TODE User Manual

Darren C. Moore
Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP)
CP 592, rue du Simplon 4,
1920, Martigny, Switzerland,
moore@idiap.ch, http://www.idiap.ch/ moore

January 31, 2003

Contents

1 Introduction 3
2 Installation 5
3 How to use 6
3.1 General Options 7
3.2 —input_fname Lo 7
3.21 —input_format, 7

3.2.2 -output_fname 8

3.2.3 -output_ctmo 8

3.24 -wrdtrns fname 8

3.25 -msec_step.size oL 9

3.3 Acoustic Model Options 9
3.3.1 -ammodels fname 9

3.3.2 -am.silphone 9

3.3.3 -am_pausephone 10

3.34 -amphonedelpen 10

3.3.5 -am._apply_pausedelpen 10

3.3.6 -am_priors_fname 11

3.3.7 -ammlp_fname 11

3.3.8 -ammlp.cw.size 11

3.3.9 -—ammnorms fname 12

3.3.10 -am_online norm ftrs 12

3.3.11 -am_online norm.alpham 12

3.3.12 -am_online norm.alpha v 13

3.4 Lexicon Options, 13
3.4.1 -lexdict fname 13

3.4.2 -lexsent startword 13

T Q" # U aa w o»

-

3.4.3 -lex_sent.endword
344 -lexsilword
3.5 Language Model Options
3.5.1 -Imfname
3.5.2 -Imngramorder
3.5.3 -lm.scaling factor
3.6 Beam Search Decoding Options
3.6.1 -dec_int_prune window
3.6.2 -dec_end prune window
3.6.3 -decwordentrpen
3.64 -decdelayed lm
3.6.5 -decwverbose

MLPW File Format

Priors File Format

Norms File Format

Online Features File Format

LNA File Format

CTM File Format

Noway Phone Models File Format

ARPA Language Model File Format

HTK HMM Model Definition File Format

HTK MLF File Format

18

21

24

27

29

31

34

36

39

41

Chapter 1

Introduction

TODE (TOrch DEcoder) is a continuous speech recogniser based on a time-
synchronous beam-search algorithm that is compatible with the Torch ma-
chine learning library. It’s purpose is to satisfy the general speech decoding
needs of researchers at IDIAP and in the wider speech community. TODE
has been designed to be a flexible recogniser with a straightforward imple-
mentation, that overcomes some of the limitations of other popular decoders
while maintaining an acceptable level of efficiency.
The major features of TODE are :

Efficient beam search decoder.

Can be used with both ANN and GMM-based acoustic models.
Accepts features or emission probabilities as input.

N-gram language modelling with full back-off and caching.

Supports many commonly used file formats (model definition, ANN
weights, features, language model, etc).

Uses a linear lexicon

Implementation is straightforward, and can be readily modified /upgraded
to meet the needs of researchers.

Easily adapted for use in non-speech decoding applications.

Fully supported with development ongoing.

3

This document describes how to use the stand-alone TODE executable
for speech recognition tasks.

Chapter 2

Installation

TODE is distributed as part of the Torch machine learning library
(http://www.torch.ch), which means that you must download and install
Torch first, in order to compile and use TODE. The steps for installation are

as follows:

1. Download and follow the Torch installation instructions.
http://www.torch.ch/matos/install.pdf

2. The following Torch packages are required to build TODE:

decoder

core
datasets
distributions
gradients
speech

examples

3. You might want to use the FLOATING = DOUBLE option in your
Makefile options_<os> file. TODE will be slower, but the extra float-
ing point precision may be required (depending on your application).

4. The “main” TODE source file (tode.cc) is located in your Torch di-
rectory under examples/decoder. Follow the steps in section 5 of the
Torch installation instructions to compile this file. TODE is now ready
for use.

Chapter 3

How to use

The TODE command line is of the form
tode <option> <option> ...

An option consists of one or two command line arguments: a keyword (eg.
-input_file) followed by a value (eg. <string>). The value field is not
required for boolean options. Some options are mandatory (eg. a dictionary
file must be defined).

All TODE options are described in detail in the folowing sections.

A summary of all options can be obtained by typing
tode -help

3.1 General Options

3.2 -input fname

Required
Format
Summary
Details

Default

-input_fname <string>

Describes where (feature or emission probability) input file/s are located.

If the input format (see -input_format below) is an archive format (ie.
lna archive or online ftrs_ archive), then the string value denotes the
actual archive file. Otherwise, the string value specifies the file that contains
the filenames of the individual input files.

undefined

3.2.1 -input_format

Required Yes
—input_format <string>

Format

Summary Describes the format of the input files.

Details

Default

Valid file formats are :

e htk: HTK feature file readable by Torch IOHTK class with 1 utterance

per file.

1na : LNA 8-bit emission probabilities (see Appendix E) with 1 utter-
ance per file.

lna archive : LNA 8-bit emission probabilities with all utterances in
a single (big) archive file.

online ftrs : Online features format (see Appendix D) with 1 utter-
ance per file.

online_ftrs_archive : Online features format with all utterances in
a single (big) archive file.

