
A Tutorial on the distributions Package

Samy Bengio
Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP)

CP 592, rue du Simplon 4,
1920, Martigny, Switzerland,

bengio@idiap.ch, http://www.idiap.ch/~bengio

October 2, 2002

1 Introduction

The distributions package is aimed at providing support for machine learn-
ing algorithms using the general and statistical concept of a distribution. A
distribution is an object, such as a Gaussian, that can, for instance, compute a
probability of a data, or the likelihood of a data set. The parameters of such a
distribution can be trained using various training algorithms, such as gradient
descent or expectation maximization. Moreover, the package also contains other
related concepts such as conditional distributions.

2 Basic Concepts

As GradientMachine from which they inherit, Distribution objects usually
operate on Sequence objects. For instance, one can ask what is the log like-
lihood of a sequence using the method logProbability(Sequence* inputs).
Note however that many distributions do not use the temporal aspect of a
sequence and hence compute the log likelihood of a sequence as the sum of
the log likelihood of the constituting frames of the sequence. Hence, for these
distributions, the method to provide is frameLogProbability(int t, real*
f inputs). For distributions that compute the log probabilities at the frame
level (such as DiagonalGMM, the data member log probabilities is a sequence
of the same length as inputs which contains for each frame the value of the log
probability of the frame (if the corresponding method has been called of course).
For distributions that compute directly the log probability of the whole sequence
(such as HMM, the data member log probabilities is a sequence of length 1
which contains the log probability of the sequence.

As some distributions need to be initialized before being used on a given se-
quence, it is important to always call the method eMSequenceInitialize(Sequence*

1



inputs) or the method sequenceInitialize(Sequence* inputs) before us-
ing it (hence, if this is the case for your new distribution, don’t forget to redefine
such methods). The difference between the two methods corresponds to which
training algorithm would eventually be used with this distribution.

3 Parameter Training

Numerous training algorithms can be applied in order to select the parameters of
a given distribution. The most known are the gradient descent, the Expectation-
Maximization (EM), and the Viterbi algorithms. For each of these algorithms,
special methods have been created for each distributions and a specific Trainer
object has also been provided. All these trainers should be able to provide the
method train(DataSet* data, MeasurerList *measurers) to train a given
distribution on a given dataset and provide measurements through a given
list of measurers. They should also provide a method test(MeasurerList
*measurers) that simply measures the performance of the new distribution
over the datasets specified in the measurers.

3.1 EM Training

An introduction to the EM algorithm can be found in [1, 2]. Basically, it is an
iterative and batch algorithm that loops through all the sequences in order to
modify the parameters of a given distribution in order to maximize the likelihood
of a given data set. The class EMTrainer implements such algorithm. The
distribution methods to implement in order to use this type of training on a
new distribution are the following:

• setDataSet(data): if the distribution needs to be initialized using a given
dataset, such as DiagonalGMM or Kmeans for instance.

• eMIterInitialize(): this method is called at the begining of every EM
iteration. It is often used to set all the counters to 0.

• eMForward(inputs): this method should normally not be modified. it
calls the methods eMSequenceInitialize(inputs) and
logProbability(inputs).

• eMSequenceInitialize(inputs): this method is called at the begining
of every sequence. It is often used to precompute certain values which will
be constant for the whole sequence.

• logProbability(inputs): this method is used to compute the log prob-
ability of a whole sequence. If your distribution does not handle the time
relations, then you probably don’t need to modify it.

• frameLogProbability(t, inputs): this method should return the log
probability of a given frame of the inputs sequence.

2



• eMAccPosteriors(inputs,log posterior): this method should accu-
mulate the log posterior of the hidden variables related to your distri-
bution, weighted by the global log posterior given.

• eMUpdate(): this method modifies the parameters of the distribution,
according to the log posteriors accumulated for each hidden variable of
your distribution.

3.2 Viterbi Training

The Viterbi training algorithm is a simplified version of the EM algorithm where,
instead of modifiying all the posteriors of all the hidden variables, only the
most probable gets the whole credit. This training algorithm is implemented
in the class EMTrainer using the option viterbi in the constructor. On top of
the methods specialized for EM training, the following methods should also be
defined:

• viterbiForward(inputs): this method should normally not be modified.
it calls the methods eMSequenceInitialize(inputs) and
viterbiLogProbability(inputs).

