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Abstract

Our work is related to the general problem of constructing predictions for decision support issues. It relies on knowledge ex-

pressed by numerous rules with homogeneous structure, extracted from various scientific publications in a specific domain. We

propose a predictive approach that takes two stages: a reconciliation stage which identifies groups of rules expressing a common

experimental tendency and a prediction stage which generates new rules, using both descriptions coming from experimental condi-

tions and groups of reconciled rules obtained in stage one. The method has been tested with a case study related to food science and

it has been compared to a classical approach based on decision trees. The results are promising in terms of accuracy, completeness

and error rate.
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1. Introduction

In the very last decades, extracting new knowledge from

scientific publications has aroused great interest, in particu-

lar in experimental science domains, due to several converg-

ing circumstances and techniques: mass digitization of docu-

ments, web-enabled access to information, new experimental

techniques allowing for high-throughput data acquisition, such

as in genome sequencing for instance, but also new require-

ments for a higher and better-controlled production of goods.

Indeed, the abundance of accessible scientific results both rep-

resents a real resource, and provides new needs for knowledge

acquisition. This knowledge, once extracted from scientific

publications, may be stored in a knowledge base. It can be

exploited, among other uses, to answer user queries or to help

for decision making issues.

However, one important problem of these knowledge bases

is their incompleteness [1]. This incompleteness may be dealt:
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(i) by adapting the reasoning mechanisms for handling knowl-

edge bases with omitted information [2]; (ii) by collecting new

information from domain experts or from external sources like

the World Wide Web [3]; or (iii) by using existing knowledge

to predict unfilled information [4]. Our work falls in the third

category. We propose a novel, case-based related approach for

knowledge prediction that relies on reconciliation (which is a

subfield of information integration).

Our application domain concerns food quality management

in the cereal agrifood chain. Preliminary studies to this work

were carried out on very different cases, outside the food sci-

ence domain [5, 6]. They have the following characteristics:

(1) The knowledge base is composed of a set of causality rules

with homogeneous structure made up from a collection of sci-

entific publications. They express syntheses of published ex-

perimental studies, obtained and validated through repeated ex-

perimentations. These rules are used for prediction. How-

ever, there is a huge number of possible experimental condi-

tions. Consequently the knowledge base is incomplete by na-

ture, since only a limited part of the possible experimental con-
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ditions have been explored in the literature and established as

domain rules. Therefore, to make predictions concerning un-

explored experimental conditions, a solution consists in using

existing rules that concern close – although not identical – ex-

perimental conditions. In the more classic case where one starts

from raw data, this approach is the principle of case-based rea-

soning.

(2) Although the rules concern distinct experimental conditions,

they sometimes only differ by a small variation of one experi-

mental parameter, which may be fundamental in the case of

a highly discriminant parameter, but negligible for a parame-

ter with low discriminance. Hence, rules which correspond to

close experimental conditions and show similar results may be

reconciled into groups of rules. Such groups have a seman-

tics, since they express a common experimental tendency. They

can also be exploited to reduce the search space in the predic-

tion process. Performing this identification is a reconciliation

problem. In addition to the experimental knowledge, general

domain knowledge is available, and it has been modeled in an

ontology. The ontology includes a vocabulary organized by

subsumption, disjunction and synonymy relations. Moreover,

it provides less common information concerning the status of

concepts, such as functional dependencies and discriminance of

concepts for prediction. Several existing methods aim at eval-

uating the similarity of data descriptions for various purposes

(e.g. for prediction in case-based reasoning, for grouping into

classes in classification, for detecting whether different data re-

fer to the same real world entity in data reconciliation). Meth-

ods from data reconciliation [7, 5] are the most advanced ones:

they take into account the logical semantics of an ontology, with

particular attention to the functional dependencies.

The objective of this paper is to propose an approach to gen-

erate prediction rules relying on case-based and reconciliation

methods, using an ontology. The approach we propose per-

forms two stages that exploit the ontology:

• rule reconciliation into groups that express common ex-

perimental tendencies. From a mosaic of isolated pieces

of knowledge, we identify the main experimental zones,

which is also the experts’ way of proceeding while ana-

lyzing an experimental domain of knowledge;

• computation of a prediction rule, starting from a new de-

scription of experimental conditions and from the “clos-

est” group of reconciled rules.

Our method has been tested within a food science appli-

cation concerning food quality management in the cereal agri-

food chain and it has been compared to a classic predictive tech-

nique, using decision trees.

Not every predictive method may be used in the considered

context. Experimental conditions have missing values (not all

the parameters are described in each rule), use both quantita-

tive and qualitative parameters (numerical and symbolic val-

ues), and are scarce since we are not in a high speed data appli-

cation but in a scarce-knowledge context with only a few hun-

dreds of rules available. Few methods are able to deal with all

these three issues and they basically are case-based approaches

or decision trees methods. This is the reason why we decided

to compare our work against these approaches.

The paper is organized as follows: Section 2 describes the

formalism used for ontology and domain rules representation.

Section 3 gives an overview of related work in case-based rea-

soning, data reconciliation and decision tree prediction. Sec-

tion 4 is dedicated to the proposed rule reconciliation method.

Section 5 presents the proposed prediction method. Section 7

describes the context and related work in the application do-

main and proposes a comparative evaluation of the developed

approach. Finally, Section 8 concludes the paper by giving

some future work perspectives.

2. Preliminaries

In this section, we briefly recall essential elements regard-

ing ontology and domain rule definition.

2.1. The domain Ontology

The ontology O is defined as a tuple O = {C,R} where C

is a set of concepts andR is a set of relations.
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2.1.1. Ontology concepts

Each concept c is associated with a definition domain by the

def function. This definition domain can be:

• numeric, i.e. def(c) is a closed interval [minc,maxc];

• ’flat’ (non hierarchized) symbolic, i.e. def(c) is an un-

ordered set of constants, such as a set of bibliographic

references;

• hierarchized symbolic, i.e. def(c) is a set of partially

ordered constants, themselves are concepts belonging to

C.

In the sequel, we will refer to elements of concept domain

definition by values.

2.1.2. Ontology relations

The set of relationsR is composed of:

• the subsumption or ‘kind of’ relation denoted by �,

which defines a partial order over C. Given c ∈ C,

we denote as Cc the set of sub-concepts of c, such that:

Cc = {c′ ∈ C|c′ � c}. When c is defined by hierarchized

symbolic definition domain, we have def(c) = Cc.

• the equivalence relation, denoted by≡, expressing a syn-

onymy between concepts of the ontology.

• the disjunction relation between concepts, denoted by ⊥.

Given two concepts c and c′ ∈ C, c⊥c′ ⇒ (def(c) ∩

def(c′)) = ∅. We note that the disjunction relation re-

spects the subsumption relation. This means that if two

general concepts c and c′ are declared as disjoint then all

the concepts that are more specific than c and c′, respec-

tively, are pairwise disjoint.

Figure 1 gives a small part of the set of concepts C, partially

ordered by the subsomption relation (pictured by ‘→’). Ex-

amples of disjunctions are given apart for readability reasons.

Note that the considered ontologies are not restricted to trees,

they are general graphs. This is an important feature of our

work with respect to previous approaches, such as [8], where

only trees are considered.

2.1.3. Least common subsumer

Given two concepts c1 and c2, we denote as lcs(c1, c2) their

least common subsumer, that is lcs(c1, c2) = {c ∈ C|ci �

c, and ((∃c′ s.t. ci � c′)⇒ (c � c′)), i ∈ {1, 2}}.

For example, in the ontology of Fig. 1, the lcs of the con-

cepts LiposolubleVitamin and VitaminB is the concept Vitamin.

As commonly done, we consider a Universal concept subsum-

ing all the other concepts of the ontology, to ensure that such a

lcs always exists.

2.1.4. Relationship between ontology concepts and experimen-

tal variables

We consider a set of experimental descriptions containing

K variables. Each variable Xk, k = 1, . . . ,K, is associated

with a concept c ∈ C of the ontology O. Each variable can be

instantiated by a value that belongs to the definition domain of

concept c.