The format of input files must be compatible with the acoustic model settings.
undefined

3.2.2 -output_fname

Required
Format
Summary
Details
Default

No
-output_fname <string>
Specifies where decoder output will be written.

stdout

3.2.3 -output_ctm

Required
Format
Summary
Details
Default

No
—output_ctm
Specifies that the output is to be written in CTM format (see Appendix F).

false

3.2.4 -wrdtrns fname

Required
Format
Summary
Details

Default

No

-wrdtrns_fname <string>

Specifies a file containing reference transcipts for all input utterances.

If a reference transcription file is specified, then a verbose output is provided
by the decoder, showing the input file as well as expected and actual re-
sults for each utterance. In addition, after all input files have been decoded,
recognition statistics are computed and output (accuracy, insertions, substi-
tutions, deletions). If this option is not specified, then only the recognition
output words are output (1 utterance per line).

If the input file format is non-archive (ie. htk, 1na or online ftrs then the
reference transcription file can be in HTK MLF format (see Appendix J) or
“raw” format (1 utterance per line). The ordering of utterance transcriptions
in the HTK MLF file does not need to match the order of the input files. The
ordering of utterances in the “raw” format transcription files must match the
ordering of the input files.

For archive input formats (ie. lna archive or online ftrs archive), the
transcription file must be in “raw” format.

undefined

3.2.5 -msec_step_size

Required No

Format -msec_step_size <real>
Summary Specifies the step size of input frames in millieseconds.
Details Used only to compute durations when -output_ctm is specified.

Default 10.0ms

3.3 Acoustic Model Options

3.3.1 -am models fname

Required Yes

Format -am models _fname <string>

Summary Specifies the file containing the HMM definitions for the phone models.

Details If HMM/GMM decoding is required then the models file must be in (simple)
HTK model definition format (see Appendix I). If HMM/ANN decoding is
required then the file must be in Noway model definition format (see Ap-
pendix G). All phones mentioned in the dictionary file must have a model
defined in this file. There can be additional phone models defined (eg. a
short pause model).

Default undefined

3.3.2 -am_sil _phone
Required No

Format -am_sil phone <string>

Summary Specifies a “silence” phone.

Details If defined, there must be a corresponding model defined in the phone models
file. Specifying a silence phone has no effect unless a pause phone is also
defined.

Default undefined

3.3.3 -am_pause_phone

Required
Format
Summary
Details

Default

No

—am_pause_phone <string>

Specifies a “pause” phone.

If defined, there must be a corresponding model defined in the phone models
file. When word HMM’s are created by contenating individual phone models,
the pause model is added to the end of each word model. If the phone
transcription for a word (as defined in the dictionary file) ends with a pause
phone, then an additional pause is not added. If a silence phone is specified
and the phone transcription for a word ends with a silence phone, then the
pause phone is not added. A pause model with an initial-final state transition
is valid.

undefined

3.3.4 -am phone_del pen

Required
Format
Summary
Details

Default

No

—am_phone_del _pen <real>

Specifies the non-log phone-level deletion penalty.

This value is used to scale the (non-log) transition probabilities for transitions
originating from the initial state of each phone model. When phone models
are concatenated to form word-level HMM'’s, this scaling serves as a phone
deletion penalty.

1.0

3.3.5 -am_apply_pause_del pen

Required
Format
Summary

Details
Default

No

—am_apply_pause_del_pen

Indicates that the phone deletion penalty is to be applied to the model for
the “pause” phone.

This option is used only if a pause phone is defined.

false

10

3.3.6 -am_priors_fname

Required
Format
Summary
Details

Default

No

—am_priors_fname <string>

Specifies the file containing the phone prior probabilities.

The phone priors are required for HMM/ANN decoding, but are not used
for HMM/GMM decoding. The format of the file must be in ICSI priors
format (see Appendix B). The ordering of the prior probabilities must match
the order in which phone models are defined in the models file. Any emission
probability used for decoding, whether it originates from an LNA file or
is computed on-the-fly by an MLP, is divided by its corresponding prior
probability before being used in decoding calculations.

undefined

3.3.7 -am mlp_fname

Required
Format
Summary
Details

Default

No

—am_mlp_fname <string>

Specifies the file containing MLP weights.

The file must be in MLPW binary format (see Appendix A). The file is
required for HMM/ANN decoding, when using features as input (ie. input
format is htk, online_ftrs or online_ftrs_archive, and the models file is

in Noway format).
undefined

3.3.8 -ammlp cw_size

Required
Format
Summary
Details

Default

-ammlp_cw_size <integer>

Specifies the context window size to use with an MLP.

Required when performing HMM /ANN decoding with features as input. The
feature vector size multiplied by this number must equal the number of input
units in the MLP.

