
Single and multiple consecutive permutation
motif search

Djamal Belazzougui?, Adeline Pierrot??,
Mathieu Raffinot? ? ?, and Stéphane Vialette†

Abstract: Let t be a permutation (that shall play the role of the text) on [n] and a

motif p be a sequence of m distinct integer(s) of [n], m ≤ n. The motif p occurs in t

in position i if and only if p1 . . . pm is order-isomorphic to ti . . . ti+m−1, that is, for all

1 ≤ k < ` ≤ m, pk > p` if and only if ti+k−1 > ti+`−1. Searching for a motif p in a text

t consists in identifying all occurrences of p in t. We first present a forward automaton

which allows us to search for p in t in O(m2 log logm + n) time. We then introduce a

Morris-Pratt automaton representation of the forward automaton which allows us to

reduce this complexity to O(m log logm + n) at the price of an additional amortized

constant term. The latter automaton occupies O(m) space. We then extend the problem

to search for a set of motifs and exhibit a specific Aho-Corasick like algorithm. Next we

present a sub-linear average case search algorithm running in O
(

m logm
log logm

+ n logm
m log logm

)
time, that we eventually prove to be optimal on average.

1 Introduction

Two sequences of distinct integers are order-isomorphic if the permutations re-
quired to sort them are the same. A sequence p is said to be a motif (or occurs)
within a sequence t if t has a subsequence that is order-isomorphic to p. Motif
involvement in permutations and sequences has now become a very active area
of research [9]. However, only few results on the complexity of finding motifs
in permutations and sequences are known. It appears to be a difficult problem
to decide given two permutations π and σ whether σ occurs in π, and in this
generality the problem is NP-complete [7]. Let [n] be the set of all integers from
1 to n and let Sn be the set of all permutations on [n]. For σ ∈ Sm and π ∈ Sn,
the O(nm) time brute-force algorithm was improved to O(n0.47m+o(m)) time in
[2]. There are several ways in which this notion of permutation motifs may be
generalized, and we focus here on consecutive motifs (i.e. the match is required
to consist of contiguous elements) [9]. A sequence p is said to be a consecutive
motif or consecutively occurs within a sequence t if t has a substring that is
order-isomorphic to p. Searching for a motif p in a text t consists in identifying
all occurrences of p in t. Recently, using a modification of the classical Knuth-
Morris-Pratt string matching algorithm, a O(n + m logm) time algorithm has

? Helsinki Institute for Information Technology HIIT, Department of Computer
Science, University of Helsinki, Finland

?? Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstrasse
8-10, 1040 Wien, Austria. Most of the work was done when the author was in LIAFA.

? ? ? LIAFA, Univ. Paris Diderot - Paris 7, 75205 Paris Cedex 13, France
† LIGM CNRS UMR 8049, Université Paris-Est, France. vialette@univ-mlv.fr

2

been proposed for checking if a given sequence t of length n contains a substring
which is order-isomorphic to a given motif p of length m [10]. The time com-
plexity reduces to O(n+m) time under the assumption that the symbols of the
motif can be sorted in O(m) time.

Let t be a permutation of length n and p be a sequence of m ≤ n dis-
tinct integers in [n]. First we present a forward automaton which allows us to
search for p in t in O(m2 log logm + n) time. Next, we introduce a Morris-
Pratt automaton representation [11] of the forward automaton which allows us
to reduce this complexity to O(m log logm + n) at the price of an additional
amortized constant term for each symbol of the text. The latter automaton oc-
cupies O(m) space while the former occupies O(m2) space. We then extend the
problem to search for a set of motifs and exhibit a specific Aho-Corasick like
algorithm. Finally we present a sub-linear average case search algorithm run-

ning in O
(

m logm
log logm + n logm

m log logm

)
time that we eventually prove to be optimal

on average. Both lower and upper bounds assume all text permutations to be
equiprobable and all integer values in a motif to be distinct.