2.1.5. Variable discriminance

For each variableXk, a discriminance score, denoted by λk,

is declared. It is a real value in the interval [0; 1]. It is obtained

through an iterative approach performed with domain experts,

as briefly explained in section 4.3 and in more detail in [9].

2.2. Domain Rules

Each domain rule expresses the relation cause-to-effect be-

tween a set of parameters (e.g. KindOfWater, CookingTime) of

a unit operation belonging to the transformation process, and

the variation of a given product property (e.g. variation of vita-

min content). The set of domain rules is denoted byR.

Definition 1 (Causality rule). A causality rule R ∈ R is de-

fined by a pair (H,C) where:

• H = {(X1, v1), . . . , (Xh, vh)} corresponds to the rule

hypothesis. It is a conjunction of variable/value criteria

describing a set of experimental conditions in the form

(Xi = vi). The value vi may take numeric or symbolic

(flat or hierarchized) values.
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Disjunction Constraints

FoodProduct ⊥ Component

Spaghetti ⊥ Macaroni

Fiber ⊥ Vitamin

Vitamin C ⊥ Vitamin B

. . .

Figure 1: A part of the domain ontology

• C = (Xc, vc) corresponds to the rule conclusion that is

composed of a single variable/value effect describing the

resulting impact on the considered property.

It is interpreted by:

(X1 = v1) ∧ (X2 = v2) ∧ . . . ∧ (Xh = vh)⇒ (Xc) = vc)

Table 1 shows a part of the set of rules of the considered

case study. The experimental variables are given in the first line

and the values of these variables are given in the other lines of

the table. The last column represents the conclusion part of the

rules (i.e., the variable Xc and its values). For example, the

rule R1 given in the second line is interpreted as follows:

(CookingTime = 12) ∧ (KindOfWater = Tap Water) ∧ (Component =

Riboflavin))⇒ (ConcentrationVariation = -53.3).

In the following, domain rules will be compared on the

basis of the set of variables they have in common, called

common description and defined as follows.

Definition 2 (Common description). A common description

between two causality rules R1 and R2, denoted by Common-

Desc(R1, R2), consists of the set of variables appearing at the

same time in the set of variables/values of R1 and R2. Let H1

and H2 be the hypotheses of the rules R1 and R2 respectively.

Let C1 and C2 be their conclusions.

CommonDesc(R1, R2) = {X | ∃v1, v2, [(X = v1) ∈

H1 and

(X = v2) ∈ H2] or [(X = v1) = C1 and (X = v2) = C2]}.

We denote as CommonDescH (R1, R2) the common description

of R1, R2 reduced to their hypotheses, i.e. CommonDescH (R1,

R2) = {X | ∃v1, v2, [(X = v1) ∈ H1 and (X = v2) ∈ H2]}.

3. Related Work

This section presents previous works in case-based reason-

ing and data reconciliation (in the framework of information in-

tegration) and provides a brief description about decision trees

and some remarks.

3.1. Case-Based Reasoning

Case-based reasoning is a reasoning paradigm that relies on

the adaptation of already solved problems, stored in a database,

to solve new problems. This reasoning mechanism is not based

on deduction, as rule-based reasoning, but on analogy [10].
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Id. CookingTime (min) KindOfWater Component ConcentrationVariation (%)

R1: 12 Tap water Riboflavin ⇒ -53.3

R2: 12 Tap water Niacin ⇒ -45.6

R3: 12 Tap Water Vitamin B ⇒ -45.6

R4: 24 Tap Water Fiber ⇒ -45.6

R5: 13 Water Vitamin B6 ⇒ -46

R6: 10 Deionized water Thiamin ⇒ -52.9

R7: 10 Deionized water Vitamin B1 ⇒ -51.8

R8: 15 Distilled water Vitamin B2 ⇒ -45.5

Table 1: A set of causality rules

A “case” is a description of a problem, associated with its

solution. The two main steps of case-based reasoning are: (i)

the “retrieve” step, which consists in finding, within the avail-

able cases stored in the database, the one(s) considered as most

similar with the problem to solve; and (ii) the “reuse” step,

which consists in adapting the solutions of the retrieved cases

to solve the new problem.

Other complementary steps can be considered, as in [11],

which is a reference paper in the domain. For instance, there

may be a “revision” step, in which the generated solution is

evaluated and possibly repaired. There is generally a “retain-

ment” step, in which the solved problem is incorporated into

the case base.

Various case-based reasoning systems have been implemen-

ted since the early works in this domain [12] and several ap-

proaches can be noticed. One of these approaches, called

knowledge-intensive case-based reasoning in the literature [13,

14], consists in taking into account additional knowledge in the

reasoning process. Two kinds of knowledge can be outlined:

domain knowledge and adaptation knowledge. Domain knowl-

edge defines concepts concerning the application domain, used

in the case-based reasoning process, such as the domain vocab-

ulary. Adaptation knowledge provides information useful for

the evaluation of similar cases and for the adaptation of solu-

tions, in for the “retrieve” and “reuse” steps.

Case-based reasoning has been considered as an alternative

to rule-based systems, since it somehow reduces the knowledge

acquisition process [15], since generally speaking cases are eas-

ier to obtain than rules. However this advantage is less relevant

for knowledge-intensive case-based reasoning, where domain

and/or adaptation knowledge has to be obtained and formalized.

The work presented in [16], for instance, supports this point of

view and proposes a formalization of domain and an adaptation

knowledge using semantic web technologies.

Some works have proposed to combine case-based and

knowledge-based reasoning methods. The main arguments

found in literature for combining both approaches are: (i)

achieving speedup learning and (ii) providing explanatory sup-

port to the case-based processes. For instance, in the CASEY

system [17], the case-based method is used as first step, while

the knowledge-based method (generally complex and slow),

is used only in case of failure or the first step. Instead, in

the BOLERO system [18], the case-based part provides meta-

knowledge which is used to reduce the searching space used

by rule-based part. The combination of the two approaches in

used also in the CREEK system [14]mainly for providing ex-

planatory support to the case-based processes.

In the present framework, the cases are not raw data but

rules, since they express already consolidated knowledge ob-

tained by synthesis and validation of experimental data. There-

fore, the case- and knowledge-based parts are fused, which is

not considered in the above works. Moreover, usually the do-

main and adaptation knowledge used in a case-based reasoning

system are acquired through knowledge elicitation in the classic

way for knowledge-based systems. Another option would be to

also learn that knowledge from the cases. This line of work
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is adopted in this paper, since the reconciliation of the set of

“cases” (the rules), which is part of the adaptation knowledge

used in the prediction strategy, is learnt.

3.2. Data Reconciliation

Data reconciliation is one of the main problems encountered

when different sources have to be integrated. It consists in de-

ciding whether different data descriptions refer to the same real

world entity (e.g. the same person or the same publication).

The traditional approaches of data reconciliation consider

the data description as structured in several attributes. To decide

on the reconciliation or on the non-reconciliation of data, some

of these approches use probabilistic models [19, 20], such as

Bayesian network or SVM. However, these probabilistic mod-

els need to be trained on labeled data. This training step can

be very time-consuming what is not desirable in online appli-

cations. Indeed, in such online contexts, labeled data can not

be acquired and runtime constraints are very strong. Alterna-

tive approaches have been proposed like [21] where the simi-

larity measures are used to compute similarity scores between

attribute values which are then gathered in a linear combina-

tion, like a weighted average. Although these approaches do

not need training step, they however need to learn (starting from

labeled data) some parameters as for example weights to be as-

sociated to similarity scores of the different attributes.

Recently, in the context of Linked Open Data, several tools,

like [22], have been proposed to discover links between RDF

data that are published on the Web, each with its own charac-

teristics.