Note that timing output information (eg. when using -output_ctm option)
will be affected. The timings will correspond to the input feature file with
the first and last % — 1 vectors stripped (where N is the context window
size).

undefined

11

3.3.9 -am norms fname

Required No

Format —am_norms_fname <string>

Summary Specifies the file containing means and inverse standard deviations used to
normalise features.

Details The norms file is only used during HMM/ANN decoding with features as
input. If specified, each input feature vector is normalised before it is input
to the MLP. This file must be in ICSI norms format (see Appendix C). The
number of means (and inverse stddevs) in the file must be equal to the number
of input feature vector elements. If a norms file is not specified, features are
read from file and input to the MLP without modification.

Default undefined

3.3.10 -am online norm ftrs

Required No

Format -am_online norm ftrs

Summary Activates online normalisation of input features.

Details This feature is only used during HMM/ANN decoding with features as in-
put and when a norms file is defined. If specified, a simple, first-order
online mean and variance normalisation is applied to each feature dimen-
sion. The feature means and variances are updated at each time step (see
-am_online norm alpha m and -am online norm alpha v below).

Default false

3.3.11 -am online norm alpha m

Required No

Format —am_online norm_alpham <real>

Summary The update constant for feature means during online normalisation.

Details This option is only used during HMM/ANN decoding with online normal-
isation of features. At each time step, and for each feature dimension, the
existing mean value is scaled by (1 — «,), and «,, times the current feature
value is added to obtain the new mean.

Default 0.005

12

3.3.12

Required
Format
Summary
Details

Default

—am_online norm alpha_v

No

—am_online norm_alpha_v <real>

The update constant for feature variances during online normalisation.
This option is only used during HMM/ANN decoding with online normal-
isation of features. At each time step, and for each feature dimension, the
existing variance value is scaled by (1 — «,), and «, times the square of the
current feature value is added to obtain the new variance.

0.005

3.4 Lexicon Options

3.4.1 -lex dict_fname

Required
Format
Summary
Details

Default

Yes

-lex_dict_fname <string>

Specifies the file containing the dictionary used for recognition.

The dictionary file contains entries for all pronunciations that can be recog-
nised. The format of each entry is :

word(prior) phl ph2 ... phn

The (prior) field denotes the prior probability of a pronunciation, and is
optional (defaults to 1.0 if omitted). Multiple pronunciations of the same
word are permitted. All phones in each entry must be present in the phone
models file (see ~am models_fname).

undefined

3.4.2 -lex sent_start _word

Required
Format
Summary
Details

Default

No

-lex_sent_start_word <string>

Specifies the word that starts every result sentence.

If specified, TODE constrains all output word sequences to begin with this
word. The sentence start word can be the same as the silence word and the
sentence end word (most commonly defined as silence). The presence of the
sentence start word in the language model is optional. TODE removes the

sentence start word before writing the decoding result to the output file.
undefined

13

3.4.3 -lex_sent_end word

Required
Format
Summary
Details

Default

No

-lex_sent_end_word <string>

Specifies the word that ends every result sentence.

If specified, TODE constrains all output word sequences to end with this
word. The sentence end word can be the same as the silence word and the
sentence start word (most commonly defined as silence). The presence of the
sentence end word in the language model is optional. TODE removes the

sentence end word before writing the decoding result to the output file.
undefined

3.4.4 -lex sil word

Required
Format
Summary
Details

Default

No

-lex_sil_word <string>

Specifies the silence word.

Specifies a silence word. This word is treated like any other word during
decoding, but all instances in the final output word sequence are removed
before the decoding result is written to file. The silence word can be the same
as the sentence start word and the sentence end word. The silence word is
ignored during language model calculations.

undefined

3.5 Language Model Options

3.5.1 -1m fname

Required
Format
Summary
Details
Default

No

-1m_fname <string>

Specifies the file containing the N-gram language model
The file must be in ARPA format (see Appendix H)
undefined

14

3.5.2 -lm ngram order

Required
Format
Summary
Details

Default

No

-lm ngram order <integer>

Specifies order of N-gram to use for the language model.

The value specified must be < the order of the language model file. A value
of 0 results in no language model being used during decoding. Note that for
N-grams with N > 2, the language model is incorporated in an approximate
way. In the tri-gram LM case (N=3), when evaluating a transition from w; to
w;, the predecessor word of w;, say w; (as determined by the Viterbi search),
is used to retrieve the LM prob that gets associated with the transition
between w; and w;.

0

3.5.3 -1lm_scaling factor

Required
Format
Summary
Details

Default

No

-lm_scaling _factor <real>

Scales language model probabilities during decoding.

Whenever a language model probability is retrieved (in log domain), it is
multiplied by this factor before being incorporated in the decoding.

1.0

3.6 Beam Search Decoding Options

3.6.1 -dec_int _prune window

Required
Format
Summary

Details

Default

No

—dec_int_prune_window <real>

Specifies the (log) window used for pruning hypotheses in word-interior
states.

