KNOWLEDGE GRAPH COMPLETION PART 4: KEY DISCOVERY

FATIHA SAÏS ⁽¹⁾ NATHALIE PERNELLE⁽¹⁾ **DANAI SYMEONIDOU⁽²⁾**

- ⁽¹⁾ LRI, PARIS SUD UNIVERSITY, CNRS, PARIS SACLAY UNIVERSITY
- (2) INRA, GAMMA TEAM

OUTLINE

- Key discovery in relational databases
- Key discovery in the Semantic Web
- Different approaches for key discovery in the Semantic Web
- Conclusions

KEYS IN RELATIONAL DATABASES

• **Key**: A set of properties that uniquely identifies every instance in the data

	FirstName	LastName	Birthdate	Profession
Person1	Anne	Tompson	15/02/88	Actor
Person2 Marie		Tompson	02/09/75	Researcher
Person3 Marie		David	15/02/85	Teacher
Person4	Vincent	Solgar	06/12/90	Teacher

Is [FirstName] a key? Is [LastName] a key?

KEYS IN RELATIONAL DATABASES

• **Key**: A set of properties that uniquely identifies every instance in the data

	FirstName	LastName	Birthdate	Profession
Person1	Anne	Tompson	15/02/88	Actor
Person2	Marie	Tompson	02/09/75	Researcher
Person3	Person3 Marie		15/02/85	Teacher
Person4	Vincent	Solgar	06/12/90	Teacher

Is [FirstName] a key? Is [LastName] a key?

KEYS IN RELATIONAL DATABASES

• **Key**: A set of properties that uniquely identifies every instance in the data

	FirstName	LastName	Birthdate	Profession
Person1	Anne	Tompson	15/02/88	Actor
Person2	Person2 Marie		02/09/75	Researcher
Person3	Marie	David	15/02/85	Teacher
Person4	Vincent	Solgar	06/12/90	Teacher

Is [FirstName] a key? Is [LastName] a key? Is [FirstName,LastName] a key?

1

KEYS: DATABASES VS. SEMANTIC WEB

RDF data conform to ontologies

- Key discovery on a given class
- Data inference => obtain a more complete information about the data
- Key heritage
 - {SSN}: key for all the instances of the class Person
 - {SSN}: key for all subclasses of the class Person (ex. Researcher, Professor etc.)

RDF data completeness

Interpretation of no values

RDF data quality

- · Deal with erroneous data
- Volume of RDF datasets

KEYS DECLARED BY EXPERTS FOR DATA LINKING

Not an easy task:

• Experts are not aware of all the keys

Ex. {SSN}, {ISBN} easy to declare Ex. {Name, DateOfBirth, BornIn} is it a key for the class Person?

- Erroneous keys can be given by experts
- As many keys as possible
 - More keys => More linking rules

Goal: Discover keys automatically

KEYS - KEY MONOTONICITY

- Key monotonicity: When a set of properties is a key, all its supersets are also keys
- Minimal Key: A key that by removing one property stops being a key

	FirstName	LastName	SSN	DateOfBirth	StudiedIn	HasSibling
p1	Marie	Brown	121558745	_	UCC, Yale	p2, p4
p2	John	Brown	232351234	05/03/85	_	p1, p4
p4	Helen	Roger	767960154	10/08/79	UCC, UCD	_
p4	Marc	Brown	_	_	Yale	p1, p2
p5	Helen	Roger	767960154	_	_	_

Minimal key: [FirstName,LastName]

Not a minimal key: [FirstName,LastName, dateOfBirth]

	FirstName	LastName	SSN	DateOfBirth	StudiedIn	HasSibling
p1	Marie	Brown	121558745	_	UCC, Yale	p2, p4
p2	John	Brown	232351234	05/03/85	_	p1, p4
p4	Helen	Roger	767960154	10/08/79	UCC, UCD	_
p4	Marc	Brown	_	_	UCD	p1, p2
p5	Helen	Roger	767960154	_	_	_

<p1, StudiedIn, UCC> <p1, StudiedIn, Yale>

	FirstName	LastName	SSN	DateOfBirth	StudiedIn	HasSibling
p1	Marie	Brown	121558745	_	UCC, Yale	p2, p4
p2	John	Brown	232351234	05/03/85	_	p1, p4
p4	Helen	Roger	767960154	10/08/79	UCC, UCD	_
p4	Marc	Brown	_	_	UCD	p1, p2
p5	Helen	Roger	767960154	_	_	_

