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Université Paris-Est Marne-la-Vallée
Fakultät für Mathematik, Universität Wien

Definitions

The right rotation on binary trees
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The right rotation is the cover relation of the
Tamari order on binary trees.

The Tamari lattice

Interval-poset
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Rules of interval-posets:

a < c and a C c =⇒ b C c, b ∈ [a, c].

a < c and c C a =⇒ b C a, b ∈ [a, c].

Flows of forest of rooted trees
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The exit rate of a forest is the sum of the
exit rates of the trees.

A closed flow is a flow of a forest of rooted
trees with exit rate 0.

Statistics on interval-posets
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trees(I) = number of red trees of I, ir(I) = largest k s.t. there is no relation i C i + 1 for i ∈ [1, k].

Results

Theorem

The number of closed flows of a given forest F is the number of elements smaller
than or equal to a certain binary tree T (F ) in the Tamari order.

Bijective proof
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Comments

How statistics on flows can be read on the corresponding interval-poset ?

The flows appear in the study of the pre-Lie operad (see [2]) which doesn’t
seem related to the Tamari order. Can we provide an explanation of this link ?

Each open flow can be sent to a unique closed flow. What is the connection
with the Tamari order ?

Theorem

Let I be an interval-poset of size n such that trees(I) = x and ir(I) = y.
There exists another interval-poset J of size n such that trees(J) = y
and ir(J) = x.

Bijective proof

I =

1

3

2

5 6

4

7

82

1 2

3

1 2 3

4

1

1 1

0

∅
1 2

31

1 1

J =
4 5

3

6

7

2

1

8

2

2

1

3
2

3

1

4

1

1 1

0

∅
2

1

3

1

1 1

trees(I) = 4 = ir(J)
ir(I) = 1 = trees(J)

Comments

This bijection yields a non trivial equality between two functionnal equations. Can
we prove it algebrically ?
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