From binary relations to Tamari lattice

Viviane Pons with Grégory Châtel and Vincent Pilaud

Université Paris-Sud

Discrete Structure Days

Posets and lattice Bubble sort on permutations Géométrie, combinatoire, algèbre

What is an order?

What is an order?

Natural order on integers: $1 < 2 < 3 < \dots$

What is an order?

Natural order on integers: $1 < 2 < 3 < \dots$

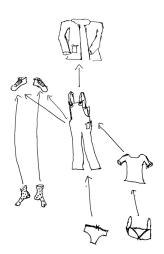
Partial orders?

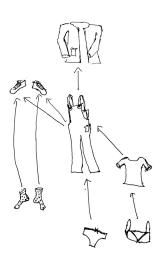
What is an order?

Natural order on integers: $1 < 2 < 3 < \dots$

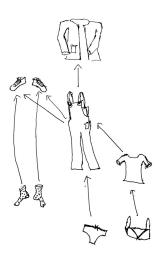
Partial orders?

The closet-poset!

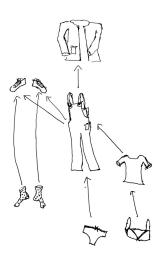




Antisymmetric

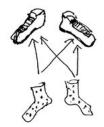


- Antisymmetric
- ► Transitive



- Antisymmetric
- ► Transitive
- ► Lattice?

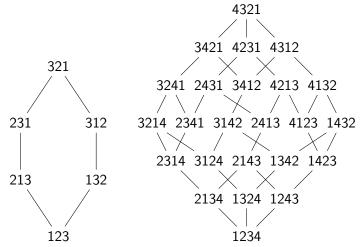
Non lattice example:

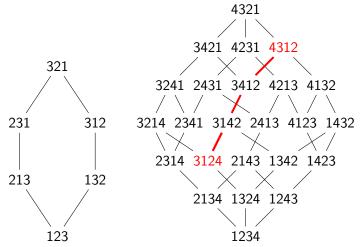


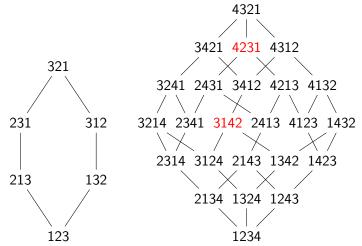
251436

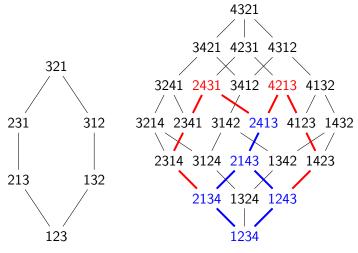
251436

251**43**6 215436

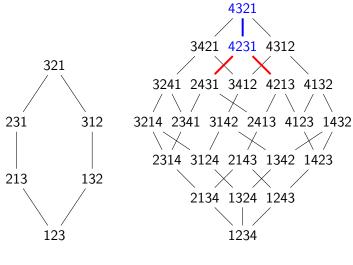








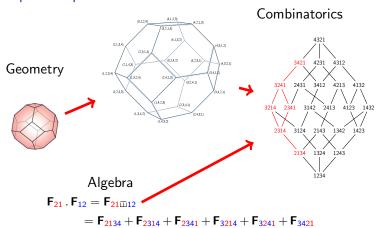
 $2413 \land 4213 = 2413$



$$2413 \land 4213 = 2413$$

 $2413 \lor 4213 = 4231$

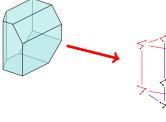
Triple interpretation



Triple interpretation

Geometry

Combinatorics

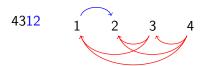


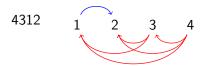
Algebra
$$P \cdot P = P + P + P + P + P + P$$

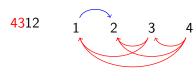
4312

4312

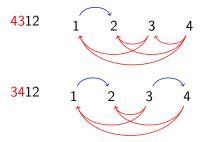


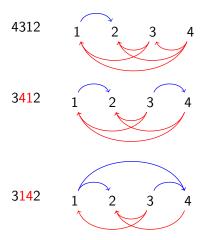






3412



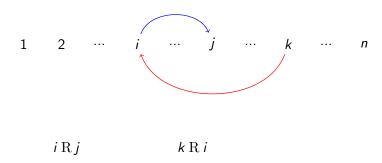


Binary Relations on integers Let R be a relation of size n.

 $1 \quad 2 \quad \cdots \quad i \quad \cdots \quad j \quad \cdots \quad k \quad \cdots \quad n$

Binary Relations on integers Let R be a relation of size n.