• viterbiLogProbability(inputs): this method is used to compute the
log probability of a whole sequence using the viterbi method. If your
distribution does not handle the time relations, then you probably don’t
need to modify it.

• viterbiFrameLogProbability(t, inputs): this method should return
the log probability of a given frame of the inputs sequence, using the
viterbi approximation.

• viterbiAccPosteriors(inputs,log posterior): this method should ac-
cumulate the log posterior of the most probable hidden variable related
to your distribution given the input sequence.

3.3 Gradient Descent Training

Most distributions can also be trained using the more general gradient descent
technique. For this to be possible, the distribution should be differentiable with
respect to its parameters and a suitable criterion should be provided. A general
criterion to minimize the negative log likelihood of a sequence (hence maximiz-
ing the likelihood) is provided and named NLLCriterion. The Trainer class
that implements such training is StochasticGradient. Moreover the following
methods of distribution should be modified:

• setDataSet(data): if the distribution needs to be initialized using a given
dataset, such as DiagonalGMM or Kmeans for instance.

• iterInitialize(): this method is called at the begining of every itera-
tion. It is often used to set all the derivatives to 0.

3



• forward(inputs): this method should normally not be modified. it calls
the methods sequenceInitialize(inputs) and logProbability(inputs).

• sequenceInitialize(inputs): this method is called at the begining of
every sequence. It is often used to precompute certain values which will
be constant for the whole sequence.

• logProbability(inputs): this method is used to compute the log prob-
ability of a whole sequence. If your distribution does not handle the time
relations, then you probably don’t need to modify it.

• frameLogProbability(t, inputs): this method should return the log
probability of a given frame of the inputs sequence.

• backward(inputs,alpha): this method is used to compute the derivative
of the parameters with respect to a given criterion. In fact the sequence
alpha contains already the derivative with respect to the likelihood of the
sequence inputs. If your distribution is not using any time relation, then
it should normally not be modified.

• frameBackward(f inputs,f alpha): this method is used to compute the
derivative of the parameters with respect to a given criterion for a given
frame only. In fact the frame vector f alpha contains already the deriva-
tive with respect to the likelihood of the frame f inputs.

Moreover, if one wants to optimize a different criterion than the NLLCriterion,
then the new criterion (that should inherit from Criterion) should implement
the following methods:

• forward(inputs): should put in outputs->frames[0][0] the value of
the criterion to optimize.

• backward(inputs,alpha): should put in beta->frames[0][0] the gra-
dient with respect to this criterion.

4 Examples of Distributions

In this section, I try to explain in more details some implementations regarding
several typical distributions.

4.1 Multinomial

A Multinomial is a distribution over discrete events. It can estimate the proba-
bility of a random variable X to be in one of several finite state: P (X = k) with
k ∈ {0, 1, 2, . . . ,K − 1}. Hence, the most important parameter in the construc-
tor is the number of values K the random variable can take. For each of these
values, a log probability will be kept (and eventually estimated over a dataset).
These log probabilities are kept in the variable log weights. In the following,
you will find several details regarding this distribution:

4



• This distribution does not take time into account, of course.

• The size of the input vector given to its various methods is always equal to
1, and the input vector should contain an integer value that represents the
various values the random variable can take, from 0 to n values minus 1.

• The method frameLogProbability(t, inputs) returns the log proba-
bility of the random variable when it equals the integer value contained
in inputs.

• The variable weights acc contains the posterior of the random variable
being equal to the corresponding value, which is used during EM training
to estimate the log probability.

• The variable prior weights, which is given in the constructor, is used to
initialize the posterior during EM training in order to ensure that each
value gets a minimum number of observations. This represents a Dirichlet
prior on the distribution.

• The variable dlog weights is used to keep the derivative of the criterion
with respect to the parameters, when training with gradient descent.