Let us define some notations. Let Σn = [n]. Abusing notations, we consider
in this paper permutations of Sn as strings without symbol repetition, and we
denote by Σ∗n the set of all strings without symbol repetition (including the
empty string), where each symbol is an integer in [n]. A prefix (resp. suffix,
factor) u of p is a string such that p = uw,w ∈ Σ∗n (resp. p = wu,w ∈ Σ∗n,
p = wuz,w, z ∈ Σ∗n). We also denote by |w| the number of integer(s) in a string
w,w ∈ Σ∗n. We eventually denote by pr the reverse of p, that is, the string formed
by the symbols of p read in the reverse order. We denote by p≡ the set of words
of Σ∗n which are order-isomorphic to p.

The following property is useful for designing automaton transitions.

Property 1. Let p = p1 . . . pm ∈ Σ∗n and w = w1 . . . w` ∈ Σ∗n, ` < m, such that
w is order-isomorphic to p1 . . . p`, and let α ∈ [n] s.t. wα ∈ Σ∗n. Testing if wα is
order-isomorphic to p1 . . . p`p`+1 can be performed in constant time using only
a pair of integers.

Proof. The pair of integers (x1, x2) is determined as follows: x1 ≤ ` is the
position of the largest number px1 in p1..p` which is smaller than p`+1, if any.
Otherwise, we fix x1 arbitrarily to −∞. Let x2 ≤ ` be the position of the smallest
integer px2

in p1..p` which is larger than p`+1, if any. Otherwise, we fix x2 to
+∞. Now, it suffices to test if wx1

< α < wx2
to check whether wα is order-

isomorphic to p1 . . . p`+1 ut
We define a function rep(p = p1 . . . pm, j) which returns a pair of integers

(x1, x2) that represents the pair defined in Property 1 for the prefix of length j
of the motif p.

2 Tools

Before proceeding, we first describe some useful data structures we shall use
as basic subroutines of our algorithms. The problem called predecessor search

3

problem is defined as follows: given a set S = {x1, x2, . . . , xn} ⊂ [u] (u is called
the size of the universe), we support the following query: given an integer y return
its predecessor in the set S, namely the only element xi such that xi ≤ y < xi+1

1.
In addition, in the dynamic case, we also support updates: add or remove an
element from the set S. The standard data structures to solve the predecessor
search are the balanced binary search trees [1,5]. They use linear space and
support queries and updates in worst-case O(log n) time. However, there exist
better data structures that take advantage of the structure of the integers to get
better query and update time. Specifically, the Van-Emde-Boas tree [13] supports
queries and updates in (worst-case) time O(log log u) using O(u) space. Using
randomization, the y-fast trie achieves O(n) space with queries supported in
time O(log log u) and updates supported in randomized O(log log u) time. The
problem has received series of improvements which culminated with Andersson
and Thorup’s result [4]. They achieve O(n) space with queries and updates

supported in O(min(log log u,
√

logn
log logn)) (the update time is still randomized).

A special case occurs when space u is available and the set of keys S is
known to be smaller than logc u for some constant c. In this case all operations
are supported in worst-case constant time using the atomic-heap [14].

3 Forward search automaton

The problem we consider is to search for a motif p in a permutation t without
preprocessing the text itself. By analogy to the simpler case of the direct search
of a word p in text t, we build an automaton that recognizes (Σ∗n) · p≡.

We formally define our forward search automaton FD(p) built on p = p1 . . . pm
as follows (see Figure 1 for an example): (i) m+ 1 states corresponding to each
prefix (including the empty prefix) of p, state 0 is initial, state m is terminal;
(ii) m forward transitions from state j to j + 1 labeled by rep(p, j + 1);
(iii) some backward transitions δ(x, [i, j]), where x numbers a state, 0 ≤ x ≤ m,
i ∈ {1, . . . , x} ∪ {−∞}, j ∈ {1, . . . , x} ∪ {+∞}, defined the following way:
δ(x, [i, j]) = q if and only if for all pi < α < pj (resp. α < pj if i = −∞,
pi < α if j = +∞), the longest prefix of p that is order-isomorphic to a suffix of
p1 . . . pxα is p1 . . . pq. We also impose some constraints on outgoing transitions:

Let x be the state corresponding to the prefix p1 . . . px. Let us sort all pi, 1 ≤
i ≤ x and consider the resulting order pi0 = −∞ < pi1 < . . . < pik < +∞ =
pik+1

. We build one outgoing transition for each interval [pij , pij+1
], except if

pij+1
= pij + 1. Also we merge transitions that start in the same state and end

if the same state whenever they are labeled by contiguous intervals.
It is obvious that the resulting automaton recognizes a given motif in a

permutation by reading one by one each integer and choosing the appropriate
transition. The main result on the forward automaton is the following.

Lemma 1. Searching for a consecutive motif p = p1 . . . pm in a permutation
t = t1 . . . tn using the forward automaton FD(p) built on p takes O(n) time.

1 By convention, if all the elements of S are larger than y, then return −∞ and if no
elements is larger than y then return xn.

4

+∞]∞−[, ,1[2] +∞],2[

+∞],2[

,2[4]

∞−[,1]

∞−[,1]

∞−[, 3]

∞−[, 3]

,5[4]

+∞],4[

+∞],4[

∞−[, 5]

,3[2]

,3[2]

0 1 2 3 4 5
,1[+∞]

Fig. 1. Forward automaton built on p = (4, 12, 6, 16, 10). State 0 is initial and state 5
is terminal.

We can build the forward automaton in O(m2 log logm) time. However, we
defer the proof of this construction for the following reason. This O(m2 log logm)
complexity might be too large for long motifs. Nevertheless, we show below that
we can compute in a first step a type of Morris-Pratt coding of this automaton
which can either (a) be directly used for the search for the motif in the text and
will preserve the linear time complexity at the cost of an amortized constant
term (we take more time for each text symbol), or (b) be developed to build the
whole forward automaton structure.

Therefore we present and build a new automatonMP that is a Morris-Pratt
representation of the forward automaton. The idea is to avoid building all back-
ward transitions by only considering a special backward single transition from
each state x, x > 0 named failure transition. We formally define our automaton
MP (p) built on p = p1 . . . pm the following way (see Figure 2 for an example):
(i) m+ 1 states corresponding to each prefix (including the empty prefix) of p,
state 0 is initial, state m is terminal;
(ii) m forward transitions from state j to j + 1 labeled by rep(p, j + 1);
(iii) m failure (non labeled) transitions which connect a state j > 0 to a state
k < j if and only if p1 . . . pk is the longest order-isomorphic border of p1 . . . pj :

Definition 1. Let p ∈ Σ∗n. A border of p is a word w ∈ Σ∗n, |w| < |p| that is
order-isomorphic to a suffix of p but also order-isomorphic to a prefix of p.

+∞]∞−[, ,1[2] +∞],2[,3[2]
0 1 2 3 4 5

,1[+∞]

Fig. 2. MP automaton built on p = (4, 12, 6, 16, 10). State 0 is initial and state 5 is
terminal. Backward transitions are failure transitions.

Reading a text t through the MP representation of the forward automaton
is performed the following way. Let us assume we reached state x < m and
we read a symbol ti at position i of the text. Let [k, `] = rep(p, x + 1). If ti ∈
[ti−x−1+k, ti−x−1+`] we follow the forward transition and the new current state
is x+ 1. Otherwise, we fail reading ti from x and we retry from state q = fail(x)
and so-on until (a) either q is undefined, in which case we start again from state
0, (b) or a forward transition from q to q + 1 works, in which case the next
current state is q + 1.

5

Lemma 2. Searching for a motif p in a text t1 . . . tn using the Morris-Pratt
representation MP (p) of the forward automaton built on p takes O(n) time.
In order to prove Lemma 2 we need to focus on the classical notion of border
that we have extended to our framework in Definition 1.

