
RDF data evolution: efficient detection and semantic

representation of changes

Nathalie Pernelle
LRI, Université Paris Sud

92450 Orsay, France
Nathalie.Pernelle@lri.fr

Fatiha Saïs
LRI, Université Paris Sud

92450 Orsay, France
Fatiha.Sais@lri.fr

Daniel Mercier
Université Paris Sud
92450 Orsay, France

daniel.mercier@u-psud.fr

Sujeeban Thuraisamy
Université Paris Sud
92450 Orsay, France

sujeeban.thuraisamy@u-
psud.fr

ABSTRACT
Many RDF data sources are constantly changing for both
data and vocabulary (ontology) levels. Many integration
tasks are impacted by these changes. In this context, it
is important to develop approaches to detect and represent
these changes. Many studies have focused on the detec-
tion, the representation and the management of changes at
the ontology level. In this paper, we present an approach
which allows to detect and represent elementary and com-
plex changes that can be detected when we focus only on
the data level. A first experiment was conducted on di↵er-
ent versions of DBpedia.

CCS Concepts
•Information systems ! Information integration;

Keywords
Data evolution; Data changes; RDF; Ontologies

1. INTRODUCTION
Today, we are experiencing an unprecedented production

of resources, published as Linked Open Data (LOD, for
short). This is leading to the creation of a global data space
containing billions of RDF triples from di↵erent domains
(e.g. DBpedia, Yago, GeoNames, FMA). One of the intrin-
sic features of the LOD is its dynamicity. LOD datasets are
continuously evolving for di↵erent reasons: information en-
richment and correction, scientific knowledge is constantly
growing thanks to the progress of scientific research and ev-
ery day big data production: “Every day, we create 2.5 quin-
tillion bytes of data [2]”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c� 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

In the Web of data, when a dataset evolves, the changes
may concern the ontological level where changes may involve
classes, properties, axioms and mappings to other ontologies.
The changes may also concern the instance level where data
modifications may a↵ect resources typings, property values,
or identity links between resources.
Many data integration tasks (e.g. synchronization, data

linking or fusion) are directly impacted by the data evo-
lution, that may lead to incomplete or incorrect results.
Therefore, it is important to develop tools that allow to de-
tect the changes and semantically represent them in a way to
be comprehensible and interpretable by human experts and
applications. This should be achieved in a manner that sup-
ports the development of incremental approaches for data
integration tasks, that is, tools performing these tasks can
update their results without considering the entire content
of the updated datasets.
An extensive work has been conducted on detection, rep-

resentation and management of the changes at the ontologi-
cal level (see [5] for a survey). Our approach is more related
to works that studied evolution of datasets at the data (in-
stance) level. The existing approaches may be classified into
two categories. First, some works [6, 1] only focus on low-
level changes (i.e. addition and deletion). [6, 1] studied both
ontology and data low-level changes. [6] proposed a new
formalism for low-level change detection in RDFS datasets.
[1] discusses low-level changes for propositional Knowledge
Bases by providing formal properties as delta uniqueness
and change reversibility. Some recent approaches have in-
vestigated more high-level changes. [4] have proposed the
notion of simple and complex changes in RDF datasets. The
complex changes are represented in an ontology of changes
and allow to provide a more synthetic and comprehensible
representation of the changes. However, they do not de-
clare direct links between the RDF triples and the induced
changes, which do not allow to perform specific queries on
the modified triples. [3] proposed a fixed and predefined set
of abstract changes without giving abilities to answer queries
that combine di↵erent kinds of changes.
In this paper, we propose an approach that detects and

semantically represents high-level changes at the instance
level of RDF datasets. We have designed an ontology ODE

in which semantic types of the changes are formally defined.



Once the delta (i.e. the set of added and deleted triples) is
computed, we apply two generic algorithms PODEA (Pop-
ulation of ODE with Addition changes) and PODES (Popu-
lation of ODE with Suppression changes) that allow to pop-
ulate the ODE ontology by reifying the added/deleted RDF
triples. The populated ontology ODE may be exploited to
perform simple queries that concern one class and more com-
plex queries that may involve several classes of ODE and
additional knowledge.

In section 2, we present our approach of detection and se-
mantic representation of changes in RDF dataset. We then
show in 3, how the populated ontology may be queried us-
ing SPARQL queries. After that, we present in section 4
the results of our experimental evaluation on three di↵erent
versions of DBpedia. Finally, we conclude and give some
future plans in section 5.

2. DETECTION AND SEMANTIC REPRE-
SENTATION OF CHANGES IN RDF
DATA

In this section, we present first some preliminaries and the
overview of our approach. Then, we describe the ontology
O

DE

. Finally, we will describe the algorithm that allows to
populate the O

DE

ontology.