Binary Relations on integers Let R be a relation of size n.

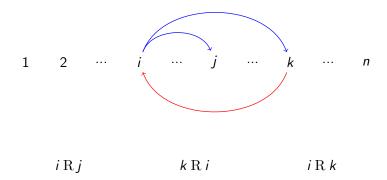


Binary Relations on integers Let R be a relation of size n.

1 2 \cdots j \cdots k \cdots n i R j k R i j R k

Binary Relations on integers

Let R be a relation of size n.



For size $n: 2^{n(n-1)}$ possible binary relations.

Weak order on binary relations

Let ${\rm R}$ be a binary relation

$$\mathbf{R}^{\mathsf{Inc}} = \{i \, \mathbf{R} \, j, i < j\}$$

$$\mathbf{R}^{\mathsf{Dec}} = \{j \, \mathbf{R} \, i, i < j\}$$

Weak order on binary relations

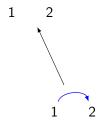
Let ${\rm R}$ be a binary relation

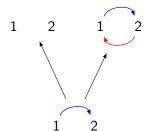
$$\mathbf{R}^{\mathsf{Inc}} = \{i \, \mathbf{R} \, j, i < j\}$$

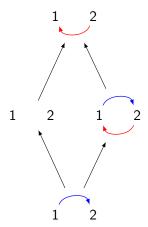
$$\mathbf{R}^{\mathsf{Dec}} = \{j \, \mathbf{R} \, i, i < j\}$$

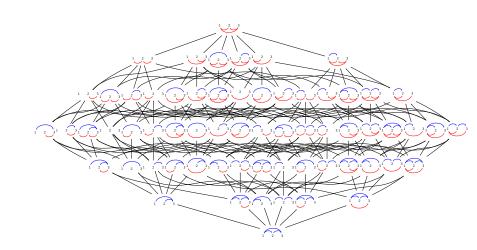
Let R and S be two binary relations.

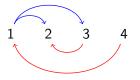
$$R \preccurlyeq S \Leftrightarrow \qquad \qquad R^{\mathsf{Inc}} \supseteq S^{\mathsf{Inc}} \ \mathsf{and} \ R^{\mathsf{Dec}} \subseteq S^{\mathsf{Dec}}$$

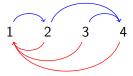


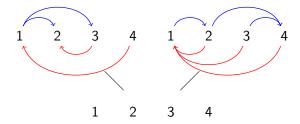


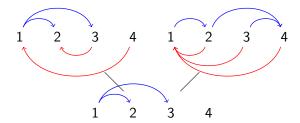


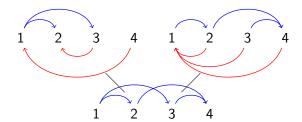


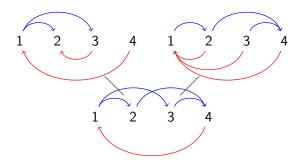


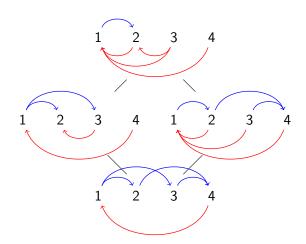










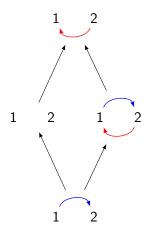


We want to keep binary relations which are both

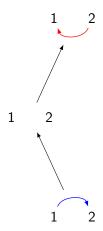
- antisymmetric
- transitive

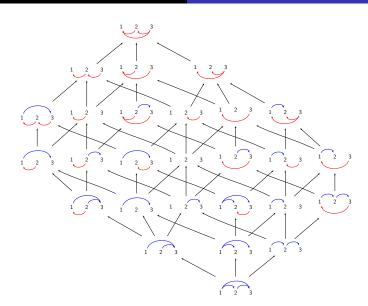
(posets)