Needs to be a positive log value. At each time step during decoding, a
threshold is calculated by subtracting this constant from the score of the
best word-interior hypothesis. Any interior-state hypotheses that have scores
below this threshold are deactivated and removed from further consideration.

A 0 or negitive value results in no pruning of interior-state hypotheses.
0.0

15

3.6.2 -dec_end prune window

Required
Format
Summary
Details

Default

No

—-dec_end_prune_window <real>

Specifies the (log) window used for pruning hypotheses in word-end states.
Needs to be a positive log value. At each time step during decoding, a
threshold is calculated by subtracting this constant from the score of the
best word-end hypothesis. Any word-end state hypotheses that have scores
below this threshold are deactivated and removed from further consideration.
The pruning occurs before language model probabilities are applied. A 0 or
negitive value results in no pruning of end-state hypotheses.

0.0

3.6.3 -dec_word entr_pen

Required
Format
Summary
Details

Default

No

-dec_word_entr_pen <real>

Specifies the (log) word insertion penalty used during decoding.

The word insertion penalty value (most commonly a negative log value) gets

added to word-end hypothesis scores during evaluation of word transitions.
0.0

3.6.4 -dec_delayed 1lm

Required
Format
Summary
Details

Default

No

-dec_delayed_1m

Specifies that the application of language model probabilities is to be delayed.
Usually a language model probability P(ws|w;) (assuming a bigram LM) is
applied when a hypothesis makes a transition from the final state of w; to
the initial state of w,. If this option is used, the application of language
model probabilities is delayed and P(wz|w,) is applied to hypotheses that
reach the final state of wy (w, is the predecessor word for the hypothesis).
This approximation can result in significant computational savings (less LM
lookups).

false

16

3.6.5 -dec_verbose

Required No

Format —-dec_verbose

Summary Specifies that frame-by-frame decoding information is to be output.
Details

Default false

17

Appendix A
MLPW File Format

Reproduction of ICSI man page.

18

ICSI SPEECH SOFTWARE MLPW (5)

NAME

mlpw — Family of binary-encoded neural-net weights file for-—
mats used by QuickNet

DESCRIPTION

The mlpw file format is used to store neural net weights in
a more compact and more quickly-accessed format than the
traditional ASCII RAP3 weights(5) format. The same informa-
tion 1is stored in the same order, but the values are coded,
typically as 32 bit floats or 16 bit fixed-point ints, less
often as 8 or 32 bit ints, or 64 bit doubles. Each section
(e.g. weights or biases of a particular layer) may be coded
in a different format.

nmlpw files are usually created with gnstrn(l) (or will Dbe
when it 1s modified to support them) and converted to and
from other formats with gncopywts(1). They will be read

directly by future versions of gnsfwd(l) and ffwd(l).

The header

ICST

The header as currently defined consists of 5 4-byte
integers in big-endian order:

magic magic number = 0x4D4C5057 ("MLPW")
version version code = 20010313 (today)
nettype nettype/version (e.g. softmax)
nlayers count of unit layers (3 for MLP3)
nsections count of sections (4 for MLP3)

Then follow nlayers 4-byte ints specifying the number of
units in each layer (starting at the input), followed by the
sections.

Each section also has a small header, consisting of 3 4-byte
integers:

sectiontype ON_SectionSelector tag for this section
numvalues how many weights in this section
datatype data type flag (bytes/wt + 32 for float)

For fixed-point data formats (only), this is followed by a
4-pbyte int giving the fixed-point ’exponent’ for this sec-—
tion. After this come the actual coded weight wvalues.

In an MLP3, there are 4 sections: (0) input-to-hidden
weights, (1) hidden-to-output weights, (2) hidden layer bias
weights, and (3) output layer Dbias weights. Since Dbias
values occupy a slightly different range (they are typically
distributed around -log(n_units)), they are often stored
with a larger exponent and/or more bits per weight. The
MLPW file format supports this without difficulty.

Last change: $Date: 2001/03/13 19:56:41 $ 1

ICSI SPEECH SOFTWARE MLPW (5)

NOTES/BUGS

Short-format (MLPWS) files are typically 1/4 the size of
ASCII RAP3 files, or 1/2 the size of gzipped ASCII files,
and load 5-10x faster. Since the weights are calculated on
the SPERT boards using 16 bit fixed-point arithmetic, there
is usually no accuracy loss in storing them this way.

You shouldn’t ever have to access these files directly.
Instead, use the QuickNet class ON_MLPWeightFile_MLPW (3) .

Little tested at present.

AUTHOR

Dan Ellis <dpwel@ee.columbia.edu>

SEE ALSO

ICST

gncopywts (1) .

Last change: $Date: 2001/03/13 19:56:41 $ 2

Appendix B

Priors File Format

Reproduction of ICSI man page.