The construction of the forward automaton relies on the maximal border of
each prefix that is followed by an appropriate integer in the motif. The Morris-
Pratt approach is based on the following property:

Property 2. A border of a border is a border.

This property allows us to replace the direct transition of the forward algo-
rithm by a search along the borders, from the longest to the smallest, to identify
the longest one that is followed by the appropriate integer. We state now that we
can build the Morris-Pratt representation of the forward automaton efficiently.

Lemma 3. Building a Morris-Pratt representation of the forward automaton on
a consecutive motif p = p1 . . . pm can be performed in (worst-case) O(m log logm)
time.

Lemma 2 and 3 allow us to state the main theorem of this section.

Theorem 1. Searching for a consecutive motif p = p1 . . . pm in a permutation
t = t1 . . . tn can be done in O(m log logm+ n) time.

The Morris-Pratt representation of the forward automaton permits to search
directly in the text at the price of larger amortized complexity (considering the
constant hidden by the O notation) than that required by searching with the
forward automaton directly. If the real time cost of the search phase is an issue,
the forward automaton can be built from its Morris-Pratt representation.

Property 3. Building the forward automaton of a consecutive motif p = p1 . . . pm
can be performed in O(m2 log logm) time.

An interesting point is that the construction of the forward automaton from
its Morris-Pratt representation can also be performed in a lazy way, that is,
when reading the text. The missing transitions are then built on the fly when
needed.

4 Multiple worst case linear motif searching

We can extend the previous problem defined for a single motif to a set of motifs
S. We denote by d the number of motifs, by m the total length of the motifs
and by r the length of the longest motif. For this problem we adapt the Aho-
Corasick automaton [3] (or AC automaton for short). We first recall the classical
construction of the AC automaton (for regular motifs). The AC automaton is
a generalization of the MP automaton to a set of multiple motifs. We denote
by P the set of prefixes of strings in S. In order to simplify the description
we will assume that the set of motifs S is prefix-free. That is, we will assume

6

that no motif is prefix of another. Extending the algorithm to the case where
S is non-prefix free, should not pose any particular issue. The states of the AC
automaton are defined in the same way as in the MP automaton. Each state
t in the AC automaton corresponds uniquely to a string q ∈ P . The forward
transitions are defined as follows: there exists a forward transition connecting
state s corresponding to a prefix q to each state corresponding to an element
qc ∈ P (where c is a single symbol). Thus this definition of the forward tran-
sitions matches essentially the definition of the forward transitions in the MP
automaton. The failure transitions are defined as follows: the failure transition
from the state s corresponding to a prefix q goes to the state s′ corresponding to
the longest string q′ such that q′ ∈ P , q′ is a suffix of q and q′ 6= q. The matching
using the AC automaton is done in the same way as in theMP automaton using
the forward and failure transitions.

Our extension of the AC automaton. We could use exactly the same
algorithm as the one used previously for our variant of theMP automaton with
few differences. We describe our modification to the AC automaton to adapt it
to the case of consecutive permutation matching (a similar result which has been
independently discovered is described in [8]). An important observation is that
we could have two or more elements of P that are both of the same length and
order-isomorphic. Those two elements should have a single corresponding state
in the AC automaton. Thus, if two or more elements of P are order-isomorphic
we keep only one of them. For the forward transitions, we can associate a pair of
positions (x1, x2) to each forward transition. Then we can check which transition
is the right one from a state corresponding to a string q by checking the condition
ti−|q|−1+x1

< ti < ti−|q|−1+x2
for every pair (x1, x2) and take the corresponding

transition. As any state can have up to d outgoing transitions, the time taken
to choose the transition would grow to O(d). We reduce the time to O(log d) by
organizing the forward transitions outgoing from the same state into a balanced
binary search tree. That is we put at the root of the balanced binary search
tree the pair of positions (x1, x2), where x1 is the median of all transition pairs
(sorting the pairs by px1

values), and then on the left (resp. right) subtree all
transitions whose corresponding pairs (x1 component) point to (resp. larger)
smaller values in the motif.

