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FROM THE WWW TO 
THE WEB OF DATA 
- applying the principles of the WWW to data 

data is relationships, 
not only properties
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LINKED DATA 
PRINCIPLES
① Use HTTP URIs as identifiers for resources

à so people can look up the data

② Provide data at the location of URIs
à to provide data for interested parties 

③ Include links to other resources
àso people can discover more things

àbridging disciplines and domains

àthe more linked resources, the more one can find out
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RDF – RESOURCE 
DESCRIPTION FRAMEWORK 
• Statements of < subject  predicate object >  

http://dbpedia.org/resource/Airbus 
dbo:label “Airbus”

Subject Predicate Object

… is called a triple
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Data linking: example

http://fr.dbpedia.org/resource/La_Joconde

dbpedia-owl:Museum
rdf:type

http://fr.dbpedia.org/resource/Musée_du_Louvre

Musée du Louvvre

cf:museum-of

http://fr.dbpedia.org/resource/Léonard_de_Vinci

dbpedia-owl:author

dbpedia-owl:Painting

rdf:type

rdfs:label

La Joconde

Mona Lisa 

La Gioconda
rdfs:label

rdfs:label

freebase:m.04lg6

owl:SameAs
dbpedia-owl:city http://fr.dbpedia.org/resource/Paris freebase:m.05qtj

rdfs:label

http://fr.dbpedia.org/resource/Versailles

foaf:based_near

owl:SameAs
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OUTLINE

q Introduction 
q Part 1: Data linking 
q Part 2: Key discovery 

q SAKey: almost key discovery 
q VICKEY: conditional key discovery 

q Part 3: SameAs link invalidation 
q Part 4: Data fusion 
q Conclusion and some future chanllenges
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PART 1:
DATA LINKING
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LOD CLOUD IN 2016 
• Linked Open Data cloud (LOD)

• 130+ billion triples  and ≈ 0.5 billion links (mostly owl:sameAs)
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SAMEAS LINK DISCOVERY
PROBLEM
• SameAs Link discovery consists in detecting whether two descriptions of 

resources refer to the same real world entity (e.g. same person, same article, 
same gene). 

• Definition (Link Discovery)
• Given two sets U1 and U2 of resources 
• Find a partition of U1 x U2 such that :

• S = {(u1,u2) ∈ u1 × u2: owl:sameAs(s,t)} and 
• D = {(u1,u2) ∈ u1 × u2: owl:differentFrom(s,t)} 

• Naïve complexity ∈ O(U1 × U2), i.e. O(n2) 

Example: ≈ 70 days for linking cities in DBpedia and LinkedGeoData
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Data linking: difficulties 

http://fr.dbpedia.org/resource/La_Joconde

dbpedia-owl:Museum
rdf:type

http://fr.dbpedia.org/resource/Musée_du_Louvre

Musée du Louvvre

cf:museum-of

http://fr.dbpedia.org/resource/Léonard_de_Vinci

dbpedia-owl:author

dbpedia-owl:Painting

rdf:type

rdfs:label

La Joconde

Mona Lisa 

La Gioconda
rdfs:label

rdfs:label

freebase:m.04lg6

owl:SameAs
dbpedia-owl:city http://fr.dbpedia.org/resource/Paris freebase:m.05qtj

rdfs:label

http://fr.dbpedia.org/resource/Versailles

foaf:based_near

owl:SameAs

Different 
Vocabularies 

Incomplete Information : 
- date and place of birth ? 
- museum phone number ? 
- …. ? 

Misspelling 
errors
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DATA LINKING: 
STATE OF THE ART 
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Problem which exists since the data exists … and under different 
terminologies: record linkage, entity resolution, data cleaning, 
object coreference, duplicate detection, …. 
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Record linkage: used to indicate the 
bringing together of two or more separately 
recorded pieces of information concerning 
a particular individual or family. 

[NKAJ, Science 1959]

SOME OF HISTORY … 



DATA LINKING IN RELATIONAL DATABASES 
VS SEMANTIC WEB

Databases Semantic Web

Multivaluation NO YES
P1 hasAuthor “Michel Chein”
P1 hasAuthor “Marie-Christine Rousset”

Open World 
Assumption

NO YES

Ontologies NO YES
Use of class hierarchy and ontology axioms
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DATA LINKING APPROACHES 

• Instance-based approaches: consider only data type properties 
(attributes)

• Graph-based approaches: consider data type properties 
(attributes)as well as object properties (relations) to propagate 
similarity scores/linking decisions  (collective data linking)

• Supervised approaches: need an expert to build samples of 
linked data to train models (manual and interactive approaches)

• Informed approaches: need knowledge to be declared in the  
ontology or in other format given by an expert
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DATA LINKING APPROACHES: 
DIFFERENT CONTEXTS

• Datasets conforming to the same ontology

• Datasets conforming to different ontologies 

• Datasets without ontologies 
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DATA LINKING: OPEN 
CHALLENGES 

…. 
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OUTLINE

q Introduction 
q Part 1: Data linking 
q Part 2: Key discovery 
q Part 3: SameAs link invalidation 
q Part 4: Data fusion 
q Conclusion and some future challenges 
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PART 2:
KEY DISCOVERY
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RULE-BASED DATA 
LINKING
Some data linking approaches use rules to link data
Rules

• Logical Rules
• SSN(p1, y) ∧ SSN(p2, y) è sameAs(p1, p2)

• Complex Rules
• max(jaccard(Name(p1, n); Name(p2, m);jarowinkler(address(p1, x);

address(p2, y))) > 0.8  è sameAs(p1, p2)

Rules use discriminative properties => keys
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KEYS
Not easy to be declared by expert

• {SSN}, {ISBN} easy
• {Name, dateOfBirth, BornIn} is it a key? 