21

ICSI SPEECH SOFTWARE PRIORS (5)

NAME
priors — file format for list of prior probabilities
DESCRIPTION
priors is a y0 —-compatible file format for prior probabili-
ties. These are a by-product of training and are used to

compensate for inequities in the amount of training data for
each target.

The file has the following format:

<0’s prior>
<l’s prior>
<2’s prior>

<n’s prior>
Where

<n’s prior>
is the prior probability of neural network output
number n.

EXAMPLE
Here is a simple example of a prior file

0.85

.01

.04

.02

.05

.01

.01

.01

cNoNoNoNoNeoNe]

In this example, the file contains prior probabilities for
eight neural network outputs.

FILES
An example file can be found in ~drspeech/data/TIMIT/timit6l.PHONE.uniform.y

AUTHOR
Dr. Speech <drspeech@icsi.berkeley.edu>
This manpage was written by Su-Lin Wu <sulin@icsi.berkeley.edu>

SEE ALSO
isr_train(l),

NOTES
Note that for y0 compatibility it is necessary for the pri-
ors file to contain only numbers. Any extraneous words or
lines will cause errors. Also, y0 does not currently check
for the number of priors matching the number of neural

ICSI Last change: $Date: 1995/11/22 18:06:44 $ 1

ICSI SPEECH SOFTWARE PRIORS (5)

network outputs.

ICSI Last change: S$Date: 1995/11/22 18:06:44 $ 2

Appendix C

Norms File Format

Reproduction of ICSI man page.

24

ICSI SPEECH SOFTWARE NORMS (5)
NAME
norms — RAP style speech feature normalization file
DESCRIPTION
The norms file format is used to store speech feature file
normalization data. A norms file is typically associated
with a specific pfile. norms files are used by mlp training
and feed forward programs such as bob(l), CLONES, gntrain(l)
and gnforward(1l)
The norms file consists of two vectors of information - a
vector of means for each feature in the feature file and a
vector of the reciprocal of the standard deviation of each
feature 1in the feature file. The format of the vectors is
tagged ASCII as produced by the RAP matrix/vector library.
FORMAT
The norms file format is:
vec <# of features>
<mean of each feature, one per line>
vec <# of features>
<1/ (standard deviation) of each feature, one per line>
EXAMPLE
vec 18
-4.638622e-01
—-3.881508e-01
-3.207185e-01
-2.973742e-01
-2.367414e-01
-1.349086e-01
-1.126812e-01
—3.952942e-02
1.188954e-02
-1.105962e+00
5.939942e-03
2.394057e-01
2.015354e-01
2.305043e-01
5.061634e-02
5.421233e-02
5.521029e-03
-3.096025e-02
vec 18
1.127764e+00
3.574011e+00
3.911481e+00
4.302862e+00
4.556445e+00
ICSI Last change: $Date: 1995/10/19 04:35:16 $ 1

ICSI SPEECH

WO J00 Uroy Uy = W O o

AUTHOR

SOFTWARE

.444429e+00
.395655e-01
.333607e+00
.928129e+00
.324948e-01
.590791e-01
.079605e-01
.311077e-01
.412703e-01
.254844e-01
.489987e-01
.016648e-01
.070975e+00

David Johnson <davidj@ICSI.Berkeley.EDU>

SEE ALSO

bob (1),

ICST

gnnorm(l),

Last change:

gntrain(l),

SDhate:

gnforward(l),

1995/10/19 04:35:16 $

NORMS (5)

pfile(5)

Appendix D

Online Features File Format

Reproduction of ICSI man page.

27

ICSI SPEECH SOFTWARE ONLINE_FTRS (5)
NAME
online_ftrs - format for feature streams for online use
DESCRIPTION
The online ftrs file format 1is wused when passing speech
feature files around during online recognition. In this
context, "online" means real-time - i.e. there 1is someone
waiting for the results of the processing and data must be
operated on before a complete sentence is available. This
situation has different requirements from e.g. the storage
of features for MLP training, and consequently the data for-—
mat is different.
FORMAT
The format consists of a continuous stream of frames from
one or more sentences. Each frame starts with a single flag
byte, followed by a fixed number of big-endian IEEE single
precision floating point values. For most frames, the flag
byte is zero. For the last frame in each sentence, the flag
byte is 0x80
Note that online ftrs streams contain no speech label infor-
mation, unlike the pfile(5) file format.
EXAMPLE
An example of a trivial online ftrs file with three features
in each frame and two sentences might be:
0x00 1.20 5.40 -5.43
0x00 0.03 5.41 0.76
0x80 0.04 2.31 0.03
0x00 0.34 0.02 1.23
0x00 3.34 4.56 3.23
0x00 4.34 3.43 2.56
0x80 1.02 1.03 0.01
AUTHOR
David Johnson <davidj@ICSI.Berkeley.EDU>
SEE ALSO
pfile(5), gnforward(l), berpdemo(l)
ICSI Last change: $Date: 1996/01/09 01:54:12 $ 1

Appendix E
LNA File Format

Reproduction of ICSI man page.