Among the existing methods of data reconciliation, only

some recent ones [7, 5] take into account knowledge trans-

lating the logical semantics of the schema, in particular func-

tional dependencies. Although several studies have considered

the use of domain knowledge in classification, these concern

fields where large amounts of data have to be treated, such as

the semantic web [23] or image classification [24], with differ-

ent issues, in particular the exploitation of topological knowl-

edge [25] or of resource annotations [26]. In [25], the authors

developed a query routing approach in a P2P network that is

based on an aggregated view of the neighbors’ content. This

aggregated view is computed using a topological clustering al-

gorithm. This is very different from the situation encountered

in this paper, characterized by “poor data”, i.e. relatively few

rules are available and have to be exploited in the best way.

In [7, 5] a knowledge-based data reconciliation has been de-

veloped. The approach consists in a combination of two meth-

ods: the first method, called L2R, is logical and the second one,

called N2R, is numerical. The two methods exploit knowledge

that are declared in the schema that is expressed in OWL2. The

exploited knowledge consists of a set of disjunction axioms be-

tween classes (e.g. Museum is disjoint with Painting), a set of

(inverse) functional properties (e.g. a museum is located in at

most one city) and the Unique Name Assumption. The logi-

cal method L2R is based on a set of logical inference rules that

are generated from the translation of the logical semantics of

the schema knowledge. The numerical method N2R is based

on the computation of a similarity score for each part of data

by using the values of the common properties. In the similarity

computation, the functionality of the properties is exploited in a

numerical way such that the similarity scores of the properties

that are functional have a strong impact on the data pair similar-

ity score. In both L2R and N2R a transitive closure is computed

in order to obtain a partition of the set of reconciled data. Thus,

each partition contains the set of data that refer to the same real

world entity and two different partitions contain two data sets

that refer to two different real world entities.

In the present work, two rules expressing the same (or very

similar) experimental conditions (e.g. kind of water, cook-

ing time) and results, may be considered as belonging to the

same experimental tendency. Identifying domain rules that re-

fer to the same experimental tendency is thus very close to the

data reconciliation problem, and reconciliation techniques may

prove to be suitable to this purpose. However, data reconcil-

iation methods have to be adapted, since the reconciliation is

no more applied on classical relational data, but on domain

knowledge composed of causality rules enriched by ontologi-
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cal knowledge.

3.3. Decision Tree Prediction

It is worth noticing that a recent contribution [27] with sim-

ilar objectives, also in a life science area, considered the same

methods, case-based reasoning and decision trees. Several im-

portant differences compared to the present work can be high-

lighted. Firstly, [27] concerns a massive data application, op-

posed to a scarce-knowledge case here. Moreover, contrary to

the proposed approach, it does not exploit ontological knowl-

edge and aims to reduce interference with users, whereas we

expect to ensure interpretability for users, in line with the results

of [9]. Finally, it combines both case-based reasoning and de-

cision tree in a sophisticated hybrid, fuzzy system, whereas we

propose a reconciliation-based approach related to case-based

reasoning, that we compare with decision-tree prediction.

Another significant approach combining expert knowledge

and data is given in [28]. However it handles a classification

problem and focuses on the optimization of rule fuzzy mem-

bership functions for predefined classes.

Decision trees are well established learning methods in su-

pervised data mining. They can handle both classification and

regression tasks. Compared to other methods, the advantages of

decision trees are the descriptive/predictive capabilities, the si-

multaneous handling of numerical/symbolical features, the use

of a similar formalism for regression and classification cases

and finally the possibility of dealing with missing values.

In the tree structure, leaves represent classifications (or av-

erage values) of a dependent variable. Branches represent con-

junctions of input features that lead to those classifications (or

average values). The tree can be seen as a collection of rules

based on values of the more discriminant variables in the mod-

elling data set. Several implementations of decision trees are

available in the literature, depending on the criteria used for

building the tree. In this paper, we use C4.5 recursive dichoto-

mous partitioning [29] in the R software [30] rpart implementa-

tion. Rules are selected based on how well splits determined

using input features values can differentiate observations re-

garding the dependent variable. Once a rule is selected and

splits a node into two, the same logic is applied to each "child"

node (i.e. it is a recursive procedure). Splitting stops when C4.5

detects no further gain can be made, or some pre-set stopping

rules are met. Each branch of the tree ends in a terminal node:

Each observation falls into one and exactly one terminal node;

each terminal node is uniquely defined by a set of rules.

A splitting criterion is used to decide which variable gives

the best split at each node. Missing values are distributed over

known values, which exploits missing values in an optimistic

way.

In their descriptive form, decision trees summarize a set of

descriptions. In their predictive form, once the trees have been

learnt from the set of descriptions, they can be used to predict

a value from a set of input parameters: the latter use will be

considered in section 7.

4. Domain Rule Reconciliation

This section presents a method for domain rule reconcilia-

tion that partitions the set of rules by using techniques adapted

from data reconciliation. We first give the general principle of

rule partitioning approach. Then, we present how rules are fil-

tered, compared and finally grouped into several groups of sim-

ilar rules.

4.1. Principle

The general principle behind rule reconciliation consists in

determining which rules can be considered as similar, thus pro-

viding a partition of the given set of rules. The partition is com-

puted according to a specific similarity measure. Some rules

are considered similar if their similarity value is above a certain

threshold, otherwise they are called dissimilar. Similar rules are

positioned in the same reconciliation group (partition subset).

Obviously, the key problem is related to the definition of

an appropriate similarity measure which must take into account

several features. In the literature, classic similarity measures

are used for basic parameter values (as in [31]). The choice of

these similarity measures is done according to the features of
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the values, e.g. symbolic/numeric, length of values, and so on.

It is also possible to consider a semantic similarity measure that

exploits the hierarchy distance of the values in a given domain

ontology (see Wu and Palmer measure [32]). In a complemen-

tary approach, additional ontological knowledge, as synonymy

relations between concepts, can be exploited. Finally, it is possi

ble to compute the importance of the variables which appear

in the rules, or take into account the declared knowledge, as

functional dependencies or keys that can be discovered auto-

matically as proposed in [33, 34].

4.2. Ontology-based filtering step

A pre-processing step relies on knowledge declared in

the ontology. In this step, we exploit the semantics of the

disjunction relations between concepts. For example, the

concepts ExtrudedPasta and LaminatedPasta of Figure 1 are

declared as disjoint. In this step we claim that two rules

containing disjoint variable values cannot belong to the same

group, and they are defined as “disjoint”.

Definition 3 (Disjoint causality rules). Two rules R1 and R2

are said to be disjoint if and only if:

• either CommonDesc(R1, R2) = ∅;

• or ∃X ∈ CommonDesc(R1, R2) such that, given v1, v2

the respective values of X in R1 and R2, the disjointness

constraint v1⊥v2 can be inferred from the ontology.

For example, in Table 1, the rule R4 is disjoint from all

the other rules because - in the ontology - the value Fiber of

the Component variable is declared as disjoint from the Vita-

min(see Fig.1). All the other values taken by the Component

variable are sub-concepts of V itamin in the ontology, and

therefore disjoint from Fiber since the disjointness constraint

is propagated to all the sub-concepts of V itamin.

4.3. Variable relevance in rule similarity computation

When computing the similarity between rules, it is worth

distinguishing between variables values according to the rele-

vance of the variables. For example, to compute the similarity

of two persons, the name, birth date and address are more rele-

vant than their gender; and the birth date is more relevant than

the address, which may change over the time. In our application

domain, for instance, it is proper to consider that the Cooking-

Time variable has a greater impact on pasta texture than the kind

of method used to measure it.

In classical databases, the distinction of the importance of

attributes may be obtained by exploiting the declaration of func-

tional dependencies between attributes and from the key at-

tributes. Furthermore, this distinction is binary, since it sepa-

rates the very important attributes from those that are less im-

portant. However, in a knowledge base, which contains a col-

lection of rules, it is more difficult to obtain such distinction

among variables and expecting a binary evaluation of variable

relevance can be a too strong assumption. Expected knowledge

is more likely to provide an evaluation of the discriminance of

variables.