Erroneous keys can be given by experts

As many keys as possible

Goal: Discover keys automatically
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OWL2 KEY
OWL2 Key for a class: a combination of properties that uniquely 
identify each instance of a class

• hasKey( CE ( OPE1 ... OPEm ) ( DPE1 ... DPEn ) )

hasKey(Book(Author) (Title)) means:
Book(x1)∧Book(x2)∧Author(x1, y)∧Author (x2, y)∧Title(x1,w) 

∧Title(x2, w) è sameAs(x1, x2)
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KEY DISCOVERY -
RELATED WORK

22

Semantic Web
Approach Composite

keys
Complete

set 
of keys

OWL2
keys

Approximate
keys

Incomplete
data heuristics

[SAS11] ✓ ✓

[SH11] ✓ ✓ ✓

[ADS12] ✓ ✓ ✓

[KD2R13] ✓ ✓ ✓ ✓



KEY DISCOVERY -
RELATED WORK

Semantic Web
Approach Composite

keys
Complete

set 
of keys

OWL2
keys

Approximate
keys

Incomplete
data heuristics

[SAS11] ✓ ✓

[SH11] ✓ ✓ ✓

[ADS12] ✓ ✓ ✓

[KD2R13] ✓ ✓ ✓ ✓
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Scalability
+

SAKey



PROBLEM STATEMENT
RDF data might contain errors and/or duplicates

Name Actor Director ReleaseDate
Film1 “Intouchables” “F.Cluzet”

“O.Sy”
“O.Nakache”
“E.Toledano”

“2/11/11”

Film2 “Intouchables” “F.Cluzet”
“O.Sy”

“O.Nakache”
“E.Toledano”

“2/11/11”

Film3 “Her” “J.Phoenix”
“S.Johansson”

“S.Jonze” “10/1/14”

…

24



PROBLEM STATEMENT
RDF data might contain errors and/or duplicates

Goal: Discover keys even under the presence of errors 
and/or duplicates

Name Actor Director ReleaseDate
Film1 “Intouchables” “F.Cluzet”

“O.Sy”
“O.Nakache”
“E.Toledano”

“2/11/11”

Film2 “Intouchables” “F.Cluzet”
“O.Sy”

“O.Nakache”
“E.Toledano”

“2/11/11”

Film3 “Her” “J.Phoenix”
“S.Johansson

”

“S.Jonze” “10/1/14”

…
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SAKEY: SCALABLE 
ALMOST KEY DISCOVERY
Incomplete data 
Errors
Duplicates
Large datasets

Discovers almost keys
• Sets of properties that are not keys due to few exceptions
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N-ALMOST KEYS
Exception of a key: an instance that shares values with 
another instance for a given set of properties P
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Name Actor Director ReleaseDate Website Language
f1 “Ocean’s 11” “B. Pitt”

“J. Roberts”
“S. 

Soderbergh”
“3/4/01” www.oceans11.com ---

f2 “Ocean’s 12” “B. Pitt”
“G. Clooney” 
“J. Roberts”

“S. 
Soderbergh”
“R. Howard”

“2/5/04” www.oceans12.com ---

f3 “Ocean’s 13” “B. Pitt”
“G. Clooney” 

“S. 
Soderbergh”
“R. Howard”

“30/6/07” www.oceans13.com ---

f4 “The 
descendants”

“N. Krause”
“G. Clooney” 

“A. Payne” “15/9/11” www.descendants.com “english”

f5 “Bourne
Identity“

“D. Liman” --- “12/6/12” www.bourneIdentity.com “english”

f6 “Ocean’s 12“ --- “R. Howard” “2/5/04” --- ---



N-ALMOST KEYS
Exception of a key: an instance that shares values with 
another instance for a given set of properties P

• f2 is an exception for {Name} 
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Name Actor Director ReleaseDate Website Language
f1 “Ocean’s 11” “B. Pitt”

“J. Roberts”
“S. 

Soderbergh”
“3/4/01” www.oceans11.com ---

f2 “Ocean’s 12” “B. Pitt”
“G. Clooney” 
“J. Roberts”

“S. 
Soderbergh”
“R. Howard”

“2/5/04” www.oceans12.com ---

f3 “Ocean’s 13” “B. Pitt”
“G. Clooney” 

“S. 
Soderbergh”
“R. Howard”

“30/6/07” www.oceans13.com ---

f4 “The 
descendants”

“N. Krause”
“G. Clooney” 

“A. Payne” “15/9/11” www.descendants.com “english”

f5 “Bourne
Identity“

“D. Liman” --- “12/6/12” www.bourneIdentity.com “english”

f6 “Ocean’s 12“ --- “R. Howard” “2/5/04” --- ---



N-ALMOST KEYS
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Name Actor Director ReleaseDate Website Language
f1 “Ocean’s 11” “B. Pitt”

“J. Roberts”
“S. 

