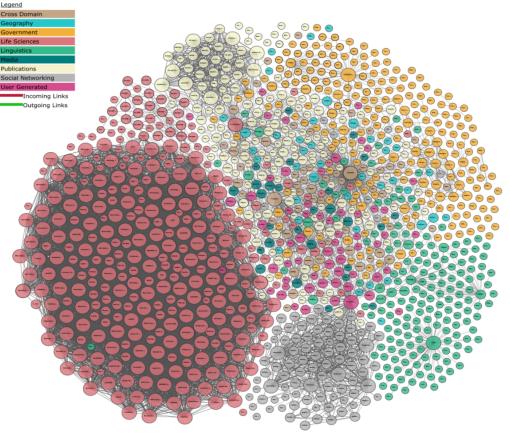
KNOWLEDGE GRAPH REFINEMENT

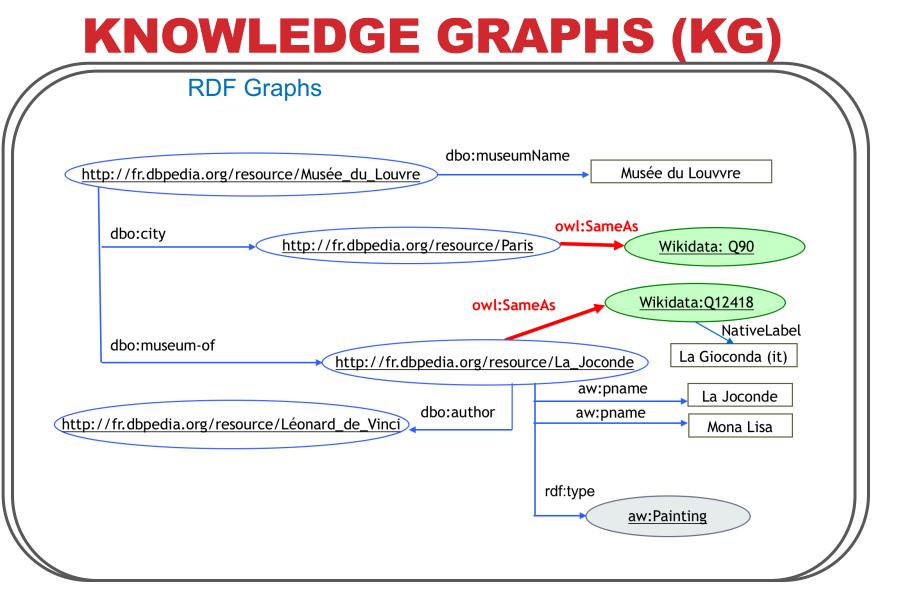
FATIHA SAÏS

HDR-HABILITATION À DIRIGER DES RECHERCHES

JUNE 20th, 2019, ORSAY, FRANCE

LINKED DATA


Tim Berners Lee, 2006


RDF Datasets publicly available

- 1,139 datasets
- over 100B triples
- about 500M links: most are sameAs links
- several domains

LOD – Linked Data Cloud

"Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/"

KNOWLEDGE GRAPHS (KG)

bttp://fr.dbpedia.org/resource/Musée_du_Louvre dbo:city http://fr.dbpedia.org/resource/Paris dbo:museum-of http://fr.dbpedia.org/resource/La_Joconde http://fr.dbpedia.org/resource/La_Joconde http://fr.dbpedia.org/resource/Léonard_de_Vinci dbo:author	\bigcap	RDF Graphs
db0:City http://fr.dbpedia.org/resource/Paris Wikidata: Q90 wikidata: Q12418 db0:museum-of La Gioconda (it) http://fr.dbpedia.org/resource/La Joconde La Gioconda (it) http://fr.dbpedia.org/resource/Léonard_de_Vinct_db0:author Mona Lisa rdf:type	h	
dbo:museum-of http://fr.dbpedia.org/resource/La_Joconde http://fr.dbpedia.org/resource/Léonard_de_Vinct dbo:author rdf:type		
http://fr.dbpedia.org/resource/Léonard_de_Vinci		dbo:museum-of NativeLabel La Gioconda (it)
aw:Painting	http	//fr.dbpedia.org/resource/Léonard_de_Vinci
		aw:Painting

KNOWLEDGE GRAPHS (KG)

RDF Graphs	OWL Ontology
http://fr.dbpedia.org/resource/Musée_du_Louvre	 UseumAddress Useum

WHO IS DEVELOPING KNOWLEDGE GRAPHS?

2012

WHO IS DEVELOPING KNOWLEDGE GRAPHS?

2012

²⁰⁰⁷ Freebase

Academic side

Commercial side

Introduction \rightarrow Knowledge Graphs

WHO IS DEVELOPING KNOWLEDGE GRAPHS?

2007

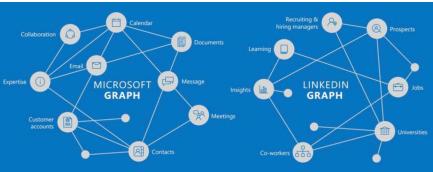
²⁰⁰⁷ Freebase

Academic side

2015

Google

Knowledge Graph


2012

2016

Facebook Graph

Search

2013

2013

Commercial side

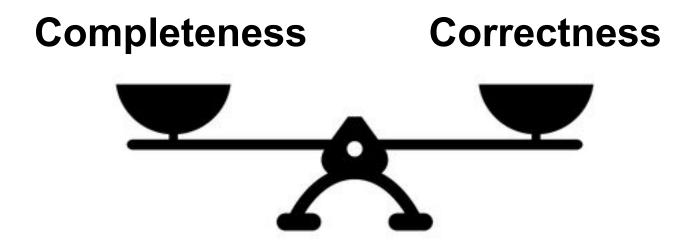
Introduction \rightarrow Knowledge Graphs

KNOWLEDGE GRAPH COMPLETENESS?

	Name	Instances	Facts	Types	Relations
	DBpedia (English)	4,806,150	176,043,129	735	2,813
	YAGO	4,595,906	25,946,870	488,469	77
public	Freebase	49,947,845	3,041,722,635	26,507	37,781
nd	Wikidata	15,602,060	65,993,797	23,157	1,673
	NELL	2,006,896	432,845	285	425
	OpenCyc	118,499	2,413,894	45,153	18,526
fe	Google's Knowledge Graph	570,000,000	18,000,000,000	1,500	35,000
private	Google's Knowledge Vault	45,000,000	271,000,000	1,100	4,469
pr	Yahoo! Knowledge Graph	3,443,743	1,391,054,990	250	800

Heiko Paulheim. Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods. Semantic Web 8:3(2017), pp 489-508.

KNOWLEDGE GRAPH CORRECTNESS?


About: Donald Trump

An Entity of Type : person, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

Donald John Trump (born June 14, 1946) is an American businessman, author, television producer, politician, and the Republican Party nominee for President of the United States in the 2016 election. He is the chairman and president of The Trump Organization, which is the principal holding company for his real estate ventures and other business interests. During his career, Trump has built office towers, hotels, casinos, golf courses, an urban development project in Manhattan, and other branded facilities worldwide.