Adopted approach.

In order to associate each variable Xk with a score λk re-

flecting its discriminance power, there are two possible strate-

gies: (i) ask a domain expert to specify such knowledge or (ii)

obtain it automatically by using a learning method. In this

work, we adopted both approaches in a complementary way.

Thus the computation of the score λk is adapted from the N2R

method proposed in [5], but it is determined using both de-

clared expert knowledge and supervised learning, in the follow-

ing way:

• Functional dependencies are declared knowledge, ob-

tained through a collaboration with domain experts.

For instance, in the considered application, a subset

of the variables describing the experimental conditions

has been identified by the experts as determining the

ConcentrationVariation variable, i.e. the one to be
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predicted. These variables are: Temperature, SaltPer-

centage, CookingTime, KindOfWater, Component, Ad-

ditionOfIngredients. The FoodProduct, hasMethod, and

ValueBefore variables do not belong to this list. We pro-

pose to take into account this knowledge by associating

a low discriminance score with the latter variables (the

chosen weight is 0 in the practical evaluation of section

7, i.e. the variables are ignored).

• In order to distinguish between the variable importance

among those variables that belong to functional depen-

dancies an iterative method in interaction with experts is

applied (see [9] for details).

4.4. Similarity measures

In order to compute the similarity of two causality rules, a

prerequisite is to measure the similarity of the pairs of values,

in an arbitrary order, belonging to their common descriptions.

4.4.1. Similarity measures between values

To measure the similarity between values, we use existing

similarity measures. A similarity measure is usually defined as

follows.

Definition 4 (Similarity measure). Given a universe of dis-

course U , a similarity measure Sim is a function U × U → IR

that satisfies the following properties:

• positivity: ∀v1, v2 ∈ U , Sim(v1, v2) ≥ 0

• symmetry: ∀v1, v2 ∈ U , Sim(v1, v2) = Sim(v2, v1)

• maximality: ∀v1, v2 ∈ U , Sim(v1, v1) ≥ Sim(v1, v2).

Other properties may be required, like normalisation that will

be assumed here, which imposes the Sim function to take val-

ues in the interval [0; 1].

In [35] a survey and a deep analysis of similarity measures

is presented, while in [31] experimental approaches are summa-

rized. Since there is no universal measure which can be quali-

fied as the most efficient for every kind of value, the choice of a

suitable similarity measure depends on the features of the con-

sidered basic values, as for example, symbolic/numeric values

or length of the values.

We present in details the choices we made in the prac-

tical evaluation section (see section 7 of this paper). Here,

we outline that three cases may be distinguished, depending

on the kind of the definition domain of the considered variables.

Hierarchized symbolic variables: a semantic similarity mea-

sure that exploits the hierarchy distance of the property values

in the domain ontology may be used, as Wu and Palmer [32] and

Lin [36]. A framework for similarity measures in ontologies is

proposed by [37]. We retained the Wu and Palmer measure,

which is more intuitive and easy to implement. Its principle

is based on the length of the path between two concepts in the

hierarchy. Its definition is as follows:

Sim(v1, v2) =
2 ∗ depth(v)

depthv(v1) + depthv(v2)
,

where v is the least common subsumer (lcs) of the values v1

and v2, depth(v) is the length of the path (number of arcs) be-

tween v and the root node of the hierarchy, and depthv(vi) is

the length of the path between vi and the root node through the

node v.

For example, in the ontology of Figure 1, the semantic simi-

larity of the values (Spaghetti, Lasagna) by using the Wu and

Palmer measure is computed as follows:

Sim(Spaghetti, Lasagna) = 2∗5
7+7 = 0.71.

Moreover we pose: v1 ≡ v2 ⇒ Sim(v1, v2) = 1.

For instance, Sim(Thiamin, V itaminB1) = 1 by hypothe-

sis, since we have Thiamin ≡ V itaminB1.

‘Flat’ (non hierarchized) symbolic variables: numerous sim-

ilarity measures have been proposed in the literature. One of the

most exhaustive inventory is given in [38]. We use the Braun &

Banquet similarity measure, which is defined as follows.

Let V1 be the set of elements (in our case, words) composing v1
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and V2 the set of elements composing v2:

SimBraun&Banquet(v1, v2) =
|V1 ∩ V2|

max(|V1|, |V2|)
.

This measure is related to the well-known Jaccard co-

efficient: SimJaccard(v1, v2) = |V1∩V2|
|V1∪V2| . Both Braun &

Banquet and Jaccard similarity measures take the value 0

when V1 and V2 have no common elements, and the value 1

when V1 and V2 are equal. However in intermediate cases

SimBraun&Banquet ≥ SimJaccard. For instance, for v1 =

“deionized water′′ and v2 = “distilled water′′, we have

SimBraun&Banquet(v1, v2) = 1
2 and SimJaccard(v1, v2) = 1

3 .

The mismatch between “deionized” and “distilled” is sanc-

tioned twice in the Jaccard measure, since its denominator

indicates the number of distinct words (“deionized”, “dis-

tilled”, “water”), whereas in the Braun & Banquet denominator

the mismatch is only counted once, which we privileged here.

Numeric variables: a synthesis on similarity measures is pre-

sented in [39]. Let X be a numeric variable, v1 and v2 two

values of Range(X). The similarity measure we use is defined

in a classical way, as the complement to 1 of a normalised dis-

tance:

Sim(v1, v2) = 1− |v2 − v1|
|Range(X)|

.

4.4.2. Similarity measures between two causality rules

In this work, the similarity between two rules is com-

puted as a weighted average of the similarity scores of the

values taken by their common variables. We denote as

Similarity(R1, R2) the real function which measures the sim-

ilarity between two causality rules R1 and R2. It is computed

as follows:

Definition 5 (Similarity of two causality rules).

Similarity(R1, R2) =
∑
k

λk ∗ Sim(vk1
, vk2

),

where k ∈ [1 ; |CommonDesc(R1, R2)| ], λk is the discrim-

inance power of the variable Xk ∈ CommonDesc(R1, R2),

and vk1
, vk2

are the values taken by Xk in R1 and R2 respec-

tively.

Illustrative example of two causality rules similarity. Let us

consider R1 and R5 of Table 1, two rules which are not dis-

joint. To compute their similarity score we perform the follow-

ing steps.

1. compute the common description :

CommonDesc(R1, R5) = {CookingT ime,

KindOfWater, Component, ConcentrationV ariation};

2. determine the discriminance power of the considered

variables. According to the assumptions of the sub-

section 4.3 all the considered variables have a high dis-

criminance power. Therefore the scores λk equal to 1/4;

3. compute the elementary similarity scores:

S1 = Sim(12, 13) = 0.93, by using the similarity mea-

sure between numeric values.

S2 = Sim(Riboflavin, V itaminB6) = 2∗5
6+6 = 0.83,

by using the Wu & Palmer measure.

S3 = Sim(−53.3,−46) = 0.84, by using the similarity

measure between numeric values.

S4 = Sim(“Tap Water′′, “Water′′) = 0.5 by using

the Braun & Banquet similarity measure.

Similarity(R1, R5) = 1
4 ∗ (S1 + S2 + S3 + S4) = 0.77.

4.5. Partitioning the set of rules into reconciliation groups

To decide which rules must be reconciled, we use a similar-

ity threshold and assign to the same group each pair of rules

having a similarity score beyond this given threshold. The

threshold is obtained experimentally and its sensitivity is de-

scribed in details in section 7. Rules having a similarity score

beyond the threshold express a common experimental tendency.

We denote as Reconcile(R1, R2) the predicate which ex-

presses that the causality rules R1 and R2 express the same

experimental tendency and must be reconciled. Let th be the

similarity threshold for rule reconciliation. The reconciliation

decision, for each pair of causality rules (R1, R2), is expressed

as follows:

If Similarity(R1, R2) ≥ th, then Reconcile(R1, R2).