Soderbergh”
“3/4/01” www.oceans11.com ---

f2 “Ocean’s 12” “B. Pitt”
“G. Clooney” 
“J. Roberts”

“S. 
Soderbergh”
“R. Howard”

“2/5/04” www.oceans12.com ---

f3 “Ocean’s 13” “B. Pitt”
“G. Clooney” 

“S. 
Soderbergh”
“R. Howard”

“30/6/07” www.oceans13.com ---

f4 “The 
descendants”

“N. Krause”
“G. Clooney” 

“A. Payne” “15/9/11” www.descendants.com “english”

f5 “Bourne
Identity“

“D. Liman” --- “12/6/12” www.bourneIdentity.com “english”

f6 “Ocean’s 12“ --- “R. Howard” “2/5/04” --- ---

Exception of a key: an instance that shares values with another 
instance for a given set of properties P

• f2 is an exception for {Name} 
Exception Set EP: set of exceptions for P

• EP = {f2, f6} for {Name}



N-ALMOST KEYS
n-almost key: a set of properties where |EP|≤ n
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Name Actor Director ReleaseDate Website Language
f1 “Ocean’s 11” “B. Pitt”

“J. Roberts”
“S. 

Soderbergh”
“3/4/01” www.oceans11.com ---

f2 “Ocean’s 12” “B. Pitt”
“G. Clooney” 
“J. Roberts”

“S. 
Soderbergh”
“R. Howard”

“2/5/04” www.oceans12.com ---

f3 “Ocean’s 13” “B. Pitt”
“G. Clooney” 

“S. 
Soderbergh”
“R. Howard”

“30/6/07” www.oceans13.com ---

f4 “The 
descendants”

“N. Krause”
“G. Clooney” 

“A. Payne” “15/9/11” www.descendants.com “english”

f5 “Bourne
Identity“

“D. Liman” --- “12/6/12” www.bourneIdentity.com “english”

f6 “Ocean’s 12“ --- “R. Howard” “2/5/04” --- ---



N-ALMOST KEYS
n-almost key: a set of properties where |EP|≤ n

• {Name} is a 2-almost key
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Name Actor Director ReleaseDate Website Language
f1 “Ocean’s 11” “B. Pitt”

“J. Roberts”
“S. 

Soderbergh”
“3/4/01” www.oceans11.com ---
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“G. Clooney” 
“J. Roberts”

“S. 
Soderbergh”
“R. Howard”

“2/5/04” www.oceans12.com ---

f3 “Ocean’s 13” “B. Pitt”
“G. Clooney” 

“S. 
Soderbergh”
“R. Howard”

“30/6/07” www.oceans13.com ---

f4 “The 
descendants”

“N. Krause”
“G. Clooney” 

“A. Payne” “15/9/11” www.descendants.com “english”

f5 “Bourne
Identity“

“D. Liman” --- “12/6/12” www.bourneIdentity.com “english”

f6 “Ocean’s 12“ --- “R. Howard” “2/5/04” --- ---



ALMOST KEY DISCOVERY 
STRATEGY
Naive automatic way to discover keys

• Examine all the possible combinations of properties
• Scan all instances for each candidate key

Example: Class described by 15 properties è215 = 32767 
candidate keys
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ALMOST KEY DISCOVERY 
STRATEGY
Naive automatic way to discover keys

• Examine all the possible combinations of properties
• Scan all instances for each candidate key

Example: Class described by 15 properties è215 = 32767 
candidate keys

Discover keys efficiently by:
• Reducing the combinations
• Partially scanning the data
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ALMOST KEY DISCOVERY 
STRATEGY
Non key discovery first

• Partially scan the data
museumName … museumAddress inCountry

Museum1 “Archaeological	Museum” “44	Patission Street” “Greece”
Museum2 “Pompidou” ------ “France”
Museum3 “Musée d’Orsay” “62,	rue	de	Lille” “France”
Museum4 “Madame	Tussauds” “Marylebone	Road” “England”
Museum5 “Vatican	Museums” “Piazza	San	Giovanni” “Italy”
Museum6 “Deutsches Museum	” “Museumsinsel 1” “Germany”
Museum7 “Olympia	Museum” “Archea Olympia” “Greece”
Museum8 “Dalí museum” “1,	Dali	Boulevard” “Spain”
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ALMOST KEY DISCOVERY 
STRATEGY
Non key discovery first

• Partially scan the data

museumName … museumAddress inCountry
Museum1 “Archaeological	Museum” “44	Patission Street” “Greece”
Museum2 “Pompidou” ------ “France”
Museum3 “Musée d’Orsay” “62,	rue	de	Lille” “France”
Museum4 “Madame	Tussauds” “Marylebone	Road” “England”
Museum5 “Vatican	Museums” “Piazza	San	Giovanni” “Italy”
Museum6 “Deutsches Museum	” “Museumsinsel 1” “Germany”
Museum7 “Olympia	Museum” “Archea Olympia” “Greece”
Museum8 “Dalí museum” “1,	Dali	Boulevard” “Spain”
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ALMOST KEY DISCOVERY 
STRATEGY
Non key discovery first

