

Maîtresse de conférences, Univ. Paris-Saclay viviane.pons@lri.fr – @PyViv

Permutahedron and Associahedron

Combinatorics and geometry

Permutations

size 2: 12 21

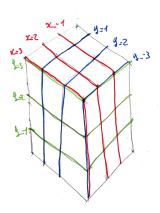
size 3: 123 132 213 231 312 321

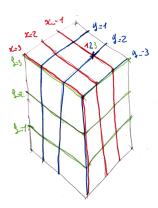
size 4: 1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431

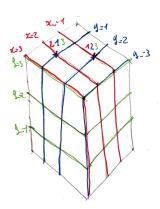
3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

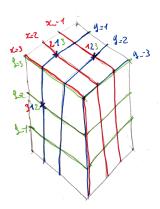
Permutations

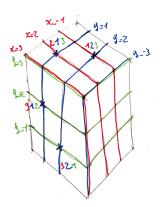
size 2: 12 21

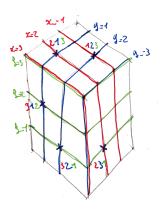

size 3: 123 132 213 231 312 321

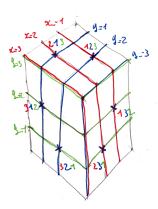

size 4: 1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431

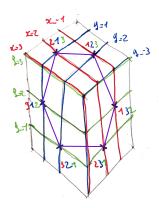

3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

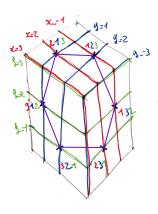

As vectors of \mathbb{R}^n


 $123 \rightarrow (1,2,3)$





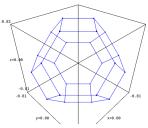




$$x + y + z = 6$$

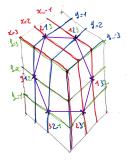
Using SageMath

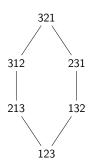
```
Entrée [1]: P = Polyhedron(list(Permutations(3)))
   Out[1]: A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices (use the .plot() method to plot)
Entrée [2]: P.plot()
   Out[2]:
                                          z=2.0
                                                                                                                       1
                                                    y=2.00
```

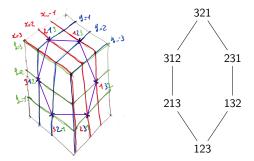

For size 4

```
Entrée [3]: P = Polyhedron(list(Permutations(4)))

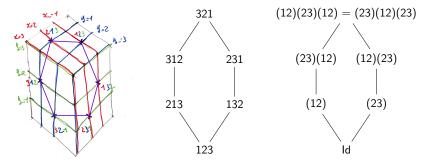
Out[3]: A 3-dimensional polyhedron in Z2^4 defined as the convex hull of 24 vertices (use the .plot() method to plot)


Entrée [4]: P.plot()

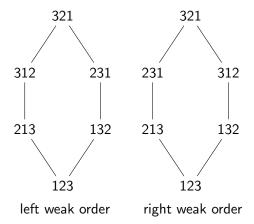

Out[4]:
```



①

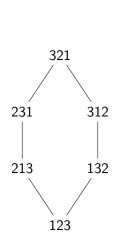
Looking at the "skeleton" of the polytope"

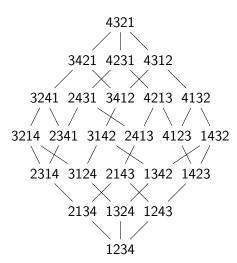


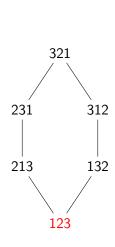
Looking at the "skeleton" of the polytope"

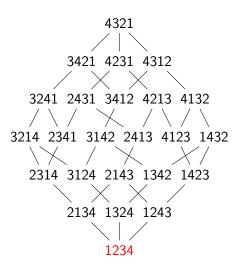

The the left weak order on permutations

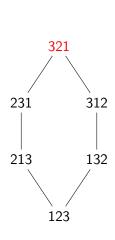
Looking at the "skeleton" of the polytope"

