Lattice and Hopf algebra of integer relations

Viviane Pons with Grégory Châtel and Vincent Pilaud

Université Paris-Sud

Séminaire Flajolet 21/09/2017

 \rightarrow All these objects (and more) can be interpreted in terms of *integer posets*.

Weak order on permutations Integer posets and combinatorial objects Interval-posets

Permutation poset

4312

4312

4312 1 2 3

3412

Relation associated to a permutation

$$\dots x \dots y \dots \Rightarrow x R y \mid 4312$$

Relation associated to a permutation

$$\mathbf{R}^{\mathsf{Inc}} = \{i \, \mathbf{R} \, j, i < j\}$$

$$\mathbf{R}^{\mathsf{Dec}} = \{j \, \mathbf{R} \, i, i < j\}$$

$$R \preccurlyeq S \Leftrightarrow \qquad \qquad R^{\mathsf{Inc}} \supseteq S^{\mathsf{Inc}} \ \mathsf{and} \ R^{\mathsf{Dec}} \subseteq S^{\mathsf{Dec}}$$

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

→ Tamari lattice

$$--+-+$$
 1 2 3 4 5 6

$$--+-+$$
 1 2 3 4 5 6

$$--+-+$$
 1 2 3 4 5 6

 \rightarrow Boolean lattice

Permutation intervals

	intervals of permutations	intervals of binary trees	intervals of binary sequence
	(weak order)	(Tamari lattice)	(boolean lattice)
$a \rightarrow b c \Rightarrow$			
a b c ⇒			

	intervals of permutations (weak order)	intervals of binary trees (Tamari lattice)	intervals of binary sequence (boolean lattice)
$\overbrace{\qquad \qquad }_{a} \xrightarrow{b} _{c} \Rightarrow$	a b c Or	,	
$a b c \Rightarrow$	a b c Or		
	a b c		

	intervals of permutations (weak order)	intervals of binary trees (Tamari lattice)	intervals of binary sequence (boolean lattice)
$a \rightarrow c \Rightarrow$	a b c Or	a b c	
$a b c \Rightarrow$	a b c Or	a b c	
	a b c		

	intervals of	intervals of	intervals of
	permutations	binary trees	binary sequence
	(weak order)	(Tamari lattice)	(boolean lattice)
${a}$ b c \Rightarrow	a b c or	a b c	a b c
	a b c		
$a b c \Rightarrow$	a b c Or	a b c	a b c
	a b c		

R is a binary relation of size n.

 $1 \quad 2 \quad \cdots \quad i \quad \cdots \quad j \quad \cdots \quad k \quad \cdots \quad n$

R is a binary relation of size n.

$$1 \quad 2 \quad \cdots \quad i \quad \cdots \quad j \quad \cdots \quad k \quad \cdots \quad m$$

R is a binary relation of size n.

R is a binary relation of size n.

R is a binary relation of size n.

Family of size $2^{n(n-1)}$.

Weak order

Let ${\rm R}$ an integer binary relation

$$\mathbf{R}^{\mathsf{Inc}} = \{i \, \mathbf{R} \, j, i < j\}$$

$$\mathbf{R}^{\mathsf{Dec}} = \{j \, \mathbf{R} \, i, i < j\}$$

Weak order

Let R an integer binary relation

$$R^{\mathsf{Inc}} = \{i R j, i < j\}$$

$$R^{\mathsf{Dec}} = \{j R i, i < j\}$$

Let R and S be two integer binary relations

$$R \preccurlyeq S \Leftrightarrow \qquad \qquad R^{\mathsf{Inc}} \supseteq S^{\mathsf{Inc}} \ \mathsf{et} \ R^{\mathsf{Dec}} \subseteq S^{\mathsf{Dec}}$$

Motivation Poset interpretation Lattice and Hopf algebra

Hopf algebra

$$R \times S = \sum_{k} R_{k}$$

$$1 - 2 \times 1 = \sum_{n=1}^{\infty} 1 - 2 - 3$$

$$= 1 - 2 - 3 + 1 - 2 - 3 + 1 - 2 - 3 + 1 - 2 - 3 + \dots$$

Coproduct

$$\triangle R = \sum P \otimes Q$$

where
$$R = P \cup Q \cup (P \rightarrow Q)$$

$$\triangle \stackrel{1}{\stackrel{2}{\longrightarrow}} \stackrel{3}{=} \stackrel{1}{\stackrel{2}{\longrightarrow}} \stackrel{3}{\otimes} \emptyset$$

$$\triangle \stackrel{1}{\stackrel{2}{\longrightarrow}} \stackrel{3}{=} \stackrel{1}{\stackrel{2}{\longrightarrow}} \stackrel{3}{\otimes} \emptyset + \stackrel{1}{\otimes} \stackrel{1}{\otimes} \stackrel{2}{\longrightarrow}$$

