and Noordhoff, Alphen aan den Rjin, The Netherlands, 1978.
44

[166] J. Kittler. Feature selection and extraction. In Tzay Y. Young and King-Sun Fu, editors,
Handbook of Pattern Recognition and Image Processing, pages 59–83. Academic Press, 1986.
47

[167] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers. IEEE Trans.
Pattern Analysis and Machine Intelligence, 20(3):226–239, 1998. 12, 30

[168] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-
2):273–324, 1997. 45, 78

[169] R. Kohavi and D.H. Wolpert. Bias plus variance decomposition for zero-one loss functions.
In Proc. of the 13th International Conference on Machine Learning, 1996. 41, 43

[170] D. Koller and M. Sahami. Toward optimal feature selection. In Proc. of the 13th International
Conference on Machine Learning, pages 284–292, Bari, Italy, 1996. Morgan Kaufmann. 53

[171] E.B. Kong and T.G. Dietterich. Error-correcting output coding corrects bias and variance.
In Proc. of the 12th National Conference on Artificial Intelligence, 1996. 40, 41, 72

[172] I. Kononenko. Estimating attributes: Analysis and extensions of relief. In Proc. of the 7th
European Conference on Machine Learning, 1994. 50

BIBLIOGRAPHY 108

[173] John R. Koza. Genetic programming. In James G. Williams and Allen Kent, editors, Ency-
clopedia of Computer Science and Technology, volume 39, pages 29–43. Marcel-Dekker, 1998.
57

[174] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In
G.Tesauro and et al, editors, Advances in Neural Information Processing Systems, volume 7,
pages 231–238. Cambridge MA:MIT Press, 1995. 12, 30

[175] F.A. Kruse, A.B. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro, J.P. Barloon,
and A.F.H. Goetz. The spectral image processing system(sips) - interactive visualization and
analysis of imaging spectrometer data. Remote Sensing of Environment, 44:145–163, 1993.
26

[176] M. Kuat, D. Flotzinger, and G. Pfurtscheller. Discovering patterns in EEG-signals: Compar-
ative study of a few methods. In Proc. of the 6th European Conference on Machine Learning,
pages 366–371, Heidelberg, 1993. Springer-Verlag. 53

[177] M. Kudo, P. Somol, P. Pudil, M. Shimbo, and J. Sklansky. Comparison of classifier-specific
feature selection algorithm. In F. J. Ferri, J. M. Inesta, A. Amin, and P. Pudil, editors, Proc.
of Joint IAPR International Workshops SSPR2000 and SPR2000, volume 1876 of Advances
in Pattern Recognition, Lecture Notes in Computer Science, pages 677–686, Alicante, Spain,
Aug./Sep. 2000. Springer. 49

[178] Mineichi Kudo and Jack Sklansky. Comparison of algorithms that select features for pattern
classifiers. Pattern Recognition, 33(1):25–41, 2000. 48, 86, 91

[179] L. I. Kuncheva and L. C. Jain. Nearest neighbor classifier: Simultaneous editing and feature
selection. Pattern Recognition Letters, 20:1149–1156, 1999. 58, 63

[180] L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Decision template for multiple classifier fusion:
An experimental comparison. Pattern Recognition, 34(2):299–314, 2001. 30

[181] Ludmila I. Kuncheva and Christopher J. Whitaker. Using diversity with three variants of
boosting: Aggressive, conservative and inverse. In Proc. of MCS’02, Lecture Notes in Com-
puter Science. Springer-Verlag, 2002. To appear. 19

[182] L. Lam and C.Y. Suen. Optimal combination of pattern classifiers. Pattern Recognition
Letters, 16:945–954, 1995. 12, 30

[183] David Landgreb. Personal communication, 2001. 2

[184] D. Landgrebe. Information extraction principles and methods for multispectral and hyper-
spectral data. In C.H. Chen, editor, Information Processing for Remote Sensing. World
Scientific, USA, 2000. 2

[185] P. Langley and S. Sage. Induction of selective bayesian classifiers. In Proc. of the 10th Con-
ference on Uncertainty in Artificial Intelligence, pages 399–406, Seattle, WA, 1994. Morgan
Kaufmann. 55