29

ICSI

NAME

SPEECH SOFTWARE LNA (5)

lna - compressed format for MLP output probablility files

SYNOPSIS

*.1lna

DESCRIPTION

lna is a compression format for speech developed by Tony
Robinson, wused by y0(1l) and noway(l). There are really two
lna formats (8 bit and 16 bit) supported by the software,
but everybody just uses 8 bit.

Basically, each floating point probability is quantized to
an 8 or 16 bit integer by the following formula:

intval = floor (-LNPROB_FLOAT2INT * log(x + VERY_SMALL))

where LNPROB_FLOAT2INT is 24 for 8 bit, and 5120 for 16 bit.
The int 1is then pinned to between 0 and 255 (or 65535).
VERY_SMALL prevents ugliness if the probability is 0.0.

As for the actual file format, it 1s a Dbinary stream of
frames, where each frame consistes of a fixed number of 8 or
16 bit wvalues.

EOS Val0 Vall Val2 ... Valn
EOS is 0x80 if the frame is the last frame in a sentence, O
otherwise. Val0 ... Valn are the quantized integers

corresponding to the probabilities.

SEE ALSO

lna2yOnew (1), rap2lna(l)

AUTHOR

ICST

This man page was written by:

Jonathan Segal <jsegal@ICSI.Berkeley.EDU>
Eric Fosler <fosler@ICSI.Berkeley.EDU>.

updated by: Alfred Hauenstein <alfredh@icsi.berkeley.edu>

Last change: $Date: 1996/08/20 18:56:16 $ 1

Appendix F
CTM File Format

31

Standards, Environments, and Macros ctm(5)

NAME
ctm — Definition of time marked conversation scoring input

DESCRIPTION
This describes the time marked conversation input files to
be used for scoring the output of speech recognizers via the
NIST sclite() program. Both the reference and hypothesis
input files can share this format.

The ctm file format is a concatenation of time mark records
for each word in each channel of a waveform. The records
are separated with a newline. Each word token must have a

waveform id, channel identifier [A | B], start time, dura-
tion, and word text. Optionally a confidence score can be
appended for each word. Each record follows this BNF for-
mat:
CTM :== <F> <C> <BT> <DUR> word [<CONF>]
Where
<F> -
The waveform filename. NOTE: no pathnames or
extensions are expected.
<C> >
The waveform channel. Either "A" or "B".
<BT> —>
The begin time (seconds) of the word, measured
from the start time of the file.
<DUR> —>

The duration (seconds) of the word.

<CONF> —>
Optional confidence score. It 1s proposed that
this score will be used in the future.

The file must be sorted by the first three columns: the
first and the second in ASCII order, and the third by a
numeric order. The UNIX sort command: "sort +0 -1 +1 -2
+2nb -3" will sort the words into appropriate order.

Lines beginning with ’;;’ are considered comments and are
ignored. Blank lines are also ignored.

Included below is an example:

HH Comments follow ’; ;'

;7 The Blank lines are ignored

7654 A 11.34 0.2 YES -6.763
7654 A 12.00 0.34 YOU -12.384530

Scoring Pkg Last change: SCLITE Release 1.0 1

Standards, Environments, and Macros ctm(5)

7654 A 13.30 0.5 CAN 2.806418
7654 A 17.50 0.2 AS 0.537922
7654 B 1.34 0.2 I -6.763

7654 B 2.00 0.34 CAN —-12.384530
7654 B 3.40 0.5 ADD 2.806418
7654 B 7.00 0.2 AS 0.537922

For CTM reference files, a format extension exists to permit
marking alternate transcripts. The alternation uses the
same file format as described above, except three word
strings, "<ALT_BEGIN>", "<ALT>" and "<ALT_END>", are used to
delimit the alternation. Each tag is treated as a word,
with a conversation id, channel and "*"'s for the begin and
duration time.

The alternation is begun using the word "<ALT_BEGIN>", and
terminated using the word "<ALT_END>". 1In between the start
and end, are at least 2 alternative time-marked word
sequences separated by the word "<ALT>". Each word sequence
can contain any number of words. An empty alternative sig-—
nifies a null word.

Below is and example alternate reference transcript for the
words "uh" and "um".

rs
7654 A * * <ALT_BEGIN>

7654 A 12.00 0.34 UM
7654 A * * <ALT>
7654 A 12.00 0.34 UH
7654 A * * <ALT END>
SEE ALSO
sclite (1)
BUGS/COMMENTS

Please contact Jon Fiscus at NIST with any bug reports or
comments at the email address Jjfiscus@nist.gov or by phone,
(301)-975-3182. Please include the version number of
sclite, and any other relevant information.

Scoring Pkg Last change: SCLITE Release 1.0 2

Appendix G

Noway Phone Models File
Format

Extracted from the Noway LVCSR decoder manual page. Note that the
‘interword_pause’ phoneme discussed on the following page is not mandatory
in TODE.