For example, the rules R1 and R5 (see their similarity score in
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the above section) will be reconciled if we consider a threshold

th lower than 0.77.

We note that the threshold is fixed experimentally by ex-

ploiting the size and the homogeneity nature of the rule set (see

Section 7). Finally, to obtain disjoint groups of rules, we com-

pute a transitive closure for the set of reconciliation decisions

previously computed. This choice, developed in [5], could be

relaxed in the future by considering a fuzzy framework with

overlapping groups. The transitive closure can be computed by

using the following rule (TC):

∀R1, R2, R3, Reconcile(R1, R2) ∧Reconcile(R2, R3)

⇒ Reconcile(R1, R3).

Algorithm 1 presents the reconciliation method. We can

note that:

1. the result does not depend on the order of comparisons

between rules;

2. the decision of reconciliation is based on pairwise com-

parisons between rules;

3. the algorithm does not guarantee a minimum number of

rules per group, i.e. it is not excluded to end up with:

• a rule group containing only a single rule, or

• a single group for all the rules.

In Algorithm 1, we used several additional functions that

can be defined as follows:

• the function Disjoint(Ri, Rj) returns a boolean value

indicating whether the rules Ri and Rj are disjoint or

not, as defined in Definition 3;

• the function SimilarityΛ,S(Ri, Rj) computes the simi-

larity between the rules Ri and Rj by using the discrimi-

nance scores Λ and the similarity measures S, as defined

in Definition 5;

• the function TransitiveClosure(G) computes the tran-

sitive closure of G by applying the transitivity rule (TC)

on the set of computed groups.

Algorithm 1: RECONCILIATION ALGORITHM
Input:

• R: a set of causality rules, defined using the list of vari-

ables X

• Λ: a list of discriminance scores associated with the list

of variables X

• S: a list of similarity measures specified for the list of

variables X

• th: a threshold

Output: G: a set of groups of reconciled rules

(1) G← ∅

(2) PairSim← 0 // similarity between two rules

(3) foreach (Ri, Rj) ∈ R×R, with (i 6= j)

(4) if (Disjoint(Ri, Rj) = false)

(5) PairSim← SimilarityΛ,S(Ri, Rj)

(6) if (PairSim ≥ th)

(7) if (∃gi ∈ G, Ri ∈ gi)

(8) gi ← gi ∪ {Rj}

(9) else if (∃gj ∈ G, Rj ∈ gj)

(10) gj ← g ∪ {Ri}

(11) else

(12) g ← {Ri, Rj}

(13) G← G ∪ {g}

(14) G← TransitiveClosure(G)

5. Predicting New Rules

This section presents the predictive step of the proposed

method.

5.1. Principle

We consider G and R. G is the set G of reconciliation

groups computed as presented in the previous section, and R is

a new rule whose conclusion value is still unknown, and which

has a set of variable/value criteria corresponding to its hypothe-

sis. The new ruleR is called an “unknown output rule”, denoted

by “UO-rule”, and it is in the following form:
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R = (H,C) with H = {(X1 = v1), . . . , (XH = vH)} and

C = (Xc = x), where x is unknown.

The objective of this step is to predict the conclusion value x

of the UO-rule R, that is, the expected variable/value effect, by

comparing it to the existing known rules.

The method consists in selecting the closest reconciliation

group and then use it to predict the conclusion value x. To

perform this stage, R is compared to representative member(s)

– called the “kernel” – of each reconciliation group. R is then

assumed to be part of the group g whose kernel contains the

rule the most similar to R. The value of the conclusion of R is

predicted as a combination of the conclusion values of the rules

of g.

5.2. Kernel Rule(s) of a Group

Both for combinatory and for semantic reasons, a kernel is

computed for each reconciliation group, which corresponds to

the set of rules that are most representative of the group. From

a combinatory point of view, comparing the UO-rule R to the

kernel of each group is of course simpler than comparing it to

the whole set of rules. From a semantic point of view, the kernel

can be seen as a characteristic sample of a reconciliation group.

Aggregating multiple knowledge sources by retaining a well-

chosen piece of them is a common feature in knowledge fusion

[40]. An aggregation framework close to our approach, in a

totally different domain, is proposed in [41].

The kernel of a group g is defined as follows.

Definition 6 (Kernel). Let g be a group of rules and Ri ∈ g.

The representativity of Ri is measured by:

Repr(Ri) =
∑j=|g|

j=1 (j 6=i) Similarity(Ri, Rj).

The kernel of g is then defined by:

Kernel(g) = {r ∈ g | Repr(r) = max
Ri∈g

Repr(Ri)}.

The most representative rule is thus chosen (or several ones

in case of ex aequo). Note that the set Kernel(g) is often re-

duced to a unique rule.

5.3. Allocation of R to the closest reconciliation group

To compare R with the rule(s) of Kernel(g), a similarity

score is computed as in the Definition 5. The difference is that

only the variable/value criteria appearing in the rule hypotheses

are taken into account, since the conclusion value is unknown

for R.

Definition 7 (Similarity between a UO-rule and a rule). Let

R be a UO-rule and R′ a rule.

Similarity(R,R′) =
∑
k

λk ∗ Sim(vk, v
′
k),

where k ∈ [1 ; |CommonDescH(R,R′)| ], λk is the discrimi-

nance power of the variable Xk ∈ CommonDescH(R1, R2),

and vk, v′k are the values taken by Xk in R and R′ respectively.

R is then allocated to the group g whose kernel contains the

rule the most similar to R.

Definition 8 (Group allocated to a UO-rule). Let G be a set

of reconciliation groups and R a UO-rule. R is allocated to a

group g ∈ G, which satisfies the following condition:

∃R′ ∈ Kernel(g),

Similarity(R,R′) = max
r∈Kernel(gi),i∈[1;|G|]

Similarity(R, r).

5.4. Prediction Method

To predict the conclusion value x of R, two cases are dis-

tinguished, according to the nature – symbolic or numeric – of

the conclusion variable Xc.

Symbolic case. It is the case where the definition domain of

the considered variable is hierarchized or flat symbolic. The

conclusion variable Xc may take several values in the recon-

ciled rules of group g. We make the assumption that the value

x to be predicted figures among those already appearing in the

group g, i.e. thatXc does not take a new value in the conclusion

of R.

For each distinct value vi taken by Xc in the group g, a

confidence degree confvi (a real value in [0;1]) is computed. It
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can be interpreted as the confidence in the prediction that “the

value taken by Xc in R is vi”. It is defined as the ratio between

the sum of similarity scores between R and the rules where Xc

takes the value vi, and the total sum of similarity scores between

R and the rules of g, that is:

confvi
=

∑
{r∈g|Xc=vi} Similarity(R, r)∑
{r∈g} Similarity(R, r)

.

The value with the highest confidence provides the predic-

tion of the conclusion value x:

(x̃ = v) such that confv = maxi confvi
,

where x̃ denotes the value predicted for x.

Numeric case. The prediction of the value x taken by Xc in R

is computed as a weighted mean of the values taken by Xc in

all the rules of the group g. The weight associated with each

rule r of g is the similarity score between R and r. Let vr be

the value taken by Xc in r, the value x is predicted by:

x̃ =

∑
r∈g(Similarity(R, r)× vr)∑

r∈g Similarity(R, r)
.

A confidence degree conf is attached to the prediction.

This confidence degree is the weighted mean of the similarity

scores between R and the rules of g:

conf =

∑
r∈g(Similarity(R, r))2∑
r∈g Similarity(R, r)

.

Algorithm 2 presents the prediction method. For the sake of

simplicity, only the numeric case is considered in the following

algorithm.