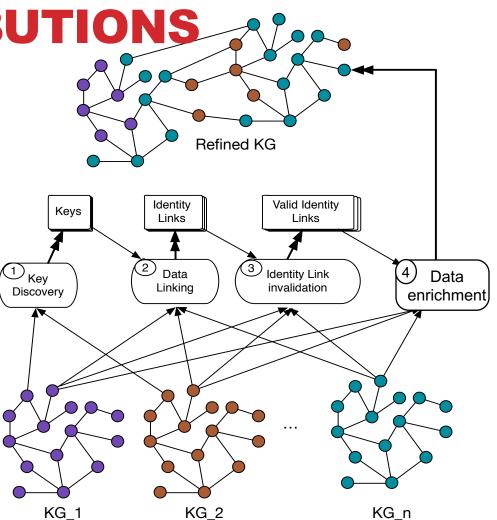
dbo:birthName	 Donald John Trump (en) 	
dbo:birthPlace	 dbr:Queens dbr:New_York_City	
dbo:birthYear	 1946-01-01 (xsd:date) 	
dbo:Child	 dbr:Donald_Trump_Jr. dbr:Tiffany_Trump dbr:Eric_Trump dbr:Ivanka_Trump dbr:Donald_Trump 	Donald Trump is the child of himself!

KNOWLEDGE GRAPH REFINEMENT

Introduction \rightarrow Knowledge Graph Refinement

KNOWLEDGE GRAPH REFINEMENT: SOME CONTRIBUTIONS

Identity management


- Data Linking: contextual identity links detection (Completeness)
- Identity Link Invalidation (Correctness)

Key discovery

Key axiom enrichment

Data Enrichment

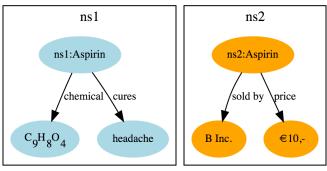
- Data Fusion: Property value enrichment
- Missing value prediction: Property value enrichment

OUTLINE

- Introduction
- Contributions
 - Part 1: Identity Management
 - Part 2: Key Discovery
 - Part 3: Data Enrichment
- Summary and Future Directions

OUTLINE

- Introduction
- Contributions
 - Part 1: Identity Management
 - Part 2: Key Discovery
 - Part 3: Data Enrichment
- Summary and Future Directions

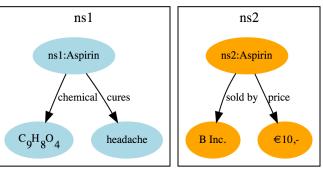

IDENTITY IN KNOWLEDGE GRAPHS

- Indicates that two different descriptions refer to the same entity
- owl:sameAs predicate: a standard for identity representation
- a strict semantics,
 - 1) Reflexive,
 - 2) Symmetric,
 - 3) Transitive and
 - 4) Fulfils property sharing:

 $\forall X \forall Y \text{ owl:sameAs}(X, Y) \land p(X, Z) \Rightarrow p(Y, Z)$

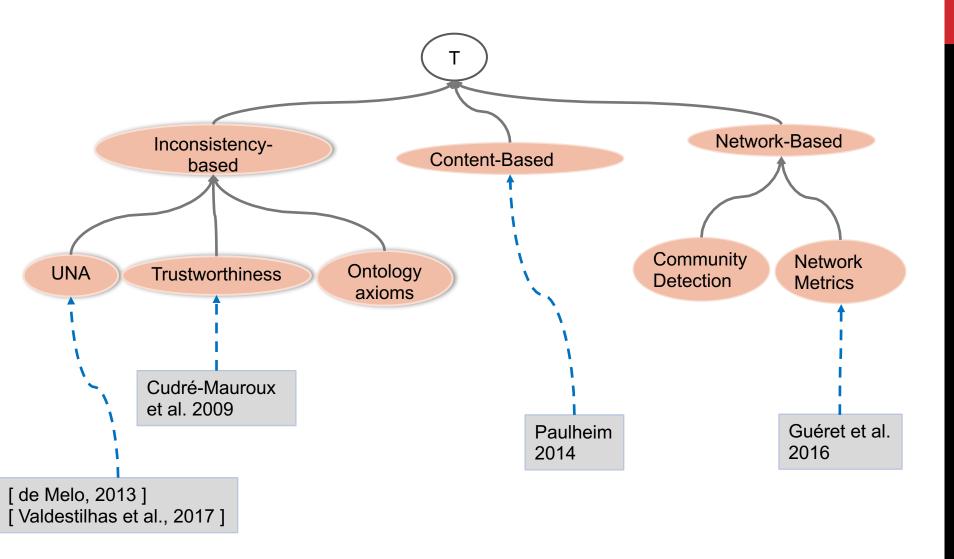
IDENTITY MANAGEMENT IS COMPLEX ...

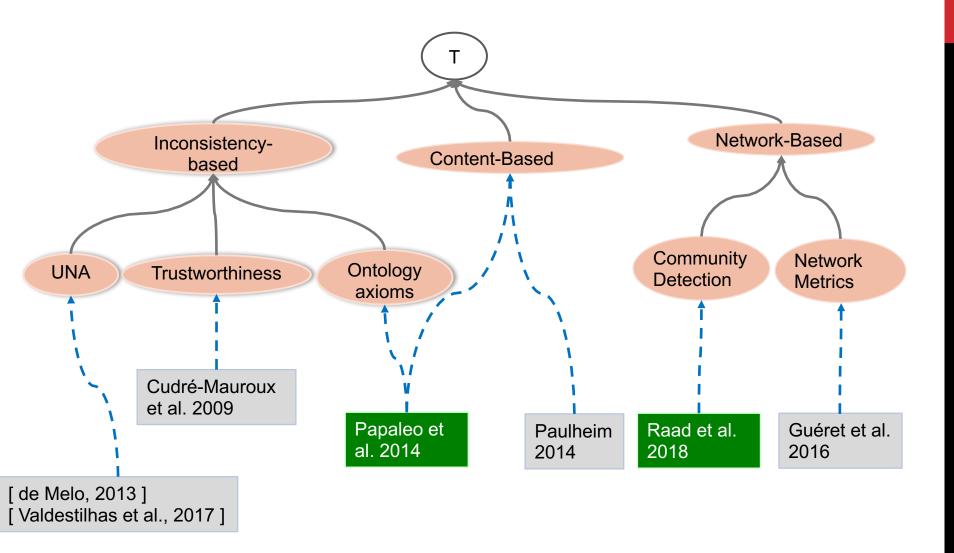
- Data linking tools are rarely **100% precise**
- Many erroneous owl:sameAs links:
 - [Halpin et al., 2010] ~21% and [Hogan et al., 2012] ~2.8%, manual evaluation of samples of owl:sameAs links from the Web
- Identity is context-dependent:


IDENTITY MANAGEMENT IS COMPLEX ...