• Partially scan the data

museumName … museumAddress inCountry
Museum1 “Archaeological	Museum” “44	Patission Street” “Greece”
Museum2 “Pompidou” ------ “France”
Museum3 “Musée d’Orsay” “62,	rue	de	Lille” “France”
Museum4 “Madame	Tussauds” “Marylebone	Road” “England”
Museum5 “Vatican	Museums” “Piazza	San	Giovanni” “Italy”
Museum6 “Deutsches Museum	” “Museumsinsel 1” “Germany”
Museum7 “Olympia	Museum” “Archea Olympia” “Greece”
Museum8 “Dalí museum” “1,	Dali	Boulevard” “Spain”
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ALMOST KEY DISCOVERY 
STRATEGY
Non key discovery first

• Partially scan the data

Interested only in maximal non keys
• All the sets of properties that are not maximal non keys are keys
• Example: class described by the properties p1, p2, p3, p4     

museumName … museumAddress inCountry
Museum1 “Archaeological	Museum” “44	Patission Street” “Greece”
Museum2 “Pompidou” ------ “France”
Museum3 “Musée d’Orsay” “62,	rue	de	Lille” “France”
Museum4 “Madame	Tussauds” “Marylebone	Road” “England”
Museum5 “Vatican	Museums” “Piazza	San	Giovanni” “Italy”
Museum6 “Deutsches Museum	” “Museumsinsel 1” “Germany”
Museum7 “Olympia	Museum” “Archea Olympia” “Greece”
Museum8 “Dalí museum” “1,	Dali	Boulevard” “Spain”
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Key Non key

Maximal non key = {{p1, p2}} keys = {{p3}, {p4}}è



ALMOST KEY DISCOVERY 
STRATEGY
Discover sets of properties that are not n-almost keys first

• n-non key: a set of properties where |EP|≥ n

Derive n-almost keys using (n+1)-non keys

Example: All the sets of properties that are not maximal 3-
non keys are 2-almost keys 
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SAKEY - GENERAL 
ARCHITECTURE
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N-NON KEY DISCOVERY: 
PRUNING STRATEGIES
Inclusion pruning

• Discovery of dependencies between data

Seen intersection pruning
• Avoiding already explored sets of instances

Antimonotonic pruning
• All the subsets of a n-non key are at least n-non keys
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EXPERIMENTS
Evaluation of SAKey

• Data Linking using almost keys
• KD2R vs. SAKey
• Scalability of SAKey

Selected datasets
• DBpedia (top classes)
• YAGO
• OAEI 2010, OAEI 2013
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DATA LINKING USING 
ALMOST KEYS
Goal: Compare linking results using almost keys with 
different n
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DATA LINKING USING 
ALMOST KEYS
Goal: Compare linking results using almost keys with 
different n

Evaluation of linking using
• Recall
• Precision
• F-Measure
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DATA LINKING USING 
ALMOST KEYS
Goal: Compare linking results using almost keys with 
different n

Evaluation of linking using
• Recall
• Precision
• F-Measure

Datasets 
• OAEI 2010 
• OAEI 2013
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DATA LINKING USING 
ALMOST KEYS
Goal: Compare linking results using almost keys with different n

Evaluation of linking using
• Recall
• Precision
• F-Measure

Datasets 
• OAEI 2010 
• OAEI 2013

Conclusion
• Linking results using n-almost keys are the better than using keys
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EXAMPLE: DATA LINKING 
USING ALMOST KEYS 
OAEI 2013 - Person 

• BirthName, BirthDate, award, comment, label, BirthPlace, 
almaMater, doctoralAdvisor

Almost keys Recall Precision F-Measure
0-almost key {BirthDate, award} 9.3% 100% 17% 

2-almost key {BirthDate} 32.5% 98.6% 49% 

# exceptions Recall Precision F-measure 

0, 1 25.6% 100% 41% 

2, 3 47.6% 98.1% 64.2% 

4, 5 47.9% 96.3% 63.9% 

6, ..., 16 48.1% 96.3% 64.1% 

17 49.3% 82.8% 61.8% 
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KD2R VS. SAKEY
Goal: Compare the runtime of the two approaches

• Non key discovery (SAKey n=0)
• Key derivation

Datasets
• DBpedia (5 classes)
• YAGO (2 classes)

Conclusion
• SAKey non key discovery is orders of magnitude faster than 

KD2R
• SAKey key derivation is orders of magnitude faster than KD2R
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KD2R VS. SAKEY -
NON KEY DISCOVERY
Class # triples #

Instances #Properties KD2R 
Runtime 

SAKey
Runtime
(n=0) 

DB:Website 8506 2870 66 13min 1s 

YA:Building 114783 54384 17 26s 9s 

DB:BodyOfWater 1068428 34000 200 outOfMem. 37s 

DB:NaturalPlace 1604348 49913 243 outOfMem. 1min10s 

Dbpedia class= 
DB:NaturalPlace
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KD2R VS. SAKEY -
KEY DERIVATION

Class # non 
keys 

# keys KD2R SAKey
(n=0)  

DB:Lake 50 480 1min10s 1s 

DB:Mountain 49 821 8min 1s 

DB:BodyOfWater 220 3846 > 1 day 66s 

DB:NaturalPlace 302 7011 > 2 days 5min 

Dbpedia class= 
DB:BodyOfWater
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VICKEY: 
CONDITIONAL KEY 
DISCOVERY 
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CONDITIONAL KEY 
DISCOVERY
• A conditional key is a key constraint that is valid in only a part of the data. 