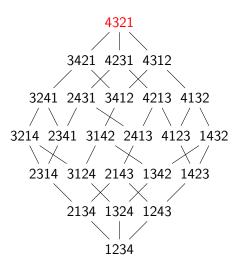


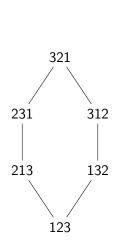

The the left weak order on permutations

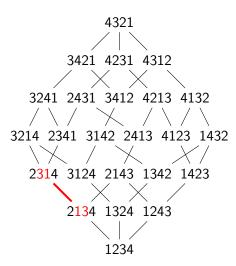

The left and right weak orders

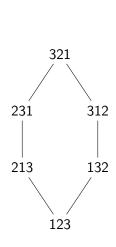


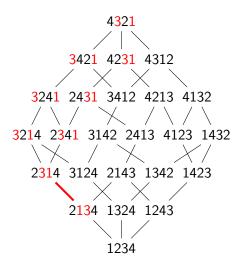

Viviane Pons (Paris-Saclay)

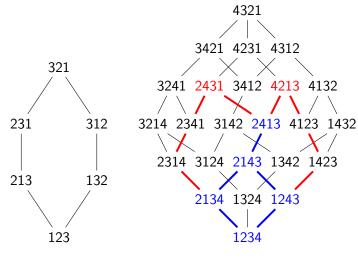


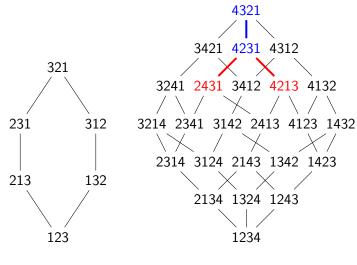




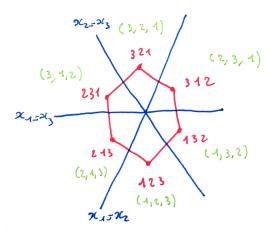


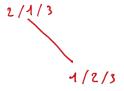


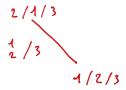


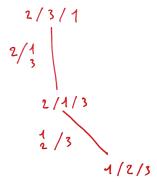


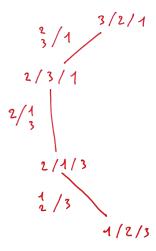
$$2413 \land 4213 = 2413$$

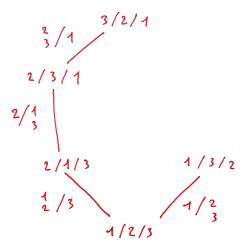

$$2413 \lor 4213 = 4231$$

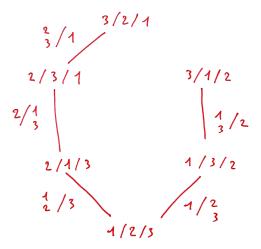

$$2413 \land 4213 = 2413$$

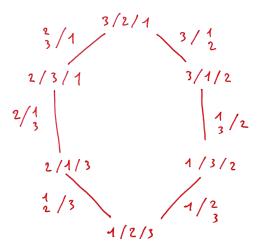

$$2413 \lor 4213 = 4231$$

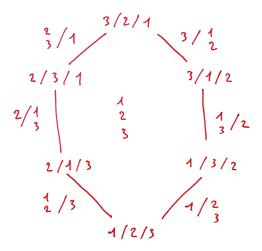

As a reflection group

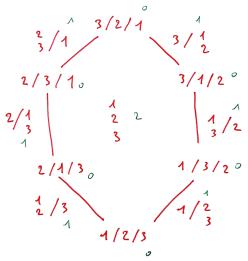


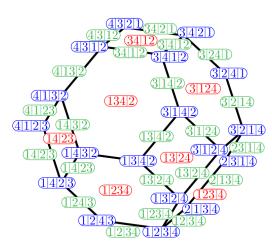

4/2/3

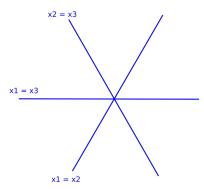


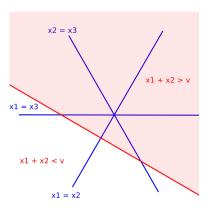


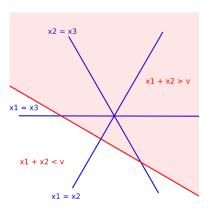


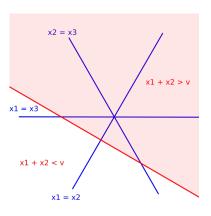


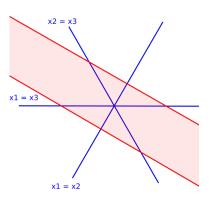


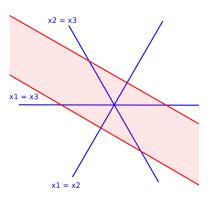




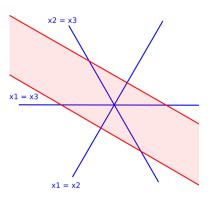

$$d = n - \#parts$$


(image from V. Pilaud's talk "The Associahedron and its friends")