[186] P. Langley and S. Sage. Oblivious decision trees and abstract cases. In Working notes of
the AAAI-94 Workshop on Case-Based Reasoning, pages 113–117, Seattle, WA, 1994. AAAI
Press. 55

[187] N.Y. Lao and F.C. Wong. Hyperspectral imagery market forecast: 2000-2005. Technical re-
port, Economic and Market Analysis Center, Systems Engineering Division, Engineering and
Technology Group, December 2000. Available at http://www.aero.org/emac/PK0444vl.pdf.
2

BIBLIOGRAPHY 109

[188] Tjen-Sien Lim, Sei-Yin Loh, and Yu-Shan Shih. A comparison of prediction accuracy, com-
plexity and training time of thirty-three old and new classification algorithms. Machine
Learning, 1999. preprint available at http://www.recursive-partitioning.com/mach1317.pdf,
and appendix containing complete tables of error rates, ranks, and training times at
http://www.recursive-partitioning.com/appendix.pdf. 11

[189] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285–318, 1987. 16

[190] N. Littlestone and M. Warmuth. The weighted majority algorithm. Technical Report UCSC-
CRL-91-28, Department of Computer Engineering and Information Sciences, University of
California Santa Cruz, 1991. 16

[191] N. Littlestone and M. Warmuth. The weighted majority algorithm. Information and Com-
putation, 4:212–261, 1994. 16

[192] H. Liu and R. Setiono. A probabilistic approach to feature selection - a filter solution. In
Proc. of 13th International Conference on Machine Learning, pages 319–327, Bari, Italy, 1996.
Morgan Kaufmann. 53

[193] Huan Liu and Hiroshi Motota. Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, 1998. ISBN 0-7923-8198-X. 44

[194] Nicholas M. Short, Sr. http://rst.gsfc.nasa.gov/front/tofc.html. 1

[195] Dimuthu Prasanna Makawita, Kian-Lee Tan, and Huan Liu. Sampling from databases using
B+-Trees. In CIKM, pages 158–164. 2000. 83

[196] Tassos Markas and John Reif. Multispectral image compression algorithms. In James A.
Storer and Martin Cohn, editors, DCC ’93 : Data Compression Conference, pages 391–400,
Apr. 1993. 2

[197] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Modeling and Computer Simulation,
8(1):3–30, Jan. 1998. 66

[198] G. Mercier, M. C Mouchot, and G. Cazuguel. Joint classification and compression of hyper-
spectral images. In Proc. of 1999 International Geoscience and Remote Sensing Symposium
(IGARSS)’99, volume 4, pages 2035–2037, Piscataway, NJ, 1999. IEEE Service Center. 2

[199] Z. Michalewicz. Genetic Algorithms + Data Structure = Evolutionary Programs. Springer-
Verlag, 1996. 59

[200] A.J. Miller. Subset Selection in Regression. Chapman and Hall, Washtington D.C., 1990. 44

[201] D. Miller, A.V. Rao, K. Rose, and A. Gersho. A global optimization technique for statistical
classifier design. IEEE Trans. Signal Processing, 44(12):3108–31022, 1996. 11

[202] M. Mitchell. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press, 1996. 59

[203] M. Mocciardi. A comparison of seven techniques of choosing subsets of pattern recognition.
IEEE Trans. Computers, C-20:1023–1031, 1971. 44, 48

[204] A. Moore and M. Lee. Efficient algorithms for minimizing cross validation error. In Proc. of
the 11th International Conference on Machine Learning, pages 190–198, San Francisco, CA,
1994. Morgan Kaufmann. 55

[205] T. Mori. Taguchi Techniques for Image and Pattern Developing Technology. New Jersey,
Prentice-Hall, 1995. 84

BIBLIOGRAPHY 110

[206] H. Muhlenbein and G. Paab. From recombination of genes to the estimation of distributions.
binary parameters. In Voigt H.M. et al, editor, Lecture Notes in Computer Science 1411:
Parallel Problem Solving from Nature - PPSN IV, pages 178–187. 1996. 94