No triple containing the birthdate of p1

	FirstName	LastName	SSN	DateOfBirth	StudiedIn	HasSibling
p1	Marie	Brown	121558745	_	UCC, Yale	p2, p4
p2	John	Brown	232351234	05/03/85	_	p1, p4
p4	Helen	Roger	767960154	10/08/79	UCC, UCD	_
p4	Marc	Brown	_	_	UCD	p1, p2
р5	Helen	Roger	767960154	_	_	_

- Three main types of keys in the SW:
 - S-keys (conforming to OWL2)

	FirstName	LastName	SSN	StudiedIn	HasSibling
р1	Marie	Brown	121558745	UCC, Yale	p2, p4
p2	John	Brown	232351234	_	p1, p4
p4	Marie	Roger	767960154	UCC, UCD	_
p4	Marc	Brown	_	UCD	p1, p2
р5	Helen	Roger	967960158	_	_

S-keys				
{FirstName, LastName}				
{SSN}				
{LastName, StudiedIn}				
{FirstName, HasSibling}				

- Three main types of keys in the SW:
 - S-keys (conforming to OWL2)

	FirstName	LastName	SSN	StudiedIn	HasSibling
р1	Marie	Brown	121558745	UCC, Yale	p2, p4
p2	John	Brown	232351234	_	p1, p4
p4	Marie	Roger	767960154	UCC, UCD	_
p4	Marc	Brown	_	UCD	p1, p2
р5	Helen	Roger	967960158	_	_

S-keys
{FirstName, LastName}
{SSN}
{LastName, StudiedIn}
{FirstName, HasSibling}

- Three main types of keys in the SW:
 - S-keys (conforming to OWL2)
 - SF-keys

	FirstName	LastName	SSN	StudiedIn	HasSibling
р1	Marie	Brown	121558745	UCC, Yale	p2, p4
p2	John	Brown	232351234	_	p1, p4
р4	Marie	Roger	767960154	UCC, UCD	_
р4	Marc	Brown	_	UCD	p1, p2
р5	Helen	Roger	967960158	_	_

S-keys	SF-keys
{FirstName, LastName}	{FirstName, LastName}
{SSN}	{SSN}
{LastName, StudiedIn}	{StudiedIn}
{FirstName, HasSibling}	{HasSibling}

- Three main types of keys in the SW:
 - S-keys (conforming to OWL2)
 - SF-keys

	FirstName	LastName	SSN	StudiedIn	HasSibling
р1	Marie	Brown	121558745	UCC, Yale	p2, p4
p2	John	Brown	232351234	_	p1, p4
р4	Marie	Roger	767960154	UCC, UCD	_
р4	Marc	Brown	_	UCD	p1, p2
р5	Helen	Roger	967960158	_	_

S-keys	SF-keys
{FirstName, LastName}	{FirstName, LastName}
{SSN}	{SSN}
{LastName, StudiedIn}	{StudiedIn}
{FirstName, HasSibling}	{HasSibling}

- Three main types of keys in the SW:
 - S-keys (conforming to OWL2)
 - SF-keys
 - F-keys

	FirstName	LastName	SSN	StudiedIn	HasSibling
р1	Marie	Brown	121558745	UCC, Yale	p2, p4
p2	John	Brown	232351234	_	p1, p4
p4	Marie	Roger	767960154	UCC, UCD	_
р4	Marc	Brown	_	UCD	p1, p2
р5	Helen	Roger	967960158	_	_

S-keysSF-keysFirstName, LastName{FirstName, LastName}{FirstName, LastName}{FirstName, LastName}{SSN}{SSN}{SSN}{LastName, StudiedIn}{StudiedIn}{LastName, StudiedIn}{FirstName, HasSibling}{HasSibling}...