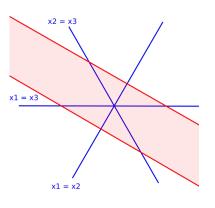



$$x_1 + x_2 + x_3 = 6$$

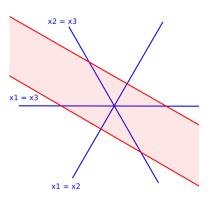
$$x_1 + x_2 = 6 - x_3$$



$$3 \le x_1 + x_2 \le 5$$

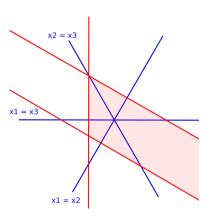

$$x_1 + x_2 \ge 3$$

$$x_1 + x_2 \le 5$$


$$x_1 + x_2 \ge 3$$

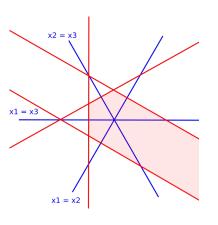
$$x_3 \ge 1$$

$$12|3 \quad x_1 + x_2 \ge 3$$

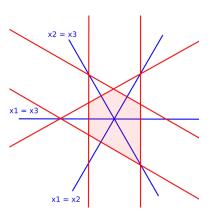

$$3|12 \quad x_3 \ge 1$$

$$J\subseteq [n]\to \sum_{j\in J}x_j\geq \binom{|J|+1}{2}$$

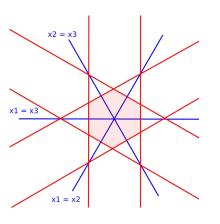
$$12|3 \quad x_1 + x_2 \ge 3$$


$$3|12 \quad x_3 \ge 1$$

$$J\subseteq [n]\to \sum_{j\in J}x_j\geq \binom{|J|+1}{2}$$


$$\begin{array}{ll}
 12|3 & x_1 + x_2 \ge 3 \\
 2|13 & x_2 \ge 1
 \end{array}$$

$$3|12 \quad x_3 \ge 1$$


$$J\subseteq [n]\to \sum_{j\in J}x_j\geq \binom{|J|+1}{2}$$

12|3
$$x_1 + x_2 \ge 3$$

2|13 $x_2 \ge 1$
23|1 $x_2 + x_3 \ge 3$
3|12 $x_3 \ge 1$

$$J\subseteq [n]\to \sum_{j\in J}x_j\geq \binom{|J|+1}{2}$$

12|3
$$x_1 + x_2 \ge 3$$

2|13 $x_2 \ge 1$
23|1 $x_2 + x_3 \ge 3$
3|12 $x_3 \ge 1$
13|2 $x_1 + x_3 \ge 3$

$$J\subseteq [n]\to \sum_{j\in J}x_j\geq \binom{|J|+1}{2}$$

$$2|13 x_2 \ge 1
23|1 x_2 + x_3 \ge 3$$

 $x_1 + x_2 \ge 3$

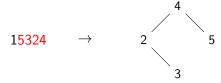
$$|x_2| |x_3| \le 3$$

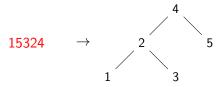
 $|x_3| |x_3| \le 3$

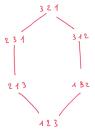
$$13|2 \quad x_1 + x_3 \ge 3$$

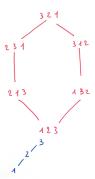
$$1|23 \quad x_1 \ge 1$$

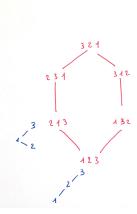
12|3

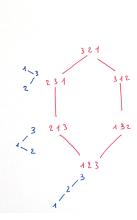

From the weak order to the Tamari lattice

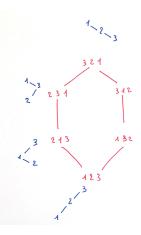

We define a *surjection* from permutations to *binary trees* which gives us a new lattice.