[207] P. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset selection.
IEEE Trans. Computer, C-26(9):917–922, 1977. 44

[208] S.L. Nitzan and J. Paroush. Collective Decision Making. Cambridge University Press, 1985.
12

[209] F. Olken and D. Rotem. Random sampling from databases: A survey. Statistics & Computing,
5(1):25–42, Mar. 1995. 83

[210] D. Opitz and D. Maclin. Popular ensemble methods: An empirical study. Journal of Artificial
Intelligence Research, 11:169–198, 1999. 12, 30

[211] D. Opitz and J. Shavlik. Generating accurate and diverse members of a neural network
ensemble of classifiers. In G.Tesauro and et al, editors, Advances in Neural Information
Processing System, volume 8, pages 535–541. Cambridge MA:MIT Press, 1996. 12, 30

[212] B. Parmanto, P. Munro, and H.R. Doyle. Improving commmitte diagnosis with resampling
techniques. In D.S. Touretzky, Mozer M.C., and M.E. Hesselmo, editors, Advances in Neural
Information Processing, volume 8, pages 882–888. MIT Press, Cambridge, MA, 1996. 19

[213] Terry R. Payne. Dimension Reduction and Representation for Nearest Neighbor Learning.
PhD thesis, Department of Computing Science, University of Aberdeen, 1999. 56

[214] Terry R. Payne and P. Edwards. Survey of work on feature selection. Draft Copy Only, 1996.
56

[215] Carlos Andres Pena-Reyes. Coevolutionary Fuzzy Modeling. PhD thesis, Swiss Federal Insti-
tute of Technology (EPFL), Lausanne, 2002. 57

[216] M.A. Potter. The Design and Analysis of a Computational Model of Cooperative Coevolution.
PhD thesis, George Mason University, 1997. 57

[217] P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature selection. Pattern
Recognition Letters, 15:1119–1125, 1994. 48, 49, 77

[218] W.F. Punch, E.D. Goodman, Min Pei, Lai Chia-Shun, P. Hovland, and R. Enbody. Further
research on feature selection and classification using genetic algorithms. In Proc. of the
International Conference on Genetic Algorithms and their Applications (ICGA’93), pages
557–564, 1993. 60

[219] R.C. Purshouse and P.J. Fleming. The multi-objective genetic algorithm applied to bench-
mark problems: An analysis. Technical Report 796, Department of Automatic Control and
Systems Engineering, University of Sheffield, Sheffield, S1 3JD, Aug. 2001. 64

[220] S-E. Qian, A. Hollinger, D. Williams, and D. Manak. 3D data compression of hyperspec-
tral imagery using vector quantization with NDVI-based multiple codebooks. In Proc. of
IGARSS’1998, 1998. 2

[221] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986. 37, 50, 56

[222] J. R. Quinlan. Programs for Machine Learning. Morgan Kaufmann, San Marteo, CA, 1993.
38, 56

[223] R. Quinlan. Bagging, boosting and C4.5. In Proc. of 13th American Association for Artificial
Intelligence. AAAI Press, 1996. 17

BIBLIOGRAPHY 111

[224] V. Ramasubramanian and Kuldip K. Paliwal. Fast nearest neighbor search algorithms based
on approximation-elimination search. Pattern Recognition, 33(9):1486–1510, Sep. 2000. 27

[225] P.J. Rauss, J.M. Daida, and S. Chaudhary. Classification of spectral imagery using genetic
programming. In et al D. Whitley, editor, Proc. of GECCO-2000, pages 726–733. Morgan
Kaufmann, 2000. 57

[226] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain. Dimensionality
reduction using genetic algorithms. IEEE Trans. Evolutionary Computation, 4:164–171, 2000.
60

[227] Michael L. Raymer, William F. Punch, Erik Goodman, Paul C. Sanschagrin, and Leslie A.
Kuhn. Simultaneous feature extration and selection using a masking genetic algorithm. Tech-
nical report, Gentic Algorithms Research and Applications Group, Department of Computer
Science, Michigan State University, East Lansing, MI 48824. 60