- Three main types of keys in the SW:
 - S-keys (conforming to OWL2)
 - SF-keys
 - F-keys

	FirstName	LastName	SSN	StudiedIn	HasSibling
р1	Marie	Brown	121558745	UCC, Yale	p2, p4
p2	John	Brown	232351234	_	p1, p4
p4	Marie	Roger	767960154	UCC, UCD	_
р4	Marc	Brown	_	UCD	p1, p2
р5	Helen	Roger	967960158	_	_

S-keys	SF-keys	F-keys
{FirstName, LastName}	{FirstName, LastName}	{FirstName, LastName}
{SSN}	{SSN}	{SSN}
{LastName, StudiedIn}	{StudiedIn}	{LastName,StudiedIn}
{FirstName, HasSibling}	{HasSibling}	

- Three main types of keys in the SW:
 - S-keys (conforming to OWL2)
 - SF-keys
 - F-keys

	FirstName	LastName	SSN	StudiedIn	HasSibling
р1	Marie	Brown	121558745	UCC, Yale	p2, p4
p2	John	Brown	232351234	_	p1, p4
p4	Marie	Roger	767960154	UCC, UCD	_
р4	Marc	Brown	_	UCD	p1, p2
р5	Helen	Roger	967960158	_	_

S-keysSF-keysFirstName, LastName{FirstName, LastName}{FirstName, LastName}{FirstName, LastName}{SSN}{SSN}{SSN}{LastName, StudiedIn}{StudiedIn}{LastName, StudiedIn}{FirstName, HasSibling}{HasSibling}{LastName, StudiedIn}

KEY DISCOVERY APPROACHES

SF-Keys

 Keys and Pseudo-Keys Detection for Web Datasets Cleaning and Interlinking

F-Keys

• ROCKER: A Refinement Operator for Key Discovery

S-Keys

- An automatic key discovery approach for data linking
- SAKey: Scalable almost key discovery in RDF data
- VICKEY: Conditional key discovery
- Linkkey: Data interlinking through robust Linkkey extraction

KEY DISCOVERY APPROACHES

SF-Keys

 Keys and Pseudo-Keys Detection for Web Datasets Cleaning and Interlinking

F-Keys

• ROCKER: A Refinement Operator for Key Discovery

S-Keys

- An automatic key discovery approach for data linking
- SAKey: Scalable almost key discovery in RDF data
- VICKEY: Conditional key discovery
- Linkkey: Data interlinking through robust Linkkey extraction

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

If P4 is a key => P1P4, P2P4,..., P1P2P3P4 are also keys

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

- Bottom-up approach that discovers:
 - SF-keys for a given class
 - SF-pseudo keys for a given class: sf-keys that tolerate exceptions

If P4 is a key => P1P4, P2P4,.., P1P2P3P4 are also keys

- To verify if a set of properties is a key
 - Partition instances according to their sharing values
 - If each partition contains only one instances => Key
- Key quality measures
 - **Support** of a set of properties *P*:

 $support(P) = \frac{\# instances \ described \ by \ P}{\# \ all \ instances}$

• **Discriminability** of a set of properties *P* (pseudo-keys):

$$dis(P) = \frac{\# \ singleton \ partitions}{\# \ partitions}$$

	Name	Actor	Director	ReleaseDate	Website	Language
film1	Ocean's 11	B. Pitt	S. Soderbergh	3/4/01	www.oceans11.com	
		J. Roberts				
film2	Ocean's 12	B. Pitt	S. Soderbergh	2/5/04	www.oceans12.com	english
		J. Roberts	R. Howard			
film3	Ocean's 13	B. Pitt	S. Soderbergh	30/6/07	www.oceans13.com	english
		G. Clooney	R. Howard			
film4	The descendants	N. Krause	A. Payne	15/9/11		english
		G. Clooney				
film5	Bourne Identity	D. Liman		12/6/12	www.bourneldentity.com	english

Partitions using [Actor]

[Actor]: pseudokey
 Support = 5/5 =1
 Discriminability = 3/4=0.75

KEY DISCOVERY APPROACHES

SF-Keys

 Keys and Pseudo-Keys Detection for Web Datasets Cleaning and Interlinking

F-Keys

ROCKER: A Refinement Operator for Key Discovery

S-Keys

- An automatic key discovery approach for data linking
- SAKey: Scalable almost key discovery in RDF data
- VICKEY: Conditional key discovery
- Linkkey: Data interlinking through robust Linkkey extraction

ROCKER: A REFINEMENT OPERATOR FOR KEY DISCOVERY [Soru et al. 2015]

- Bottom-up approach that discovers in an efficient way
 - F-keys for a given class
 - F-pseudo keys for a given class
- Key quality measures
 - **Discriminability(P):** # of distinguished instances using the set P
 - Score(P) = discriminability(P)/# instances

Score: [0,1]