- Data linking tools are rarely **100% precise**
- Many erroneous owl:sameAs links:

→ Link Invalidation problem


[Halpin et al., 2010] ~21% and [Hogan et al., 2012] ~2.8%, manual evaluation of samples of owl:sameAs links from the Web



Contextual identity

LINK INVALIDATION: RELATED WORK

LINK INVALIDATION: CONTRIBUTIONS

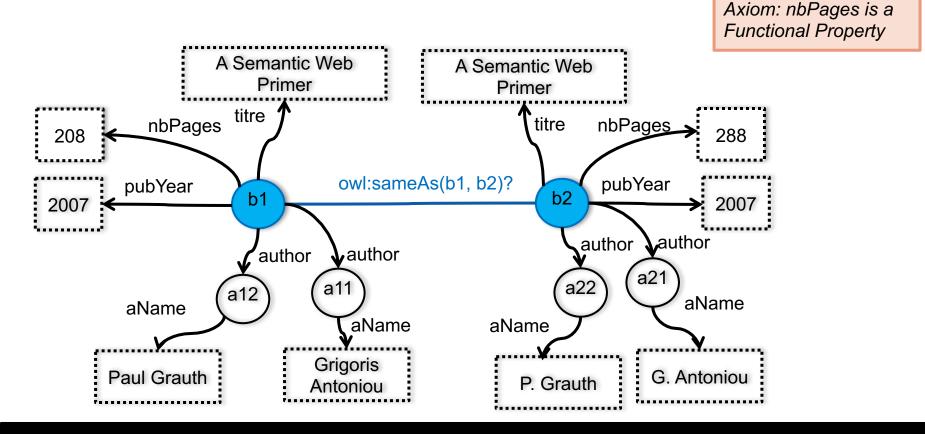
LINK INVALIDATION: CONTRIBUTIONS

Axiom-based for (small) datasets conforming to the same ontology

L. Papaleo Post-Doc QUALINCA ANR Project [2012-2016]

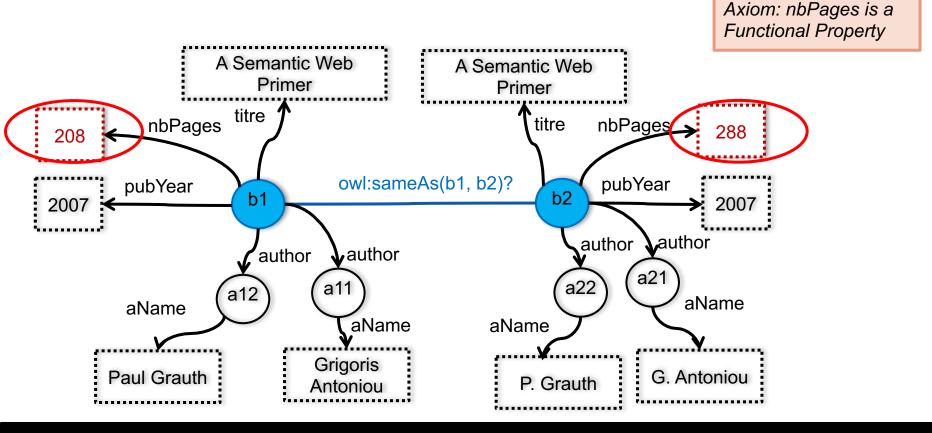
Network-based for big datasets without any assumption

J. Raad PhD, co-supervised with N. Pernelle, J. Dibie and L. Ibanescu Collaboration with VU Amsterdam (NL)


LIONES project from CDS Paris Saclay [2015-2018]

Principle: use of ontology axioms (functionality, local completeness, ...) to detect inconsistencies and possible errors in the linked resources.

Axiom: nbPages is a Functional Property



Principle: use of ontology axioms (functionality, local completeness, ...) to detect inconsistencies and possible errors in the linked resources.

1. Identity Management \rightarrow Link Invalidation \rightarrow Axiom-based approach

Principle: use of ontology axioms (functionality, local completeness, ...) to detect inconsistencies and possible errors in the linked resources.

1. Identity Management \rightarrow Link Invalidation \rightarrow Axiom-based approach

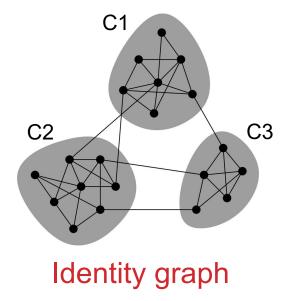
Algorithm: builds a sub-graph «around» each one of the two resources involved in the owl:sameAs by exploiting ontology axioms

- Applies a logical reasoning based on Unit Resolution on:
 - Facts: set of RDF facts of the sub-graph and initial inequalities between literals
 - Rules: rules expressing the axiom semantics

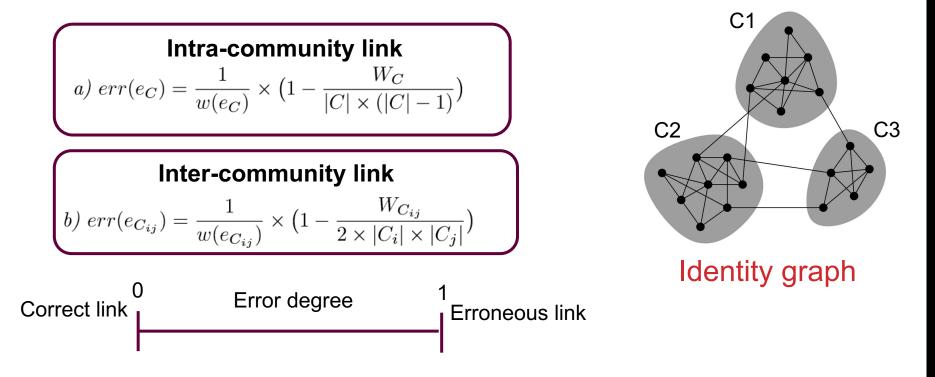
 $-R_{1_{FDP}}: sameAs(x, y) \land p_i(x, w_1) \land p_i(y, w_2) \to synVals(w)$

sameAs(x,y) \land nbPages(x,w₁) \land nbPages(y,w₂) \rightarrow SynVals(w₁,w₂)

- OAEI 2010 dataset on Restaurants
- Use of the output of different linking tools.

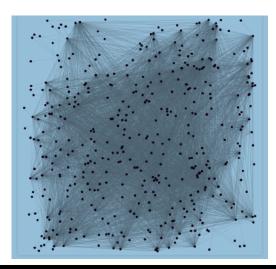

IM: Invalidation method, LM: Linking method					
Linking Method	LM Precision	IM Recall	IM Precision	IM Accuracy	LM+IM precision
[120]	95.55%	75%	37%	93.34%	98.85%
[110]	69.71%	88.4%	88.4%	92.9%	95.19%
[138]	90.17%	100%	42.30%	86.60%	100%

Limitations

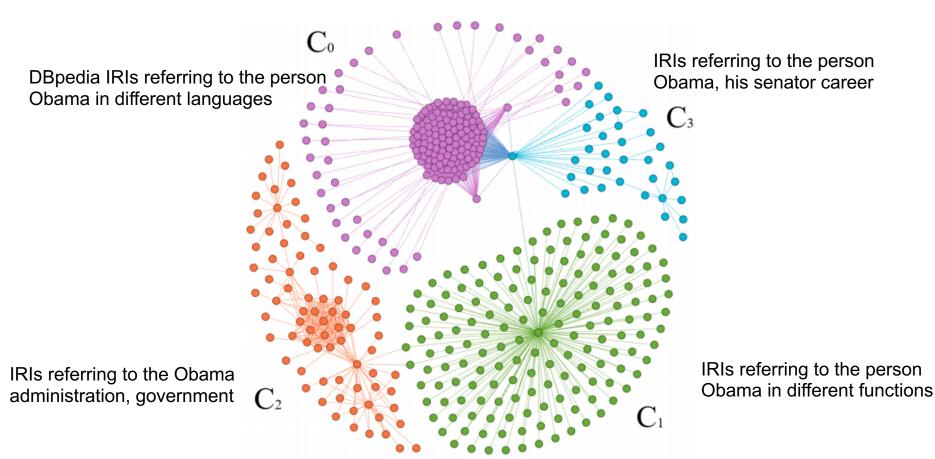

- Not scalable (evaluation on some thousands of instances)
- Strong assumptions: same ontology and axioms available