• Definition. (Conditional key) A conditional key for a dataset D is a non-
empty set of conditions {cd1, ..., cdn} and a non-empty set of properties 
{p1 , ..., pm } of D (disjoint from the properties in the conditions), such 
that: 

• Example : 

∀X ∀Y ∀Z  (city(X)∧city(Y)∧ cityName(X,Z) ∧cityName(Y,Z) ∧

inRegion(X, “Hauts de France”)∧inRegion(Y, “Hauts de France”))⇒ sameAs(X,Y)
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CONDITIONAL KEY 
DISCOVERY
• Useful when no or only few keys that are valid in the entire knowledge 

base (KB). 

• May be used in all the applications (data linking, KB enrichment and 
KB fusion) where classic keys are used. 

• Carry knowledge in them selves (e.g. …) 

• Conditional key discovery is more complex than key discovery 

• Key discovery problem: 2⎜P⎜, with P is the set of properties
• Conditional key discovery problem:  ⎜V⎜⎜P⎜, with V is the set of 

objects in KB. 
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VICKEY APPROACH
• Discovers minimal conditional keys from a set of maximal non-keys 

(computed by SAKey). 

• Observation 1: Given a minimal conditional key for a dataset D
with properties P and conditions {pc1 = o1 , ..., pcn = on }, the
set of properties P∪ {pc1, ..., pcn} must be a non-key for D.
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VICKEY APPROACH: 
ALGORITHM
• Data structure: conditional key graph which is a tuple ⟨Pk, Pc, cond, G⟩ with

the following components:

• Pk and Pc are disjoint sets of properties, called key properties and condition
properties, respectively.

• cond is a set of conditions on Pc.

• G is a directed graph. Each node v is associated to a set v.p ⊆ Pk and to a
boolean flag v.explore, initially set to true. There is a directed edge from u to
v if u.p⊂ v.p and |u.p| = |v.p| − 1.

• Algorithm:

• Build all the conditional graphs for which the property condition has a
minimum support θ

• From this, build all conditional key graphs that have a condition set of a
given size and respecting θ condition.
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VICKEY APPROACH: 
ALGORITHM
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Example of a conditional key graph with Pk = {firstName, lab, nationality}, 
Pc ={gender}, cond = {gender = Female}.



EXPERIMENTS: 
SCALABILITY

56

• Use of nine classes from DBpedia

• Evaluation of VICKEY performance by comparing it with a generic
rule mining approach AMIE [Galarraga et al.’13]



EXPERIMENTS: 
QUALITATIVE 
EVALUATION 

57

• Use of Dbpedia and YAGO 

• There is a gold standard 
available for the entity links

• Use of simple linking tool 
with strict string equality 

è The precision is always over 
98% 

è The use of conditional keys 
improves significantly the 
results, e.g., the F1 for film 
is increased of 47%.



OUTLINE

q Introduction 
q Part 1: Data linking 
q Part 2: Key discovery 

q SAKey: almost key discovery 
q VICKEY: conditional key discovery 

q Part 3: SameAs link invalidation 
q Part 4: Data fusion 
q Conclusion and some future challenges 
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PART 3:
LINK INVALIDATION
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SAMEAS LINK INVALIDATION

• Identity (owl:sameAs) links are often detected
automatically.

• Linking tools do not guarantee 100% precision.

• Depending on the data quality and on the
linking tool efficiency, some identity links may
be incorrect.

• Identity relation is sometimes too strict.
Example: let b1 and b2, two books.
SameAs(b1, b2) represents that b1 and b2 are
the same book. But why not different editions
of the same work?

• Need to develop methods that validate or
invalidate identity links.

i1 i2

sameAs

i4 i3

sameAs

i1 i5

sameAs

i5 i6

sameAs
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LOGICAL
INVALIDATION
• A first logical approach developed in [Papaleo et al. 2014].

• Exploits ontology axioms (functionality of properties and local 
completeness) to infer invalid links. 

• It suffices to have one property with different values to infer 
that the sameAs link is invalidated. 

• Some results: 
• Exploit data linking results of three tools on OAEI 

benchmarks.
• Increase the precision of 4% to 25%.
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LOGICAL
INVALIDATION
• Limit: if there is an error or literals that are syntactically 

different but semantically equal, then the tool will provide a 
false negative. 

Restaurant1-1
american

category

phone_number

310/246-1501arnie morton’s 
of chicago

name

Restaurant2-1

steackhouses
category

phone_number

310-246-1501arnie morton’s 
of chicago

name
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NUMERICAL
INVALIDATION
• A numerical method based on a similarity score computation. 

• It exploits ontology axioms (functionality of properties, local 
completeness) to build a context. 

Steps: 

• Given a depth m, for each of the two resources, extract a context, 
i.e., a sub-graph from the RDF description that corresponds to 
functional and local complete properties. 

• Explore the two contexts to compute a similarity score for the 
sameAs link to be invalidated. 

