Counting smaller trees in the Tamari order

Grégory Chatel, Viviane Pons

Laboratoire d'Informatique Gaspard-Monge
Université Paris-Est Marne-la-Vallée
5 bd Descartes - 77454 Marne-la-Vallée Cedex 2 - France

Given a binary tree \boldsymbol{T}, we define its Tamari polynomial $\mathcal{B}_{\boldsymbol{T}}(\boldsymbol{x})$ by:

$$
\begin{aligned}
\mathcal{B}_{\emptyset} & :=1 \\
\mathcal{B}_{T}(x) & :=x \mathcal{B}_{L}(x) \frac{x \mathcal{B}_{R}(x)-\mathcal{B}_{R}(1)}{x-1} \\
& \text { with } T={ }_{L}{ }_{R}
\end{aligned}
$$

$\mathcal{B}_{T}(\boldsymbol{x})$ counts the number of trees smaller than or equal to \boldsymbol{T} in the Tamari order according to the number of nodes on their left border. In particular, $\mathcal{B}_{\boldsymbol{T}}(\mathbf{1})$ is the number of trees smaller than \boldsymbol{T}.

$$
\begin{gathered}
\mathcal{B}_{T}(\boldsymbol{x})=x \mathcal{B}_{L}(x)^{\frac{x \mathcal{B}_{R}(x)-\mathcal{B}_{R}(1)}{x-1}} \\
\mathcal{B}_{T}(x)=x\left(x^{2}+x^{3}\right)\left(1+x+x^{2}\right) \\
\mathcal{B}_{T}(x)=x^{3}+2 x^{4}+2 x^{5}+x^{6} \\
\mathcal{B}_{T}(\mathbf{1})=\mathbf{6}
\end{gathered}
$$

The Tamari lattice is a quotient of the weak order

Each binary tree has a unique labelling as binary search tree. The linear extensions of these labelled binary trees are intervals of the weak order: the sylvester classes.

An interval of the Tamari lattice can be seen as a union of sylvester classes. It is represented as a poset whose linear extensions correspond to these sylvester classes.
\qquad

Tamari Interval-posets

An interval-poset is a poset representing an interval of the Tamari lattice. With each binary tree \boldsymbol{T}, one can associate an increasing and a decreasing forest. They correspond respectively to the initial interval $\left[\boldsymbol{T}_{\min }, \boldsymbol{T}\right]$ and the final interval $\left[\boldsymbol{T}, \boldsymbol{T}_{\boldsymbol{m a x}}\right]$ of the Tamari lattice.

To construct the interval-poset $\left[\boldsymbol{T}_{1}, \boldsymbol{T}_{\mathbf{2}}\right]$, we combine the decreasing forest of $\boldsymbol{T}_{\mathbf{1}}$ and the increasing forest of $\boldsymbol{T}_{\mathbf{2}}$.

The number of trees smaller than or equal to \boldsymbol{T} is the number of intervals $\left[\boldsymbol{T}^{\prime}, \boldsymbol{T}\right]$ having \boldsymbol{T} as maximal element. Our proof is based on a combinatorial interpretation of the bilinear operation \mathcal{B}_{T}.

$$
\begin{aligned}
& x^{6}+x^{5}+x^{4}+x^{5}+x^{4}+x^{3}
\end{aligned}
$$

Other results and perspectives

New proof of the number of intervals of the Tamari lattice, q-generalization of the main result, generalization to m -Tamari, relations with flows of rooted trees,