Precision Improvement up to 25%

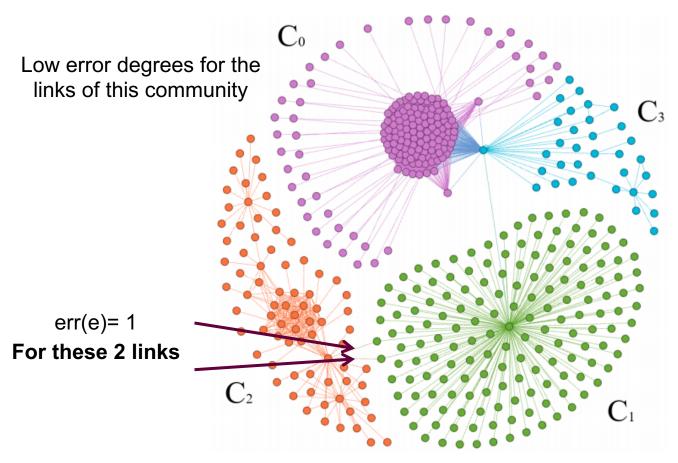
Algorithm: uses the density of the **community structure** of the **identity graph** to assign each link an **error degree**.



Algorithm: uses the density of the **community structure** of the **identity graph** to assign each link an **error degree**.


Experimentation - Dataset

- LOD-a-lot dataset [Fernandez et al. 2017]: a compressed data file of 28 Billion triples from a LOD 2015 crawl
- Identity graph of 558.9 Million owl:sameAs links (179M nodes)
- Partitioned into 48.9 Million non singleton equality sets



Example: The **B. Obama** equality set which contains 440 nodes

The community structure of the Barack Obama's Equality Set

Error degrees

1. Identity Management \rightarrow Link Invalidation \rightarrow Network-based approach

• Scales to a graph of 28 billion triples: 11 hours for the 4 steps

No **benchmark** for qualitative evaluation

Precision: manual evaluation of 200 links

- The higher the error degree is the most likely the link will be erroneous: 100% of owl:sameAs with an error degree <0.4 are correct</p>
- Can theoretically invalidate a large set of owl:sameAs links on the LOD: 1% (1.26M owl:sameAs) have an error degree in [0.99, 1]

Recall:780 incorrect linksbetween 40 distinct resources have beenintroduced in the explicit identity graph.Recall = 93 %

CONTEXTUAL IDENTITY

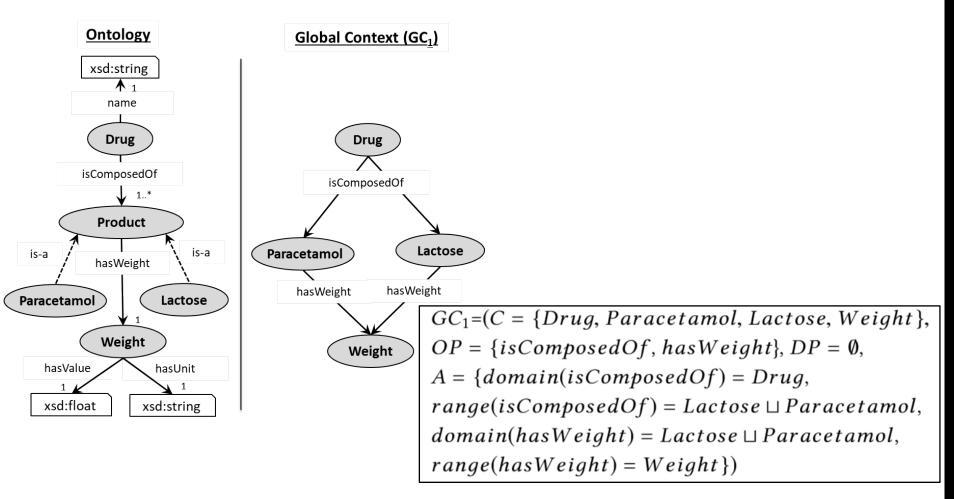
Need to distinguish weak identity from genuine identity

CONTEXTUAL IDENTITY: RELATED WORK

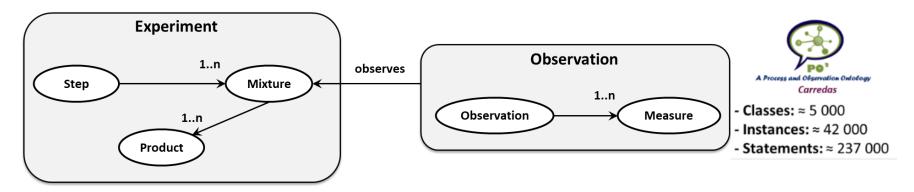
• Need to distinguish **weak identity** from **genuine identity**

Existing alternate links

- Similarity ontology (SO) [Halpin et al., 2010]:13 different predicates including 8 new ones
- UMBEL¹ vocabulary introduces umbel:isLike "to assert a link between similar individuals who may be believed to be identical"
- x No formal semantics
- x No algorithm proposed for their discovery
- Weaker kinds of identity expressed as a subset of properties [Beek et al. 2016]

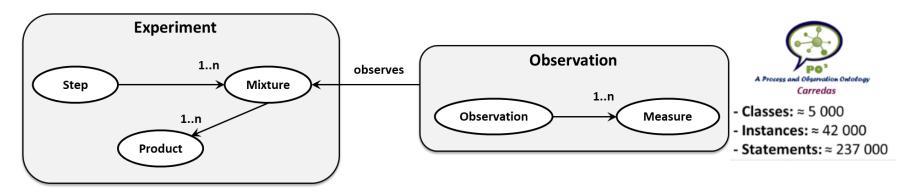

¹ <u>http://umbel.org</u>

1. Identity Management \rightarrow Contextual Identity


CONTEXTUAL IDENTITY: [Raad et al. 2017] CONTRIBUTIONS

- A context defined as a sub-ontology
- New contextual identity predicate
- New algorithm for detecting the most specific contexts in which two instances (resources) are identical
 - Use of **semantic constraints** from domain experts
- All the possible contexts are organized in a lattice using an order relation

CONTEXTUAL IDENTITY: [Raad et al. 2017] CONTRIBUTIONS



CONTEXTUAL IDENTITY DETECTION APPROACH EVALUATION [Raad et al. 2017]

 Prediction rules: generated for each context C_i, and each observation result m_i: *identiConTo*<Ci>(x, y) ∧ observes(x, m₁) → observes(y, m₂), with m₁ ≃ m₂

CONTEXTUAL IDENTITY DETECTION APPROACH EVALUATION [Raad et al. 2017]

 Prediction rules: generated for each context C_i, and each observation result m_i: *identiConTo*<Ci>(x, y) ∧ observes(x, m₁) → observes(y, m₂), with m₁ ≃ m₂

Rule	Error Rate	Support
$identiConTo_{\langle GC_1 \rangle}(x, y) \rightarrow same(pH)$	6.19 %	57
$identiConTo_{< GC_3>}(x, y) \rightarrow same(Hardness)$	1.86 %	66
$identiConTo_{\langle GC_2 \rangle}(x, y) \rightarrow same(Friability)$	4.52 %	647