• Given a threshold T, infer the invalidation for all the links having a 
similarity score that is lower than T. 
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NUMERICAL
INVALIDATION

• Different aggregation functions of the adjacent nodes 
similarities:
• Average 
• Minimum (analogous to the logical method)
• Weighted average (different weights for the properties). 
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EXAMPLE OF 
RESULTS
• It is important to explain why the link is invalid

è Show the pairs of literal values and their corresponding similarity scores 
with respect to the threshold (green or red). 
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OUTLINE

q Introduction 
q Part 1: Data linking 
q Part 2: Key discovery 

q SAKey: almost key discovery 
q VICKEY: conditional key discovery 

q Part 3: SameAs link invalidation 
q Part 4: Data fusion 
q Conclusion and some future challenges 
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PART 4:
DATA FUSION
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DATA FUSION

“fusing multiple records representing the same real world 
object into a single, consistent, and clean representation”

[Bleiholder & Naumann, 2008] 
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¡ Merge information from objects marked with sameAs
¡ Obtain a single homogenized object

Why fusion?
- Avoid redundancy
- Group together best quality information
- Ensure knowledge consistency 
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Dataset 1 Dataset 2

owl:sameAs

Fused Instance
First Name: Jacques
Last Name: Martin
Profession: Producer, 
Animator
Date of Birth: 22/06/1933

Instance 1
First Name: Jacues
Last Name: Martin
Profession: Animator
Date of Birth: 22/06/1933

Instance 2
First Name: Jacques
Last Name: Martin
Profession: Producer, 
Animator
Date of Birth: 1933



Challenge: Properties with conflicting values!
• <Great Britain>, <UK>
• <Prime Minister>, <Politician>
• <Louvre>, <Lovre>

→Which one to choose?
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DATA FUSION: 
CONFLICT RESOLUTION STRATEGIES 
[P.N. MENDES ET AL’12, BLEIHOLDER & NAUMANN, 2008]

Independent from data quality

• Keep the most frequent value 
• Average, max, min, concatenation, intervals 

Data quality-driven

• Keep the value with the best confidence degree (or / threshold)
• Be confident with a data source 
• Apply a vote weighted by data source reliability degree
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Categorize values

• Allows to apply specified controls and measures

1933 → numeric

Prime Minister, Politician → hierarchical

“Jacques” → symbolic 
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Detect implausible values

Example 1: Misspell

• <hasName>Louvre</hasName>
• <hasName>Lovre</hasName>

→ “Lovre” is implausible: very low frequency in the data 
sources

Example 2: Expert Rules violation

• <hasAge>25</hasAge>
• <hasAge>-35</hasAge>

→ “-35” is implausible: only accept positive values for age
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¡ Calculate quality score
For plausible values, use criteria:

§ Frequency
§ Homogeneity
§ Source freshness
§ Source reliability

àQuality score: (weighted) average 
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Discover relations 

For plausible values, find if they are related to other values:

• More Precise: Paris, Ile-de-France
• Synonym: Great Britain, UK
• Incompatible:  birth date < death date 

àRelations can affect the quality score
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• Values selection
→ Sort values by quality score

→ Mono-valued: select best value

→ Multi-valued: all plausible values
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Why is a value selected?

How was the fusion decision taken?

The system stores all the quality aspects

Annotate values with quality information
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PERSON_1723 rdf:type ina:PhysicalPerson
v1 rdf:type dfa:Value
q1 rdf:type dfa:Quality
c1 rdf:type dfa:Criteria

PERSON_1723   ina:first_name v1
v1 dfa:hasValue "Jacques"
v1 dfa:isImplausible false
v1 dfa:hasQuality q1
q1 dfa:hasCriteria c1
c1 dfa:hasHomogeneity 0.98
c1 dfa:hasOccurenceFrequency 0.02
c1 dfa:hasReliability 0.8
c1 dfa:hasFreshness 0.7
q1 dfa:hasQualityScore 0.67
q1 dfa:hasQualityValue "excellent"
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v2 rdf:type dfa:Value
q2 rdf:type dfa:Quality
c2 rdf:type dfa:Criteria

PERSON_1723   ina:first_name v2
v2 dfa:hasValue "Jacues"
v2 dfa:isImplausible true
v2 dfa:hasQuality q2
q2 dfa:hasCriteria c2
c2 dfa:hasHomogeneity 0.015



FUSION RESULTS ON INA DATA

Results on a corpus of 10819 French celebrities

Thresholds for the choice of quality values 
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Evaluation of data integration techniques:

• Completeness (recall)

• Conciseness (precision)

• Consistency (conformity to constraints)
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OUTLINE

q Introduction 
q Part 1: Data linking 
q Part 2: Key discovery 

q SAKey: almost key discovery 
q VICKEY: conditional key discovery 

q Part 3: SameAs link invalidation 
q Part 4: Data fusion 
q Conclusion and some future challenges 

83



FUTURE CHALLENGES 

q Data linking

• sameAs semantics: reasoning on LOD, e.g. transitivity?

• Link validation: incorrect link detection

• Link provenance: representation, use

• Data evolution à Link evolution

• Data privacy: how link data in such contexts [Vatsalan13]?
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FUTURE CHALLENGES 

q Key discovery 

• Scalability for the conditional key discovery

• Key selection problem

• Irrelevant property filtering

• Data evolution è incremental approaches
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FUTURE CHALLENGES 

q Link invalidation 
q Combined approaches of data linking and link invalidation 
q Requalification of links, e.g. sameBook vs sameWork? 

q Data fusion 

• Qualitative evaluation, lack of gold standard

• Data quality evaluation under open world assumption:
completeness, correctness and conciseness
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SIMILARITY 
MEASURES
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SIMILARITY MEASURES

Need of normalization and similarity measures when comparing entities

• Use normalization methods for data property (attribute) values: 
• Stop words elimination (e.g. the, this, and, at, …),
• Stemming (e.g. fishing à fish, fisher à fish), 
• Enforce common abbreviations  (e.g. D&K àData and Knowledge), 
• Part of ETL tools, commonly using field segmentation and 

dictionaries. 

