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The generalization of the well known Tamari lattice to the family of m-Tamari lattices [1] opens a natural question: what are the geometrical, combinatorial, and
algebraic relations between a m-version of the weak order and the m-Tamari lattice? In [2], the authors study m-permutations and describe a new congruence relation.
They use it to define a new Hopf Algebra. We prove here that this congruence also leads to the definition of a new lattice.
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Three realizations of the metasylvester lattice; from top to bottom:

on m-permutations, on decreasing trees, and on metasylvester chains.

The m-permutations lattice
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m-permutations of size n:
permutations of the word 1m2m · · ·nm.
Example:

122313 is a 2-permutation of size 3,

211212 is a 3-permutation of size 2.

The set of m-permutations admits a lattice structure
(induced from the weak order on classical permutations).
On the left: the lattice of 2-permutations of size 2.

The metasylvester congruence
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The metasylvester congruence is defined on
m-permutations as the reflexive transitive
closure of the relations

ac · · · a ≡ ca · · · a
b · · · ac · · · b ≡ b · · · ca · · · b

with a < b < c.
See an example of a class on the left.

Number of classes

The number of metasylvester classes is given by the product

(1 +m)(1 + 2m) · · · (1 + (n− 1)m).

For m = 2, it is the product of odd numbers, which gives

1, 3, 15, 105, 945, . . .

Some properties [2]

Each class possesses a unique maximal element, which is the only element
avoiding a subword of the form · · · a · · · b · · · a · · · with a < b.

The set of maximal elements is in bijection with (m+ 1)-ary decreasing trees.

New results

The metasylvester classes form intervals of the m-permutations lattice.

The set of maximal elements form a sublattice of the m-permutations lattice.

Another realization: metasylvester m-chains

Metasylvester m-chain of size n:
a list c = (σ(m), σ(m−1), . . . , σ(1)) of permutations with

σ(m) ≤ σ(m−1) ≤ · · · ≤ σ(1) (in right weak order),

for all i < j, we have (σ(j))−1σ(i) avoids the pattern 231.

Bijections between metasylvester classes, (m+ 1)-ary decreasing
trees and maximal class elements:
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σ(4) = 5 2 3 4 1 6 8 9 7
σ(3) = 5 2 4 3 1 8 6 9 7
σ(2) = 5 2 4 3 9 8 1 6 7
σ(1) = 5 9 2 4 3 8 1 6 7

5 5 5 5 9 2 2 2 2 4 4 4 3 3 3 3 4 9 8 8 1 1 1 1 8 6 6 6 6 8 9 9 7 7 7 7

Connection with the m-Tamari lattice

The m-Tamari lattice is both a quotient lattice and a sublattice of
the metasylvester lattice. See figures on the right.
It leads to a new realization of the m-Tamari lattice, as shown on the bottom
figure on the right. The explicit bijection is explained in the bellow box.
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The m-Tamari lattice as a sublattice and quotient lattice of the

metasylvester lattice. And a new realization of the m-Tamari lattice.

Bijection between m-paths and certain m-chains of the Tamari lattice

Replace each up-step by two up-steps to obtain a classical
Dyck path. Color in red every other up-step and connect it to its corresponding down-step. The red steps form one Dyck path of the chain and the

black ones form the other one.
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