From binary relations to Tamari lattice

Viviane Pons
with Grégory Châtel and Vincent Pilaud

Université Paris-Sud
Discrete Structure Days

What is an order?

What is an order?
Natural order on integers: $1<2<3<\ldots$

What is an order? Natural order on integers: $1<2<3<\ldots$ Partial orders?

What is an order?
Natural order on integers: $1<2<3<\ldots$ Partial orders?
The closet-poset!

Properties:

Properties:

- Antisymmetric

Properties:

- Antisymmetric
- Transitive

Properties:

- Antisymmetric
- Transitive
- Lattice?

Non lattice example:

Bubble sort on permutations

251436

Bubble sort on permutations

251436

Bubble sort on permutations

251436
 215436

Bubble sort on permutations

251436
 215436

Bubble sort on permutations

Bubble sort on permutations

Weak Order

Weak Order

Weak Order

Weak Order

$2413 \wedge 4213=2413$

Weak Order

$2413 \wedge 4213=2413$
$2413 \vee 4213=4231$

Triple interpretation

Combinatorics

Geometry

Algebra

$$
\begin{aligned}
\mathbf{F}_{21} \cdot \mathbf{F}_{12} & =\mathbf{F}_{21 \mathrm{w} 12} \\
& =\mathbf{F}_{2134}+\mathbf{F}_{2314}+\mathbf{F}_{2341}+\mathbf{F}_{3214}+\mathbf{F}_{3241}+\mathbf{F}_{3421}
\end{aligned}
$$

Triple interpretation

Combinatorics

Geometry

Algebra

$$
\mathbf{P}_{\bullet} . \mathbf{P}_{\boldsymbol{r}}=\mathbf{P}{ }_{\zeta}+\mathbf{P}{ }_{\zeta}+\mathbf{P}{ }_{\zeta}^{+\mathbf{P}}+\mathbf{P}{ }^{+\mathbf{P}}
$$

The graph of a permutation

4312

The graph of a permutation

4312

The graph of a permutation

The graph of a permutation

The graph of a permutation

The graph of a permutation

4312

The graph of a permutation

The graph of a permutation

4312

The graph of a permutation

4312

The graph of a permutation

4312

3412

The graph of a permutation

The graph of a permutation

Binary Relations on integers

Let R be a relation of size n.

$$
\begin{array}{llllllllll}
1 & 2 & \cdots & i & \cdots & j & \cdots & k & \cdots & n
\end{array}
$$

Binary Relations on integers

Let R be a relation of size n.

Binary Relations on integers

Let R be a relation of size n.

Binary Relations on integers

Let R be a relation of size n.

Binary Relations on integers

Let R be a relation of size n.

For size n : $2^{n(n-1)}$ possible binary relations.

Weak order on binary relations

Let R be a binary relation

$$
\begin{aligned}
\mathrm{R}^{\operatorname{Inc}} & =\{i \mathrm{R} j, i<j\} \\
\mathrm{R}^{\text {Dec }} & =\{j \mathrm{R} i, i<j\}
\end{aligned}
$$

Weak order on binary relations

Let R be a binary relation

$$
\begin{aligned}
\mathrm{R}^{\mathrm{Inc}} & =\{i \mathrm{R} j, i<j\} \\
\mathrm{R}^{\mathrm{Dec}} & =\{j \mathrm{R} i, i<j\}
\end{aligned}
$$

Let R and S be two binary relations.

$$
\mathrm{R} \preccurlyeq \mathrm{~S} \Leftrightarrow \quad \mathrm{R}^{\operatorname{Inc}} \supseteq \mathrm{S}^{\operatorname{lnc}} \text { and } \mathrm{R}^{\mathrm{Dec}} \subseteq \mathrm{~S}^{\mathrm{Dec}}
$$

Binary relations of size 2

Binary relations of size 2

Binary relations of size 2

Binary relations of size 2

Binary relations of size 2

Meet and join

Viviane Pons \quad From binary relations to Tamari lattice

Meet and join

Viviane Pons \quad From binary relations to Tamari lattice

We want to keep binary relations which are both - antisymmetric

- transitive
(posets)

Antisymmetry

Antisymmetry

Motivations

Sublattice?

Let R and S be antisymmetric, is $\mathrm{R} \wedge \mathrm{S}$ also antisymmetric ?

Sublattice.

Let R and S be antisymmetric, is $R \wedge S$ also antisymmetric ?

Sublattice.

Let R and S be antisymmetric, is $\mathrm{R} \wedge \mathrm{S}$ also antisymmetric ?

Sublattice.

Let R and S be antisymmetric, is $R \wedge S$ also antisymmetric ?

Sublattice.

Let R and S be antisymmetric, is $R \wedge S$ also antisymmetric ?

Sublattice.

Let R and S be antisymmetric, is $R \wedge S$ also antisymmetric ?

Transitivity

Motivations

Viviane Pons \quad From binary relations to Tamari lattice

Sublattice ?

Sublattice ? No!

Sublattice ? No!

Sublattice? No! But still a lattice

Back to permutations

We have $i \mathrm{R} j$ iif the number i appears before j in the permutations.
The relation is then

- antisymmetric
- transitive
- and a total order

Back to permutations

We have $i \mathrm{R} j$ iif the number i appears before j in the permutations. The relation is then

- antisymmetric
- transitive
- and a total order

Motivations Weak order on binary relations Subposet and sublattice

Viviane Pons From binary relations to Tamari lattice

Motivations

Viviane Pons From binary relations to Tamari lattice

Motivations

Viviane Pons \quad From binary relations to Tamari lattice

Motivations Weak order on binary relations Subposet and sublattice

The lattice of posets
Subposets and sublattices

Viviane Pons From binary relations to Tamari lattice

Motivations Weak order on binary relations Subposet and sublattice

The lattice of posets
Subposets and sublattices

Viviane Pons From binary relations to Tamari lattice

Motivations Weak order on binary relations Subposet and sublattice

Viviane Pons \quad From binary relations to Tamari lattice

Motivations Weak order on binary relations Subposet and sublattice

The lattice of posets
Subposets and sublattices

Viviane Pons From binary relations to Tamari lattice

Motivations Weak order on binary relations Subposet and sublattice

Viviane Pons \quad From binary relations to Tamari lattice

Motivations

The lattice of posets
Subposets and sublattices

Viviane Pons \quad From binary relations to Tamari lattice

Motivations Weak order on binary relations Subposet and sublattice

The lattice of posets
Subposets and sublattices

Viviane Pons \quad From binary relations to Tamari lattice

References

- Châtel, Pilaud, P. The weak order on integer posets arXiv:1701.07995
- Pilaud, P. Permutrees arXiv:1606.09643
- Pilaud, P. The Hopf algebra of integer posets (work in progress)