• Use similarity measures between two values 
• Basic problem: given two property values S and T quantify their 

‘similarity’ in [0..1]. 
• Problem challenging for strings 
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SIMILARITY MEASURES

• Token based (e.g. Jaccard, TF/IDF cosinus) :

The similarty depends on the set of tokens that appear in both S and T.

• Edit based (e.g. Levenstein, Jaro, Jaro-Winkler) :

The similarty depends on the smallest sequence of edit operations which
transform S into T.

• Hybrid (e.g. N-Grams, Jaro-Winkler/TF-IDF, Soundex)
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LN2R: A LOGICAL AND 
NUMERICAL METHOD FOR 
REFERENCE RECONCILIATON
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LN2R
(GRAPH BASED, UNSUPERVISED AND INFORMED) 

[Saïs et al’07, Saïs et al’09]

• A combination of two methods: 

• L2R, a Logical method for reference reconciliation: applies logical 
rules to infer sure owl:sameAs and owl:differentFrom links

• N2R, a Numerical method for reference reconciliation: computes 
similarity scores for each pair of references

• Assumptions 
• The datasets are conforming to the same ontology
• The ontology contains axioms
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LN2R
(GRAPH BASED, UNSUPERVISED AND INFORMED) 

[Saïs et al’07, Saïs et al’09]
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OWL ontology 

96

ArtistName

Located

PaintedBy

Contains

City   
CityName

Literal Museum

Painting Artist
MuseumName

Literal 

Is-a

MiddleAgeMuseum

Is-a

ContemporaryMuseum  

Date

CulturalPlace

Is-a

PaintingName

Literal 

YearOfBirth

Literal 

MuseumAddress

Literal 

dom-class   attribute
Data type 

dom-class relation range-class   

sub-class   class   Is-a



Ontology axioms: 
• Disjunction axioms between classes, DISJOINT(C, D) 
• Functional properties axioms, PF(P)
• Inverse functional properties axioms, PFI(P) 
• A set of properties that is functional or inverse functional axioms

Assumptions on the data
• Unique Name Assumption, UNA(src1)
• Local Unique Name Assumption, LUNA(R)

Example:
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Authored(p, a1), Authored(p, a2), Authored(p, a3) …., Authored(p, an) 
è (a1 ¹a2), (a1 ¹ a3), (a2 ¹ a3) , …

LN2R
(GRAPH BASED, UNSUPERVISED AND INFORMED) 

[Saïs et al’07, Saïs et al’09]



L2R: A LOGICAL METHOD FOR 
REFERENCE RECONCILIATION
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L2R: AUTOMATIC GENERATION OF 
INFERENCE RULES
Translation of UNA(src1) 

R1:src1(X) Ù src1(Y) Ù (X ¹ Y) Þ ¬Reconcile(X,Y) ;   …
Translation of LUNA(R)

R11(R) : R(Z, X) Ù R(Z, Y) Ù (X ¹ Y) Þ ¬Reconcile(X,Y) ;  …
Translation of DISJOINT(C, D):

R5(C, D) : C(X) Ù D(Y) Þ ¬ Reconcile (X, Y)
Translation of PF(R): 

R6.1(R): Reconcile(X, Y) Ù R(X, Z) Ù R(Y, W) Þ Reconcile (Z, W)
R6.1(Located): Reconcile(X, Y) Ù Located (X, Z)ÙLocated (Y, W) Þ Reconcile (Z, W)

Translation of PF(A): 

R6.2(A): Reconcile(X, Y) Ù A(X, Z) Ù A(Y, W) ÞSynVals(Z, W)
R6.2(MuseumName):Reconcile(X,Y) Ù MuseumName (X, Z) Ù

MuseumName (Y,W) ÞSynVals(Z, W)
Algorithm: apply until saturation the resolution principle [Robinson’65], by 
following the unit strategy 99



L2R: INFERENCE ALGORITHM
• Apply until saturation the resolution principle [Robinson’65], by following the 

unit strategy

Resolution rule : Avec 

• R È F: Horn clauses without functions, where : 

• R: rules in the form of horn clauses 
• F: unit clauses fully instantiated, 

• Reference descriptions: RDF facts (class-facts, relation-facts and 
attribute-facts).

• Facts that express the reference origin: src1(i) and src2(j)
• Facts that express the synonymy and not synonymy between 

values: SynVals(v1, v2) or ¬ SynVals(v1, v2) 

• Computation of the set SatUnit(R È F) 100

€ 

C1 : (L1),C2 : (L2 ∨C)
C1,2 : (Cσ )

€ 

L1σ =¬L2σ



N2R: A NUMERICAL METHOD FOR 
REFERENCE RECONCILIATION
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N2R: A NUMERICAL METHOD FOR 
REFERENCE RECONCILIATION

• N2R computes a similarity score for pair of references obtained from 
their common description.