38 844 rules on Carredas dataset

The error rate decreases by **12%** when a **context** is replaced by a **more specific context**

1. Identity Management \rightarrow Contextual Identity

IDENTITY MANAGEMENT: LESSONS LEARNED

Identity invalidation

- Different kinds of information can be used for link invalidation: axioms, resource descriptions and graph topology
- The efficiency of the proposed approaches depends on the characteristics of the knowledge graphs: volume, heterogeneity, ontology

Contextual identity

- An approach that detects contextual identity links in RDF KG while considering semantic constraints from domain experts
- Contexts used for value prediction in scientific KGs

IDENTITY MANAGEMENT: LESSONS LEARNED

Identity invalidation

- Different kinds of information can be used for link invalidation: axioms, resource descriptions and graph topology
- The efficiency of the proposed approaches depends on the characteristics of the knowledge graphs: volume, heterogeneity, ontology

Contextual identity

- An approach that detects contextual identity links in RDF KG while considering semantic constraints from domain experts
- Contexts used for value prediction in scientific KGs

Possible improvements

- Need for hybrid approaches for link invalidation
- Need for approaches for difference links detection: useful for inconsistency checking

OUTLINE

- Introduction
- Contributions
 - Part 1: Identity Management
 - Part 2: Key Discovery
 - Part 3: Data Enrichment
- Summary and Future Directions

PART 2: KEY DISCOVERY

PhD of Danai Symeonidou (2011-2014)

Co-supervised with N. Pernelle

Qualinca ANR Project (2012-2016)

Collaborations with: LIG, LIRMM, Telecom ParisTech, INRA and Aalborg University (Danemark).

Rule-based data linking approaches [Saïs et al 2007, 2009]: need for knowledge to be declared in an ontology language or other languages.

homepage(X, Y) \land homepage(Z, Y) \rightarrow sameAs(X, Z)

A key: is a set of properties that uniquely identifies every instance of a class

homepage	
www.louvre.com	museum21
www.musee-orsay.fr	museum22
www.quai-branly.fr	museum23
	museum24

	 homepage
museum11	www.louvre.com
museum12	www.musee-orsay.fr
museum13	www.quai-branly.fr
museum14	

Rule-based data linking approaches [Saïs et al 2007, 2009]: need for knowledge to be declared in an ontology language or other languages.

```
homepage(X, Y) \land homepage(Z, Y) \rightarrow sameAs(X, Z)
```

Then we may infer:

sameAs(museum11, museum21)
sameAs(museum12, museum22)
sameAs(museum13, museum23)

A key: is a set of properties that uniquely identifies every instance of a class

	 homepage		SamaAa		homepage			
museum11	www.louvre.com	÷	✓ SameAs		\longleftrightarrow		www.louvre.com	museum21
museum12	www.musee-orsay.fr	✓ SameAs →		→	www.musee-orsay.fr	museum22		
museum13	www.quai-branly.fr	4	SameAs	→	www.quai-branly.fr	museum23		
museum14						museum24		

Rule-based data linking approaches [Saïs et al 2007, 2009]: need for knowledge to be declared in an ontology language or other languages.

```
homepage(X, Y) \land homepage(Z, Y) \rightarrow sameAs(X, Z)
```

Then we may infer:

sameAs(museum11, museum21)
sameAs(museum12, museum22)
sameAs(museum13, museum23)

A key: is a set of properties that uniquely identifies every instance of a class

	 homepage		SamaAa		homepage					
museum11	www.louvre.com	÷	SameAs SameAs		<──		<──		www.louvre.com	museum21
museum12	www.musee-orsay.fr	÷			www.musee-orsay.fr	museum22				
museum13	www.quai-branly.fr	-	SameAs	→	www.quai-branly.fr	museum23				
museum14						museum24				

How to automatically discover keys from KGs?

KEY DISCOVERY FOR KNOWLEDGE GRAPH REFINEMENT: KEY SEMANTICS

OWL2 Semantics

 A Key for a class: a combination of properties that uniquely identify each instance of a class:

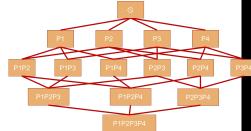
hasKey(CE (OPE₁ ... OPE_m) ($DPE_1 ... DPE_n$))

$$\forall X, \forall Y, \forall Z_1, \dots, Z_n, \forall T_1, \dots, T_m \wedge ce(X) \wedge ce(Y) \bigwedge_{i=1}^n (ope_i(X, Z_i) \wedge ope_i(Y, Z_i))$$
$$\bigwedge_{i=1}^m (dpe_i(X, T_i) \wedge dpe_i(Y, T_i)) \Rightarrow X = Y$$

owl:hasKey(Book(Author) (Title)) means:

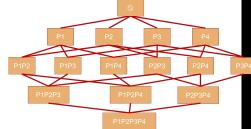
Book(x₁) \land Book(x₂) \land Author(x₁, y) \land Author (x₂, y) \land Title(x₁, w) \land Title(x₂, w) \rightarrow sameAs(x₁, x₂)

Related Work


- In 2011, no key discovery approach for RDF data
- Approaches in relational databases are not applicable
 - Closed world assumption
 - Do not consider multi-valued properties
 - No ontologies (semantics cannot be used)

Contributions

- KD2R [ISSW 2011, JWS 2013]: exact key discovery
 - Danai Symeonidou PhD, Qualinca ANR Project (2012-2016)
- SAKey [ISWC 2014]: n-almost key discovery
 - Danai Symeonidou PhD, Qualinca ANR Project (2012-2016)
- VICKEY [ISWC 2017]: conditional key discovery
 - Collaboration with INRA, Telecom ParisTech and Aalborg University (Danemark).


KEY DISCOVERY: A COMPLEX PROBLEM

- Find all the minimal keys requires at least 2ⁿ property combinations
 - need of efficient filtering and prunings

KEY DISCOVERY: A COMPLEX PROBLEM

- Find all the minimal keys requires at least 2ⁿ property combinations
 - need of efficient filtering and prunings
- For each combination scan all the instances

KEY DISCOVERY: A COMPLEX PROBLEM

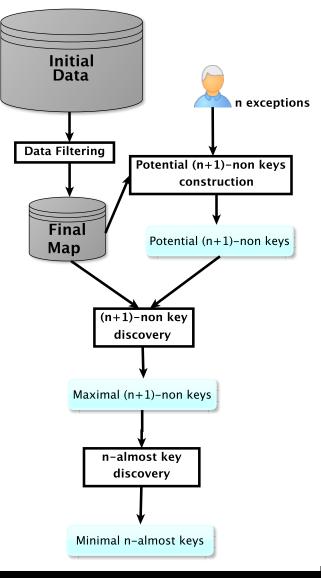
Find all the minimal keys requires at least 2ⁿ property combinations need of efficient filtering and prunings

derive

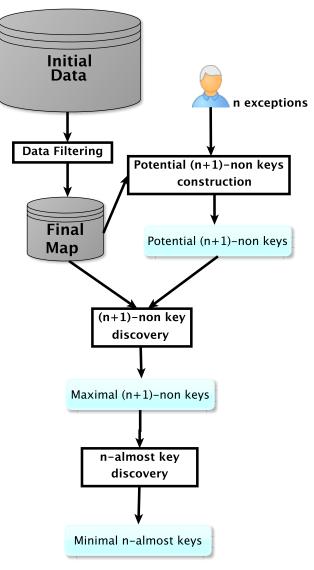
- For each combination scan all the instances
 - maximal non-keys \geq