2.1 Preliminaries
We consider RDF datasets as a set of RDF triples con-

forming to an OWL ontology.
An RDF triple is in the form < i p v > where: i is a URI,
p a property and v a URI or a literal.
When an ontology O is available, it can be defined as
(C,P,A) where: C is the set of classes, P is the set of
datatype or object properties, and A is the set of axioms
including subsumption relation between classes and proper-
ties.

2.2 Approach overview
Let consider two di↵erent versions D

old

and D
new

of
an RDF dataset1, the approach first computes the set
diff = T

d

[T
a

with T
d

= D
old

/D
new

and T
a

= D
new

/D
old

.
Then, an analysis step is applied to determine the type(s) of
each RDF triple that belongs to diff . These typed triples
are then used to populate the data evolution ontology O

DE

.
Thus, the obtained representation can be exploited using
SPARQL queries by tools or users to answer their specific
needs.

2.3 Data evolution ontology O
DE

Instead of representing the evolution of an RDF dataset
only in terms of added and deleted triples, we have defined
the ODE ontology to formalize di↵erent kinds of changes
(see Figure 1).
Two general types of changes are distinguished: the

classes AddedStatement and DeletedStatement. The sub-
classes of AddedStatement are the following:
AddedTyping, represents the triples that specify a new type
for a given instance i. More formally,
8t 2 T

a

, AddedTyping(t, c, i) i↵ t =< i rdf:type c >

1If the ontology exists, datasets are saturated

Figure 1: RDF data evolution Ontology ODE

AddedSchemaElement, represents the triples that involve a
new property2 in the dataset (sub-class AddedProperty) or
a new class (sub-class AddedClass) in D

new

. More formally,
8t 2 T

a

, AddedClass(t, c) i↵ t =< i rdf:type c >
and @ t0 2 D

old

s.t. t0 =< i0 rdf:type c > and i 6= i0

8t 2 T
a

, AddedProperty(t, p) i↵
t =< i p v > and @ t0 2 D

old

s.t. t0 =< i0 p v0 > and i 6= i0

and p is a property
Note that all the triples typed as AddedClass are also typed
as AddedTyping.
AddedInstance represents the triples that involve a new in-
stance i. More formally,
8t 2 T

a

, AddedInstance(t, i) i↵
@ t0 2 D

old

s.t. t0 =< i p v > or t0 =< i0 p i >
InstanceDescriptionEnrichment represents the triples that
involve a new property instance for an existing instance i.
8t 2 T

a

, InstanceDescriptionEnrichment(t, i) i↵
t =< i p v > and 9 t0 2 D

old

s.t. t0 =< i > or
t0 =< i >.

We will not detail the DeletedStatement subclasses, since
their definition is analogous. It su�ces to replace in the
definition D

old

by D
new

and T
a

by T
d

.
The instances of ODE classes correspond to reified RDF

triples. For each added or deleted triple, a property rdf:type
is added for each ODE class that types this triple. We
note that, when a triple corresponds to several types of
changes, its corresponding reification ID is used represent
the di↵erent changes (see Example 1).

Example 1. Let t =<dbp:Louis Aragon dbp:birthDate
”1897”> be an added triple typed as AddedProperty and
InstanceDescriptionEnrichment. Its reified representa-
tion is as follows:

<tripleID-1 rdf:type rdf:Statement > .
<tripleID-1 rdf:subject dbp:Louis_Aragon> .
<tripleID-1 rdf:predicate dbp:birthDate> .
<tripleID-1 rdf:object "1897" > .
<tripleID-1 rdf:type ode:AddedProperty> .
<tripleID-1 rdf:type ode:InstanceDescriptionEnrichment> .

2.4 ODE population algorithm
2new, means that the property was not instantianted in
D

old

. This does not mean that the property was not de-
clared in the ontology.



We have developed two algorithms PODEA and PODES
that allow to detect and associate a semantic type for each
added (suppressed, resp.) triple to D

old

(from D
new

, resp.).
These triples are reified and used to instantiate the ODE on-
tology, described above. We only present PODEA algorithm
(see algorithm 1) that allows to populate the ODE ontology
by exploiting the set of added triples. Indeed, PODES de-
scription is analogous to PODEA. In PODEA algorithm,
the function existA(s, p, o) checks the existence of the triple
(s, p, o) in D

old

. The function instantiate(c, tr) allows to in-
stantiate the class c of ODE by the reified triple t

r

. Finally,
the function instantiateHasAddedInstance(t, URI) allows
to keep track of the URI of the added instance (subject or
object).

Algorithm 1: PODEA – ODE population with added
triples –
Input:

• T
a

: set of added RDF triples.