- Key => score = 1
- Pseudo key => score < 1

	Name	Director	ReleaseDate	Website	Language
film1	Ocean's 11	S. Soderbergh	3/4/01	www.oceans11.com	
film2	Ocean's 12	S. Soderbergh R. Howard	2/5/04	www.oceans12.com	english
film4	The descendants	A. Payne	15/9/11		english
film5	Bourne Identity		12/6/12		english

ROCKER: A REFINEMENT OPERATOR FOR KEY DISCOVERY [Soru et al. 2015]

- Bottom-up approach that discovers in an efficient way
 - F-keys for a given class
 - F-pseudo keys for a given class
- Key quality measures
 - **Discriminability(P):** # of distinguished instances using the set P
 - Score(P) = discriminability(P)/# instances

Score: [0,1]

Not a key

- Key => score = 1
- Pseudo key => score < 1

					-
	Name	Director	ReleaseDate	Website	Language
film1	Ocean's 11	S. Soderbergh	3/4/01	www.oceans11.com	
film2	Ocean's 12	S. Soderbergh R. Howard	2/5/04	www.oceans12.com	english
film4	The descendants	A. Payne	15/9/11		english
film5	Bourne Identity		12/6/12		english

ROCKER: A REFINEMENT OPERATOR FOR KEY DISCOVERY [Soru et al. 2015]

- Bottom-up approach that discovers in an efficient way
 - F-keys for a given class
 - F-pseudo keys for a given class
- Key quality measures
 - **Discriminability(P):** # of distinguished instances using the set P
 - Score(P) = discriminability(P)/# instances

Score: [0,1]

> Kov

- Key => score = 1
- Pseudo key => score < 1

	Name 🚺	Director	ReleaseDate	Website	Language
film1	Ocean's 11	S. Soderbergh	3/4/01	www.oceans11.com	
film2	Ocean's 12	S. Soderbergh R. Howard	2/5/04	www.oceans12.com	english
film4	The descendants	A. Payne	15/9/11		english
film5	Bourne Identity		12/6/12		english

Tool available in https://github.com/AKSW/rocker

KEY DISCOVERY APPROACHES

SF-Keys

 Keys and Pseudo-Keys Detection for Web Datasets Cleaning and Interlinking

F-Keys

ROCKER: A Refinement Operator for Key Discovery

S-Keys

- An automatic key discovery approach for data linking
- SAKey: Scalable almost key discovery in RDF data
- VICKEY: Conditional key discovery
- Linkkey: Data interlinking through robust Linkkey extraction

AN AUTOMATIC KEY DISCOVERY APPROACH FOR DATA LINKING (KD2R) [Pernelle et al. 2013]

KEY DISCOVERY APPROACHES

SF-Keys

 Keys and Pseudo-Keys Detection for Web Datasets Cleaning and Interlinking

F-Keys

• ROCKER: A Refinement Operator for Key Discovery

S-Keys

- An automatic key discovery approach for data linking
- SAKey: Scalable almost key discovery in RDF data
- VICKEY: Conditional key discovery
- Linkkey: Data interlinking through robust Linkkey extraction

SAKEY: SCALABLE ALMOST KEY DISCOVERY IN RDF DATA [Symeonidou et al.14]

SAKey: Scalable Almost Key discovery approach for:

- Incomplete and erroneous data
- Large datasets
- Discovers almost keys
 - Sets of properties that are not keys due to *n* exceptions

SAKEY: SCALABLE ALMOST KEY DISCOVERY IN RDF DATA [Symeonidou et al.14]

SAKey: Scalable Almost Key discovery approach for:

- Incomplete and erroneous data
- Large datasets
- Discovers almost keys
 - Sets of properties that are not keys due to *n* exceptions

	Region	Producer	Colour
Wine1	Bordeaux	Dupont	White
Wine2	Bordeaux	Baudin	Rose
Wine3	Languedoc	Dupont	Red
Wine4	Languedoc	Faure	Red

Examples of keys {Region, Producer}: 0-almost key

•

SAKEY: SCALABLE ALMOST KEY DISCOVERY IN RDF DATA [Symeonidou et al.14]

SAKey: Scalable Almost Key discovery approach for:

- Incomplete and erroneous data
- Large datasets
- Discovers almost keys
 - Sets of properties that are not keys due to *n* exceptions

	Region	Producer	Colour
Wine1	Bordeaux	Dupont	White
Wine2	Bordeaux	Baudin	Rose
Wine3	Languedoc	Dupont	Red
Wine4	Languedoc	Faure	Red

