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The right rotation on binary trees
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The right rotation is the cover relation of the
Tamari order on binary trees.

The Tamari lattice

Main result

Given a binary tree T , we define its Tamari polynomial BT(x) by:

B∅ := 1

BT(x) := xBL(x)
xBR(x)− BR(1)

x− 1

with T =
L R

BT(x) counts the number of trees smaller than or equal to T in the Tamari order according to the number of
nodes on their left border. In particular, BT(1) is the number of trees smaller than T .

Example

BT(x) = xBL(x)
xBR(x)−BR(1)

x−1

BT(x) = x(x2 + x3)(1 + x + x2)

BT(x) = x3 + 2x4 + 2x5 + x6

BT(1) = 6
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The Tamari lattice is a quotient of the weak order

Each binary tree has a unique labelling as binary search tree. The linear
extensions of these labelled binary trees are intervals of the weak order:
the sylvester classes.
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An interval of the Tamari lattice can be seen as a union of sylvester
classes. It is represented as a poset whose linear extensions correspond to
these sylvester classes.
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Tamari Interval-posets

An interval-poset is a poset representing an interval of the Tamari lattice. With each
binary tree T , one can associate an increasing and a decreasing forest. They correspond
respectively to the initial interval [Tmin, T ] and the final interval [T, Tmax] of the
Tamari lattice.
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To construct the interval-poset [T1, T2], we combine the decreasing forest of T1 and the
increasing forest of T2.
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The number of trees smaller than or equal to T is the number of intervals [T ′, T ] having
T as maximal element. Our proof is based on a combinatorial interpretation of the
bilinear operation BT .
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Other results and perspectives

New proof of the number of intervals of the Tamari lattice, q-generalization of the main
result, generalization to m-Tamari, relations with flows of rooted trees, . . .

Grégory Chatel and Viviane Pons Université Paris-Est Marne-la-Vallée
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