Altenatively we can use a different approach based on a dynamic balanced
binary search tree (or more sophisticated dynamic predecessor data structure).
With the use of a binary search tree, we can achieve O(log r) time to decide
which transition to take. More precisely, each time we read ti we insert the pair
(ti, i) into the binary search tree. The insertion uses the number ti as the key.
Now suppose that we only pass through forward transitions. Then a transition
at step i is uniquely determined by: (1) the current state s corresponding to an
element q ∈ P ; (2) the position of the predecessor of ti among ti−|q| . . . ti−1.

To determine the predecessor of ti among ti−|q| . . . ti−1, the dynamic binary
search tree should contain precisely the |q| pairs corresponding to ti−|q| . . . ti−1.

In order to maintain the dynamic binary search tree we must do the following
actions while passing through a failure or a forward transition: (1) whenever

7

we pass through a forward transition at a step i we insert the pair (ti, i); (2)
whenever we pass through a failure transition from a state corresponding to a
prefix q1 to a state corresponding to a prefix q2, then we should remove from the
binary tree all the pairs corresponding to the symbols ti−|q1| . . . ti−|q2|.

It should be noted that each removal or insertion of a pair into the binary
search tree takes O(log r) time. The upper bound O(log r) comes from the fact
that we never insert more than r elements in the binary search tree. Since in
overall we are doing O(n) insertions or removals, the amortized time should
simplify to O(n log r). Finally if we replace binary search tree with a more ef-
ficient predecessor data structure, we will be able to achieve randomized time

O(n·τ) where τ = min(log log n,
√

log r
log log r) is the time needed to do an operation

on the predecessor data structure (see Section 2 for details). We use the linear
space version of the predecessor data structure which guarantees only random-
ized performance but uses O(r) ≤ O(m) additional space only. We thus have the
following theorem :

Theorem 2. Searching in a text of size n for a set of d consecutive motifs whose
AC automaton has been built and where the longest motif is of length r can be

done in randomized O(n · τ) time, where τ = min(log log n,
√

log r
log log r , log d).

Preprocessing. We now show that the preprocessing phase can be done in
worst-case O(m log log r) time. As before our starting point will be to sort all
the motifs and reduce the range of symbols of each motif of length ` from range
[n] to the range [1..`]. This takes worst-case time O(m log log r).

Recall that two or more elements of P of the same length and order-isomorphic
should be associated with the same state in the AC automaton. In order to
identify the order-isomorphic elements of P , we will carry a first step called
normalization. It consists in normalizing each motif. A motif p is normalized by
replacing each symbol pj by the pair rep(p = p1 . . . pj−1, j) (consisting in the
positions of the predecessor and successor among symbols p1 . . . pj−1). This can
be done for all motifs in total O(m log log r) time. In the next step, we build a
trie on the set of normalized motifs. This takes linear time. The trie naturally
determines the forward transitions. More precisely any node in the trie will rep-
resent a state of the automaton and the labeled trie transitions will represent
follow transitions.

Note that unlike the forward automaton (or theMP automaton) there could
be more than one outgoing forward transition from each node. In order to en-
code the outgoing transitions from each node, we will make use of a hash table
that stores all the transitions outgoing from that node. More precisely for each
transition labeled by the pair rep(p = p1 . . . pj−1, j) and directed to a state q,
the hash table will associate the key p1 associated with the value q. If we want
to achieve complexity O(log d) per transition, then we organize the transition
in a balanced binary search tree instead of a hash table. Now that the next
transitions have been successfully built, the final step will be to build the failure
transitions and this takes more effort. The construction of the failure transitions

8

can also be done in worst-case O(m log log r) time, but for lack of space we defer
the details to the extended version [6].