$$\triangle \stackrel{1}{\overset{2}{\overset{3}}} = \stackrel{1}{\overset{2}{\overset{3}}} \otimes \emptyset + \stackrel{1}{\overset{3}{\overset{3}}} \otimes \stackrel{1}{\overset{2}{\overset{4}{\overset{3}}}} + \stackrel{1}{\overset{2}{\overset{3}}} \otimes \stackrel{1}{\overset{4}{\overset{4}{\overset{4}{\overset{3}}}}} \otimes \stackrel{1}{\overset{4}{\overset{4}{\overset{4}{\overset{4}}}}} \otimes \stackrel{1}{\overset{4}{\overset{4}{\overset{4}{\overset{4}}}}} \otimes \stackrel{1}{\overset{4}{\overset{4}{\overset{4}}}} \otimes \stackrel{1}{\overset{4}{\overset{4}{\overset{4}}}} \otimes \stackrel{1}{\overset{4}{\overset{4}}} \otimes \stackrel{1}{\overset{4}} \overset{1}{\overset{4}} \overset{1}} \overset{1}{\overset{4}} \overset{1}$$

Integer Posets

We restrict ourselves to transitive antisymmetric relations.

Hopf algebra of integer poset

Quotient of the integer relations Hopf algebra $\mathrm{R} \equiv 0$ if R is not a poset.

Motivation Poset interpretation Lattice and Hopf algebra

$$1 \longrightarrow 2 \times 1 = 1 \longrightarrow 3$$

$$1 \longrightarrow 2 \times 1 = 1 \longrightarrow 3 + 1 \longrightarrow 3$$

$$1^{\circ}_{2} \times 1 = 1^{\circ}_{2} \times 1 + 1^{\circ}_{2} \times$$

$$1^{\circ}2 \times 1 = 1^{\circ}2 + 1^{\circ}2$$

$$1 \longrightarrow 2 \times 1 = 1 \longrightarrow 2 \longrightarrow 3 + 1 \longrightarrow 3 + 1 \longrightarrow 3 + 1 \longrightarrow 3$$

$$1^{\circ}_{2} \times 1 = 1^{\circ}_{2} \times 1 + 1^{\circ}_{2} \times$$

To check: is it well defined?

$$\begin{aligned} \mathbf{P} \times \mathbf{0} &= \mathbf{0} \\ \triangle \mathbf{0} &= \mathbf{0} \end{aligned}$$

$$P \times 0 = 0$$

$$1 2 3 \times 1 2 =$$

$$P \times 0 = 0$$

$$1 - 2 - 3 \times 1 - 2 = 1 - 2 - 3 - 4 - 5 + 1 - 2 - 3 - 4 - 5 + \dots$$

$$\triangle 0 = 0$$

$$\triangle$$
 1 =

$$\triangle$$
 1 2 3 =

$$\triangle 0 = 0$$

$$\triangle \ \ ^{1} \bigcirc ^{2} \ = \emptyset \otimes \ \ ^{1} \bigcirc ^{2} \ + \ \ ^{1} \bigcirc ^{2} \ \otimes \emptyset$$

$$\triangle$$
 1 2 3 =

$$\triangle 0 = 0$$

$$\triangle \ \ ^{1}\bigcirc{}^{2} \ = \emptyset \otimes \ \ ^{1}\bigcirc{}^{2} \ + \ \ ^{1}\bigcirc{}^{2} \ \otimes \emptyset$$

$$\triangle \stackrel{1}{\overset{2}{\overset{3}}} = \emptyset \otimes \stackrel{1}{\overset{2}{\overset{3}}} + \stackrel{1}{\overset{2}{\overset{3}}} \otimes \emptyset$$

Question: can we restrict to intervals of permutations?

Question: can we restrict to intervals of permutations?

Yes!

Interval-poset of permutations

Product

Interval-poset of permutations

Product

$1 \quad 2 \quad 3 \quad \times \quad 1 \quad = \quad 1 \quad 2 \quad 3 \quad 4 \quad + \quad 1 \quad 2 \quad 3 \quad 4 \quad + \dots$

Coproduct

Product with 0

Coproduct of 0

$$\triangle$$
 1 2 3 =

Product with 0

Coproduct of 0

$$\triangle$$
 1 2 3 =

Product with 0

Coproduct of 0

$$\triangle \stackrel{\frown}{_{1}} \stackrel{\frown}{_{2}} \stackrel{\frown}{_{3}} = \emptyset \otimes \stackrel{\frown}{_{1}} \stackrel{\frown}{_{2}} \stackrel{\frown}{_{3}} + \stackrel{\frown}{_{1}} \stackrel{\frown}{_{2}} \stackrel{\frown}{_{3}} \otimes \emptyset$$

Question: can we restrict to intervals of binary trees (and binary sequences)?

Question: can we restrict to intervals of binary trees (and binary sequences)?

Not exactly... But

Question: can we restrict to intervals of binary trees (and binary sequences)?

Not exactly... But

Lattice: ok

Hopf algebra: as a sub algebra of the Hopf algebra on

permutations intervals

References

- Châtel, Pilaud, P. The weak order on integer posets arXiv:1701.07995
- ▶ Pilaud, P. Permutrees arXiv:1606.09643
- Pilaud, P. The Hopf algebra of integer posets (work in progress)