[228] F. Ricci and D.W. Aha. Extending local learners with error-correcting output codes. Tech-
nical Report AIC-97-001, Navy Center for Applied Research in Artificial Intelligence, 1997.
30

[229] J.T. Richardson, M.R. Palmer, G. Liepins, and M. Hilliard. Some guidelines for genetic
algorithms with penalty functions. In Proc. of the 3rd International Conference on Genetic
Algorithms, pages 191–197. Morgan-Kauffman, 1989. 63

[230] R. E. Roger and M. C. Cavenor. Lossless compression of imaging spectometer data. Tech-
nical report, Department of Electrical Engineering, Australian Defence Force Academy, Can-
berra AACT 2600, Australia, 1993. This report may be obtained by anonymous FTP from
evans.ee.adfa.oz.au in directory pub/reports/remsen. 2

[231] G. Rogova. Combining the results of several neural network classifiers. Neural Networks,
7:777–781, 1994. 12, 30

[232] Thomas Philip Runarsson and Xin Yao. Constrained evolutionary optimization: The penalty
function approach. In R. Sarker, M. Mohammadian, and X. Yao, editors, Evolutionary Opti-
mization, chapter 4, pages 97–113. Kluwer Academic Publishers, USA, 2002. 62

[233] M. Ryan and J. Arnold. The lossless compression of AVIRIS images by vector quantization.
IEEE Trans. Geoscience and Remote sensing, 35(3):546–550, May 1997. 2

[234] G. Salton and M. McGill. Introduction to Modern Information Retrieval. New York:
McGraw-Hill, 1983. 26

[235] Hanan Samet and Gisli R. Hjaltason. Similarity searching: Indexing, nearest neighbor finding,
dimensionality reduction and embedding methods for applications in multimedia databases.
In ICPR 2002, 2002. Tutorial. 27

[236] Michael Schaepman and Walter Debruyn. http://www.apex-esa.org/. 1

[237] R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227, 1990. 18,
36

[238] Michail I. Schlesinger and Vaclav Hlavac. Ten lectures on Statistical and Structural Pattern
Recognition. Kluwer Academic Publishers, 2002. 3

[239] J.C. Schlimmer. Efficiently inducing determinations: A complete and efficient search algo-
rithm that uses optimal pruning. In Proc. of the 10th International Conference on Machine
Learning, pages 284–290, Amherst,MA, 1987. Morgan Kaufmann. 53

BIBLIOGRAPHY 112

[240] Stephen Scott. Feature vector selection. Lecture Note of CSCE970: Pattern Recogntion.
Department of Computer Science and Engineering, University of Nebraska, Lincoln, Nebraska.
Available from http://www.cse.unl.edu/˜sscott/CSCE970/. 48

[241] Rudy Setiono. Neural network feature selector. IEEE Trans. Neural Networks, 8(3):654–662,
1997. 44

[242] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ,
1976. 21

[243] Amanda J. C. Sharkey, editor. Combining Artificial Neural Nets: Ensemble and Modular
Multi-Net Systems (Perspectives in Neural Computing). Springer Verlag, Apr. 1999. 23

[244] Amanda J. C. Sharkey. Types of multinet system. In Proc. of MCS’2002, 2002. To appear.
14

[245] W. Siedlecki and J. Skansky. On automatic feature selection. International Journal of Pattern
Recognition and Artificial Intelligence, 2:197–220, 1988. 48

[246] W. Siedlecki and J. Sklansky. A note on genetic algorithms for large-scale feature selection.
Pattern Recognition Letters, 10:335–347, 1989. 58, 60, 62, 84, 85

[247] W. Siedlecki and J. Sklansky. Constrained genetic optimization via dynamic reward-penalty
balancing and its use in pattern recognition. In C.H. Chen, L.F. Pau, and P.S.P. Wang,
editors, Handbook of Pattern Recognition & Computer Vision, pages 108–123. World Scientific
Publishing Co. Pte. Ltd., P.O. Box 128, Farrer Road, Singapore 9128, 1995. 62

[248] M. Singh and G.M. Provan. A comparison of induction algorithms for selective and non-
selective bayesian classifiers. In Proc. of the 12th International Conference on Machine Learn-
ing, pages 497–505, Lake Tahoe, CA, 1995. Morgan Kaufmann. 55