• D
old

: the old version of the dataset

• ODE : data evolution ontology

Output: ODE , data evolution ontology populated by the
changes T

a

which arose in D
old

1 for each (triplet t(subject, predicate, object) 2 T
a

) do
2 if (predicate == rdf:type) then
3 if (¬ existA(?s, predicate, object)) then
4 instantiate(AddedClass, reification(t))
5 else
6 instantiate(AddedTyping, reification(t))
7

8 else
9 if (¬ isLiteral(object) and (¬ (existA(?s, ?p, object)

or existA(object, ?p, ?o)))) then
10 instantiate(AddedInstance, reification(t))
11 instantiateHasAddedInstance(t, object)

12 else if (¬ isLiteral(object)) then
13 instantiate(InstanceDescriptionEnrichment,

reification(t))

14 if (¬ (existA(?s, ?p, subject) or existA(subject, ?p, ?o)))
then

15 instantiate(AddedInstance, reification(t))
16 instantiateHasAddedInstance(t, subject)

17 else
18 instantiate(InstanceDescriptionEnrichment,

reification(t))

19 if (¬ existA(?s, predicate, ?o)) then
20 instantiate(AddedPoperty, reification(t))
21

3. ODE QUERYING
The populated ontology ODE can be queried by a do-

main expert or a data integration application using SPARQL
queries. Thus, a domain expert may analyze the triples
which induce some kinds of changes at the data level. Sim-
ple queries allow to obtain instance descriptions of one ODE

ontology class. For example, a simple query may be con-
structed to analyse the triples that have enriched the de-
scription of Barack Obama (see Q2 in Table 1). Some of
these simple data changes may show that some ontology
elements are not instantiated anymore. For example, an ex-
pert may be interested by the set of classes that are not any
more instantiated in the dataset (see Q1 in Table 1).

More complex queries can combine di↵erent kinds of in-
formation: di↵erent ODE classes, domain knowledge (e.g.
functionality of some properties) and triples of two versions

Table 1: Simple queries.

//Q1:List of classes that no longer have instances

SELECT DISTINCT ?deletedClass
WHERE {
?node rdf:type ode:DeletedClass
?node rdf:object ?deletedClass .
}

//Q2:List of the added triples that enrich the description
of B. Obama

SELECT ?property ?value
WHERE{
?node rdf:subject barack_obama .
?node rdf:type ode::instanceDescriptionEnrichment
?node rdf:predicate ?property
?node rdf:object ?value .
}

of the considered dataset. The query presented in Table 2
allows, for instance, to retrieve the set of instances of the
functional property mainAddress for which the value has
been modified.

Table 2: A query that retrieve modified values for a
functional property.

SELECT ?subject ?valueBefore ?valueAfter
WHERE {
?node rdf:type ode:AddedStatement .
?node rdf:subject ?subject .
?node rdf:predicate <http://.../mainAddress> .
?node rdf:object ?valueAfter .
?othernode rdf:type ode:DeletedStatement .
?othernode rdf:subject ?subject .
?othernode rdf:predicate <http://.../mainAddress> .
?othernode rdf:object ?valueBefore .
}

Furthermore, SPARQL queries can also be defined to ob-
tain a set of triples that may have an impact on the results
of a data integration task. For example, for data linking
task, that aims at detecting identity links (i.e. owl:sameAs)
between di↵erent descriptions that refer to the same world
entity, we may define a set of SPARQL queries to obtain the
data changes that may a↵ect the data linking results (i.e. to
find new links or erroneous links).

4. FIRST EXPERIMENTS
The main objective of this first evaluation is to show that

the proposed approach allows to populate the data evolu-
tion ontology O

DE

when a data source incurs an important
number of changes. Furthermore, through this experiment,
we aimed to show how O

DE

, when populated, may be used
to answer to simple expert queries but also to more complex
ones.

Table 3: Evolution of RDF triples describing Per-
sons in the three versions 3.5, 3.8 et 3.9 of DBPedia

Version 3.5 Version 3.8 Version 3.9

#triples 482 080 18 719 429 22 008 122
#instances 48 692 2 853 529 3 733 629
#properties 9 9 9

#types 71 348 434



Table 4: Type and number of changes for the class AddedStatement
#Added #Added #Added #Added #Added #Added

Statements SchemaElement Property Class Typing Instance
v3.5 -> v3.8 18 469 394 284 5 279 13 596 447 2 835 666

(12:43 min) (5:16 min) (3:28 min) (1:48 mn) (6:43 min) (7:20 min)
v3.8 ->v3.9 4 813 958 86 0 86 4 015 870 1 103 520

(01:49 min) (14 s) (2 s) (12 s) (1:21 min) (45 s)

Our approach has been implemented using Java program-
ming language and TDB–Jena Triples Database is used to
access and store the RDF triples.

