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Résumé. In this work, we are interested in exploring the problem of data fu-
sion, starting from reconciled datasets whose objects are linked with semantic
sameAs relations. We attempt to merge the often conflicting information of these
reconciled objects in order to obtain unified representations that only contain the
best quality information.

1 Introduction

Data linking, also known as data reconciliation Ferrara et al. (2013); Saïs et al. (2009);
Pernelle et al. (2013), is the process where two object descriptions are examined in order to
determine whether they refer to the same real-world entity, and if so, to link them together.
Then, data fusion encompasses the effort to acquire a single homogenized object by merging
the information of the linked individual objects. The objects marked with the owl :sameAs may
contain different, conflicting or inconsistent values in their properties. For each property the
most appropriate value must be chosen. The data fusion is an essential step towards avoiding
redundancy, grouping together the best quality information and giving consistent answers to
the users, in the linked data environment.

Research on the data fusion problem has begun over two decades ago in the field of relatio-
nal databases Bleiholder et Naumann (2008). However, as we examine the data fusion from the
RDF point of view, we notice that the specificities of RDF mechanisms cannot be reflected in
solutions offered by relational databases experts. Three main approaches have been proposed
for data fusion in RDF Saïs et Thomopoulos (2008); Saïs et al. (2010); Flouris et al. (2012);
Mendes et al. (2012). These different approaches attempt to evaluate the quality of each value,
by taking into account various measures based on the value itself and/or its metadata.

In this work, we are interested in exploring the problem of data fusion. Our method com-
bines different quality criteria based on the value and its data source, and exploits, whenever
possible the ontology semantics, constraints and relations. What is more, we create a mecha-
nism to provide explanations about the quality of each value, as estimated by our system. To
achieve this, we generate annotations used for traceability and explanation purposes.

Our approach is described in detail in Section 2. A first evaluation is presented in Section
3. Finally, Section 4 concludes the paper and gives some future work.
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2 Proposed solution

Inspired by the approaches cited in Section 1, we build a system that attempts to offer a
solid automated solution to the fusion problem. With respect to the description of conflict-
handling methods described in Bleiholder et Naumann (2008), our approach is automatic and
applies a conflict-resolution strategy. We will show that it is at the same time an instance based
and a metadata based strategy.

As it will be shown in the next sections, this solution will (i) be adapted to each property,
(ii) exclude values that are implausible according to specific rules, (iii) exploit, whenever pos-
sible, the ontology knowledge (constraints, relations, etc.) and (iv) natively treat multi-valued
properties. Most importantly, it will store the information that led to each fusion decision, in
order to offer explanations on how and why a value has been chosen.

2.1 Methodology

Detect implausible values. We use the notion of plausibility in order to exclude values that
are irrational, according to some measures or predefined logic rules. This step is based on the
following elements :
Frequency. The measures of homogeneity and occurrence frequency in the data sources as
defined in Saïs et Thomopoulos (2008), are used here in order to detect the implausibility :
if the occurrence frequency is lower than a preset threshold, then the value is considered as
implausible.
Domain constraints. Some domain constraints and property typing restrictions can also be used
to detect implausible values. For example, if a property age is typed as “xsd :nonNegativeInte-
ger”, then a negative value of age should be considered as implausible.

Calculate value quality score. For the values that are not considered as implausible, a quality
score is computed. We believe that the aspects of the value itself (e.g. how often it appears in
a specified set) and the aspects of the quality of its data source can be equally important, and
that is why, we resulted in a list of the following for criteria :
The homogeneity of a value. The frequency of appearance of a value among all the values for
a property within the group of reconciled references.
Its occurrence frequency. The frequency of appearance of a value among all the values for a
property within the whole dataset. If a value appears several times inside a dataset for the same
property, then it is more reliable as it is less likely to contain spelling errors.
The freshness of its source. The last update of the data source. Data sources that are recently
updated tend to be considered as more reliable.
The reliability of its source. The users can explicitly give their preference towards one or ano-
ther data source. These preferences are used to fix a reliability value in [0..1]. If no such prefe-
rence is given, all data sources are considered equally reliable.
For more detailed descriptions on the homogeneity, the occurrence frequency and the fresh-
ness, see the definitions in Saïs et Thomopoulos (2008).
The global quality score of a given value is the average of these criteria is computed. Indeed,
other aggregation functions can be used as a weighted average, a maximum, a minimum, etc.
The score is then normalized and represented on a qualitative scale with the following values :
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excellent, medium, poor. As we will see below, this scale will serve for querying the informa-
tion on the metadata ontology.
Discover relations. For any value that is not considered as implausible, the system is trying
to discover how the value is related to the other possible values for the property. The possible
relations are :
More Precise : a string inclusion control is applied here, as well as querying a knowledge base
to detect possible subsumption relations for hierarchical values to select the more precise va-
lue. Examples : Paris is more precise than France, "10/05/1999" is more precise than "1999".
Synonym : several APIs for detecting synonyms are used to determine whether two values are
synonyms. Example : England is a synonym of UK. In case the property is explicitly defined
as mono-valued, the value with the best quality score is chosen. Otherwise, both values are
kept in the property.
Incompatible : the system refers to a list of expert rules to detect possible logical incompatibi-
lities between the values of one property or several properties.
For example, if we declare in a knowledge base that a property hasFunction is functionnal
and : hasFunction(X,

00
PrimeMinister

00)^hasFunction(X,

00
President

00) ) ? then if
the property hasFunction has these two values, these last will be declared as incompatible.

According to the relations, the quality score is affected positively or negatively, by a bonus or a
malus. The values are then sorted by their quality score. For mono-valued properties, the value
with the highest quality score is chosen. For multi-valued properties, all the plausible values
are kept. For each value, the system stores all the information that led to the calculation of the
score, or the reason of implausibility.