	FirstName	LastName	Phone	Profession
Person1	Anne	Tompson	0169154259	Actor, Director
Person2	Marie	Tompson	0169154226	Actor
Person3	Marie	David	0425154012	Actor
Person4	Vincent	Solgar	0425154009	Actor, Director
Person5	Simon	Roche	0321455823	Teacher
Person6	Jane	Ser	0425462914	Teacher, Researcher
Person7	Sara	Khan	0425462915	Teacher
Person8	Theo	Martin	0321455823	Teacher, Researcher
Person9	Marc	Blanc	0169154228	Teacher

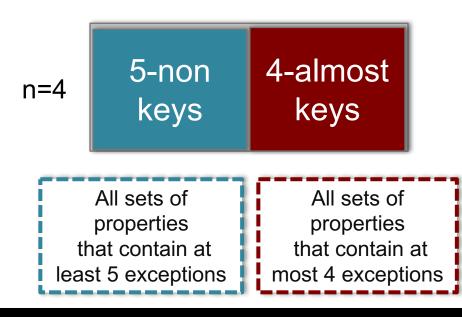
KD2R

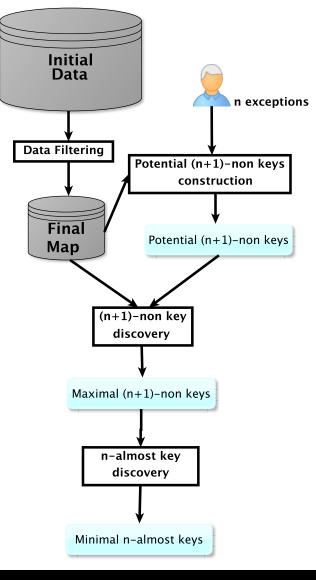

SAKEY

VICKEY


Is [LastName] a non-key? \rightarrow scan only a part of the data

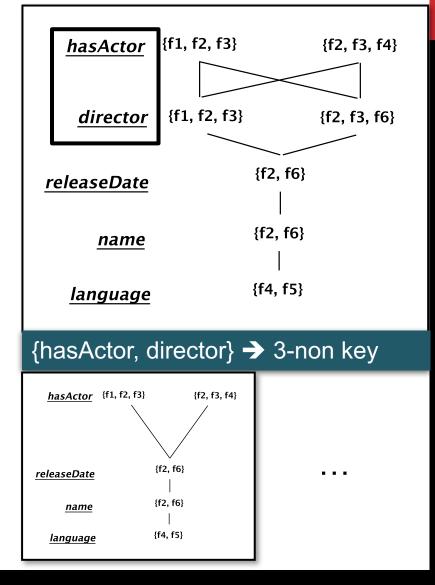
minimal keys


- SAKey allows *n* exceptions in the data
- Exception set E_P: set of instances that share values for the set of properties P



- SAKey allows *n* exceptions in the data
- Exception set E_P: set of instances that share values for the set of properties P
- n-almost key: a set of properties where |E_P|≤ n
- n-non key: a set of properties where |E_P|≥ n+1

- SAKey allows *n* exceptions in the data
- Exception set E_P: set of instances that share values for the set of properties P
- n-almost key: a set of properties where |E_P|≤ n
- n-non key: a set of properties where |E_P|≥ n+1


(n+1)- maximal non-key discovery:

Intersections between sets of properties

d	HasActor	{{f1, f2, f3}, {f2, f3, f4}}		
Map	HasDirector	{{f1,f2,f3}, {f2, f3, f6}}		
FINAL	ReleaseDate	{{f2, f6}}		
L	HasName	{{f2, f6}}		
	HasLanguage	{{f4, f5}}		

Different prunings and filtering

Efficient n-almost key derivation

SAKEY: EVALUATION

Evaluation on **13 different datasets** (OAEI, Qualinca project, Dbpedia, ...)

Scalability

 Big classes (dbo:NaturalPlace more than 16 million triples and 243 properties): non-key discovery in 1min and key derivation 5min)

Quality

- Data linking with SAKey keys: obtains close or better results than expert keys
- **Exceptions**: important increase of recall and weak decrease of the precision.

# exceptions	Recall	Precision	F-measure	
0, 1	25.6%	100%	41%	
2, 3	47.6%	98.1%	64.2%	
4, 5	47.9%	96.3%	63.9%	
6,, 16	48.1%	96.3%	64.1%	
17	49.3%	82.8%	61.8%	

Tool available at: <u>https://www.lri.fr/sakey</u>

VICKEY: CONDITIONAL-KEY DISCOVERY

To discover even more keys in a dataset

VICKEY: CONDITIONAL-KEY DISCOVERY

To discover even more keys in a dataset

Conditional key: a key, valid for instances of a class satisfying a specific condition

		FirstName	LastName	Gender	Lab	Nationality
Ĩ	instance1	Claude	Dupont	Female	Paris-Sud	France
	instance2	Claude	Dupont	Male	Paris-Sud	Belgium
	instance3	Juan	Rodríguez	Male	INRA	Spain, Italy
Instances of the class Person	instance4	Juan	Salvez	Male	INRA	Spain
	instance5	Anna	Georgiou	Female	INRA	Greece, France
	instance6	Pavlos	Markou	Male	Paris-Sud	Greece
	instance7	Marie	Legendre	Female	INRA	France

VICKEY: CONDITIONAL-KEY DISCOVERY

To discover even more keys in a dataset

Conditional key: a key, valid for instances of a class satisfying a specific condition

		FirstName	LastName	Gender	Lab	Nationality
Í	instance1	Claude	Dupont	Female	Paris-Sud	France
	instance2	Claude	Dupont	Male	Paris-Sud	Belgium
	instance3	Juan	Rodríguez	Male	INRA	Spain, Italy
Instances of the class Person	instance4	Juan	Salvez	Male	INRA	Spain
	instance5	Anna	Georgiou	Female	INRA	Greece, France
	instance6	Pavlos	Markou	Male	Paris-Sud	Greece
	instance7	Marie	Legendre	Female	INRA	France

{LastName} is a *key* under the *condition* **{Lab=INRA**}

Algorithm: discovers minimal conditional keys from maximal non-keys (SAKey)

VICKEY: EVALUATION

Goal: evaluate the quality of data linking using:

- Classical keys discovered by SAKey
- Conditional keys discovered by VICKEY
- Both classical keys and conditional keys

Use of **Yago** and **Dbpedia** datasets (**9 classes**) : Actor, Album, Book, Film, Mountain, Museum, Organization, Scientist, University

VICKEY: EVALUATION

Goal: evaluate the quality of data linking using:

- Classical keys discovered by SAKey
- Conditional keys discovered by VICKEY
- Both classical keys and conditional keys