We thus have the following theorem:

Theorem 3. Building the AC automaton for a set of d consecutive motifs of
total length m and where the longest motif is of length r can be done in worst-case
O(m log log r) time.

5 Single sublinear average-case motif searching

Algorithm forward takes O(n + m log logm) time in the worst case but also on
average. We present now a very simple and efficient average case-algorithm which
takes O(m logm

log logm + n logm
m log logm) time.

In order to search for a motif p in t, we first build a tree T of all isomorphic-
order factors of length b = d 3.5 logm

log logme of pr (the reverse of p). T is built by
inserting each such factor one after the other in a tree and building the corre-
sponding path if it does not already exist. The construction of this tree requires
O(m logm

log logm) time (details are given below). The matching phase is performed
through a window of size m that is shifted along the text. For each position of
this window, b symbols are read backward from the end of the window in the
tree T . Two cases may occur: (i) either the factor is not recognized as a factor
of pr. This means that no occurrence of p might overlap this factor and we can
safely shift the search window past the first symbol of this factor;
(ii) or the factor is recognized, in which case we simply check if the motif is
present using a naive O(m) algorithm, and we repeat this test for the next m−b
symbols. This might require O(m2) steps in the worst case.
In both cases we then shift the window of m− b+ 1 symbols.

Let us analyze the average complexity of our algorithm, in the following
model: all text permutations are considered to be equiprobable, all integer values
in a motif are distinct.

We count the average number of symbol comparisons required to shift the
search window of m− b+1 symbols to the right. As there are n/(m− b+1) such
segments of length m− b+ 1 symbols in n, we will simply multiply the resulting
complexity of the matching phase by n/(m− b+ 1) = O(n/m) to get the whole
average complexity of our algorithm (assuming T is already built).

There might be O(b!) distinct motifs that could appear in the text while
this number is bounded by m − b + 1 in the motif (one by position). Thus,
with a probability bounded by m−b+1

b! we will recognize the segment of the text
as a factor of p and enter case 2. In which case, moving the search window of
m − b + 1 = O(m) symbols to the right using the naive algorithm will require
O(m2) worst case time.

In the other case which occurs with probability at least 1− m−b+1
b! , shifting

the search window by m − b + 1 symbols to the right only requires reading b
numbers.

The average complexity (in terms of number of symbol reading and com-
parisons) for shifting by m − b + 1 symbols is thus (upper) bounded by A =

9

O((m2)m−b+1
b! + b(1 − m−b+1

b!)) and the whole complexity by O((n/m)A). By
expanding and simplifying A we get that A = O(b + O(m3/b!)). Now using
the famous Stirling approximation ln(k!) = k ln k − k + O(ln k), it is not diffi-
cult to prove that b! = 2b log b−b log e+O(log b) = Ω(m3) and thus A = O(b) and
the whole average time complexity (in terms of number of symbol reading and
comparisons) turns out to be O(n logm

m log logm).

Implementation details. The tree T can actually be built in O(m logm
log logm)

time by using appropriate data structures. Recall that the tree T recognizes
all the factors of pr of length d 3.5 logm

log logme. To implement T , we use the same
AC automaton presented in previous section to build the tree T , but with
two differences: we only need forward transitions and the length of any mo-
tif is bounded by logm

log logm . Thus the cost is upper bounded by O(m logm
log logm · τ),

where τ is the time needed to do an operation on the predecessor data struc-
ture (maximum of the times needed for inserts/deletes and searches). We now
turn our attention to the cost of the matching phase. From the previous sec-
tion, we know that the total complexity in terms of number of symbol reading
and comparisons is O(n logm

m log logm). The total cost of the matching phase is domi-
nated by the multiplication of the total number of text symbols read multiplied
by the cost of a transition in the AC automaton which itself is dominated by