2.2 Provenance of Fusion Decisions

Since the calculation of the quality score and the selection of the appropriate value is more
complex, we realize that offering explanations on the provenance of the fusion decisions is
a useful feature. To achieve this, we found the reification mechanism, also used in Saïs et
Thomopoulos (2008), more flexible and suitable for our representation needs. The reification
mechanism allows to enrich the RDF declarations by adding new elements. Substantially, it
offers the possibility to create a metadata ontology describing existing RDF triples.

The data fusion metadata ontology. We introduce a data fusion metadata ontology in order to
use the RDF reification mechanism to annotate fused data by the quality information that are
exploited to achieve the fusion decisions (see Figure 1). The rdf :Statement class is enriched
by the object property hasQuality. The main class Quality has three object properties which
organize the different quality aspects. The hasCriteria property groups up all the measures
used to calculate the quality score, the hasRelations brings together the relations of the value
with other values, and the hasIndicators contains the remaining information.

A metadata document conforming to this ontology is produced by the system as a result
of the data fusion algorithm. It provides descriptions for the quality measures of the value
and the reasons why it was chosen or excluded (e.g., which rule it violates, the values that
are more precise than it, etc.). However, the initial purpose of the metadata document is to be
automatically queried. Depending on the quality scale of a value (excellent,medium, poor),
different queries are intended to provide a "story" explaining the aspects of the value’s quality.
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FIG. 1 – The Metadata Ontology

Example. An excerpt of the metadata document is displayed bellow. We are using the names-
pace dfa, standing for data fusion annotation. In this example, the two values for the property
dfa :first_name are presented and annotated with all the useful information concerning their
quality. Specifically, the implausible value Jacues contains only the information about its ho-
mogeneity, which is very low (0.015) and, thus, accounts for its exclusion from the list of
plausible values. On the other side, for the plausible value Jacques, all the information concer-
ning the calculation of its quality score are contained in the file. For this example, if the system
queries the metadata document for the value Jacues, the answer would be "The value is implau-
sible due to very low appearance in the data sources. Possible reason : misspelling.", while for
the value Jacques it will be "The value is the only plausible one. It has a combination of high
appearance in the data source and high level of trust on its data source".

PERSON-17123430093 rdf:type PhysicalPerson
v1 rdf:type Value
q1 rdf:type Quality
c1 rdf:type Criteria
PERSON-17123430093 dfa:first_name v1
v1 dfa:hasValue Jacques
v1 dfa:isImplausible false
...
PERSON-17123430093 dfa:first_name v2
v2 rdf:type Value
q2 rdf:type Quality
c2 rdf:type Criteria
v2 dfa:hasValue Jacues
v2 dfa:isImplausible true
v2 fmo:hasQuality q2
q2 fmo:hasCriteria c2
c2 fmo:hasHomogeneity 0.015
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3 Experiments

In this section, the main data sources that are used to test our approach are provided by the
INA partner of the ANR project Qualinca.

We considered a set of groups of 10819 reconciled instances (pairwise linked using
owl :sameAs links) that represent french famous persons and content notices where they are
involved. In Table 1.(a) we show the distribution of the reconciled instances groups. These
instances are described using different properties, as aPourNom, aPourT itreCollection,
aPourDateDiffusion, and so on.

Table (a) Table (b)
Person # instances

Jacques Martin 10288
Philippe Bouvard 264

Daniel Prevost 214
Frederic Martin 26
Emmanuel Petit 12
Luis Fernandez 7
Michel Leclerc 6

Virginie Lemoine 2

#values %
#distinct values 14588 –

#isImplausible = “true” 9370 64.23 %
#isImplausible = “false” 5218 34.76 %

#qualityValue = “excellent” 2 0.04 %
#qualityValue = “medium” 3233 61.95 %

#qualityValue = “poor” 1983 38 %

TAB. 1 – Table (a) Groups of reconciled instances ; Table (b) First data fusion results

In Table 1.(b) we show the first results obtained by our data fusion approach. From the
annotation file we extracted the number of distinct values, the number of values that are
detected as implausible and the ones that are plausible thanks to the frequency computation.
The three-valued scale (excellent, medium, poor) was validated with the domain experts, since
it captures the intuitive idea of neutral / positive / negative score. It could be more precise
(with 5 values for instance) but this would still be a refinement of the three-valued scale. For
the quality value that is computed we used three values of thresholds to determine them :

- if qualityScore � 0.67 then qualityValue = “excellent”.
- if 0.33 <qualityScore > 0.67 then qualityValue = “medium”.
- if qualityScore  0.33 then qualityValue = “poor”.

What we can observe from these results is that more than 64% of values are detected as
implausible and considered as inappropriate for the corresponding properties. Furthermore,
from the plausible values almost 62% of the values have a quality value that is medium what is
consolidate the results of the first step concerning the selection of the plausible values. More
qualitative experiments are needed to better qualify the reasons why the 38% of values having
a poor quality value appear as plausible.

4 Conclusion

In this work, we have presented an effort to study in depth the problem of data fusion
in the context of Linked Data. We have shown that our approach provides strong additions
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on the calculation of a value quality score and includes the original idea of keeping track of
the provenance of the fusion decisions. The annotation ontology we have proposed in order
to represent the aspects of the value quality, offers the possibility of automatical querying to
obtain specified responses and explanations. We have achieved a first implementation of the
system and studied several bibliographic datasets as well as ways to evaluate our experiment
results.

Several directions will be worth exploring. In particular, it would be interesting to look into
different scenarios to exploit the fused data, as well as use further quality criteria. We could
also experiment with different combinations of the criteria. Additional experiments will allow
defining generic thresholds for our variables and to discover the best combination of weights
for the calculation of the quality score.
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