• Uses known similarity measures, e.g. Jaccard, Jaro-Winkler. 
• Exploits ontology knowledge in a way to be coherent with L2R.
• May consider the results of L2R: Reconcile(i, i’), ¬Reconcile(i, i’) , 

SynVals(v, v’) and ¬SynVals(v, v’).
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SIMILARITY DEPENDENCY 
MODELLING

103

MuseumName+(m1)  = {”Le Louvre”},
MuseumName+(m’1) = {”Louvre”},
Located+(m1)  = {c1}, Located+(m’1) = {c’1},
Located-(c1)    = {m1} , Located-(c’1)   = {m’1}, ….

m1, m’1 c1, c’1

p1, p’1

“Le Louvre”,
“Louvre”

“Paris”,
“La ville de Paris”

“La Joconde”,
“l’Européenne”

RDF facts in source S1:
Located(m1, c1), MuseumName(m1, “le Louvre”)
Contains(m1, p1), CityName(c1, “Paris”)
PaintingName(p1, “la Joconde”)

RDF facts in source S2 :
Located(m’1, c’1), MuseumName(m’1, “Louvre”)
Contains(m’1, p’1), CityName(c’1, “la Ville de Paris”)
PaintingName(p’1, “l’Europèenne”)

(c1, c’1) is functionally dependent on (m1, m’1) 

è Equation system

x1 x2

x3

b11 b21

b31

 1

 1/3 

 ½  1

 1

 1

 1

CAttr(m1, m’1) = {MuseumName} , 
CAttr(c1, c’1)= {CityName},CAttr(p1,p’1)={PaintingName}
CRel(m1, m’1)= {Located, Contains} 
CRel(c1, c’1)  = {Located }, CRel(p1,p’1)   = {Contains}



AN EQUATION SYSTEM FOR 
SIMILARITY COMPUTATION
• Variables: reference pairs similarity 

• A variable xi is assigned to each Simr(ref, ref’)

• Equations: express the similarity computation for each  
Simr(ref, ref’) :

• bi is the similarity score of the attribute values
• lj is the weight associated to the common attributes and 

common relations xi. 
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N2R: THE NON LINEAR 
EQUATION SYSTEM
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DF(xi), considered in the maximum
NDF(xi), considered in the average 

è A non linear system



NON LINEAR EQUATION 
SYSTEM RESOLUTION
• An iterative method inspired form Jacobi.

• Initialize the variable s xi at 0.
• Refine iteratively the value of each xi by using the values xi

computed at a precedent iteration.

• Termination: a fix-point with a precision e
" xi |xi

k – xi
k-1| < e

èConvergence proof.
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N2R: ILLUSTRATION 
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m1, m’1 c1, c’1

p1, p’1

“Le Louvre”,
“Louvre”

“Paris”,
“La ville de Paris”

“La Joconde”,
“l’Européenne”

x1 x2

x3

b11

p1, p’2“La Joconde”,
“Joconde”

x4b41

b21

b31

l= 1/(| CAttr | + | CRel |) e = 0.02

b11 = 0.8, b21 = 0.3,  b31 = 0.1,   b41 = 0.7

x1 x2 x3 x4

Initialization 0.0 0.0 0.0 0.0

Iteration 1 0.8 0.3 0.1 0.7

Iteration 2 0.8 0.8 0.4 0.7

Iteration 3 0.8 0.8 0.4 0.7

Solution:   x1 = 0.8 
x2 = 0.8
x3 = 0.4
x4 = 0.7

x1 = max(max(b11, x3), x4), l * x2)

x2 = max(b21, x1)

x3 = max(b31, l* x1)

x4 = max(b41 , l * x1)



N2R 
EXPERIMENTS
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N2R: RESULTS ON  CORA

Trec=1, all the reconciliations obtained by L2R are also obtained by N2R.
Trec=1 to Trec=0.85, the recall increases of 33 % while the precision decreases
only of 6 %.
Trec = 0.85, the F-measure is of 88 %:

• Better than the results obtained by the supervised method of [Singla and Domingos’05]
• Worst than those (97 %) obtained by the supervised method of [Dong et al.’05]
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1. LN2R - N2R : RÉSULTATS

OAEI 2010 – Instance matching track (PR), 2ème
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II. LIAGE DE DONNÉES



CONCLUSION 
Data linking: numerous and different approaches …

• Informed approaches: need knowledge to be declared in the 
ontology (generality) and/or ad-hoc knowledge given by an expert  (a 
selection of properties, similarity functions)

àThis kind of knowledge is not always available but can be 
learnt/discovered from the data (e.g., key/rule discovery approaches 
[Symeonidou et al. 14, Galarraga et al. 13]

• Supervised approaches: needs samples of linked data
à It can be avoided by using assumptions like (UNA)

• Graph-based approaches: decision propagation (good recall but 
highly time consuming)

• Logical approaches: good precision but partial
è Few approaches generate differentFrom(i1,i2) or use dissimilarity 
evidence 
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SOME CHALLENGES

• sameAs semantics: reasoning on LOD ?

• Link validation: incorrect link detection

• Link provenance: representation, use

• Data evolution à Link evolution

• Data privacy: how link data in such contexts [Vatsalan13]?
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