34

-phone_models file
This file defines the phone models. It specifies the
number of states (including entry and exit null
states), the model topology, the transition probabili-
ties and the output probability distributions associ-
ated with each state (obtained using the acoustic input

options) . The format of the file is as follows. The
first line consists of the string ‘PHONE’, and the
second 1line contains an integer giving the number of
phone models. The remainder of the file contains the

descriptions of each phone model. Within a phone HMM O
indexes the ENTRY null state, 1 indexes the EXIT null
state and 2 onwards 1index the real emitting states.
The format for a phone model is:

<id> <number of states> <label>

-1 -2 <probid-1> <probid-2>

<from_state> <#out-trans> <to_state> <prob>
<from_state> <#out-trans> <to_state> <prob>

Where -1 and -2 represent dummy phone numbers for the
the entry and exit states, and <probid-n> represents
the element of the acoustic probability vector
corresponding to that state (1 for each state). The
number of integers on this line equals the number of
states. The remaining lines specify the transition pro-
babilities giving the transitions out of each state;
prob 1is a floating point number (not logprob). An
example entry for the phone ‘aa’ is:

Here ‘aa’ has 2 non-null states, making 4 states total
and 1s a left-to-right “Witerbi’ model, with output
probabilities corresponding to acoustic probability
element 1. Note that an ‘interword-pause’ phone model
is essential to the operation of noway. This between-—
word pause model will typically contain 1 non-null
state that may be skipped, and will use the ‘silence’
distribution. The interword-pause model is placed at
the root of the lexicon and corresponds to an optional
pre-word pause; for edge effects it is also the acous-—
tic realization of sentence_end. Note that the name
‘interword-pause’ is currently hardwired in, and such a
model must appear in the phone models file.

Appendix H

ARPA Language Model File
Format

Reproduction of man page downloaded from SRI website.

log,, N-gram probabilities in ARPA files that are < —90.0 are interpreted
by TODE as —oc.

log,, back-off weights in ARPA files that are < —90.0 are interpreted by
TODE as 0.0.

36

ngram-for mat
NAME

ngram-format - File format for ARPA backoff N-gram models

SYNOPSIS

\data\
ngram 1=nl
ngram 2=n2

ngram N=nN
\1-grams:
p w [bow]

\2-grams
p wl w2 [bow]

\N-grams:
pwl...wN

\endl\
DESCRIPTION

The so-called ARPA (or Doug Paul) format for N-gram backoff models starts with a header,
introduced by the keyword \data\, listing the number of N-grams of each length. Following that,
N-grams are listed one per line, grouped into sections by length, each section starting with the
keyword \N-gram:, where N is the length of the N-grams to follow. Each N-gram line starts with
the logarithm (base 10) of conditional probability p of that N-gram, followed by the words wl...wN
making up the N-gram. These are optionally followed by the logarithm (base 10) of the backoff
weight for the N-gram. The keyword \end\ concludes the model representation.

Backoff weights are required only for those N-grams that form a prefix of longer N-gramsin the
model. The highest-order N-gramsin particular will not need backoff weights (they would be
useless).

Since log(0) (minus infinity) has no portable representation, such values are mapped to alarge
negative number. However, the designated dummy value (-99 in SRILM) isinterpreted as |og(0)
when read back from file into memory.

The correctness of the N-gram counts n1, n2, ... in the header is not enforced by SRILM software
when reading models (although awarning is printed when an inconsistency is encountered). This
allows easy textual insertion or deletion of parametersin amodel file. The proper format can be
recovered by passsing the model through the command

ngram -order N -Im input -write-lm output

Note that the format is self-delimiting, allowing multiple models to be stored in onefile, or to be
surrounded by ancillary information. Some extensions of N-gram modelsin SRILM store additional
parameters after a basic N-gram section in the standard format.

SEE ALSO

ngram(1), ngram-count(1), Im-scripts(1), pfsg-scripts(1).

BUGS

The ARPA format does not allow N-grams that have only a backoff weight associated with them,
but no conditional probability. This makes the format less general than would otherwise be useful
(e.g., to support pruned models, or ones containing a mix of words and classes). The
ngram-count(1) tool satisfies this constraint by inserting dummy probabilities where necessary.

For simplicity, an N-gram model containing N-grams up to length N is referred to in the SRILM
programs as an N-th order model, although techncally it represents a Markov model of order N-1.

AUTHOR

The ARPA backoff format was developed by Doug Paul at MIT Lincoln Labs for research
sponsored by the U.S. Department of Defense Advanced Research Project Agency (ARPA).
Man page by Andreas Stolcke <stolcke@speech.sri.com>.

Copyright 1999 SRI International

Appendix 1

HTK HMM Model Definition
File Format

Extracted from The HTK Book (for HTK version 3.2). TODE supports only
the format shown in Figure 7.3 on the following page. The <GCONST> and
<STREAMINFO> keywords are also permitted in the file but are ignored by
TODE. Any other variation from the format of Figure 7.3 will cause TODE

to return an error.