Examples of keys {Region, Producer}: 0-almost key

{Producer}:
2-almost key

SAKEY: SCALABLE ALMOST KEY DISCOVERY IN RDF DATA [Symeonidou et al.14]

- Non-key discovery first
 - Set of properties that is not a key

	museumName	museumAddress	inCountry	
Museum1 Archaeological Museum		44 Patission Street	Greece	
Museum2	Pompidou	-	France	
Museum3 Musée d'Orsay 62, rue de L		62, rue de Lille	France	
Museum4 Madame Tussauds		Marylebone Road	England	
Museum5	Vatican Museums	s Piazza San Giovanni Italy		
Museum6	Deutsches Museum	Deutsches Museum Museumsinsel 1 Ge		
Museum7	Olympia Museum	Archea Olympia	hea Olympia Greece	
Museum8	Dalí museum	um 1, Dali Boulevard Spai		

SAKEY: SCALABLE ALMOST KEY DISCOVERY IN RDF DATA [Symeonidou et al.14]

- Non-key discovery first
 - Set of properties that is not a key

kov

	i toy		
	museumName	museumAddress	inCountry
Museum1	Archaeological Museum	44 Patission Street	Greece
Museum2	Pompidou	-	France
Museum3	Musée d'Orsay	62, rue de Lille	France
Museum4 Madame Tussauds		Marylebone Road	England
Museum5	Vatican Museums	Piazza San Giovanni	Italy
Museum6	Deutsches Museum	Museumsinsel 1	Germany
Museum7	Olympia Museum	Archea Olympia	Greece
Museum8 Dalí museum		1, Dali Boulevard	Spain

SAKEY: SCALABLE ALMOST KEY DISCOVERY IN RDF DATA [Symeonidou et al.14]

- Non-key discovery first
 - Set of properties that is not a key

	Non-key		
	museumName museumAddress		inCountry
Museum1	Archaeological Museum	44 Patission Street	Greece
Museum2	Pompidou	-	France
Museum3 Musée d'Orsay		62, rue de Lille	France
Museum4	Madame Tussauds	Marylebone Road	England
Museum5	Vatican Museums	Piazza San Giovanni	Italy
Museum6	Deutsches Museum	Museumsinsel 1	Germany
Museum7	Olympia Museum	Archea Olympia	Greece
Museum8	Dalí museum	1, Dali Boulevard	Spain

M-ALMOST KEYS

[Symeonidou et al.14]

- Exception Set E_P: set of instances that share values for the set of properties P
- n-almost key: a set of properties where $|E_P| \le n$
- n-non key: a set of properties where $|E_P| \ge n$

All combinations of properties

M-ALMOST KEYS

[Symeonidou et al.14]

- Exception Set E_P: set of instances that share values for the set of properties P
- n-almost key: a set of properties where $|E_P| \le n$
- n-non key: a set of properties where $|E_P| \ge n$

M-ALMOST KEYS

- Exception Set E_P: set of instances that share values for the set of properties P
- n-almost key: a set of properties where $|E_P| \le n$
- n-non key: a set of properties where |E_P|≥ n

DATA LINKING USING ALMOST KEYS

[Symeonidou et al.14]

 Goal: Compare linking results using almost keys with different n

Evaluation of linking using

- Recall
- Precision
- F-Measure

Datasets

- OAEI 2010
- OAEI 2013

EXAMPLE: DATA LINKING USING ALMOST KEYS

[Symeonidou et al.14]

OAEI 2013 - Person

	Almost keys	Recall	Precision	F-Measure
0-almost key	{BirthDate, award}	9.3%	100%	17%
2-almost key	{BirthDate}	32.5%	98.6%	49%

# exceptions	Recall	Precision	F-measure
0, 1	25.6%	100%	41%
2, 3	47.6%	98.1%	64.2%
4, 5	47.9%	96.3%	63.9%
6,, 16	48.1%	96.3%	64.1%
17	49.3%	82.8%	61.8%

Tool available in https://www.lri.fr/sakey

KEY ISSUES

Key limitations

- Cases of datasets having no keys
- Keys are generic, i.e., they are true for every instance of a class in a dataset

Motivating example

- In many countries, a student can be supervised by multiple supervisors
- In German Universities, a student can be supervised by only one professor
 - {supervises} key for the instances of the class Professor with condition that they are in a German university
- Almost keys express keys that <u>do not uniquely identify every</u> <u>instance</u> of a class in a dataset

