

Habilitation à Diriger des recherches, 20 octobre 2023 LISN, Univ. Paris-Saclay

Combinatorics of the Permutahedra, Associahedra, and Friends

Meet the permutahedron

Meet the permutahedron

$$x + y + z = 6$$

Using SageMath

```
Entrée [1]: P = Polyhedron(list(Permutations(3)))

Out[1]: A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices (use the .plot() method to plot)

Entrée [2]:

Out[2]:

3.80

2×2.90

0

x×2.00
```

For size 4

```
Entrée [3]: P = Polyhedron(list(Permutations(4)))

Out[3]: A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 24 vertices (use the .plot() method to plot)

Entrée [4]: P.plot()

Out[4]:
```


①

left weak order

left weak order

left weak order

left weak order right weak order

$$2413 \land 4213 = 2413$$

$$2413 \lor 4213 = 4231$$

$$2413 \land 4213 = 2413$$

$$2413 \lor 4213 = 4231$$

Combinatorics of faces

$$J\subseteq [n]\to \sum_{j\in J}x_j\geq \binom{|J|+1}{2}$$

$$12|3 \quad x_1 + x_2 \ge 3$$

$$2|13 \quad x_2 \ge 1$$

$$23|1 \quad x_2 + x_3 \ge 3$$

$$3|12 \quad x_3 \ge 1$$

$$13|2 \quad x_1 + x_3 \ge 3$$

$$1|23 \quad x_1 \geq 1$$

(image from V. Pilaud's talk "The Associahedron and its friends")

Meet the Tamari lattice and associahedron

Tamari 51, Loday 04

The Tamari lattice

A structure on Catalan objects: $\frac{1}{n+1} \binom{n}{2n}$.

From permutations to binary trees

Binary search tree insertion

The **Tamari lattice** forms a **quotient lattice** of the weak order.

$$\begin{array}{lll} 12|3 & x_1+x_2 \geq 3 \\ 2|13 & x_2 \geq 1 \\ 23|1 & x_2+x_3 \geq 3 \\ 3|12 & x_3 \geq 1 \\ 13|2 & x_1+x_3 \geq 3 \\ 1|23 & x_1 \geq 1 \end{array}$$

$$\begin{array}{lll} 12|3 & x_1+x_2 \geq 3 \\ 2|13 & x_2 \geq 1 \\ 23|1 & x_2+x_3 \geq 3 \\ 3|12 & x_3 \geq 1 \\ 13|2 & & \\ 1|23 & x_1 \geq 1 \end{array}$$

Nice interplay between algebra, combinatorics and geometry

Tamari Memorial Festschrift, 2012

Celebrating Loday's associahedron by Pilaud, Santos and Ziegler, 2023

The Tamari lattice appears everywhere

In algorithmic

AVL trees

Adelson-Velsky, Landis 1962

map enumeration

Bernadi, Bonichon, Fang, Fusy, Nadeau

- flip distance (open problem)
- diameter of associahedra

Sleator, Tarjan, Thurston, 1988

Pournin, 2014

diagonal of associahedra

Loday, Masuda, Thomas, Tonks, Vallette, Costan, Chyzak, Pilaud

The Tamari lattice appears everywhere

In algebra

representation theory

Bergeron, Préville-Ratelle, Bousquet-Mélou, Chapuy

► Hopf algebras

Loday, Ronco, Hivert, Novelli, Thibon

cluster algebras

Fomin, Zelevinsky

And has many generalizations

- ▶ *m*-Tamari lattices
- ν-Tamari lattices
- Cambrian lattices

Bergeron, Préville-Ratelle, 2012

Viennot, Préville-Ratelle, 2017

Reading, 2006

Friends of permutahedra and associahedra

Bijections and enumerations: Tamari intervals

Chapoton

Chapoton, Tutte

Chapoton, Tutte, Schnyder, Wormald, Poulahon, Schaeffer, Fusy

Chapoton, Tutte, Schnyder, Wormald, Poulahon, Schaeffer, Fusy, Bernadi, Bonichon

Chapoton, Tutte, Schnyder, Wormald, Poulahon, Schaeffer, Fusy, Bernadi, Bonichon, Bousquet-Mélou, Préville-Ratelle

Chapoton, Tutte, Schnyder, Wormald, Poulahon, Schaeffer, Fusy, Bernadi, Bonichon, Bousquet-Mélou, Préville-Ratelle, Châtel, P.