τ = O(min(log logn,
√

log r
log log r , log d)), the time to do an operation on a prede-

cessor data structure (or traversing a balanced binary search tree of size O(d)).
The total cost of the matching phase is thus O(n logm

m log logm · τ).
Now the performance of both matching and building phases crucially depend

on the used predecessor data structure. If a binary search tree is used then

τ = O
(

log logm
log logm

)
= O(log logm) and the total matching time becomes O(n ·

τ) = O(n log logm), and the total building time becomes O(m logm). However,
we can do better if we work in the word-RAM model. Namely, we can use the
atomic-heap (see Section 2) which would add additional o(m) words of space
and support all operations (queries, inserts and deletes) in constant time on

structures of size logO(1)m. In our case, we have structures of maximal size
O(logm

log logm) and thus the operations can be supported in constant time. We thus
have the following theorem:

Theorem 4. Searching for a consecutive motif p = p1 . . . pm in a permutation
t = t1 . . . tn can be done in average O(m logm

log logm + n logm
m log logm) time.

6 Average optimality

We prove in this section a lower bound on the average complexity of any consec-
utive motif matching algorithm. The proof of this bound is inspired by that of
Yao [15] which proved an average lower bound for matching a (regular) motif of
length m in a text of length n. We prove in our case of interest an average lower
bound of Ω(n logm

m log logm) considering all permutations over [n] to be equiproba-
ble. As this average complexity is reached by the algorithm we designed in the
previous section, this bound is tight.

10

We begin to circumscribe our problem on small segments of length 2m−1 of
the text into which we search for. Precisely, following [15,12], we divide our text in
bn/(2m−1)c contiguous and non-overlapping segments si, 1 ≤ i ≤ bn/(2m−1)c,
such that si(t) = t(2m−1)(i−1)+1 . . . t(2m−1)i. When searching for a motif in t,
there might be occurrences overlapping two blocks. But as we are interested in a
lower bound, the following lemma allows us to focus on the inside of all segments.

Lemma 4. A lower bound for finding a motif p inside all segments si(t) is also
a lower bound to the problem of searching for all occurrences of p in t.

We now claim that instead of focusing on all segments si(t), we can focus on
obtaining a lower bound to search p in any single segment. Indeed these segments
are non-overlapping and we are searching inside the segments.

Lemma 5. The average time for searching for p inside all segments si(t) is
bn/(2m−1)c times the average time for searching for p inside any such segment.

Let E(m) be the average complexity for searching a motif p of size m in
any segment of size 2m− 1. Using the two previous lemmas, the whole average

complexity is at least
∑bn/(2m−1)c

i=1 E(m) = bn/(2m−1)cE(m) = Ω(n/m)E(m).

It remains only to prove the lower bound E(m) = Ω(logm
log logm) to obtain the

claimed lower bound for the whole problem.
Recall that we consider all m! motif of size m to be equiprobable among the

set Sm of permutations of length m. For 0 < ` ≤ m, let Pm(`) be the set of
motifs of size m that can be searched using a sliding window of size m over a
text of size 2m − 1 and checking only ` positions in this window. Then Sm is
the disjoint union of Pm(`) and Sm \Pm(`), that is the set of motifs that can be
searched with only ` accesses and the others. For all motif in Pm(`), the average
search complexity is counted 1 (lower bound). For any other motif in Sm\Pm(`),
the average search complexity is at least `+1. This leads to the following lemma:

Lemma 6. For 0 < ` ≤ m, let C(m, `) = |Pm(`)|+(m!−|Pm(`)|)(`+1)
m! . Then C(m, `)

is a lower bound for the average complexity E(m).

We want now to maximize our bound in order to get a tight bound. To do
so, we can choose ` depending on m.

Lemma 7. There exists `(m) s.t. 0 < `(m) ≤ m and C(m, `(m)) = Ω(logm
log logm).

We now sketch the proof of Lemma 7. As C(m, `) decreases when Pm(`)
increases, we search an upper bound for Pm(`). We prove that |Pm(`)| ≤
m!
(
1− 1

`!

