1. Construct the two following binary trees in Sage

2. Let H_{n} be the sum over binary trees of size n with depth n. So for example, we have

(a) Compute H_{4} by hand, you should find a sum over 8 elements.
(b) Find a recursive formula for H_{n} depending on sums H_{k}, with $k<n$.
(c) Let $h_{n}=H_{n}(1)$ be the number of elements in the sum H_{n}. What is the recursive formula for h_{n} ? Use it to prove that $h_{n}=2^{n}$.
(d) Use the recursive formula for H_{n} to generate all trees of size n with n.
3. Now, we define D_{n} to be the sum over binary trees of depth n without any restriction on the size. As an example, we have

$$
D_{2}=\boldsymbol{\bullet}+\boldsymbol{\bullet}+
$$

(a) Compute D_{3} by hand, you should find 21 elements.
(b) Express D_{n} in terms of D_{k} with $k<n$. Help: if B is a tree of size n, it can be exactly one of these cases:

- B is a product of two trees of depth $n-1$,
- B is a product of one tree of depth $n-1$ on the left and one tree of depth $k<n-1$ on the right,
- B is a product of one tree of depth $k<n-1$ on the left and one tree of depth $n-1$ on the right.
(c) Use this formula to generate all binary trees of a given depth.
(d) Compute the number of trees of depth n for all n from 0 to 4 . You should find these numbers: $1,1,3,21,651$.