Algorithm 2: PREDICTION ALGORITHM
Input:

• G = {g1, . . . , g|G|}: a set of groups of reconciled rules

• R = (H,C): a UO-rule with H = {(X1 = v1), . . . , (XH =

vH)} and C = (Xc = x), where the value x is unknown

Output: (x̃, conf): with x̃ a prediction of the value x and conf a

confidence degree for the prediction x̃

(1) S ← 0 // the best similarity between kernel rules and R

(2) g ← null // the selected group

(3) foreach {gi ∈ G}

(4) foreach r ∈ Kernel(gi)

(5) if (S < Similarity(R, r))

(6) S ← Similarity(R, r)

(7) g ← gi

(8) x̃_num ← 0 // numerator of x̃: weighted sum of the conclusion

values of the rules of group g

(9) conf_num ← 0 // numerator of conf : sum of the squares of

similarities between R and the rules of group g

(10) denom ← 0 // denominator of x̃ and conf : sum of similarities

between R and the rules of group g

(11) foreach {r = (h, c) ∈ g}, with c = (Xc, vc)

(12) s← Similarity(R, r)

(13) x̃_num← x̃_num+ s× vc

(14) conf_num← conf_num+ s2

(15) denom← denom+ s

(16) x̃← x̃_num÷ denom

(17) conf ← (conf_num÷ denom)

In Algorithm 2, we used several additional functions that

can be defined as follows:

• the function Kernel(gi) selects the set of kernel rules of

gi, according to Definition 6;

• the function Similarity(R, r) computes the similarity

between the UO-rule R and the rule r, according to Def-

inition 7;

• the function Size(gi) returns the number of rules in the

group gi.
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5.5. Discussion

The similarity of the new rule R with the existing rules can

vary a lot. It can be excellent, for instance if there is an ex-

act correspondence between R and an existing rule, or lower

if more distant rules have to be used. This is reflected by the

confidence associated with the prediction.

To conclude on the whole approach, both reconciliation step

and prediction step are based on the prior definition of similar-

ities. Several levels of similarities are used in this paper, from

similarity measures between basic values, to similarity mea-

sures between rules.

For the former (similarities between basic values), dozens

of measures are proposed in the literature and we made the

choice not to propose yet another one but to make a deep re-

view of existing ones. For hierarchical and numerical values,

our choices are among the most commonly used ones. How-

ever for flat symbolic numerical values, the chosen metric is

little known and rarely used. We have given the justification of

this choice in Section 4.4.1 to contribute to the analysis of the

issue.

The latter (similarities between rules) are defined on the ba-

sis of similarities between basic values, but also take into ac-

count (via discriminance), both expert considerations and onto-

logical knowledge such as functional dependencies, which is a

contribution of the paper.

6. Complexity

Computing the complexity of any data-driven algorithm is

a challenging task, because it is hard to model and capture all

relevant characteristics of the data distribution (e.g. the number

of unfilled attributes, the distribution of the values, data homo-

geneity).

In this section we, first, present the space complexity which

can be significantly reduced thanks to the filtering step (pre-

sented in Section 4.2). Then, we give an estimation of time

complexity for both reconciliation and prediction algorithms.

6.1. Space complexity

To compute all the comparisons between two rules, the rec-

onciliation space is composed of the set of rule pairs built from

R × R. The problem can be reduced, since it only considers

rules that are not disjoint.

Let n denotes the number of domain rules in R. Without

any filtering the reconciliation method has to perform n∗(n−1)
2

comparisons.

By using disjunctions between rules, the number of com-

parisons is decreased by n′. To estimate n′, let us consider the

following cases:

• a disjunction v1⊥v2 between two values of a given vari-

able X . Let n1 be the number of rules in R where

X = v1 and let n2 the number of those where X = v2.

• the common description is empty. Let n3 be the number

of rule pairs of (R×R) where the common description

is empty.

We obtain the value of n′ as follows: n′ = n1 + n2 + n3.

Then the obtained space complexity is of: O( (n2−n)
2 − n′).

6.2. Time complexity

The complexity of reconciliation algorithm depends on the

number of rules n =| R |. The algorithm applies first pair-

wise comparisons on the set of rules (Algorithm 1, lines 3–13).

When no filtering step is used this step costs ((n ∗ (n− 1))/2).

The similarity computation (line 5) is done in an insignificant

time, because: (i) the process is dependent on the size of the

common description of ri and rj , which is in the worst case of

max(| ri |, | rj |) and (ii) the number of compared attributes

comparing to the number of rules is often negligible. The step

of finding an existing group that contains gi or gj (lines 7–11)

costs n in the worst case, i.e. when the size of g equals n. Fi-

nally, the transitive closure (line 14) is preformed by scanning

all the groups, which costs n. Finally, we obtain a time com-

plexity for the reconciliation algorithm of O( (n2−n)
2 ∗ n+ n).

The complexity of the prediction algorithm increases lin-

early with the number of groups gi (which equals n in the worst
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case), during the stage of allocation (Algorithm 2 lines 3–7) of

R to the closest group. Indeed, within a given group, the use of

the kernel limits the number of rule comparisons to one – in the

general case – or very few – in the case where the kernel con-

tains several rules, i.e. if several rules of the same group have

exactly the same representativity.

The complexity also increases linearly with the size of the

selected group g (which equals n in the worst case), during

the stage of the prediction computation. Since the number of

groups and their sizes are limited in practice, the complexity

remains reduced. For the prediction algorithm, time complex-

ity is of O(n+ n), in the worst case.

7. Practical Evaluation

In this section, we describe the application domain, we col-

locate our proposed approach with respect to those approaches

already existing in the literature. Successively, we describe

the adopted evaluation protocol, present the results providing

a qualitative and quantitative evaluation.

7.1. Motivating Case Study: the Context

The efforts in cereal food design during the last 20 years

resulted in an explosion of scientific papers which can hardly

be used in practice because they have not been completely in-

tegrated into a corpus of knowledge. At the same time, cereal

and pasta industry has evolved from traditional companies to

a dynamic industry geared to follow consumer trends: healthy,

safe, easy to prepare, pleasant to eat [42]. To meet such criteria,

current industry requires knowledge from its own know-how as

well as from different disciplines. Moreover, it has to extract

the key information from the available knowledge in order to

support decision.

Knowledge on the domain of transformation and properties

of cereal-based food is available through the international liter-

ature of the domain concerning the impact of the transformation

process on food properties. More precisely, the following ele-

ments are described:

• the “technical” information concern the unit operations

which are involved in transformation from the wheat

grains to the ready-to-use food (e.g. grinding, storage,

drying, baking, etc.);

• the “property” information define the criteria which are

used to represent the properties of products, according to

three aspects: organoleptic, nutritional and safety prop-

erties (e.g. colors, vitamins contents, pesticides contents,

etc.);

• the “result” information provide the impact of a unit op-

eration on a property (i.e. what happens at the “inter-

section” between an element of the technical information

and an element of the property information).

For each unit operation composing the transformation pro-

cess, and for each family of product properties, this knowledge

has been expressed as causality rules [43]. Approximately 600

rules are available in the application.

7.2. Previous Approaches in the Application Domain

Previous systems have been proposed in food science in or-

der to help prediction. In particular, several works have dealt

with the problem of food security, and therefore have proposed

tools for risk assessment, such as in predictive microbiology,

to prevent microbiological risk in food products. Such sys-

tems [44, 45, 46] combine a database with mathematical models

which, applied to the data, allow one to deduce complementary

information.

In the field of cereal transformation, we can also note the

“Virtual Grain” project [see 47], which gathers heterogeneous

information concerning the properties of cereal grains and their

agronomical conditions in a database in order to identify po-

tential relationships between properties that are usually studied

separately: morphological, biochemical, histological, mechan-

ical and technological properties. The database is connected to

statistical and numerical computing tools, in particular a wheat

grain cartography tool developed using matlab. Based on wheat
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grain properties and information on the components distribu-

tion, it proposes a representation of components content in each

tissue. However, the objectives of the Virtual Grain project are

related to the explanation of the grain behavior during fraction-

ing. Contrary to our concern, they do not include considerations

on food products, industry process analysis and final quality

prediction.