Approximate keys do not express the conditions under which they are true

KEY DISCOVERY APPROACHES

SF-Keys

 Keys and Pseudo-Keys Detection for Web Datasets Cleaning and Interlinking

F-Keys

• ROCKER: A Refinement Operator for Key Discovery

S-Keys

- An automatic key discovery approach for data linking
- SAKey: Scalable almost key discovery in RDF data
- VICKEY: Conditional key discovery
- Linkkey: Data interlinking through robust Linkkey extraction

VICKEY: MINING CONDITIONAL KEYS ON RDF DATASETS

[Symeonidou et al.17]

- Conditional key: a key, valid for instances of a class satisfying a specific condition
 - Condition part: pairs of property and value
 - Eg. {Lab=INRA}, {Gender=Male}, {Gender=Female ^ Lab=INRA} etc.
 - Key part: a set of properties
 - Eg. {FirstName}, {LastName}, {FirstName, LastName} etc.

		FirstName	LastName	Gender	Lab	Nationality
í	instance1	Claude	Dupont	Female	Paris-Sud	France
İ	instance2	Claude	Dupont	Male	Paris-Sud	Belgium
İ	instance3	Juan	Rodríguez	Male	INRA	Spain, Italy
j	instance4	Juan	Salvez	Male	INRA	Spain
	instance5	Anna	Georgiou	Female	INRA	Greece, France
	instance6	Pavlos	Markou	Male	Paris-Sud	Greece
!_	instance7	Marie	Legendre	Female	INRA	France

Instances of the class Person

{LastName} is a key under the condition {Lab=INRA}

CONDITIONAL KEY QUALITY MEASURES

[Symeonidou et al.17]

- Support: #instances both satisfying condition part and instantiating key part
- Coverage: Support/#all_Instances

		FirstName	LastName	Gender	Lab	Nationality	Support: 4
Í	instance1	Claude	Dupont	Female	Paris-Sud	France	Coverage: 4/7 = 0.57
	instance2	Claude	Dupont	Male	Paris-Sud	Belgium	
	instance3	Juan	Rodríguez	Male	INRA	Spain, Italy	
Instances of the	instance4	Juan	Salvez	Male	INRA	Spain	
	instance5	Anna	Georgiou	Female	INRA	Greece, France	
	instance6	Pavlos	Markou	Male	Paris-Sud	Greece	
	instance7	Marie	Legendre	Female	INRA	France	

{LastName} is a key under the condition {Lab=INRA}

VICKEY: MINING EFFICIENTLY CONDITIONAL KEYS [Symeonidou et al.17]

Goal of VICKEY

- Given all instances of a class in a dataset and a min_support/min_coverage, mine all minimal conditional keys with
 - support/coverage ≥ min_support/min_coverage

• Step 1: Discover all minimal conditional keys with condition {p=a}

. . .

- Step 2: Discover all minimal conditional keys with condition {p₁=a₁^p₂=a₂}
- Step n: Discover all minimal conditional keys with condition $\{p_1=a_1^{n_1}, \dots, p_n=a_n\}$

- Step 1: Discover all minimal conditional keys with condition {p=a}
- Step 2: Discover all minimal conditional keys with condition {p₁=a₁^p₂=a₂}
- ...
- Step n: Discover all minimal conditional keys with condition {p₁=a₁^...^p_n=a_n}

- Step 1: Discover all minimal conditional keys with condition {p=a}
- Step 2: Discover all minimal conditional keys with condition {p₁=a₁^p₂=a₂}
- ...
- Step n: Discover all minimal conditional keys with condition {p₁=a₁^...^p_n=a_n}

Key {FirstName} for cond {Gender=Female}

- Step 1: Discover all minimal conditional keys with condition {p=a}
- Step 2: Discover all minimal conditional keys with condition {p₁=a₁^p₂=a₂}
- ...
- Step n: Discover all minimal conditional keys with condition {p₁=a₁^...^p_n=a_n}

Key {FirstName} for cond {Gender=Female}

DATA LINKING - VICKEY VS. SAKEY

[Symeonidou et al.17]

Goal: link two datasets using

- Classical keys discovered by SAKey
- Conditional keys discovered by VICKEY
- Both classical keys and conditional keys

Evaluate obtained links using the existing goal-standard with

- Recall
- Precision
- F-Measure

DATA LINKING - VICKEY VS. SAKEY

[Symeonidou et al.17]