[249] M. Singh and G.M. Provan. Efficient learning of selective bayesian network classifiers. In
Proc. of the 13th International Conference on Machine Learning, pages 453–461, Bari, Italy,
1996. Morgan Kaufmann. 53

[250] Samer Singh, John Haddon, and Markos Markou. Nearest neighbor classifiers in natural scene
analysis. Pattern Recognition, 34(8):1601–1612, Aug. 2001. 25

[251] D. B. Skalak. Prototype Selection for Composite Nearest Neighbor Classifiers. PhD thesis,
University of Massachusetts, Amherst, MA, 1997. 21, 24, 30, 32, 35, 37, 55

[252] Alice E. Smith and David W. Coit. Penalty function. In Thomas Baeck, David Gogel, and
Zbigniew Michalewicz, editors, Handbook of Evolutionary Computation. A Joint Publication
of Oxford University Press and Institute of Physics Publishing, 1995. 62

[253] P. Somol, P. Pudil, J. Novovicova, and P. Paclik. Adaptive floating search methods in feature
selection. Pattern Recognition Letters, 20:1157–1163, 1999. 49

[254] C. Stanfill. Toward memory-based reasoning. Communications of the ACM, 29:1213–1228,
1986. 27

[255] S.D. Stearns. On selecting features for pattern classifiers. In Proceedings of the 3rd Interna-
tional Conference on Pattern Recognition, pages 71–75, Coronado, CA, 1976. 44

[256] Hisashi Tamaki, Hajime Kita, and Shigenobu Kobayashi. Multi-objective optimizaiton by
genetic algorithms: A review. In Toshio Fukuda and Takeshi Furuhashi, editors, Proc. of
the 1996 International Conference On Evolutionary Computation, pages 517–522, Nagoya,
Japan, 1996. 64

BIBLIOGRAPHY 113

[257] K.C. Tan, T.H. Lee, and E.F. Khor. Evolutionary algorithms for multi-objective optimiza-
tions: Performance assessments and comparisons. Artificial Intelligence Review, 17(4), Jun.
2002. 64

[258] Stephen R. Tate. Band ordering in lossless compression of multispectral images. In Proc. of
Data Compression Conference, Snowbird, Utah, pages 311–320, 1994. 2

[259] Sergios Theodoridis. Pattern Recognition. Academic Press, San Diego, CA, Jan. 1999. 3

[260] H.H. Thodberg. A review of bayesian neural networks with an application to near infrared
spectroscopy. Technical report, The Danish Meat Research Institute, 1995. 30

[261] R. Tibshirani. Bias, variance and prediction error for classification rules. Technical report,
Department of Statistics, University of Toronto, 1996. 41

[262] K.M. Ting and L.H. Witten. Stacked generalization: When does it work? In Proc. of
International Joint Conference on Artificial Intelligence, 1997. 21

[263] D. Tretter, N. Memon, and C. Bouman. Multispectral image coding. In Alan Bovik, editor,
The Image and Video Processing Handbook. Academic Press. To appear. 2

[264] Kagan Tumer and Joydeep Ghosh. Classifier combining: Analytical results and implications.
In National Conference on Artificial Intelligence. Portland, August 1996. 14

[265] Kagan Tumer and Joydeep Ghosh. Error correlation and error reduction in ensemble clas-
sifiers. Connection Science, 8(3 & 4):385–404, December 1996. Special issue on combining
artificial neural networks: ensemble approaches. 14

[266] Kagan Tumer and Joydeep Ghosh. Theoretical foundations of linear and order statistics
combiners for neural pattern classifiers. Technical Report TR-95-02-98, 1996. 14

[267] M. Umanol and et al. Fuzzy decision trees by fuzzy ID3 and its application to diagnosis
systems. In Proc. of the IEEE International Conference on Fuzzy Systems, pages 2113–2118,
26-29, Jun. 1994. 56

[268] P.E. Utgoff. Perception trees: A case study in hybrid concept representations. Connection
Science, 1:377–391, 1989. 23