We have evaluated our approach by using three versions
of DBPedia3 (versions v3.5, v3.8 and v3.9). We focused our
study on the instances of the class Person (PersonData file).
We have added to this file all the typing information of these
persons, i.e. all the rdf:type) triples. Table 3 presents the
number of RDF triples, the number of instances and the
number of associated types of instances of the class Person
in the considered three versions.

Between the version v3.5 and the version v3.9, the number
of triples of the class Person has been multiplied by 45,
the number of classes that type these instances has been
multiplied by 6.

The experiments have been executed on a single machine
with 8GB RAM, processor core i7-3517U 1.90GHz. We have,
first, applied our approach on successive versions of the class
Person and detected low-level changes: added triples and
deleted triples (execution time lower than 10 min). Then
these two files have been exploited to populate O

DE

on-
tology. When the two versions v3.5 et v3.8 are compared,
more than 18 millions of assertions are associated to the class
DataModification (execution time : 35 min). It should be
noted that, due to the reification step, these 18 millions
of assertions are represented by more than 155 millions of
triples.
Almost all the assertions are of type AddedStatement (see
Table 4). However, around half of existing triples have been
deleted (class DeletedStatement). Table 4 show how in-
stances of the class AddedStatement have been classified in
O

DE

. Execution time is also given for each type of change.
The classes DeletedInstance and AddedInstance allow

to observe how the data evolve. Thereby, when around
three millions of Person class instances have been added
in v3.8, 14% of instances have been deleted in v3.5. Fur-
thermore, the classes AddedTyping and DeletedTyping
show that the typing of the instances evolve (18% of the
deleted triples are triples types). A complex query using
the Deleted/AddedInstance and the Deleted/AddedTyping
classes, shows that a big number of types have evolved for
instances that are described in the two versions of DBPedia
(i.e. addition and deletion of types is not only due to the
addition and the deletion of instances).
We have also used O

DE

to detect if the ontology elements
that are used to describe these persons have evolved. Thus,
between the versions v3.5 and v3.8, 284 classes have ap-
peared in the description of the persons and two are not
used anymore. Furthermore, the results show that five prop-
erties have been used for the first time to describe the per-
sons while five others are lost. In fact, it corresponds to
properties for which the URI has been modified (e.g. the
property<http://.../birth> became <http://.../birthDate>

3http://dbpedia.org/services-resources/datasets

in v3.8 version).
Once the ontology is populated, this one may be used to

perform other simple queries based on the classes defined in
O

DE

. For example, we have used a SPARQL query to re-
trieve assertions of type InstanceDescriptionEnrichment
that are added for the URI corresponding to Barack Obama
(see Q2 in Table 1). The results showed that 7 assertions
have been added to this URI (e.g. a property description
which has as value in v3.8 ”American politician, 44th Presi-
dent of the United States”@en). In addition to this, by look-
ing for assertions of the class AddedTyping that concern the
URI of Barack Obama, we can see that this URI has been
associated to new types (Agent and OfficeHolder).
By executing a simple query, a user can also detect that

57 595 artists have been added to the version 3.5.

5. CONCLUSION
In this paper, we have presented an approach that detects

and semantically represents data changes in RDF datasets.
To represent these changes, we have designed an ontology
named ODE that is automatically populated using our ap-
proach. In ODE , a class instance is a reified triple that be-
longs to the set of added or deleted triples computed between
successive versions of one dataset. This populated ontology
can then be queried using SPARQL to analyse various sim-
ple or complex changes. Our experiments have shown that
our approach can be applied to large datasets in which many
changes have occurred.

6. REFERENCES
[1] E. Franconi, T. Meyer, and I. Varzinczak. Semantic di↵

as the basis for knowledge base versioning. In NMR,
2010.

[2] A. Gandomi and M. Haider. Beyond the hype: Big data
concepts, methods, and analytics. International Journal
of Information Management, 35(2):137 – 144, 2015.

[3] V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos,
and V. Christophides. High-level change detection in
rdf(s) kbs. ACM Trans. Database Syst., 38(1):1:1–1:42,
Apr. 2013.

[4] Y. Roussakis, I. Chrysakis, K. Stefanidis, G. Flouris,
and Y. Stavrakas. A flexible framework for
understanding the dynamics of evolving RDF datasets.
In The Semantic Web - ISWC 2015 - Bethlehem, PA,
USA, October 11-15, 2015, pages 495–512, 2015.

[5] F. Zablith, G. Antoniou, M. d’Aquin, G. Flouris,
H. Kondylakis, E. Motta, D. Plexousakis, and
M. Sabou. Ontology evolution: a process-centric survey.
Knowledge Eng. Review, 30(1):45–75, 2015.

[6] D. Zeginis, Y. Tzitzikas, and V. Christophides. On
computing deltas of rdf/s knowledge bases. ACM
Trans. Web, 5(3):14:1–14:36, July 2011.