39

7.2 Basic HMM Definitions 98

~h “hmm2"
<BeginHMM>
<VecSize> 4 <MFCC>
<NumStates> 4
<State> 2 <NumMixes> 2
<Mixture> 1 0.4
<Mean> 4
0.3 0.20.21.0
<Variance> 4
1.0 1.0 1.0 1.0
<Mixture> 2 0.6
<Mean> 4
0.1 0.0 0.0 0.8
<Variance> 4
1.01.01.01.0
<State> 3 <NumMixes> 2
<Mixture> 1 0.7
<Mean> 4
0.1 0.2 0.6 1.4
<Variance> 4
1.01.01.01.0
<Mixture> 2 0.3
<Mean> 4
2.1 0.0 1.0 1.8
<Variance> 4
1.01.01.0 1.0

<TransP> 4
0.0 1.0 0.0 0.0
0.0 0.5 0.5 0.0
0.0 0.0 0.6 0.4
0.0 0.0 0.0 0.0
<EndHMM>

Fig. 7.3 Simple Mixture
Gaussian HMM

Notice that only the second state has a full covariance Gaussian component. The first state has
a mixture of two diagonal variance Gaussian components. Again, this illustrates the flexibility of
HMM definition in HTK. If required the structure of every Gaussian can be individually configured.

Another possible way to store covariance information is in the form of the Choleski decomposition
L of the inverse covariance matrix i.e. ¥ ' = LI/. Again this is stored externally in upper triangular
form so L' is actually stored. It is distinguished from the normal inverse covariance matrix by using
the keyword <LLTCovar> in place of <InvCovar>2.

The definition for hmm3 also illustrates another macro type, that is, ~o. This macro is used
as an alternative way of specifying global options and, in fact, it is the format used by HTK tools
when they write out a HMM definition. It is provided so that global options can be specifed ahead
of any other HMM parameters. As will be seen later, this is useful when using many types of macro.

As noted earlier, the observation vectors used to represent the speech signal can be divided into
two or more statistically independent data streams. This corresponds to the splitting-up of the
input speech vectors as described in section 5.13. In HMM definitions, the use of multiple data
streams must be indicated by specifying the number of streams and the width (i.e dimension) of
each stream as a global option. This is done using the keyword <Streamlnfo> followed by the
number of streams, and then a sequence of numbers indicating the width of each stream. The sum
of these stream widths must equal the original vector size as indicated by the <VecSize> keyword.

3The Choleski storage format is not used by default in HTK Version 2

Appendix J
HTK MLF File Format

Extracted from The HTK Book (for HTK version 3.2). TODE supports a
restricted MLF format, similar to example 2 on the following page. The
first line of the file must be #!MLF!#. This is followed by a number of
transcription entries.

A transcription entry consists of a filename line, followed by the words in
the transcription (on separate lines), and is ended with a line containing the
‘. character.

The filename must be enclosed in double quotes. The filename can be
relative or absolute. The filename should have an extension (eg. .lab).
TODE prunes all path information and the file extension from each filename
and attempts to match the result to an input filename. Therefore, wildcards
are not permitted after the final ‘/” in the file name. After pruning of path
and extension information, the resulting string should uniquely identify an
input file.

41

6.3 Master Label Files 88

6.3.4 MLF Examples

1. Suppose a data set consisted of two training data files with corresponding label files:
a.lab contains

000000 590000 sil
600000 2090000 a
2100000 4500000 sil

b.lab contains

000000 990000 sil
1000000 3090000 b
3100000 4200000 sil

Then the above two individual label files could be replaced by a single MLF

#!MLF!'#

"x/a.lab"

000000 590000 sil
600000 2090000 a
2100000 4500000 sil

"x/b.lab"

000000 990000 sil
1000000 3090000 b
3100000 4200000 sil

2. A digit data base contains training tokens one.1.wav, one.2.wav, one.3.wav, ..., two.l.wav,
two.2.wav, two.3.wav, ..., etc. Label files are required containing just the name of the
model so that HTK tools such as HEREST can be used. If MLFs are not used, individual label
files are needed. For example, the individual label files one.1.1ab, one.2.lab, one.3.lab,

. would be needed to identifiy instances of “one” even though each file contains the same
entry, just

one
Using an MLF containing

#!MLF!'#
"x/one.*.lab"
one

"x/two.*.lab"
two

"x/three.*.lab"
three

<etc.>
avoids the need for many duplicate label files.

3. A training database /db contains directories drl, dr2, ..., dr8. Each directory contains
a subdirectory called labs holding the label files for the data files in that directory. The
following MLF would allow them to be found

#!MLF'#
"x" -> "/db/dr1/labs"
"M -> "/db/dr2/labs"

"x" -> "/db/dr7/labs"
"x" -> "/db/dr8/labs"