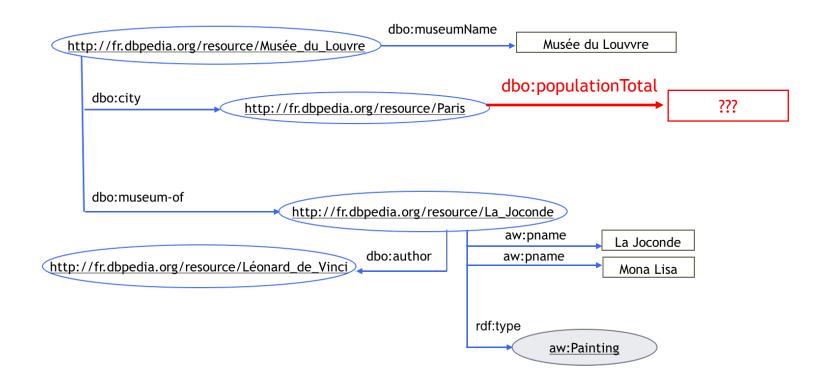
Use of **Yago** and **Dbpedia** datasets (**9 classes**) : Actor, Album, Book, Film, Mountain, Museum, Organization, Scientist, University

Class		Recall	Precision	F-Measure	
	SAKey Keys	0.27	0.99	0.43	x 1.75
Actor	Conditional keys	0.57	0.99	0.73	x 1.75
	SAKey Keys + Conditional keys	0.6	0.99	0.75	
	SAKey Keys	0	1	0.00	
Album	Conditional keys	0.15	0.99	0.26	x 869
	SAKey Keys + Conditional keys	0.15	0.99	0.26	
	SAKey Keys	0.04	0.99	0.08	x 7.1
Film	Conditional keys	0.38	0.96	0.54	
	SAKey Keys + Conditional keys	0.39	0.98	0.55	

2. Key Discovery \rightarrow Contributions \rightarrow VICKey

KEY DISCOVERY: LESSONS LEARNED

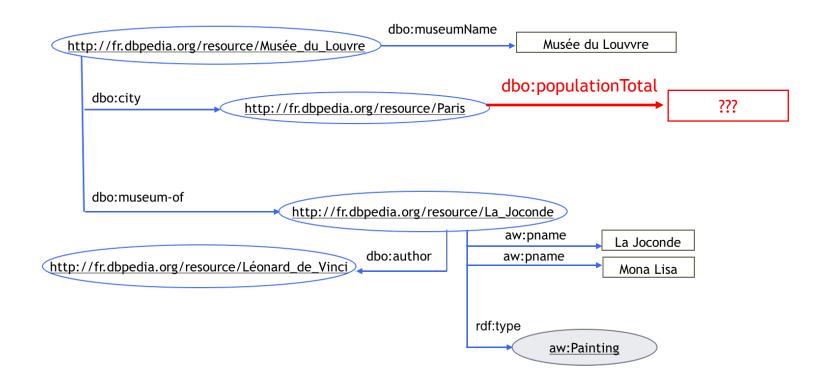
- Three different methods (KD2R, SAKey, VICKEY) that discover three different kinds of keys
- Relevance of exact-keys, n-almost and conditional keys for data linking
- Relying on the strategy of non-key search first prevents the use of well-known quality metrics to prune the search space (e.g., support)


Possible improvements

- More expressive keys such as key graphs or referring expressions may be discovered
- Different key semantics can co-exist: how to choose the good key semantics using the data characteristics (e.g. completeness)

OUTLINE

- Introduction
- Contributions
 - Part 1: Identity Management
 - Part 2: Key Discovery
 - Part 3: Data Enrichment
- Conclusion and Future Directions

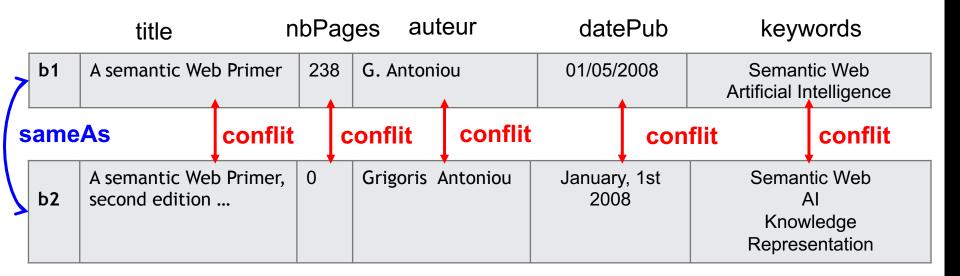

DATA ENRICHMENT

Contributions [Collaboration with R. Thomopoulos and S. Destercke]

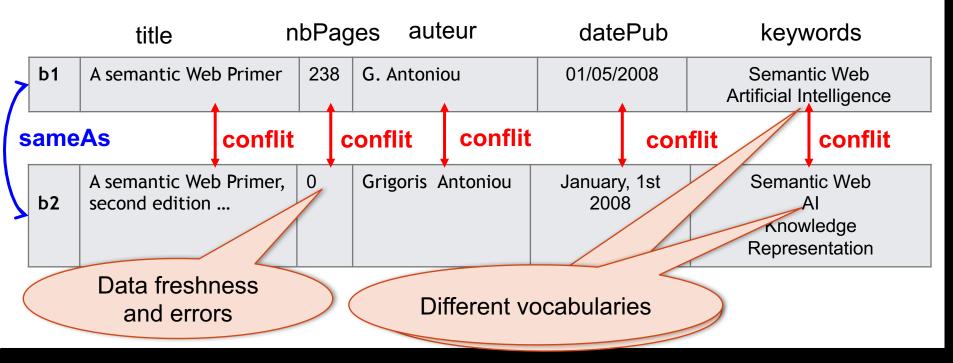
- Fusion of different RDF data sources [ODBASE'08, LFA'09, ODBASE'10, EGC'15]
- Prediction of missing values [KBS'14, Chapter in Nova Science'15]

DATA ENRICHMENT

Contributions [Collaboration with R. Thomopoulos and S. Destercke]


- Fusion of different RDF data sources [ODBASE'08, LFA'09, ODBASE'10, EGC'15]
- Prediction of missing values [KBS'14, Chapter in Nova Science'15]

- Merge information from entities linked by *identity links to obtain a* single homogenized representation
- Why fusion?
 - Improve knowledge graphs completeness
 - Group together best quality information


- Merge information from entities linked by *identity links to obtain a* single homogenized representation
- Why fusion?
 - Improve knowledge graphs completeness
 - Group together best quality information

		title n	bPag	jes auteur	datePub	keywords		
7	b1 A semantic Web Primer 238		G. Antoniou	01/05/2008	Semantic Web Artificial Intelligence			
5	sameAs							
	b2	A semantic Web Primer, second edition	0	Grigoris Antoniou	January, 1st 2008	Semantic Web Al Knowledge Representation		

- Merge information from entities linked by *identity links to obtain a* single homogenized representation
- Why fusion?
 - Improve knowledge graphs completeness
 - Group together best quality information

- Merge information from entities linked by *identity links to obtain a* single homogenized representation
- Why fusion?
 - Improve knowledge graphs completeness
 - Group together best quality information

DATA ENRICHMENT: DATA FUSION RELATED WORK

In 2008, there was no approach that deals with RDF data fusion

In relational databases [survey in Bleiholder & Naumann, 2008]

Data quality independent strategies

- Keep the most frequent value (democratic vote)
- Aggregation functions: average, max, min, concatenation, intervals

Data quality driven strategies

- Keep the value getting the best confidence value (or / threshold)
- Trust a reliable source
- Apply a vote weighted by the source reliability

Not applicable to RDF data: OWA, multi-valued properties and no ontologies

[Saïs et al. 2008, 2010, 2015]