In the close domain of breadmaking technology, the “Bread

Advisor” tool has been a pioneer as a knowledge software for

the baking industries [see e.g. 48]. This tool, exclusively based

on expert knowledge stored in a database, provides three kinds

of information: text information about the processing methods,

list of possible faults and their causes, and generic messages

about the effects of process changes. More recently, [49] have

proposed a qualitative model of French breadmaking. However

in both approaches knowledge from the scientific literature and

dynamic prediction are not proposed.

The approach we propose has several original advantages

from the application point of view. Firstly, concerning its ob-

jectives, it is not only a risk assessment system, but allows eval-

uating both defaults and qualities of food products. Secondly,

although mostly tested on the durum wheat chain, it is not ded-

icated to a specific risk or chain, as it is not based on predeter-

mined mathematical models, and therefore can be generalized

to other application fields. Finally, our approach for prediction

is not based on predetermined domain models. Indeed, such

models are often unavailable. Thus an important contribution

of our work is to provide prediction solutions in case of lack of

models.

7.3. Evaluation Protocol

The evaluation was made in collaboration with food science

experts. The proposed predictive method was compared with a

classic decision tree prediction approach (see section 3.3). The

methodology used to evaluate the proposed method followed

six steps:

1. definition of requirements on the quantity and form of

the test queries (i.e. UO-rules), so that the results are

significant;

2. definition of requirements on the rule base, so that the

results are interpretable;

3. definition of a set of test queries that satisfy the previous

requirements;

4. definition of the parameters used by the methods;

5. execution of the set of test queries;

6. analysis of the results.

In the following we describe the procedure step by step.

7.3.1. Significance Conditions on the Test Queries

The significance conditions put on the test queries aimed

at ensuring that the set of test queries is as heterogeneous and

representative as possible. They are of six kinds:

• the set of test queries should cover at least thirty percent

of the rule base entries (value chosen because a 70-30

ratio is often used in data exploration);

• the set of test queries should cover all branches of the

ontology;

• the set of test queries should include specific rules (i.e.

without missing data), as well as general rules (with miss-

ing data);

• the set of test queries should include rules that have an

exact answer in the queried rule base, as well as rules that

are absent from the queried rule base. The latter should

cover cases where there is a close answer in the queried

rule base, or no close answer in the queried rule base;

• the values used in the test queries should be taken from an

external rule base, whose conclusion values are known,

so that the results can be objectively evaluated;

• several thresholds should be tested.

7.3.2. Interpretability Conditions on the Rule Base

The interpretability conditions put on the rule base were the

following: several (at least two) different rule bases should be
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used, in order to introduce a variability in the rule base content.

Considering its impact on the method results will allow testing

the robustness of the method.

7.3.3. The Set of Test Queries

The test queries are defined as UO-rule hypotheses. The

objective is to predict their conclusion values. Considering the

above conditions, the test queries presented in Table 2 were de-

fined.

7.3.4. Method Parameters

The predictive method proposed in this paper was used with

two different thresholds for partitioning, respectively 0.8 and

0.9.

The implementation used for decision trees is the R soft-

ware with the rpart package for CART trees. The parameters

of the rpart algorithm are: cross validation = 100, minimum

instances per leaf = 6 (default value).

7.3.5. Experimental Results

Each of these methods was executed on two different rule

bases. Rule base 1 contains 109 rules. Rule base 2 contains

117 rules. All of them concern the “cooking in water” unit op-

eration and the “vitamin content” and “mineral content” prop-

erties. The execution of the set of test queries gave the results

presented in Table 3 (a). The queries were executed both using

the reconciliation method presented in this paper, and using the

decision tree method.

7.4. Result Analysis and Discussion

In Table 3 (b), the error rates obtained with each method

are computed. In Figures 2 (a) and (b), these error rates are

presented as histograms, respectively for rule base 1 and rule

base 2. The left columns represent the error rates obtained with

the proposed method, for the two tested thresholds. The right

columns represent the error rate obtained with the decision tree

method.

These results clearly show a lower error rate obtained with

the proposed predictive method, in all cases.

(a)

(b)

Figure 2: Average error rate for (a) rule base 1 and (b) rule base 2

The two tested thresholds were chosen experimentally. The

obtained results tend to show that there is an optimum threshold

of 0.9. The choice of the threshold impacts the number and size

of the groups obtained in the reconciliation step of the method.

These must neither be too numerous and small (as in the case

of a high threshold) nor too few and large (as in the case of a

low threshold).

With rule base 1, the number of obtained groups was: 14

for threshold 0.8, and 45 for threshold 0.9. With rule base 2,

the number of obtained groups was: 5 for threshold 0.8, and 25

for threshold 0.9. When the obtained groups are few and large

(threshold 0.8), we can notice that the obtained predictions are

17



Q1 {(FoodProduct=Spaghetti), (Component=Riboflavin), (ValueBefore= 0.6), (Temperature= 100), (SaltPercentage= 0), (Time= 12), (KindOfWater=Tap water),

(Riboflavin addition=0.65), (Drying cycle=LT), (Drying time=28), (Max drying temperature=39)}

Q2 {(FoodProduct=Spaghetti), (Component=Riboflavin), (ValueBefore=0.4), (Temperature=100), (SaltPercentage=0), (Time=24), (KindOfWater=Tap water),

(Riboflavin addition=0.65), (Drying cycle=HT-B), (Drying time=14), (Max drying temperature=70)}

Q3 {(FoodProduct=Spaghetti), (Component=Riboflavin), (ValueBefore=1.63), (Temperature=100), (SaltPercentage=0), (Time=12), (KindOfWater=Tap water),

(Riboflavin addition=1.95), (Drying cycle=HT-B), (Drying time=14), (Max drying temperature=70)}

Q4 {(FoodProduct=Spaghetti), (Component=Thiamin), (ValueBefore=1), (Temperature=100), (SaltPercentage=0), (Time=12), (KindOfWater=Tap water),

(Thiamin addition=0.96), (Drying cycle=HT-A), (Drying time=13), (Max drying temperature=75)}

Q5 {(FoodProduct=Spaghetti), (Component=Niacin), (ValueBefore=5.7), (Temperature=100), (SaltPercentage=0), (Time=24), (KindOfWater=Tap water),

(Niacin addition=2.24), (Drying cycle=LT), (Drying time=28), (Max drying temperature=39)}

Q6 {(FoodProduct=Spaghetti), (Component=Niacin), (ValueBefore=9.6), (Temperature=100), (SaltPercentage=0), (Time=12), (KindOfWater=Tap water),

(Niacin addition=6.72), (Drying cycle=LT), (Drying time=28), (Max drying temperature=39)}

Q7 {(FoodProduct=Spaghetti), (Component=Niacin), (ValueBefore=9.6), (Temperature=100), (SaltPercentage=0), (Time=24), (KindOfWater=Tap water),

(Niacin addition=6.72), (Drying cycle=HT-A), (Drying time=13), (Max drying temperature=75)}

Q8 {(FoodProduct=Macaroni), (Component=Thiamin), (ValueBefore=11.4), (Temperature=100), (Time=10), (KindOfWater=Deionized water)}

Q9 {(FoodProduct=Noodles), (Component=Folic acid), (ValueBefore=0.026), (Temperature=100), (SaltPercentage=0), (Time=14)}

Q10 {(FoodProduct=Macaroni), (Component=Vitamin B6), (ValueBefore=1.129), (Temperature=100), (SaltPercentage=0), (Time=14)}

Q11 {(FoodProduct=Pasta), (Component=Thiamin), (ValueBefore, 1.08), (Temperature, 100), (SaltPercentage, 0), (KindOfWater, Distilled deionized water)}

Q12 {(FoodProduct=Pasta), (Component=Riboflavin), (ValueBefore=0.43), (Temperature=100), (SaltPercentage=0), (KindOfWater=Distilled deionized water)}