4.2 DiagonalGMM

A DiagonalGMM is a distribution that represents a Gaussian Mixture Model
with diagonal covariance matrix. The probability of a sequence X given such
distribution is

p(X) =
T∏
t=1

p(xt) =
T∏
t=1

N∑
n=1

wn · N (xt;µn,σn) (1)

where N (xt;µn,σn) is a Gaussian with mean µn ∈ Rd where d is the

number of features and with σn the diagonal of the covariance matrix Σn ∈ Rd
2

:

N (x;µ,Σ) =
1

(2π)
d
2
√
|Σ|

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2)

The following information is specific to such objects:

• This distribution does not take time into account.

• The size of the input vector given to its various methods is the same as
the size of the mean and standard deviation vectors.

• The number of Gaussians is kept in n gaussians.

• The parameters of this distributions are:

5



– log weights: a vector containing the log of the prior probability of
each Gaussian.

– means: a matrix of n gaussians vectors of means.

– var: a matrix of n gaussians vectors of variances.

• A minimum variance for each dimension can be specified with the method
setVarThreshold and is kept in the variable var threshold.

• When the goal is to train such distribution using EM, the initialization
procedure is very important. The most used solution for this is to use a
Kmeans algorithm, providing that an initial kmeans trainer is given
to the constructor. An optional Measurer can also be provided to measure
the Kmeans training.

• While it is possible to train a DiagonalGMM by gradient descent, it is very
sensitive to initial condition and optimization problems are to be expected
regarding the variance.

• For each frame of the current sequence and each Gaussian, the log prob-
ability of the frame given the Gaussian is kept in the Sequence variable
log probabilities g.

• In order to accelerate some computation, methods eMIterInitialize and
sequenceInitialize both recompute several intermediate variables that
are needed to compute the likelihood. One of these methods should im-
peratively be called before computing a likelihood.

4.3 HMM

An HMM is a distribution that represents Hidden Markov Models (HMMs). A
good introduction to HMMs can be found in [3]. Basically, an HMM can model
the density P (X) of sequences X using a factored representation based on a set
of states which are represented by emission distributions P (X|qt = i), where qt
is the state at time t, and a table of transition probabilities P (qt = i|qt−1 = j).
It can be trained by EM, Viterbi, or Gradient Descent, depending on the kind of
distributions used in the states. Moreover, the following information is specific
to HMMs:

• The number of states of the HMM is kept in n states. Note however
that an HMM always contain an initial and a final states which are non
emitting. Hence n states is 2 plus the effective number of states.

• The emission distributions are kept in the table states. Note that states[0]
and states[n states-1] are NULL.

• The transitions are kept in log only and are to be found in the matrix
log transitions, which is n states times n states. It is initialized
using the variable transitions which is given in the constructor. Only

6



the non zero transitions will be considered, hence the non zero transitions
represent the transition distributions.

• In order to train such model, the well-known forward-backward procedure
is used, with the following variables:

– log alpha: contains the log of the alpha variable. During Viterbi
training, it contains the Viterbi score instead.

– log beta: contains the log of the beta variable.

– log probabilities s: contains for each non-null state and each
frame of the current sequence, the log probability of the frame given
the state.

• The following variables are used during EM or Viterbi training:

– transitions acc which is a matrix of the posteriors of each transi-
tion.

– prior transitions is used to initialize the posteriors on the transi-
tions with a Dirichlet prior.

– The initialization of the model is done using either a linear segmen-
tation (assuming a left-to-right model, each sequence is segmented
linearly along the states and each state is then initialized using its
assigned frames) or a full segmentation (each state is assigned a ran-
dom selection of frames and then initialized using these frames).

• The following variables are used during gradient descent training:

– dlog transitions which keeps the derivative of the criterion with
respect to each transition.

• During Viterbi decoding (with the method decode), the variable arg viterbi
keeps track of the previous state in the optimal sequence. Moreover, the
Sequence variable viterbi sequence contains the optimal sequence of
states after decoding.

• The method printTransitions can be used (during debug for instance)
to print the current value of the transition table.

References

[1] C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from
incomplete data via the EM algorithm. Journal of Royal Statistical Society
B, 39:1–38, 1977.

7



[3] Laurence R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

8