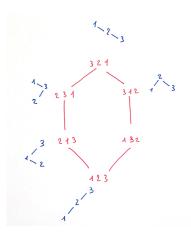

4

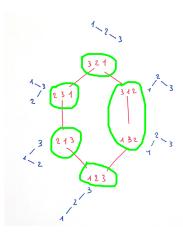


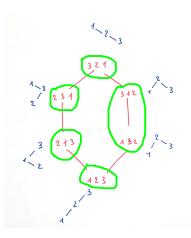


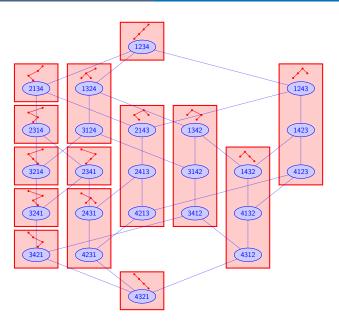






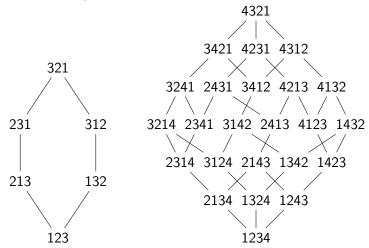




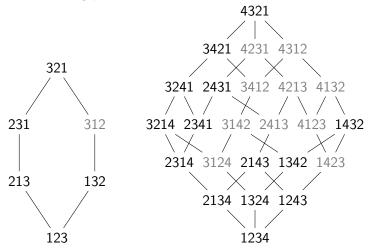


The **Tamari lattice** is a lattice on binary trees. It is a **quotient lattice** of the weak order.

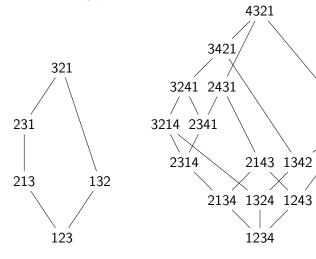
More about the Tamari lattice


Binary trees are counted by the Catalan numbers

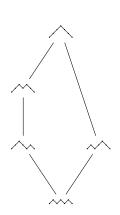
$$\frac{1}{n+1}\binom{2n}{n}$$

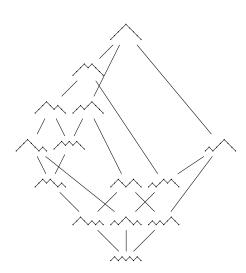

The Tamari lattice can be defined on **many** families of combinatorial objects, such as

- Triangulations of regular polygons
- Dyck paths
- Ordered forests
- certain pattern avoiding permutations (312 avoiding and 231 avoiding)
- ways to parenthesize an expression (original definition of Tamari)
- **...**


312 - avoiding permutations

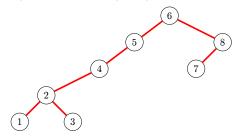
312 - avoiding permutations




312 - avoiding permutations

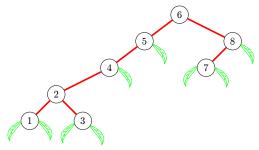
1432

Dyck paths

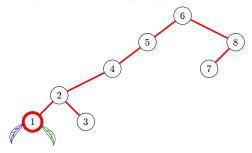


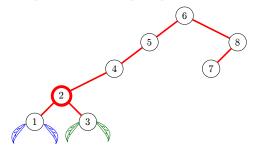
The Associahedron – Stasheff polytope

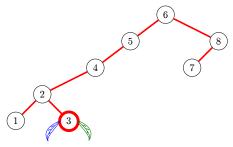
Different constructions

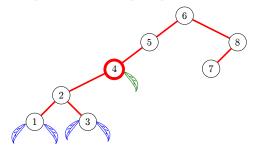

- ► Loday 2004
- ► Billera-Filliman-Sturmfels 1990
- Gelfand-Kapranov-Zelevinsky 1994
- Chapoton-Fomin-Zelevinsky 2002
- Hohlweg-Lange 2007
- Ceballos-Santos-Ziegler 2011
- Hohlweg-Lange-Thomas 2012

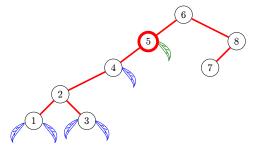
 $i \rightarrow (\# \text{ of left leaves}) \times (\# \text{ of right leaves})$

