A lattice on decreasing trees: the metasylvester lattice

The generalization of the well known Tamari lattice to the family of \boldsymbol{m}-Tamari lattices [1] opens a natural question: what are the geometrical, combinatorial, and algebraic relations between a \boldsymbol{m}-version of the weak order and the \boldsymbol{m}-Tamari lattice? In [2], the authors study \boldsymbol{m}-permutations and describe a new congruence relation. They use it to define a new Hopf Algebra. We prove here that this congruence also leads to the definition of a new lattice.

Three realizations of the metasylvester lattice; from top to bottom on m-permutations, on decreasing trees, and on metasylvester chains

| The \boldsymbol{m}-permutations lattice |
| :--- | :--- |
| \boldsymbol{m}-permutations of size $\boldsymbol{n}:$ |
| permutations of the word $\mathbf{1}^{m} \mathbf{2}^{m} \cdots \boldsymbol{n}^{m}$. |
| Example: |

The metasylvester congruence | The metasylvester congruence is defined on |
| :--- |
| \boldsymbol{m}-permutations as the reflexive transitive |
| closure of the relations |

Number of classes

The number of metasylvester classes is given by the product

$$
(1+m)(1+2 m) \cdots(1+(n-1) m)
$$

For $\boldsymbol{m}=\mathbf{2}$, it is the product of odd numbers, which gives
$1,3,15,105,945, \ldots$

Some properties [2]

■ Each class possesses a unique maximal element, which is the only element avoiding a subword of the form $\cdots \boldsymbol{a} \cdots \boldsymbol{b} \cdots \boldsymbol{a} \cdots$ with $\boldsymbol{a}<\boldsymbol{b}$.
\square The set of maximal elements is in bijection with $(m+1)$-ary decreasing trees.

New results

■ The metasylvester classes form intervals of the \boldsymbol{m}-permutations lattice. ■ The set of maximal elements form a sublattice of the \boldsymbol{m}-permutations lattice

Another realization: metasylvester m-chains

Metasylvester m-chain of size n :
a list $c=\left(\sigma^{(m)}, \sigma^{(m-1)}, \ldots, \sigma^{(1)}\right)$ of permutations with
$■ \sigma^{(m)} \leq \sigma^{(m-1)} \leq \cdots \leq \sigma^{(1)} \quad$ (in right weak order),
\square for all $\bar{i}<j$, we have $\left(\overline{\sigma^{(j)}}\right)^{-1} \sigma^{(i)}$ avoids the pattern 231.
Bijections between metasylvester classes, ($m+1$)-ary decreasing trees and maximal class elements:

| | $\boldsymbol{\sigma}^{(4)}=523416897$ |
| :--- | :--- | :--- | :--- |

555592222444333349881111866668997777

Connection with the m-Tamari lattice

The m-Tamari lattice is both a quotient lattice and a sublattice of the metasylvester lattice. See figures on the right.
It leads to a new realization of the \boldsymbol{m}-Tamari lattice, as shown on the bottom figure on the right. The explicit bijection is explained in the bellow box.

332211

The \boldsymbol{m}-Tamari lattice as a sublattice and quotient lattice of the metasylvester lattice. And a new realization of the \boldsymbol{m}-Tamari lattice.

Replace each up-step by two up-steps to obtain a classical Dyck path.

Color in red every other up-step and connect it to its corresponding down-step

The red steps form one Dyck path of the chain and the black ones form the other one.