Multi-criteria and conservative data fusion approach

- Detects implausible values using expert constraints (age >0)
- Computes quality score for plausible values: frequency, homogeneity, source freshness and reliability
- Discovers semantic relations (can affect the quality score) :
 - More Precise: (Paris, France)
 - Synonyms: AI, Artificial Intelligence
 - Incompatible: R: reviewingDate < publicationDate</p>

Book-F1 dfa:name v1 v1 rdf:type Value q1 rdf:type Quality **RDF:Statement** fmo:hasCriteria fmo:hasIndicators c1 rdf:type Criteria mo:hasQuality c2 rdf:type Criteria fmo:homogeneity ••• fmo:qualityValue fmo:violatedRules fmo:reliability imo:freshness fmo:frequency fmo:qualityScore v1 dfa:hasValue 'Grigoris Antoniou'' v1 dfa:isImplausible false v1 fmo:hasQuality q1 literal q2 fmo:hasCriteria c1 literal fmo:morePrecise c1 fmo:homogeneity 0.6 c2 fmo:freshness 0.99 fmo:incompatible literal ... fmo:synonym Explanation of data fusion decisions Explanations Saïs et al. 2018] EXPER1

Data Fusion Metadata Ontology

3. Data Enrichment \rightarrow Data Fusion

[Saïs et al. 2008, 2010, 2015]

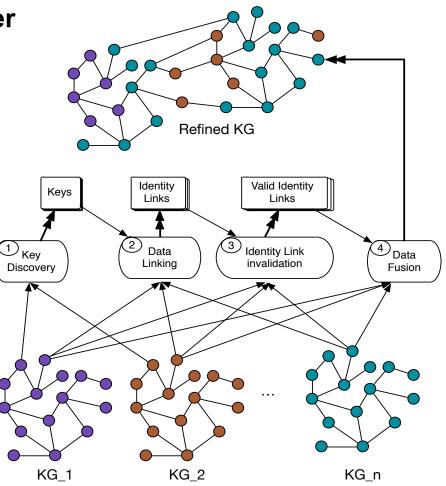
DATA ENRICHMENT: DATA FUSION LESSONS LEARNED

Multi-criteria data fusion approach

- Uses ontology semantics for confidence degree and provenance
- Keeps all the values ranked to allow flexible querying (top-k)
- Uncertainty modelling: fuzzy sets and possibility theory

Possible improvements

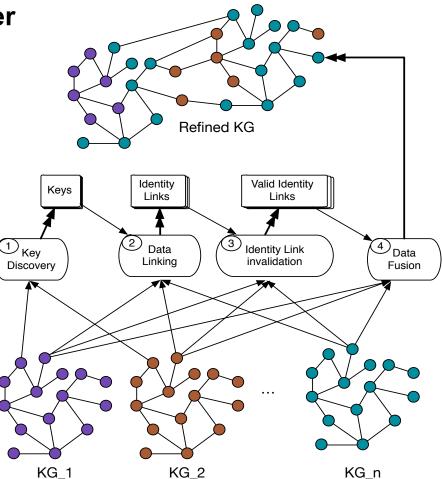
- **Object properties:** sameAs links, differentFrom links, information gain.
- **Multi-valued properties**: use information completeness
- Evaluation on big datasets: use of crowd-sourcing
- **Explanation** models for result interpretation and human validation


OUTLINE

- Introduction
- Contributions
 - Part 1: Identity Management
 - Part 2: Key Discovery
 - Part 3: Data Enrichment
- Conclusion and Future Directions

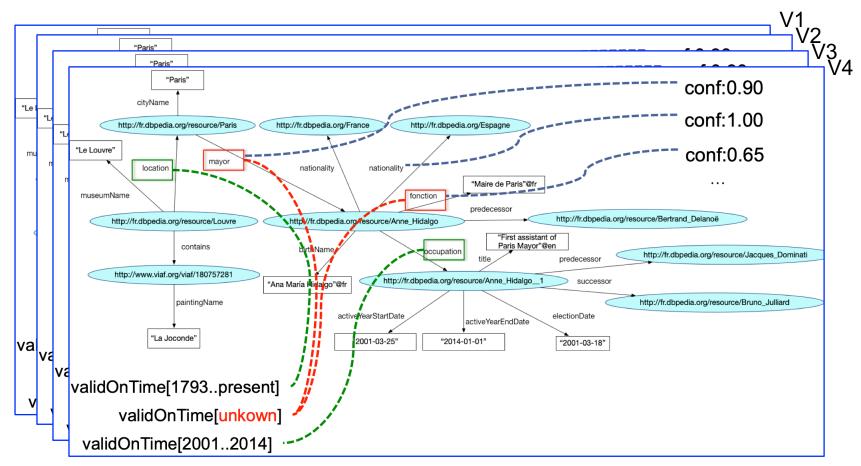
43

CONCLUSION


- Knowledge graph refinement under
 - Open World Assumption
 - ☑ Imperfect KGs
 - Complex KGs
 - ☑ Massive KGs

CONCLUSION

- Knowledge graph refinement under
 - Open World Assumption
 - Imperfect KGs
 - Complex KGs
 - ✓ Massive KGs
- Efforts needed for
 - Evolution
 - Uncertainty
 - □ Temporality



FUTURE DIRECTIONS

TEMPORAL, UNCERTAIN AND EVOLVING KG REFINEMENT: FUTURE DIRECTIONS

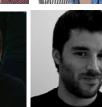
TEMPORAL, UNCERTAIN AND EVOLVING KG REFINEMENT: FUTURE DIRECTIONS

- Data Evolution (Collaboration with N. Pernelle, C. Pruski (LIST))
 - Semantic representation of changes on entities, topology, frequency of changes, the longevity of values, ...
 - Incremental KG refinement: identity management, data fusion and knowledge discovery

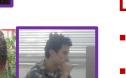
Time (Collaboration G. Quercini)

- KG enrichment with temporal meta-facts
- Time-aware veracity assessment
- Temporal data linking

[Malaverri post-doc 2019] [Sergey Konovalov Internship]


- Knowledge Discovery (more expressive rules)
 - Discovery of referring expressions [A. Khajeh Nassiri Internship]
 - Discovery of causality rules in scientific KGs [A. Filali Rotbi Internship]
 - PhD funding WarmRules project (2019-2021) from DATAIA
 - Combination of symbolic and statistical approaches

KNOWLEDGE GRAPH REFINEMENT



Identity Management

[ANR Qualinca, LIONES]

- Data Linking: contextual identity link detection
- Identity Link Invalidation
 - **J. Raad PhD** (N. Pernelle, J. Dibie, L. Ibanescu)
 - L. Papaleo post-doc

Publications: EKAW'15, K-Cap'17, ISWC'18, ...

Key Discovery

[ANR Qualinca]

- Key axiom enrichment
 - **D.** Symeonidou PhD (N. Pernelle) Collaboration with: LIRMM, LIG, Telecom ParisTech Publications: SWW'11, JWS'13, ISWC'14, ICCS'14, ISWC'17, ...

Data Enrichment

[ANR Qualinca]

- **Data Fusion:** Property value enrichment
- **Missing value prediction:** Property value enrichment

Collaboration with R. Thomopoulos, S. Destercke

Publications: ODBASE'08, LFA'10, ODBASE'10, KBS'14, Nova Science Chapt.'15, WETICE'18, ...