- Link two knowledge bases containing information of Wikipedia
 - Yago[3]
 - DBpedia[4]

Used classes of DBpedia and Yago

- Actor
- Album
- Book
- Film
- Mountain
- Museum
- Organization
- Scientist
- University

DATA LINKING - VICKEY VS. SAKEY

[Symeonidou et al.17]

Class		Recall	Precision	F-Measure	
Actor	Keys[1]*	0.27	0.99	0.43	
	Conditional keys**	0.57	0.99	0.73	x 1.75
	Keys[1]+Conditional keys	0.6	0.99	0.75	
	Keys[1]	0	1	0.00	
Album	Conditional keys	0.15	0.99	0.26	x 869
	Keys[1]+Conditional keys	0.15	0.99	0.26	
	Keys[1]	0.04	0.99	0.08	
Film	Conditional keys	0.38	0.96	0.54	x 7.1
	Keys[1]+Conditional keys	0.39	0.98	0.55	
Museum	Keys[1]	0.12	1	0.21	
	Conditional keys	0.25	1	0.40	x 2.19
	Keys[1]+Conditional keys	0.31	1	0.47	

*Keys[1] from SAKey

**Conditional keys from VICKEY

Tool available https://github.com/lgalarra/vickey

KEY DISCOVERY APPROACHES

SF-Keys

 Keys and Pseudo-Keys Detection for Web Datasets Cleaning and Interlinking

F-Keys

ROCKER: A Refinement Operator for Key Discovery

S-Keys

- An automatic key discovery approach for data linking
- SAKey: Scalable almost key discovery in RDF data
- VICKEY: Conditional key discovery
- Linkkey: Data interlinking through robust Linkkey extraction

DATA INTERLINKING THROUGH ROBUST LINKKEY EXTRACTION [Atencia et al.14]

- Given a pair of classes in two datasets conforming to two different ontologies:
 - Discover Linkkeys maximal sets of property pairs that can link instances of two different classes

DATA INTERLINKING THROUGH ROBUST LINKKEY EXTRACTION [Atencia et al.14]

- Given a pair of classes in two datasets conforming to two different ontologies:
 - Discover Linkkeys maximal sets of property pairs that can link instances of two different classes

DATA INTERLINKING THROUGH ROBUST LINKKEY EXTRACTION [Atencia et al.14]

- Given a pair of classes in two datasets conforming to two different ontologies:
 - Discover Linkkeys maximal sets of property pairs that can link instances of two different classes

Ex. {<LastName,LN>,<Nationality,NL>}, {<Profession,PR>,<Nationality,NL>} 66

SUMMARY

S-keys, F-Keys, SF-keys

- F-keys and SF-keys would better work in more complete data
- S-keys are more resistant to incompleteness

Keys and almost/pseudo keys:

 Better linking results in terms of recall with n-almost keys/pseudo keys than with sure keys

Conditional keys:

• Better linking results in terms of recall when conditional keys are used

Improvements:

- Define the number of exceptions
- Handle numerical values (one approach already exists)
- Handle data heterogeneity in a dataset
- Choose right semantic using the data (data completeness)

• ...

REFERENCES

[Atencia et al. 2012] Keys and Pseudo-Keys Detection for Web Datasets Cleansing and Interlinking.Manuel Atencia, Jérôme David, François Scharffe. In EKAW 2012

[Atencia et al. 2014] Data interlinking through robust Linkkey extraction. Atencia, Manuel, Jérôme David, and Jérôme Euzenat. ECAI, 2014.

[Soru et al. 2015] ROCKER: a refinement operator for key discovery. Soru, Tommaso, Edgard Marx, and Axel-Cyrille Ngonga Ngomo. In WWW, 2015.

[Pernelle et al. 2013] An Automatic Key Discovery Approach for Data Linking. Nathalie Pernelle, Fatiha Saïs. and Danai Symeounidou. In Journal of Web Semantics

[Symeonidou et al. 2014] SAKey: Scalable almost key discovery in RDF data. Symeonidou, Danai, Vincent Armant, Nathalie Pernelle, and Fatiha Saïs. In ISWC 2014.

[Symeonidou et al. 2017] VICKEY: Mining Conditional Keys on RDF datasets. Danai Symeonidou, Luis Galarraga, Nathalie Pernelle, Fatiha Saïs and Fabian Suchanek. In ISWC 2017.