Chapoton, Tutte, Schnyder, Wormald, Poulahon, Schaeffer, Fusy, Bernadi, Bonichon, Bousquet-Mélou, Préville-Ratelle, Châtel, P.

Chapoton, Tutte, Schnyder, Wormald, Poulahon, Schaeffer, Fusy, Bernadi, Bonichon, Bousquet-Mélou, Préville-Ratelle, Châtel, P., Fang, Combe, Zeilberger, Defant, Duchi, Henriet, Nadeau

Tamari interval-posets

for all a < b < c, $a \lhd c \Rightarrow b \lhd c$ and $c \lhd a \Rightarrow b \lhd a$.

Theorem (Châtel, P., 2015)

Tamari interval-posets are in bijection with intervals of the Tamari lattice

Grafting trees

Theorem (P., 2019)

Grafting trees are in bijection with intervals of the Tamari lattice

Rise-Contact involution (P. 2019)

Combinatorial proof of the rise-contact symmetry found by Bousquet-Mélou, Fusy and Préville-Ratelle

Why are we interested in statistics on intervals?

Motivation: diagonal harmonic polynomials. Compute the dimension of the alternating component of an \mathfrak{S}_n -module.

bivariate polynomials: q, t-Catalan

Bergeron, Garsia, Haiman, Haglund

trivariate polynomials: (conjecture) q, t, r enumeration of Tamari intervals

Bergeron, Préville-Ratelle

Current project and perspectives (with Loic Le Mogne)

study the "triangular" case

Bergeron, Mazin, 2022

- results and conjectures with connection to ν -Tamari lattice
- try to generalize the Catalan ecosystem to the triangular case

New friends: Integer posets

Permutations interval \rightarrow weak order integer poset

All integer posets

Theorem (Châtel, Pilaud, P. 2019)

The weak order on integer posets is a lattice.

Theorem (Pilaud, P. 2020)

The vector space of integer posets can be endowed with product and co-product operations to form a Hopf algebra.

integer posets

permutations (classical weak order)

permutations (classical weak order)

permutations intervals

faces of the permutahedron (facial weak order)

binary trees (Tamari lattice)

Tamari interval-posets

faces of the associahedron

binary sequences (boolean lattice)

faces of the cube

New friends: permutrees

Preamble: lattice congruences

Lattice Congruences of the Weak Order, Nathan Reading, Order, 2005

 $2134 \equiv 2314$

$$2134 \equiv 2314 \\ 2134 \lor 2413 \equiv 2314 \lor 2413$$

$$2134 \equiv 2314$$
 $2134 \lor 2413 \equiv 2314 \lor 2413$
 $2431 \equiv 2413$

$$2134 \equiv 2314 \equiv 2341$$
 $2143 \equiv 2413 \equiv 2431$
 $3214 \equiv 3241$
 $4213 \equiv 4231$

Permutree congruences

Permutree insertion (Pilaud, P. 2018)

Generalizing the binary search tree insertion

Permutree lattices

Permutreehedra

Theorem (Pilaud, P. 2018)

For each decoration, the permutree congruence can be realized as a polytope called the permutreehedron, obtained by **removing** facets of the permutahedron.

