Viviane Pons

Permutahedron and Associahedron

Combinatorics and geometry

Permutations
size 2: 1221
size 3: 123132213231312321
size 4: 123412431324134214231432213421432314234124132431 312431423214324134123421412341324213423143124321

Permutationssize 2: 1221size 3: 123132213231312321size 4: 123412431324134214231432213421432314234124132431312431423214324134123421412341324213423143124321As vectors of $\mathbb{R}^{n}$$123 \rightarrow(1,2,3)$

$$
x+y+z=6
$$

Using SageMath

For size 4

Looking at the "skeleton" of the polytope"

Looking at the "skeleton" of the polytope"

The the left weak order on permutations

Looking at the "skeleton" of the polytope"

The the left weak order on permutations

The left and right weak orders

Right weak Order

Right weak Order

$2413 \wedge 4213=2413$
$2413 \vee 4213=4231$

Right weak Order

$2413 \wedge 4213=2413$
$2413 \vee 4213=4231$

As a reflection group

Combinatorics of faces

$1 / 2 / 3$

Combinatorics of faces

Combinatorics of faces

Combinatorics of faces

Combinatorics of faces

Combinatorics of faces

Combinatorics of faces

Combinatorics of faces

Combinatorics of faces

Combinatorics of faces

$$
d=n-\# p a r t s
$$

(image from V. Pilaud's talk "The Associahedron and its friends")

$$
x_{1}+x_{2}+x_{3}=6
$$

$$
x_{1}+x_{2}=6-x_{3}
$$

$$
3 \leq x_{1}+x_{2} \leq 5
$$

$$
x_{1}+x_{2} \geq 3
$$

$$
x_{1}+x_{2} \leq 5
$$

$$
x_{1}+x_{2} \geq 3
$$

$$
x_{3} \geq 1
$$

$12 \mid 3 \quad x_{1}+x_{2} \geq 3$
$3 \mid 12 \quad x_{3} \geq 1$

$$
J \subseteq[n] \rightarrow \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}
$$

$12 \mid 3 \quad x_{1}+x_{2} \geq 3$
$3 \mid 12 \quad x_{3} \geq 1$

$$
\begin{aligned}
& J \subseteq[n] \rightarrow \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2} \\
& 12 \mid 3 \quad x_{1}+x_{2} \geq 3 \\
& 2 \mid 13 \quad x_{2} \geq 1 \\
& 3 \mid 12 \quad x_{3} \geq 1
\end{aligned}
$$

$$
\begin{aligned}
& J \subseteq[n] \rightarrow \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2} \\
& 12 \mid 3 \quad x_{1}+x_{2} \geq 3 \\
& 2 \mid 13 \quad x_{2} \geq 1 \\
& 23 \mid 1 \quad x_{2}+x_{3} \geq 3 \\
& 3 \mid 12 \quad x_{3} \geq 1
\end{aligned}
$$

$$
\begin{aligned}
& J \subseteq[n] \rightarrow \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2} \\
& \begin{array}{ll}
12 \mid 3 & x_{1}+x_{2} \geq 3 \\
2 \mid 13 & x_{2} \geq 1 \\
23 \mid 1 & x_{2}+x_{3} \geq 3 \\
3 \mid 12 & x_{3} \geq 1 \\
13 \mid 2 & x_{1}+x_{3} \geq 3
\end{array}
\end{aligned}
$$

$$
J \subseteq[n] \rightarrow \sum_{j \in J} x_{j} \geq\binom{|J|+1}{2}
$$

$12 \mid 3 \quad x_{1}+x_{2} \geq 3$
$2 \mid 13 \quad x_{2} \geq 1$
$23 \mid 1 \quad x_{2}+x_{3} \geq 3$
3|12 $x_{3} \geq 1$
$13 \mid 2 \quad x_{1}+x_{3} \geq 3$
$1 \mid 23 \quad x_{1} \geq 1$

From the weak order to the Tamari lattice

We define a surjection from permutations to binary trees which gives us a new lattice.

Binary search tree insertion

$15324 \rightarrow$

Binary search tree insertion

> The Tamari lattice is a lattice on binary trees. It is a quotient lattice of the weak order.

More about the Tamari lattice

Binary trees are counted by the Catalan numbers

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

The Tamari lattice can be defined on many families of combinatorial objects, such as

- Triangulations of regular polygons
- Dyck paths
- Ordered forests
- certain pattern avoiding permutations (312 avoiding and 231 avoiding)
- ways to parenthesize an expression (original definition of Tamari)

312 - avoiding permutations

312 - avoiding permutations

312 - avoiding permutations

Dyck paths

The Associahedron - Stasheff polytope

Different constructions

- Loday 2004
- Billera-Filliman-Sturmfels 1990
- Gelfand-Kapranov-Zelevinsky 1994
- Chapoton-Fomin-Zelevinsky 2002
- Hohlweg-Lange 2007
- Ceballos-Santos-Ziegler 2011
- Hohlweg-Lange-Thomas 2012

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

(1,4,1, , , ,)

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

$(1,4,1,4, \quad, \quad$,

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

$(1,4,1,4,5, \quad, \quad)$

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

$(1,4,1,4,5,18, ~, ~)$

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

$(1,4,1,4,5,18,1, \quad)$

Loday's Associahedron

$i \rightarrow$ (\# of left leaves) \times (\# of right leaves)

$(1,4,1,4,5,18,1,8)$

$$
\begin{array}{ll}
12 \mid 3 & x_{1}+x_{2} \geq 3 \\
2 \mid 13 & x_{2} \geq 1 \\
23 \mid 1 & x_{2}+x_{3} \geq 3 \\
3 \mid 12 & x_{3} \geq 1 \\
13 \mid 2 & x_{1}+x_{3} \geq 3 \\
1 \mid 23 & x_{1} \geq 1
\end{array}
$$

12|3 $x_{1}+x_{2} \geq 3$
2|13 $\quad x_{2} \geq 1$
$23 \mid 1 \quad x_{2}+x_{3} \geq 3$
$3 \mid 12 \quad x_{3} \geq 1$
13|2
$1 \mid 23 \quad x_{1} \geq 1$

More...
On the weak order

- Alain Lascoux and Marcel-Paul Schützenberger, Treillis et bases des groupes de Coxeter, Electron. J. Combin. 1996.
- A. Björner, M.L. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, 1991

And more...

Relations between the weak order and the Tamari lattice + Hopf algebras

- F. Hivert, J.-C. Novelli, J.-Y. Thibon, The algebra of binary search trees, Theoret. Comput. Sci. 2005
- Andy Tonks, Relating the associahedron and the permutohedron, in: Proceedings of Renaissance Conferences, 1995
- Nathan Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A, 2005.

And more...

Generalizations of the Tamari lattice

- Nathan Reading, Cambrian lattices, Adv. Math. 2006
- F. Bergeron and L.-F. Préville-Ratelle. Higher trivariate diagonal harmonics via generalized Tamari posets. J. Comb. 2012.
- L.-F. Préville-Ratelle and Viennot X. An extension of Tamari lattices. DMTCS Proceedings, FPSAC, 2015
- V. Pilaud and V. Pons. Permutrees. Algebraic Combinatorics, 2018.
- C. Ceballos and V. Pons. The s-weak order and s-permutahedra, FPSAC 2019.