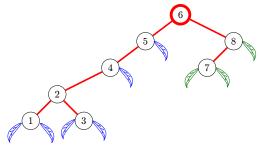


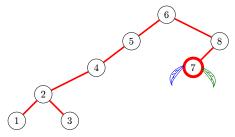

(, , , , , ,)

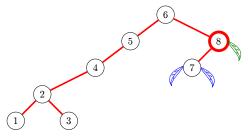

 $i \rightarrow (\# \text{ of left leaves}) \times (\# \text{ of right leaves})$



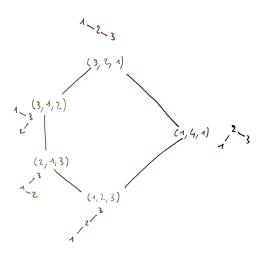

(, , , , , ,)

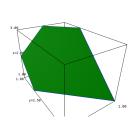


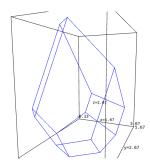


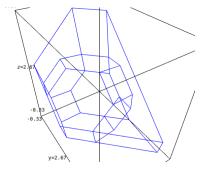


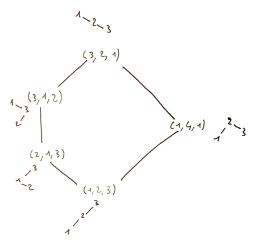
$$i \rightarrow (\# \text{ of left leaves}) \times (\# \text{ of right leaves})$$

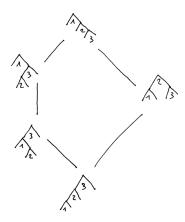


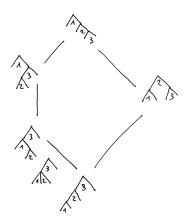


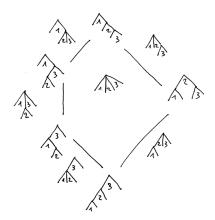

 $i \rightarrow (\# \text{ of left leaves}) \times (\# \text{ of right leaves})$

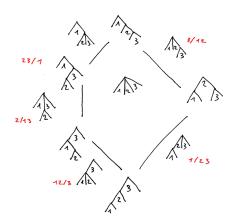


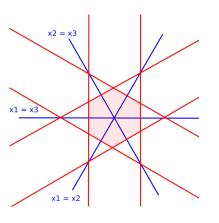

(1,4,1,4,5,18,1,2)

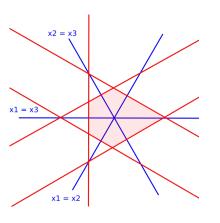












$$\begin{array}{lll} 12|3 & x_1+x_2 \geq 3 \\ 2|13 & x_2 \geq 1 \\ 23|1 & x_2+x_3 \geq 3 \\ 3|12 & x_3 \geq 1 \\ 13|2 & x_1+x_3 \geq 3 \\ 1|23 & x_1 \geq 1 \end{array}$$

$$\begin{array}{lll} 12|3 & x_1+x_2 \geq 3 \\ 2|13 & x_2 \geq 1 \\ 23|1 & x_2+x_3 \geq 3 \\ 3|12 & x_3 \geq 1 \\ 13|2 & & \\ 1|23 & x_1 \geq 1 \end{array}$$

More...

On the weak order

- Alain Lascoux and Marcel-Paul Schützenberger, Treillis et bases des groupes de Coxeter, Electron. J. Combin. 1996.
- A. Björner, M.L. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, 1991

And more...

Relations between the weak order and the Tamari lattice + Hopf algebras

- ► F. Hivert, J.-C. Novelli, J.-Y. Thibon, The algebra of binary search trees, Theoret. Comput. Sci. 2005
- Andy Tonks, Relating the associahedron and the permutohedron, in: Proceedings of Renaissance Conferences, 1995
- Nathan Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A, 2005.

And more...

Generalizations of the Tamari lattice

- Nathan Reading, Cambrian lattices, Adv. Math. 2006
- ► F. Bergeron and L.-F. Préville-Ratelle. Higher trivariate diagonal harmonics via generalized Tamari posets. J. Comb. 2012.
- ▶ L.-F. Préville-Ratelle and Viennot X. An extension of Tamari lattices. DMTCS Proceedings, FPSAC, 2015
- ▶ V. Pilaud and V. Pons. Permutrees. Algebraic Combinatorics, 2018.
- C. Ceballos and V. Pons. The s-weak order and s-permutahedra, FPSAC 2019.