Albertin, Pilaud, Ritter 2021 \rightarrow they are the **only** lattice congruences to have this property

Recent work and perspectives

- thesis of Daniel Tamayo
 - permutrees via automata (Pilaud, P., Tamayo 2023)
 - cubic realizations
 - realizations via flow polytopes
- Perspective: other types of finite Coxeter groups

New friends: the s-weak order and s-Permutahedra

Motivation

Weak order	Permutahedron		
Tamari lattice	Associahedron	u-Tamari	u-Associahedron
		Préville-Ratelle, Viennot	Ceballos, Padrol, Sarmiento

Weak order	Permutahedron	?	?
Tamari lattice	Associahedron	u-Tamari	u-Associahedron
		Préville-Ratelle, Viennot	Ceballos, Padrol, Sarmiento

s-decreasing trees

- s is a sequence of non-negative integers
- ▶ The node *i* has s(i) + 1 children
- Nodes labels decreasing from root to leaves

$$s = (0, 1, 3, 0, 4, 3)$$

The s-weak order

Theorem (Ceballos, P.)

The s-weak order is a lattice.

Select trees which avoid "pattern 231": a < b < c

Theorem (Ceballos, P.)

The set of 231-avoiding s-decreasing trees form a sublattice, the s-Tamari lattice, isomorphic to the ν -Tamari lattice.

Geometry: the s-Permutahedron

Theorem (Ceballos, P.)

The intersection of two pure intervals is a pure interval.

Conjecture (Ceballos, P.)

The s-Permutahedron is a polytopal complex

Conjecture (Ceballos, P.)

It can be realized as a polytopal subdivision of the classical permutahedron.

Conjecture (Ceballos, P.)

A realization of the ν -associahedron can be obtained by "removing" some facets of the s-permutahedron.

Conjecture (Ceballos, P.)

The s-Permutahedron is a polytopal complex

Conjecture (Ceballos, P.)

It can be realized as a polytopal subdivision of the classical permutahedron.

Conjecture (Ceballos, P.)

A realization of the ν -associahedron can be obtained by "removing" some facets of the s-permutahedron.

Solved for s without 0 (González D'Leon, Morales, Philippe, Tamayo and Yip)

Recent work and perspective

- Recent [GDMPTY23]: partially solved the conjectures via flow polytopes (see Tamayo's thesis)
- Perspectives:
 - can it be generalized to all s?
 - a direct realization without tropical geometry?
 - what about Conjecture 3 on ν-associahedron?
 - study the ascentopes: conjectural direct polytopal realizations of pure intervals
 - study the s-braid arrangement (the dual of s-permutahedra)
 - generalize to other Coxeter groups

Closing remarks

Methodology: computer exploration

- Computer exploration as an essential element of my research (using SageMath)
- Producing and sharing code
- using open licenses and advocating for open-source
- organizing community events, training other scientist, sharing good practices and knowledge

Perspectives and research philosophy

- ► Motivation: difficult open problems
 - q, t-Catalan symmetry
 - rotation distance in binary trees
 - chute moves lattice conjecture
 - ...
- Goal: solve? Maybe not... But construct new knowledge
- ► We create rich and inclusive research environments with active teams and open discussions
- 2 graduated PhD students, 1 in second year, 1 postdoc arriving next months: hoping to have many more

Thank you! Merci!

Tamari intervals and q, t-Catalan

- Châtel, P., Counting smaller elements in the Tamari and m-Tamari lattices. JCTA, 2015.
- P., The Rise-Contact involution on Tamari intervals. Elec. J. of Comb., 2019.
- P., A description of the Zeta map on Dyck paths area sequences. arXiv:2205.06375, 2022.
- Le Mogne, P., Deficit and (q, t)-symmetry in triangular Dyck paths. FPSAC, 2023.

Integer posets and permutrees

- Pilaud, P., Permutrees. ALCO, 2018.
- Châtel, Pilaud, P., The weak order on integer posets. ALCO, 2019.
- Pilaud, P., The Hopf algebra of integer binary relations. CARMA, 2020.
- Pilaud, P., Tamayo, Permutree sorting. ALCO, 2023.

s-Weak order

- Ceballos, P., The s-weak order and s-permutahedra. FPSAC, 2019.
- Ceballos, P., The s-weak order and s-permutahedra I: combinatorics and lattice structure. arXiv:2212.11556, 2022.
- Ceballos, P., The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals. arXiv:2309.14261, 2023.