)dm−1

`2
e

in the same way Yao proved the counting lemma of [15]. Thus

we have C(m, `) ≥ `+ 1− ` ·
(
1− 1

`!

)dm−1

`2
e

We claim that ` = b logm
log logm with b = 1+o(1) satisfies 98/100 ≤

(
1− 1

`!

)dm−1

`2
e ≤

99/100 (Equation (E)). This gives C(m, `(m)) ≥ ` + 1 − 98/100` = Ω(`) =
Ω(logm

log logm), stating the lemma.
The idea to prove our claim :

11

Let us impose
⌈
m−1
`2

⌉
× 1

`! ≤ 1/10 (ineq.1). This allows us to approximate

Equation (E) using the classical formula (1 + x)a = 1 + ax + a(a−1)
2! x2 + . . . +

a!
n!(a−n)!x

n = 1 + ax+ γ where a =
⌈
m−1
`2

⌉
, x = −1

`! and γ =
∑n

i=2
a!

i!(a−i)!x
i. It is

easy to see that inequality (1) implies that γ converges and is dominated by its

first term which is bounded a(a−1)
2! x2 ≤ 1/200. We thus deduce that (1 + x)a ∈

[1+ax, 1+ax+1/200] which implies that (1+x)a−1/200 ≤ 1+ax ≤ (1+x)a. From

(1 +x)a = |Pm(`)|
m! ∈ [98

100 ,
99
100], we obtain 98

100 −
1

200 ≤ 1 + ax ≤ 99
100 . By replacing

a and x in 1+ax we get : 98
100−

1
200 = 195/200 ≤ 1−

⌈
m−1
`2

⌉
× 1

`! ≤ 99/100. Then

we prove that ` = b logm
log logm with b = 1 + o(1) satisfy these two last inequalities

and inequality (1), implying that Equation (E) is satisfied.
Putting all the lemmas of this section together, we have that Ω(n logm

m log logm)
is a lower bound of the whole average complexity for searching for a consecutive
motif in a permutation.

References

1. M. AdelsonVelskii and E.M. Landis. An algorithm for the organization of infor-
mation. Defense Technical Information Center, 1963.

2. S. Ahal and Y. Rabinovich. On Complexity of the Subpattern Problem. SJDM,
22(2):629–649, 2008.

3. A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975.

4. A. Andersson and M. Thorup. Dynamic ordered sets with exponential search trees.
J. ACM, 54(3):13, 2007.

5. R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta informatica, 1(4):290–306, 1972.

6. D. Belazzougui, A. Pierrot, M. Raffinot, and S. Vialette. Single and multiple
consecutive permutation motif search. CoRR, abs/1301.4952, January 21 2013.

7. P. Bose, J.F.Buss, and A. Lubiw. Pattern matching for permutations. Information
Processing Letters, 65(5):277–283, 1998.

8. J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos, K. Park, S. J. Puglisi,
and T. Tokuyama. Order preserving matching. arXiv preprint arXiv:1302.4064,
2013.

9. S. Kitaev. Patterns in Permutations and Words. EATCS. Springer, 2011.
10. M. Kubica, T. Kulczyński, J. Radoszewski, W. Rytter, and T. Waleń. A linear time

algorithm for consecutive permutation pattern matching. Information Processing
Letters, 2013.

11. J. H. Morris, Jr and Vaughan R. Pratt. A linear pattern-matching algorithm.
Technical report, Univ. of California, Berkeley, 1970.

12. G. Navarro and K. Fredriksson. Average complexity of exact and approximate
multiple string matching. TCS, 321(2-3):283–290, 2004.

13. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Inf. Process. Lett., 6(3):80–82, 1977.

14. D. E. Willard. Examining computational geometry, van Emde Boas trees, and
hashing from the perspective of the fusion tree. SIAM J. Comput., 29(3):1030–
1049, December 1999.

15. A. C. Yao. The complexity of pattern matching for a random string. SIAM Journal
on Computing, 8(3):368–387, 1979.