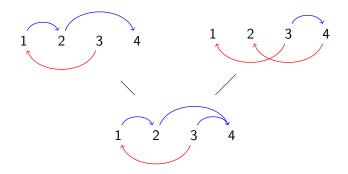
Antisymmetry

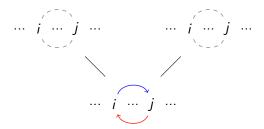


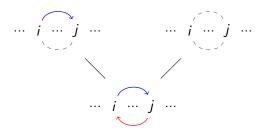
Antisymmetry

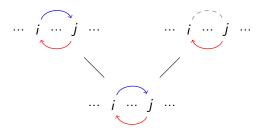




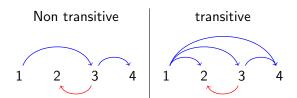


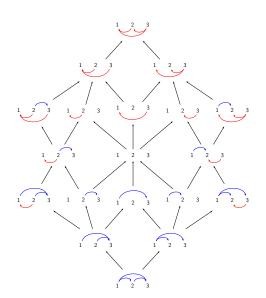




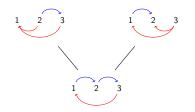


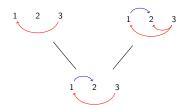
Transitivity



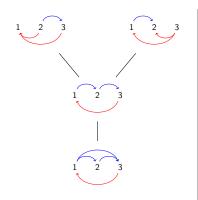


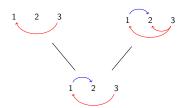
Sublattice? No!



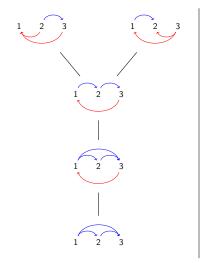


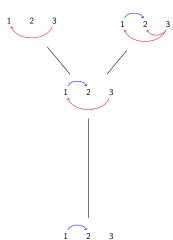
Sublattice? No!



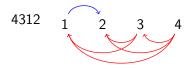


Sublattice? No! But still a lattice





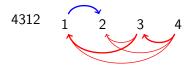
Back to permutations



We have i R j iif the number i appears before j in the permutations. The relation is then

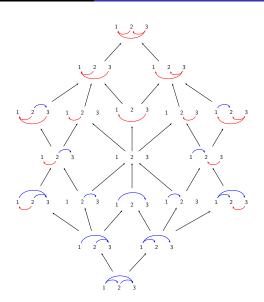
- antisymmetric
- transitive
- and a total order

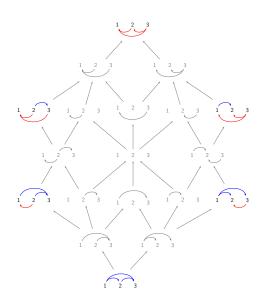
Back to permutations

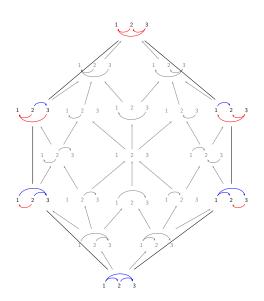


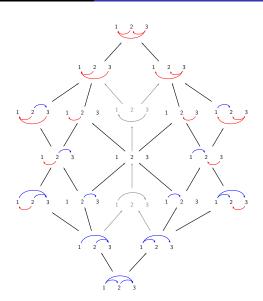
We have i R j iif the number i appears before j in the permutations. The relation is then

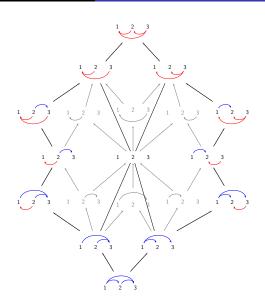
- antisymmetric
- transitive
- and a total order

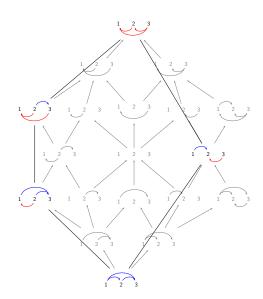


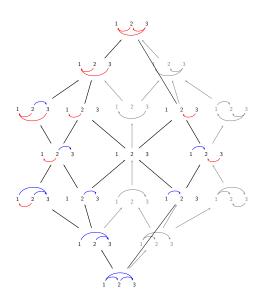


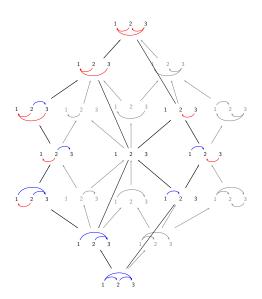


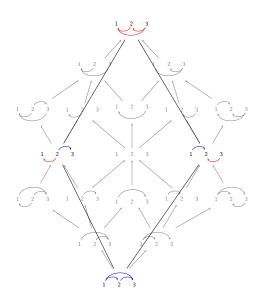


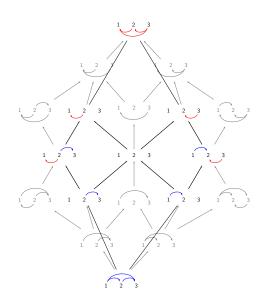












References

- ► Châtel, Pilaud, P. *The weak order on integer posets* arXiv:1701.07995
- ▶ Pilaud, P. Permutrees arXiv:1606.09643
- ▶ Pilaud, P. *The Hopf algebra of integer posets* (work in progress)