[269] L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984. 18

[270] V.N. Vapnik. The Nature of Statistical Learning Theory. John Wiley, New York, 1998. 11

[271] David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analyses,
and New Innovations. PhD thesis, Air Force Institute of Technology, Jun. 1999. 64

[272] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary algorithm re-
search: A history and analysis. Technical Report TR-98-03, Air Force Institute of Technology,
Wright Paterson AFB, Oct. 1998. 64

[273] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary algorithms:
Analyzing the state-of-the-art. Evolutionary Computation, 8(2):125–147, 2000. 64

[274] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, 2002. 22

[275] S. Voget and M. Kolonko. Multi-criteria optimization with a fuzzy genetic algorithm. Journal
of Heuristic, 1998. 59

[276] S.S. Wilks. Mathematical Statistics. Wiley, New York, 1963. 47

BIBLIOGRAPHY 114

[277] D. Wilson and T Martinez. Improved heterogeneous distance functions. Journal of Artificial
Intelligence Research, 6:1–34, 1997. Journal of Artificial Intelligence Reseach (JAIR) is an
online journal which can be freely accessible from: http://www.jair.org. 26

[278] D. H. Wolpert. Stacked generalization. Technical Report LA-UR-90-3460, Complex Systems
Group, Theoretical Division, and Center for Non-linear Studies, MS B213, LANL, Los Alamos,
NM, 1990. 21, 36

[279] K. Woods, W.P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local
accuracy estimates. IEEE Trans. Pattern Analysis and Machine Intelligence, 19:405–410,
1997. 12, 30

[280] Yingquan Wu, Krassimir Ianakiev, and Venu Govindaraju. Improved k nearest neighbor
classification. Pattern Recognition, 35(10), 2002. 25

[281] L. Xu, A. Krzyzak, and C.Y. Suen. Methods of combining multiple classifiers and their
application to handwriting recognition. IEEE Trans. Systems, Man and Cybernetics, 22:418–
435, 1992. 30

[282] J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In Proc. of the
Second Conference on Genetic Programming, 1997. 58, 63

[283] Mary M. Yang. Hyperspectral image compression and client/sever software. Available at
http://www.reisys.com/ehb/proposal.pdf. 2

[284] Shixin Yu, Steven De Backer, and Paul Scheunders. Genetic feature selection combined
with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery. Pattern
Recognition Letters, 23:183–190, 2002. 57, 60, 61, 79

[285] Shixin Yu and Paul Scheunders. On combining nearest neighbor classifiers: An empirical
study on hyperspectral remote sensing data. Pattern Recognition Letters. submitted. 30

[286] X. Zhang, J.P. Mesirov, and D.L. Waltz. Hybrid system for protein secondary structure
prediction. Journal of Molecular Biology, 225:1049–1063, 1992. 30

[287] Ye Zhang and Mita D. Desai. Hyperspectral image compression based on adaptive recursive
bidirection prediction/JPEG. Pattern Recognition, 33(11):1851–1860, Nov. 2000. 2

[288] Zijian Zheng. Naive bayesian classifier committees. In Proc. of ECML’98, pages 196–207.
Springer Verlag, 1998. 23

[289] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applica-
tions. PhD thesis, Swiss Federal Institute of Technology, Zurich, 1999. Tik-Schriftenreihe nr.
30. 61, 62

[290] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolution-
ary algorithms: Empirical results. Technical Report TIK-Report No. 70, Computer Engi-
neering and Networks Laboratory (TIK), Swiss Federal Institute of Technology, Zurich, Dec.
1999. Revised Version. 64

	DEDICATION
	ACKNOWLEDGEMENTS
	SUMMARY
	NOTATION
	Introduction
	Classifier Ensembles: An Overview
	Nearest Neighbor Learning Algorithm Revisited
	Ensemble Methods for Nearest Neighbor Learning Algorithm
	Feature Selection Methods: An Overview
	Genetic Feature Selectors
	Experiments and Discussion
	Conclusion and Further Work
	NEDERLANDSE SAMENVATTING
	LIST OF PUBLICATIONS
	BIBLIOGRAPHY

