Viviane Pons

Maîtresse de conférences, Univ. Paris-Saclay viviane.pons@lri.fr - @PyViv

Permutahedron and Associahedron

Combinatorics and geometry

Viviane Pons (Paris-Saclay)

Permutahedron and Associahedron

June 22, 2020 1 / 27

Permutations

size 2: 12 21

size 3: 123 132 213 231 312 321

size 4: 1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Permutations size 2: 12 21 size 3: 123 132 213 231 312 321 size 4: 1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

As vectors of \mathbb{R}^n 123 \rightarrow (1,2,3)

x + y + z = 6

Using SageMath

For size 4

Looking at the "skeleton" of the polytope"

Looking at the "skeleton" of the polytope"

The the left weak order on permutations

Looking at the "skeleton" of the polytope"

The the left weak order on permutations

The left and right weak orders

 $2413 \wedge 4213 = 2413$

 $2413 \lor 4213 = 4231$

 $2413 \wedge 4213 = 2413$

 $2413 \lor 4213 = 4231$

As a reflection group

1/2/3

Viviane Pons (Paris-Saclay)

Permutahedron and Associahedron

June 22, 2020 10 / 27

2/1/3 1/2/3

$$2/3/1$$

$$2/3/1$$

$$2/3/1$$

$$2/1/3$$

$$1/2/3$$

$$1/2/3$$

d = n - # parts

(image from V. Pilaud's talk "The Associahedron and its friends")

$$x_1 + x_2 = 6 - x_3$$

$3 \le x_1 + x_2 \le 5$

 $x_1 + x_2 \ge 3$

 $x_1 + x_2 \le 5$

$$x_1 + x_2 \ge 3$$

 $x_3 \ge 1$

 $12|3 \quad x_1 + x_2 \ge 3$

 $3|12 \quad x_3 \ge 1$

$$J \subseteq [n] \rightarrow \sum_{j \in J} x_j \ge {|J|+1 \choose 2}$$

- $12|3 \quad x_1 + x_2 \ge 3$
- $3|12 \quad x_3 \ge 1$

$$J \subseteq [n] \rightarrow \sum_{j \in J} x_j \ge {|J|+1 \choose 2}$$

- $\begin{array}{ll} 12|3 & x_1+x_2 \geq 3 \\ 2|13 & x_2 \geq 1 \end{array}$
- $3|12 \quad x_3 \geq 1$

- $J \subseteq [n] \rightarrow \sum_{j \in J} x_j \ge {|J|+1 \choose 2}$
- $\begin{array}{ll} 12|3 & x_1 + x_2 \ge 3 \\ 2|13 & x_2 \ge 1 \end{array}$

23|1
$$x_2 + x_3 \ge 3$$

 $3|12 \quad x_3 \ge 1$

$$J \subseteq [n] \to \sum_{j \in J} x_j \ge \binom{|J|+1}{2}$$

12|3 $x_1 + x_2 \ge 3$ 2|13 $x_2 \ge 1$ $23|1 \quad x_2 + x_3 > 3$

$$|x_2 + x_3| \ge 1$$

 $|x_3| = 1$

- $13|2 \quad x_1 + x_3 \ge 3$

 $J \subseteq [n] \rightarrow \sum_{j \in J} x_j \ge {\binom{|J|+1}{2}}$

- 12|3 $x_1 + x_2 \ge 3$ 2|13 $x_2 \ge 1$ $|23||1||x_2+x_3 \ge 3$ $3|12 \quad x_3 \ge 1$
- $13|2 \quad x_1 + x_3 \ge 3$
- 1|23 $x_1 \ge 1$

From the weak order to the Tamari lattice

We define a *surjection* from permutations to *binary trees* which gives us a new lattice.

4

Binary search tree insertion

15324 \rightarrow

The **Tamari lattice** is a lattice on binary trees. It is a **quotient lattice** of the weak order.

More about the Tamari lattice

Binary trees are counted by the Catalan numbers

$$\frac{1}{n+1}\binom{2n}{n}$$

The Tamari lattice can be defined on **many** families of combinatorial objects, such as

- Triangulations of regular polygons
- Dyck paths
- Ordered forests
- certain pattern avoiding permutations (312 avoiding and 231 avoiding)
- ways to parenthesize an expression (original definition of Tamari)

312 - avoiding permutations

Dyck paths \sim $\sim\sim$ \sim \sim

 \sim

 $\sim\sim\sim$

The Associahedron – Stasheff polytope

Different constructions

- Loday 2004
- Billera-Filliman-Sturmfels 1990
- Gelfand-Kapranov-Zelevinsky 1994
- Chapoton-Fomin-Zelevinsky 2002
- Hohlweg-Lange 2007
- Ceballos-Santos-Ziegler 2011
- Hohlweg-Lange-Thomas 2012

(1, , , , , , ,)

(1,4, , , , , ,)

June 22, 2020 20 / 27

(1,4,1, , , , ,)

(1,4,1,4, , ,)

(1,4,1,4,5, ,)

(1, 4, 1, 4, 5, 18, ,)

(1, 4, 1, 4, 5, 18, 1,)

(1, 4, 1, 4, 5, 18, 1, 8)

3 67

More...

On the weak order

- Alain Lascoux and Marcel-Paul Schützenberger, Treillis et bases des groupes de Coxeter, Electron. J. Combin. 1996.
- A. Björner, M.L. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, 1991

And more ...

Relations between the weak order and the Tamari lattice + Hopf algebras

- F. Hivert, J.-C. Novelli, J.-Y. Thibon, The algebra of binary search trees, Theoret. Comput. Sci. 2005
- Andy Tonks, Relating the associahedron and the permutohedron, in: Proceedings of Renaissance Conferences, 1995
- Nathan Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A, 2005.

And more...

Generalizations of the Tamari lattice

- Nathan Reading, Cambrian lattices, Adv. Math. 2006
- F. Bergeron and L.-F. Préville-Ratelle. Higher trivariate diagonal harmonics via generalized Tamari posets. J. Comb. 2012.
- L.-F. Préville-Ratelle and Viennot X. An extension of Tamari lattices. DMTCS Proceedings, FPSAC, 2015
- V. Pilaud and V. Pons. Permutrees. Algebraic Combinatorics, 2018.
- C. Ceballos and V. Pons. The s-weak order and s-permutahedra, FPSAC 2019.