Q13 {(FoodProduct=Pasta), (Component=Niacin), (ValueBefore=7.82), (Temperature=100), (SaltPercentage=0), (KindOfWater=Distilled deionized water)}

Q14 {(FoodProduct=Noodles), (Component=Phosphorous), (ValueBefore=201.2), (Temperature=100), (SaltPercentage=0), (Time=8), (KindOfWater=Tap water)}

Q15 {(FoodProduct=Noodles), (Component=Potassium), (ValueBefore=227.2), (Temperature=100), (SaltPercentage=0.5), (Time=8), (KindOfWater=Tap water)}

Q16 {(FoodProduct=Noodles), (Component=Calcium), (ValueBefore=27.2), (Temperature=100), (SaltPercentage=0), (Time=8), (KindOfWater=Tap water)}

Q17 {(FoodProduct=Noodles), (Component=Magnesium), (ValueBefore=56.6), (Temperature=100), (SaltPercentage=0.5), (Time=8), (KindOfWater=Tap water)}

Q18 {(FoodProduct=Noodles), (Component=Iron), (ValueBefore=3.4), (Temperature=100), (SaltPercentage=0), (Time=8), (KindOfWater=Tap water)}

Q19 {(FoodProduct=Noodles), (Component=Manganese), (ValueBefore=0.7), (Temperature=100), (SaltPercentage=0.5), (Time=8), (KindOfWater=Tap water)}

Q20 {(FoodProduct=Noodles), (Component=Zinc), (ValueBefore=1.6), (Temperature=100), (SaltPercentage=0), (Time=8), (KindOfWater =Tap water)}

Table 2: Set of test queries
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(a)

Query Rule base 1 Rule base 2 Expected

Proposed method Decision trees Proposed method Decision trees

Threshold 0.8 Threshold 0.9 Threshold 0.8 Threshold 0.9

pred. conf. pred. conf. pred. conf. pred. conf.

Q1 -57.16 0.72 -66.71 0.91 -57 -41.65 0.65 -43.1 0.82 -54 -53.3

Q2 -58.58 0.72 -60.05 0.89 -64 -41.77 0.65 -44 0.81 -49 -62.5

Q3 -57.32 0.73 -59.83 0.88 -56 -41.69 0.65 -43.26 0.81 -60 -50.9

Q4 -56.44 0.78 -64.3 0.88 -57 -42.56 0.69 -43.01 0.81 -49 -54

Q5 -47.98 0.79 -45.6 0.93 -63 -42.03 0.57 -58.14 0.81 -48 -42.1

Q6 -47.95 0.83 -53.1 0.93 -55 -42.48 0.57 -57.35 0.79 -67 -57.3

Q7 -48.23 0.85 -50.04 0.89 -61 -43.06 0.59 -58.18 0.75 -47 -59.4

Q8 -40.51 0.52 -43.93 0.94 -45 -42.72 0.62 -53.73 0.68 -35 -42.2

Q9 -23.46 0.81 -21 0.86 -37 -41.65 0.66 -21 0.87 -13 -21

Q10 -47 0.85 -47 0.85 -40 -41.7 0.68 -35 0.97 -12 -44

Q11 -48.99 0.72 -49.2 0.94 -46 -42.65 0.69 -52.56 0.77 -38 -49.3

Q12 -56.33 0.67 -37 0.83 -46 -42.53 0.7 -52.3 0.77 -37 -40.2

Q13 -47.85 0.78 -35 0.83 -46 -43.37 0.63 -51.77 0.72 -39 -50

Q14 -63.64 0.84 -66.13 0.92 -67 -61.17 0.78 -67.73 0.88 -69 -69.53

Q15 -88.12 1 -88.12 1 -66 -84.16 0.83 -84.84 0.93 -60 -88.12

Q16 -62.24 0.53 -62.3 0.68 -67 -49.41 0.63 -44.29 0.88 -67 -51.84

Q17 -63.11 0.7 -61.16 0.91 -67 -46.87 0.65 -51.69 0.88 -47 -56.18

Q18 -62.41 0.71 -75.68 0.69 -67 -74.28 0.55 -66.36 0.89 -67 -70.59

Q19 -63.13 0.74 -55.56 0.92 -66 -46.81 0.66 -50 0.89 -36 -57.14

Q20 -62.33 0.71 -64.71 0.69 -67 -55.55 0.61 -59.96 0.89 -78 -62.5

(b)

Rule base 1 Rule base 2

Proposed method Decision trees Proposed method Decision trees

Threshold 0.8 Threshold 0.9 Threshold 0.8 Threshold 0.9

10.53 % 9.68 % 15.37 % 17.87 % 13.19 % 21.39 %

Table 3: (a) Execution results and (b) Average error rates, for the proposed method vs decision trees

more homogeneous among the tested queries. On the contrary,

when the obtained groups are numerous and small (threshold

0.9), the obtained predictions are more various among the tested

queries.

Figures 3 (a) and (b) present the error rates obtained query

by query, with the proposed method for the optimum threshold

0.9, and with the decision tree method, respectively for rule

base 1 and rule base 2.

We can make the following observation. The queries that

obtained the most different results, if we compare both meth-

ods, are those for which exact or close answers were present in

the rule base (such as for query Q9 in rule base 1), or those for

which the closest answers, even if not so close, are quite differ-

ent from the rest of the base and show different trends (such as

for query Q10 in rule base 2).

The latter result is not very surprising since sensitivity to

outliers is a well-known drawback of decision trees, and a

strong point of our method which relies on the identification

of common tendencies. Let us recall that our interest in (i) the

case-based and (ii) the decision tree approaches is motivated, as

previously mentioned, by specific features that are not handled

by other methods (or not simultaneously), namely (i) missing

values, (ii) both numerical and symbolic values and (iii) a lim-

ited number of cases (here rules). The proposed method thus

takes the best from case-based and reconciliation approaches,

moreover it is aware of ontological knowledge, and an improve-

ment may legitimely be expected. Here we can note that the

decision tree strategy, which processes step by step by consid-

ering each variable separately, turns out to be less relevant than

the proposed method, which considers the rules globally, in-

volving all the variables.
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(a)

(b)

Figure 3: Error rates obtained for each query with (a) rule base 1 and (b) rule

base 2

8. Conclusion and Future Work

This paper presented an approach to generate prediction

rules relying on case-based and reconciliation methods, us-

ing an ontology. Rule reconciliation showed to have advan-

tages from a semantic and from a computational point of view.

From a semantic viewpoint, it constitutes a consolidation of the

knowledge represented by the set of rules, since it highlights

the expression of common experimental tendancies. From a

computational viewpoint, it speeds up the performances of the

method by providing a restriction of the search space. The use

of ontological knowledge both participates in performance im-

provement, through the disjunction relation in particular, and al-

lows taking into account variable relevance, through identified

functional dependancies. The experimentation on the applica-

tion domain of cereal food design has shown a real potential of

the approach. Compared with the results obtained by decision

tree prediction, the proposed approach is more complete and

more accurate.

To deal with information incompleteness which appears in

the condition part of the rules, different ways may be followed

during the similarity computation between two rules: (i) by

considering, in the common description, only the filled proper-

ties in both rules. This means that the missing values in one of

the two rules are ignored and do not participate in the similarity

computation; (ii) by considering, in the common description,

the whole description, i.e. the filled and the unfilled properties.

In this case, the missing values are exploited as a negative in-

formation since they decrease the similarity scores. It will be

worth studying more deeply the impact of these choices on the

prediction results.

A complementary ongoing work deals with the design and

validation of a domain expertise. It aims at the cooperation

of two kinds of information, heterogeneous by their granular-

ity levels and their formalisms: expert statements expressed in

a knowledge representation model and experimental data repre-

sented in the relational model. In such a framework, our predic-

tion approach may be usefully introduced, in order to validate

or invalidate the obtained predictions.

Finally, to demonstrate the generality of the approach, we

plan to experiment it on other application domains, such as

chemical and environmental risk.
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